1,101 research outputs found

    Trust perceptions of metadata in open-source software: The role of performance and reputation

    Get PDF
    © 2020 by the authors. Licensee MDPI, Basel, Switzerland. Open-source software (OSS) is a key aspect of software creation. However, little is known about programmers’ decisions to trust software from OSS websites. The current study emulated OSS websites and manipulated reputation and performance factors in the stimuli according to the heuristic-systematic processing model. We sampled professional programmers—with a minimum experience of three years—from Amazon Mechanical Turk (N = 38). We used a 3 × 3 within-subjects design to investigate the relationship between OSS reputation and performance on users’ time spent on code, the number of interface clicks, trustworthiness perceptions, and willingness to use OSS code. We found that participants spent more time on and clicked the interface more often for code that was high in reputation. Meta-information included with OSS tools was found to affect the degree to which computer programmers interact with and perceive online code repositories. Furthermore, participants reported higher levels of perceived trustworthiness in and trust toward highly reputable OSS code. Notably, we observed fewer significant main effects for the performance manipulation, which may correspond to participants considering performance attributes mainly within the context of reputation-relevant information. That is, the degree to which programmers investigate and then trust OSS code may depend on the initial reputation ratings

    A Case Study in Matching Service Descriptions to Implementations in an Existing System

    Full text link
    A number of companies are trying to migrate large monolithic software systems to Service Oriented Architectures. A common approach to do this is to first identify and describe desired services (i.e., create a model), and then to locate portions of code within the existing system that implement the described services. In this paper we describe a detailed case study we undertook to match a model to an open-source business application. We describe the systematic methodology we used, the results of the exercise, as well as several observations that throw light on the nature of this problem. We also suggest and validate heuristics that are likely to be useful in partially automating the process of matching service descriptions to implementations.Comment: 20 pages, 19 pdf figure

    Generic domain models in software engineering

    Get PDF
    This paper outlines three research directions related to domain-specific software development: (1) reuse of generic models for domain-specific software development; (2) empirical evidence to determine these generic models, namely elicitation of mental knowledge schema possessed by expert software developers; and (3) exploitation of generic domain models to assist modelling of specific applications. It focuses on knowledge acquisition for domain-specific software development, with emphasis on tool support for the most important phases of software development

    PlinyCompute: A Platform for High-Performance, Distributed, Data-Intensive Tool Development

    Full text link
    This paper describes PlinyCompute, a system for development of high-performance, data-intensive, distributed computing tools and libraries. In the large, PlinyCompute presents the programmer with a very high-level, declarative interface, relying on automatic, relational-database style optimization to figure out how to stage distributed computations. However, in the small, PlinyCompute presents the capable systems programmer with a persistent object data model and API (the "PC object model") and associated memory management system that has been designed from the ground-up for high performance, distributed, data-intensive computing. This contrasts with most other Big Data systems, which are constructed on top of the Java Virtual Machine (JVM), and hence must at least partially cede performance-critical concerns such as memory management (including layout and de/allocation) and virtual method/function dispatch to the JVM. This hybrid approach---declarative in the large, trusting the programmer's ability to utilize PC object model efficiently in the small---results in a system that is ideal for the development of reusable, data-intensive tools and libraries. Through extensive benchmarking, we show that implementing complex objects manipulation and non-trivial, library-style computations on top of PlinyCompute can result in a speedup of 2x to more than 50x or more compared to equivalent implementations on Spark.Comment: 48 pages, including references and Appendi

    Summary of the First Workshop on Sustainable Software for Science: Practice and Experiences (WSSSPE1)

    Get PDF
    Challenges related to development, deployment, and maintenance of reusable software for science are becoming a growing concern. Many scientists’ research increasingly depends on the quality and availability of software upon which their works are built. To highlight some of these issues and share experiences, the First Workshop on Sustainable Software for Science: Practice and Experiences (WSSSPE1) was held in November 2013 in conjunction with the SC13 Conference. The workshop featured keynote presentations and a large number (54) of solicited extended abstracts that were grouped into three themes and presented via panels. A set of collaborative notes of the presentations and discussion was taken during the workshop. Unique perspectives were captured about issues such as comprehensive documentation, development and deployment practices, software licenses and career paths for developers. Attribution systems that account for evidence of software contribution and impact were also discussed. These include mechanisms such as Digital Object Identifiers, publication of “software papers”, and the use of online systems, for example source code repositories like GitHub. This paper summarizes the issues and shared experiences that were discussed, including cross-cutting issues and use cases. It joins a nascent literature seeking to understand what drives software work in science, and how it is impacted by the reward systems of science. These incentives can determine the extent to which developers are motivated to build software for the long-term, for the use of others, and whether to work collaboratively or separately. It also explores community building, leadership, and dynamics in relation to successful scientific software

    Obvious: a meta-toolkit to encapsulate information visualization toolkits. One toolkit to bind them all

    Get PDF
    This article describes “Obvious”: a meta-toolkit that abstracts and encapsulates information visualization toolkits implemented in the Java language. It intends to unify their use and postpone the choice of which concrete toolkit(s) to use later-on in the development of visual analytics applications. We also report on the lessons we have learned when wrapping popular toolkits with Obvious, namely Prefuse, the InfoVis Toolkit, partly Improvise, JUNG and other data management libraries. We show several examples on the uses of Obvious, how the different toolkits can be combined, for instance sharing their data models. We also show how Weka and RapidMiner, two popular machine-learning toolkits, have been wrapped with Obvious and can be used directly with all the other wrapped toolkits. We expect Obvious to start a co-evolution process: Obvious is meant to evolve when more components of Information Visualization systems will become consensual. It is also designed to help information visualization systems adhere to the best practices to provide a higher level of interoperability and leverage the domain of visual analytics

    A domain-specific high-level programming model

    No full text
    International audienceNowadays, computing hardware continues to move toward more parallelism and more heterogeneity, to obtain more computing power. From personal computers to supercomputers, we can find several levels of parallelism expressed by the interconnections of multi-core and many-core accelerators. On the other hand, computing software needs to adapt to this trend, and programmers can use parallel programming models (PPM) to fulfil this difficult task. There are different PPMs available that are based on tasks, directives, or low level languages or library. These offer higher or lower abstraction levels from the architecture by handling their own syntax. However, to offer an efficient PPM with a greater (additional) high-levelabstraction level while saving on performance, one idea is to restrict this to a specific domain and to adapt it to a family of applications. In the present study, we propose a high-level PPM specific to digital signal processing applications. It is based on data-flow graph models of computation, and a dynamic runtime model of execution (StarPU). We show how the user can easily express this digital signal processing application, and can take advantage of task, data and graph parallelism in the implementation, to enhance the performances of targeted heterogeneous clusters composed of CPUs and different accelerators (e.g., GPU, Xeon Phi
    corecore