148 research outputs found

    Network Threat Detection Using Machine/Deep Learning in SDN-Based Platforms: A Comprehensive Analysis of State-of-the-Art Solutions, Discussion, Challenges, and Future Research Direction

    Get PDF
    A revolution in network technology has been ushered in by software defined networking (SDN), which makes it possible to control the network from a central location and provides an overview of the network’s security. Despite this, SDN has a single point of failure that increases the risk of potential threats. Network intrusion detection systems (NIDS) prevent intrusions into a network and preserve the network’s integrity, availability, and confidentiality. Much work has been done on NIDS but there are still improvements needed in reducing false alarms and increasing threat detection accuracy. Recently advanced approaches such as deep learning (DL) and machine learning (ML) have been implemented in SDN-based NIDS to overcome the security issues within a network. In the first part of this survey paper, we offer an introduction to the NIDS theory, as well as recent research that has been conducted on the topic. After that, we conduct a thorough analysis of the most recent ML- and DL-based NIDS approaches to ensure reliable identification of potential security risks. Finally, we focus on the opportunities and difficulties that lie ahead for future research on SDN-based ML and DL for NIDS.publishedVersio

    Entropy based features distribution for anti-ddos model in SDN

    Get PDF
    In modern network infrastructure, Distributed Denial of Service (DDoS) attacks are considered as severe network security threats. For conventional network security tools it is extremely difficult to distinguish between the higher traffic volume of a DDoS attack and large number of legitimate users accessing a targeted network service or a resource. Although these attacks have been widely studied, there are few works which collect and analyse truly representative characteristics of DDoS traffic. The current research mostly focuses on DDoS detection and mitigation with predefined DDoS data-sets which are often hard to generalise for various network services and legitimate users’ traffic patterns. In order to deal with considerably large DDoS traffic flow in a Software Defined Networking (SDN), in this work we proposed a fast and an effective entropy-based DDoS detection. We deployed generalised entropy calculation by combining Shannon and Renyi entropy to identify distributed features of DDoS traffic—it also helped SDN controller to effectively deal with heavy malicious traffic. To lower down the network traffic overhead, we collected data-plane traffic with signature-based Snort detection. We then analysed the collected traffic for entropy-based features to improve the detection accuracy of deep learning models: Stacked Auto Encoder (SAE) and Convolutional Neural Network (CNN). This work also investigated the trade-off between SAE and CNN classifiers by using accuracy and false-positive results. Quantitative results demonstrated SAE achieved relatively higher detection accuracy of 94% with only 6% of false-positive alerts, whereas the CNN classifier achieved an average accuracy of 93%

    CyberForce: A Federated Reinforcement Learning Framework for Malware Mitigation

    Full text link
    Recent research has shown that the integration of Reinforcement Learning (RL) with Moving Target Defense (MTD) can enhance cybersecurity in Internet-of-Things (IoT) devices. Nevertheless, the practicality of existing work is hindered by data privacy concerns associated with centralized data processing in RL, and the unsatisfactory time needed to learn right MTD techniques that are effective against a rising number of heterogeneous zero-day attacks. Thus, this work presents CyberForce, a framework that combines Federated and Reinforcement Learning (FRL) to collaboratively and privately learn suitable MTD techniques for mitigating zero-day attacks. CyberForce integrates device fingerprinting and anomaly detection to reward or penalize MTD mechanisms chosen by an FRL-based agent. The framework has been deployed and evaluated in a scenario consisting of ten physical devices of a real IoT platform affected by heterogeneous malware samples. A pool of experiments has demonstrated that CyberForce learns the MTD technique mitigating each attack faster than existing RL-based centralized approaches. In addition, when various devices are exposed to different attacks, CyberForce benefits from knowledge transfer, leading to enhanced performance and reduced learning time in comparison to recent works. Finally, different aggregation algorithms used during the agent learning process provide CyberForce with notable robustness to malicious attacks.Comment: 11 pages, 8 figure

    Deteção de ataques de negação de serviços distribuídos na origem

    Get PDF
    From year to year new records of the amount of traffic in an attack are established, which demonstrate not only the constant presence of distributed denialof-service attacks, but also its evolution, demarcating itself from the other network threats. The increasing importance of resource availability alongside the security debate on network devices and infrastructures is continuous, given the preponderant role in both the home and corporate domains. In the face of the constant threat, the latest network security systems have been applying pattern recognition techniques to infer, detect, and react more quickly and assertively. This dissertation proposes methodologies to infer network activities patterns, based on their traffic: follows a behavior previously defined as normal, or if there are deviations that raise suspicions about the normality of the action in the network. It seems that the future of network defense systems continues in this direction, not only by increasing amount of traffic, but also by the diversity of actions, services and entities that reflect different patterns, thus contributing to the detection of anomalous activities on the network. The methodologies propose the collection of metadata, up to the transport layer of the osi model, which will then be processed by the machien learning algorithms in order to classify the underlying action. Intending to contribute beyond denial-of-service attacks and the network domain, the methodologies were described in a generic way, in order to be applied in other scenarios of greater or less complexity. The third chapter presents a proof of concept with attack vectors that marked the history and a few evaluation metrics that allows to compare the different classifiers as to their success rate, given the various activities in the network and inherent dynamics. The various tests show flexibility, speed and accuracy of the various classification algorithms, setting the bar between 90 and 99 percent.De ano para ano são estabelecidos novos recordes de quantidade de tráfego num ataque, que demonstram não só a presença constante de ataques de negação de serviço distribuídos, como também a sua evolução, demarcando-se das outras ameaças de rede. A crescente importância da disponibilidade de recursos a par do debate sobre a segurança nos dispositivos e infraestruturas de rede é contínuo, dado o papel preponderante tanto no dominio doméstico como no corporativo. Face à constante ameaça, os sistemas de segurança de rede mais recentes têm vindo a aplicar técnicas de reconhecimento de padrões para inferir, detetar e reagir de forma mais rápida e assertiva. Esta dissertação propõe metodologias para inferir padrões de atividades na rede, tendo por base o seu tráfego: se segue um comportamento previamente definido como normal, ou se existem desvios que levantam suspeitas sobre normalidade da ação na rede. Tudo indica que o futuro dos sistemas de defesa de rede continuará neste sentido, servindo-se não só do crescente aumento da quantidade de tráfego, como também da diversidade de ações, serviços e entidades que refletem padrões distintos contribuindo assim para a deteção de atividades anómalas na rede. As metodologias propõem a recolha de metadados, até á camada de transporte, que seguidamente serão processados pelos algoritmos de aprendizagem automática com o objectivo de classificar a ação subjacente. Pretendendo que o contributo fosse além dos ataques de negação de serviço e do dominio de rede, as metodologias foram descritas de forma tendencialmente genérica, de forma a serem aplicadas noutros cenários de maior ou menos complexidade. No quarto capítulo é apresentada uma prova de conceito com vetores de ataques que marcaram a história e, algumas métricas de avaliação que permitem comparar os diferentes classificadores quanto à sua taxa de sucesso, face às várias atividades na rede e inerentes dinâmicas. Os vários testes mostram flexibilidade, rapidez e precisão dos vários algoritmos de classificação, estabelecendo a fasquia entre os 90 e os 99 por cento.Mestrado em Engenharia de Computadores e Telemátic

    Guarding the Cloud: An Effective Detection of Cloud-Based Cyber Attacks using Machine Learning Algorithms

    Get PDF
    Cloud computing has gained significant popularity due to its reliability and scalability, making it a compelling area of research. However, this technology is not without its challenges, including network connectivity dependencies, downtime, vendor lock-in, limited control, and most importantly, its vulnerability to attacks. Therefore, guarding the cloud is the objective of this paper, which focuses, in a novel approach, on two prevalent cloud attacks: Distributed Denial-of-service (DDoS) attacks and Man-in-the-Cloud (MitC) computing attacks. To tackle the detection of these malicious activities, machine learning algorithms, namely Decision Trees, Support Vector Machine (SVM), Naive Bayes, and K-Nearest Neighbors (KNN), are utilized. Experimental simulations of DDoS and MitC attacks are conducted within a cloud environment, and the resultant data is compiled into a dataset for training and evaluating the machine learning algorithms. The study reveals the effectiveness of these algorithms in accurately identifying and classifying malicious activities, effectively distinguishing them from legitimate network traffic. The finding highlights Decision Trees algorithm with most promising potential of guarding the cloud and mitigating the impact of various cyber threats

    On the cyber security issues of the internet infrastructure

    Get PDF
    The Internet network has received huge attentions by the research community. At a first glance, the network optimization and scalability issues dominate the efforts of researchers and vendors. Many results have been obtained in the last decades: the Internet’s architecture is optimized to be cheap, robust and ubiquitous. In contrast, such a network has never been perfectly secure. During all its evolution, the security threats of the Internet persist as a transversal and endless topic. Nowadays, the Internet network hosts a multitude of mission critical activities. The electronic voting systems and financial services are carried out through it. Governmental institutions, financial and business organizations depend on the performance and the security of the Internet. This role confers to the Internet network a critical characterization. At the same time, the Internet network is a vector of malicious activities, like Denial of Service attacks; many reports of attacks can be found in both academic outcomes and daily news. In order to mitigate this wide range of issues, many research efforts have been carried out in the past decades; unfortunately, the complex architecture and the scale of the Internet make hard the evaluation and the adoption of such proposals. In order to improve the security of the Internet, the research community can benefit from sharing real network data. Unfortunately, privacy and security concerns inhibit the release of these data: its suffices to imagine the big amount of private information (e.g., political preferences or religious belief) it is possible to get while reading the Internet packets exchanged between users and web services. This scenario motivates my research, and represents the context of this dissertation which contributes to the analysis of the security issues of the Internet infrastructures and describes relevant security proposals. In particular, the main outcomes described in this dissertation are: • the definition of a secure routing protocol for the Internet network able to provide cryptographic guarantees against false route announcement and invalid path attack; • the definition of a new obfuscation technique that allow the research community to publicly release their real network flows with formal guarantees of security and privacy; • the evidence of a new kind of leakage of sensitive informations obtained hacking the models used by sundry Machine Learning Algorithms

    Generation of a dataset for network intrusion detection in a real 5G environment

    Get PDF
    Abstract. As 5G technology is widely implemented on a global scale, both the complexity of networks and the amount of data created have exploded. Future mobile networks will incorporate artificial intelligence as a crucial enabler for intelligent wireless communications, closed-loop network optimization, and big data analytics. In these future mobile networks, network security would be of the utmost importance, as many applications expect a higher level of network security from the networking infrastructure. Therefore, conventional procedures in which action is taken following the detection of an attack would be insufficient, and self-adaptive intelligent security systems would be required. This paves the door for AI-based network security strategies in the future. In AI-based security research, the lack of comprehensive, valid datasets is a persistent issue. Publicly accessible data sets are either obsolete or insufficient for 5G security research. In addition, mobile network providers are hesitant to share actual network datasets due to privacy issues. Hence, a genuine data set from a real network is extremely beneficial to AI-based network security research. This study will describe the creation of a genuine dataset containing several attack scenarios implemented on a real 5G network with real mobile users. Since a fully operational 5G network is utilized to generate the data, this dataset is characterized by its close resemblance to real-world situations. In addition, data is collected from multiple base stations and made available as independent datasets for federated learning-based research to build a global model of intelligence for the entire network. The obtained data will be processed to identify the optimal features, and the accuracy of intrusion detection will be validated using several common machine learning and neural network models such as Decision Tree, Random Forest, K-Nearest Neighbor, Support Vector Machines and Multi Layer Perceptron. A detailed analysis of a binary classification to detect malicious and non-malicious flows as well as a multi class classification to detect different attack types is presented

    Detection and Explanation of Distributed Denial of Service (DDoS) Attack Through Interpretable Machine Learning

    Get PDF
    Distributed denial of service (DDoS) is a network-based attack where the aim of the attacker is to overwhelm the victim server. The attacker floods the server by sending enormous amount of network packets in a distributed manner beyond the servers capacity and thus causing the disruption of its normal service. In this dissertation, we focus to build intelligent detectors that can learn by themselves with less human interactions and detect DDoS attacks accurately. Machine learning (ML) has promising outcomes throughout the technologies including cybersecurity and provides us with intelligence when applied on Intrusion Detection Systems (IDSs). In addition, from the state-of-the-art ML-based IDSs, the Ensemble classifier (combination of classifiers) outperforms single classifier. Therefore, we have implemented both supervised and unsupervised ensemble frameworks to build IDSs for better DDoS detection accuracy with lower false alarms compared to the existing ones. Our experimentation, done with the most popular and benchmark datasets such as NSL-KDD, UNSW-NB15, and CICIDS2017, have achieved at most detection accuracy of 99.1% with the lowest false positive rate of 0.01%. As feature selection is one of the mandatory preprocessing phases in ML classification, we have designed several feature selection techniques for better performances in terms of DDoS detection accuracy, false positive alarms, and training times. Initially, we have implemented an ensemble framework for feature selection (FS) methods which combines almost all well-known FS methods and yields better outcomes compared to any single FS method.The goal of my dissertation is not only to detect DDoS attacks precisely but also to demonstrate explanations for these detections. Interpretable machine learning (IML) technique is used to explain a detected DDoS attack with the help of the effectiveness of the corresponding features. We also have implemented a novel feature selection approach based on IML which helps to find optimum features that are used further to retrain our models. The retrained model gives better performances than general feature selection process. Moreover, we have developed an explainer model using IML that identifies detected DDoS attacks with proper explanations based on effectiveness of the features. The contribution of this dissertation is five-folded with the ultimate goal of detecting the most frequent DDoS attacks in cyber security. In order to detect DDoS attacks, we first used ensemble machine learning classification with both supervised and unsupervised classifiers. For better performance, we then implemented and applied two feature selection approaches, such as ensemble feature selection framework and IML based feature selection approach, both individually and in a combination with supervised ensemble framework. Furthermore, we exclusively added explanations for the detected DDoS attacks with the help of explainer models that are built using LIME and SHAP IML methods. To build trustworthy explainer models, a detailed survey has been conducted on interpretable machine learning methods and on their associated tools. We applied the designed framework in various domains, like smart grid and NLP-based IDS to verify its efficacy and ability of performing as a generic model
    • …
    corecore