7 research outputs found

    ANT colony optimization based optimal path selection and data gathering in WSN

    Get PDF
    A data aggregation is an essential process in the field of wireless sensor network to deal with base station and sink node. In current data gathering mechanism, the nearest nodes to the sink receives data from all the other nodes and shares it to the sink. The data aggregation process is utilized to increase the capability and efficiency of the existing system. In existing technique, the possibility of data loss is high this may leads to energy loss therefore; the efficiency and performance are damaged. In order to overcome these issues, an effective cluster based data gathering technique is developed. Here the optimal cluster heads are selected which is used for transmission with low energy consumption. The optimal path for mobile sink (MS) is done by Ant Colony Optimization (ACO) algorithm. It provides efficient path along with MS to collect the data along with Cluster centroid. The performance of the proposed method is analyzed in terms of delay, throughput, lifetime, etc.</p

    Energy Efficient Mobile Sink Based Routing Model For Maximizing Lifetime of Wireless Sensor Network

    Get PDF
    Recently, wide adoption of wireless sensor networks (WSNs) has been seen for provision real-time and non-real-time application services. Provisioning these application service requires energy efficient routing design for WSN. Clustering technique is an efficient mechanism that plays a major role in minimizing energy dissipation of WSN. However, the existing model are designed considering minimizing energy consumption of sensor device considering homogenous. However, it incurs energy overhead among cluster head. Further, maximizing coverage time is not considered by exiting clustering approach considering heterogeneous network affecting lifetime performance. For overcoming issues of routing data packets in WSN, mobile sink has been used. Here, the sensor device will transmit packet in multihop fashion to the rendezvous and the mobile sink will move towards rendezvous points (RPs) to collect data, as opposed to all nodes. However, the exiting model designed so far incurs packet delay (latency) and energy (storage) overhead among sensor device. For overcoming research challenges, this work present energy efficient mobile sink based routing model for maximizing lifetime of wireless sensor network. Experiment are conducted to evaluate the performance of proposed model shows significant performance in terms of communication, routing overhead and lifetime of sensor network

    Energy efficient clustering and routing optimization model for maximizing lifetime of wireless sensor network

    Get PDF
    Recently, the wide adoption of WSNs (Wireless-Sensor-Networks) is been seen for provision non-real time and real-time application services such as intelligent transportation and health care monitoring, intelligent transportation etc. Provisioning these services requires energy-efficient WSN. The clustering technique is an efficient mechanism that plays a main role in reducing the energy consumption of WSN. However, the existing model is designed considering reducing energy- consumption of the sensor-device for the homogenous network. However, it incurs energy-overhead (EO) between cluster-head (CH). Further, maximizing coverage time is not considered by the existing clustering approach considering heterogeneous networks affecting lifetime performance. In order to overcome these research challenges, this work presents an energy efficient clustering and routing optimization (EECRO) model adopting cross-layer design for heterogeneous networks. The EECRO uses channel gain information from the physical layer and TDMA based communication is adopted for communication among both intra-cluster and inter-cluster communication. Further, clustering and routing optimization are presented to bring a good trade-off among minimizing the energy of CH, enhancing coverage time and maximizing the lifetime of sensor-network (SN). The experiments are conducted to estimate the performance of EECRO over the existing model. The significant-performance is attained by EECRO over the existing model in terms of minimizing routing and communication overhead and maximizing the lifetime of WSNs

    Can Sensors Collect Big Data? An Energy-Efficient Big Data Gathering Algorithm for a WSN

    No full text
    Recently, incredible growth in communication technology has given rise to the hot topic, big data. Distributed wireless sensor networks (WSNs) are the key provider of big data and can generate a significant amount of data. Various technical challenges exist in gathering the real-time data. Energy-efficient routing algorithms can overcome these challenges. The signal transmission features have been obtained by analyzing the experiments. According to these experiments, an energy-efficient big data algorithm (big data efficient gathering, BDEG) for a WSN is proposed for real-time data collection. Clustering communication is established on the basis of a received signal strength indicator and residual energy of sensor nodes. Experimental simulations show that BDEG is stable in terms of the network lifetime and the data transmission time because of the load-balancing scheme. The effectiveness of the proposed scheme is verified through numerical results obtained in MATLAB

    Lightweight identity based online/offline signature scheme for wireless sensor networks

    Get PDF
    Data security is one of the issues during data exchange between two sensor nodes in wireless sensor networks (WSN). While information flows across naturally exposed communication channels, cybercriminals may access sensitive information. Multiple traditional reliable encryption methods like RSA encryption-decryption and Diffie–Hellman key exchange face a crisis of computational resources due to limited storage, low computational ability, and insufficient power in lightweight WSNs. The complexity of these security mechanisms reduces the network lifespan, and an online/offline strategy is one way to overcome this problem. This study proposed an improved identity-based online/offline signature scheme using Elliptic Curve Cryptography (ECC) encryption. The lightweight calculations were conducted during the online phase, and in the offline phase, the encryption, point multiplication, and other heavy measures were pre-processed using powerful devices. The proposed scheme uniquely combined the Inverse Collusion Attack Algorithm (CAA) with lightweight ECC to generate secure identitybased signatures. The suggested scheme was analyzed for security and success probability under Random Oracle Model (ROM). The analysis concluded that the generated signatures were immune to even the worst Chosen Message Attack. The most important, resource-effective, and extensively used on-demand function was the verification of the signatures. The low-cost verification algorithm of the scheme saved a significant number of valued resources and increased the overall network’s lifespan. The results for encryption/decryption time, computation difficulty, and key generation time for various data sizes showed the proposed solution was ideal for lightweight devices as it accelerated data transmission speed and consumed the least resources. The hybrid method obtained an average of 66.77% less time consumption and up to 12% lower computational cost than previous schemes like the dynamic IDB-ECC two-factor authentication key exchange protocol, lightweight IBE scheme (IDB-Lite), and Korean certification-based signature standard using the ECC. The proposed scheme had a smaller key size and signature size of 160 bits. Overall, the energy consumption was also reduced to 0.53 mJ for 1312 bits of offline storage. The hybrid framework of identity-based signatures, online/offline phases, ECC, CAA, and low-cost algorithms enhances overall performance by having less complexity, time, and memory consumption. Thus, the proposed hybrid scheme is ideally suited for a lightweight WSN
    corecore