13 research outputs found

    Accountant\u27s business manual, 2007, volume 2 (Supplement 39)

    Get PDF
    https://egrove.olemiss.edu/aicpa_guides/2816/thumbnail.jp

    Accountant\u27s business manual, 2006, volume 2

    Get PDF
    https://egrove.olemiss.edu/aicpa_guides/2814/thumbnail.jp

    Accountant\u27s business manual, 2005, volume 2

    Get PDF
    https://egrove.olemiss.edu/aicpa_guides/2812/thumbnail.jp

    Safe and Sound: Proceedings of the 27th Annual International Conference on Auditory Display

    Get PDF
    Complete proceedings of the 27th International Conference on Auditory Display (ICAD2022), June 24-27. Online virtual conference

    Contributions to the science of controlled transformation

    Get PDF
    writing completed in april 2013My research activities pertain to "Informatics" and in particular "Interactive Graphics" i.e. dynamic graphics on a 2D screen that a user can interact with by means of input devices such as a mouse or a multitouch surface. I have conducted research on Interactive Graphics along three themes: interactive graphics development (how should developers design the architecture of the code corresponding to graphical interactions?), interactive graphic design (what graphical interactions should User Experience (UX) specialists use in their system?) and interactive graphics design process (how should UX specialists design? Which method should they apply?) I invented the MDPC architecture that relies on Picking views and Inverse transforms. This improves the modularity of programs and improves the usability of the specification and the implementation of interactive graphics thanks to the simplification of description. In order to improve the performance of rich-graphic software using this architecture, I explored the concepts of graphical compilers and led a PhD thesis on the topic. The thesis explored the approach and contributed both in terms of description simplification and of software engineering facilitation. Finally, I have applied the simplification of description principles to the problem of shape covering avoidance by relying on new efficient hardware support for parallelized and memory-based algorithms. Together with my colleagues, we have explored the design and assessment of expanding targets, animation and sound, interaction with numerous tangled trajectories, multi-user interaction and tangible interaction. I have identified and defined Structural Interaction, a new interaction paradigm that follows the steps of the direct and instrumental interaction paradigms. I directed a PhD thesis on this topic and together with my student we designed and assessed interaction techniques for structural interaction. I was involved in the design of the "Technology Probes" concept i.e. runnable prototypes to feed the design process. Together with colleagues, I designed VideoProbe, one such Technology Probe. I became interested in more conceptual tools targeted at graphical representation. I led two PhD theses on the topic and explored the characterization of visualization, how to design representations with visual variables or ecological perception and how to design visual interfaces to improve visual scanning. I discovered that those conceptual tools could be applied to programming languages and showed how the representation of code, be it textual or "visual" undergoes visual perception phenomena. This has led me to consider our discipline as the "Science of Controlled Transformations". The fifth chapter is an attempt at providing this new account of "Informatics" based on what users, programmers and researchers actually do with interactive systems. I also describe how my work can be considered as contributing to the science of controlled transformations

    Tools for identifying biodiversity: progress and problems

    Get PDF
    The correct identification of organisms is fundamental not only for the assessment and the conservation of biodiversity, but also in agriculture, forestry, the food and pharmaceutical industries, forensic biology, and in the broad field of formal and informal education at all levels. In this book, the reader will find short presentations of current and upcoming projects (EDIT, KeyToNature, STERNA, Species 2000, Fishbase, BHL, ViBRANT, etc.), plus a large panel of short articles on software, taxonomic applications, use of e-keys in the educational field, and practical applications. Single-access keys are now available on most recent electronic devices; the collaborative and semantic web opens new ways to develop and to share applications; the automatic processing of molecular data and images is now based on validated systems; identification tools appear as an efficient support for environmental education and training; the monitoring of invasive and protected species and the study of climate change require intensive identifications of specimens, which opens new markets for identification research
    corecore