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ABSTRACT

As 5G technology is widely implemented on a global scale, both the complexity of networks
and the amount of data created have exploded. Future mobile networks will incorpo-
rate artificial intelligence as a crucial enabler for intelligent wireless communications,
closed-loop network optimization, and big data analytics. In these future mobile networks,
network security would be of the utmost importance, as many applications expect a higher
level of network security from the networking infrastructure. Therefore, conventional
procedures in which action is taken following the detection of an attack would be insuffi-
cient, and self-adaptive intelligent security systems would be required. This paves the door
for AI-based network security strategies in the future. In AI-based security research, the
lack of comprehensive, valid datasets is a persistent issue. Publicly accessible data sets
are either obsolete or insufficient for 5G security research. In addition, mobile network
providers are hesitant to share actual network datasets due to privacy issues. Hence, a
genuine data set from a real network is extremely beneficial to AI-based network security
research. This study will describe the creation of a genuine dataset containing several
attack scenarios implemented on a real 5G network with real mobile users. Since a fully
operational 5G network is utilized to generate the data, this dataset is characterized by its
close resemblance to real-world situations. In addition, data is collected from multiple base
stations and made available as independent datasets for federated learning-based research
to build a global model of intelligence for the entire network. The obtained data will be
processed to identify the optimal features, and the accuracy of intrusion detection will
be validated using several common machine learning and neural network models such as
Decision Tree, Random Forest, K-Nearest Neighbor, Support Vector Machines and Multi
Layer Perceptron. A detailed analysis of a binary classification to detect malicious and
non-malicious flows as well as a multi class classification to detect different attack types is
presented.
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1 INTRODUCTION

Mobile communication networks have advanced fast over the last three decades to reach where
they are now. Second-generation networks, which were introduced in the 1990s, have gained
worldwide recognition as a paradigm shift that ushered in a new age in digital communications
[1]. Since then, as the requirements of people as well as businesses increased over the years, the
communication requirements has also increased rapidly. For any mobile network, higher data
speeds, lower latency, and greater reliability have become essential. To address these issues, 3G
and 4G technologies were invented later, each with its own set of features.

The third generation of wireless communication systems, which emerged in 1998, was
designed to deliver high-speed internet while maintaining stable connections over large distances
[2]. By using packet switching instead of circuit switching, the technology was able to give
significant performance enhancements over 2G systems. The higher speeds facilitated in ability
to stream radio and television on 3G devices [2]. Furthermore, the technology provided value
added services such as GPS and video conferencing [3].

Verizon launched the very first 4G network in the United States in 2011, promising a 10-
fold increase in speed over the previous 3G network [2]. In comparison to 3G networks, 4G
technology totally eliminated circuit switching by using IP (Internet Protocol) even for voice
data, while delivering higher bandwidth and more features [2]. The goal of 4G technology was to
deliver high-quality audio/video streaming over an end-to-end IP network [3]. The advancement
of technology caused a reconsideration of how smartphones were viewed, leading them to be
viewed as computers of modern age.

The rapid growth in the number of wirelessly linked devices, together with the development of
new applications, cleared the way for the need for even faster speeds than 4G. This, combined with
the need for enhanced mobile broadband (eMBB), ultra-reliable and low-latency communication
(uRLLC) and massive machine type communications (mMTC) has resulted in 5G emerging as a
technology capable of handling numerous network functions and use cases. Along with higher
speeds, 5G networks are aimed at providing improved latency, lower energy consumption, as
well as reduced costs [2]. The 5G network is also aimed towards addressing the challenges such
as varying Quality of Service (QoS) requirements, interoperability of different wireless devices
and interfaces and average spectral efficiency [4]. Unlike many previous advancements, 5G has
extended mobile communication from humans to things, as well as from consumers to verticals
[5]. Not limiting to traditional mobile broadband services, 5G extends to applications such as
Industry 4.0, Virtual reality (VR), Internet of Things (IoT) etc through the use of techniques
such as Network Slicing, Software Defined Networks (SDN), Network Function Virtualization
(NFV) and concepts such as Multiaccess Edge Computing (MEC).

As 5G communication technology is deployed more widely around the world, the number of
devices and data being transmitted, as well as the variety of use cases, will result in significantly
more complicated networks in the near future. Furthermore, beyond 5G networks are expected
to include connected intelligence [6], necessitating lower latency and faster response times for
effective network management. In order to attain these connected intelligence’s, future networks
will be heavily relied on Artificial Intelligence (AI) and other supporting technologies such as big
data analytics, closed-loop network optimization as well as advances in wireless communication
itself.

Because of the greater capacity of the networks, new applications in the beyond 5G era
demand some level of security from the networking infrastructure as well. The security features
of these networks must be carefully implemented as they become more sophisticated and diverse
technologies are merged. Especially, the security challenge with 5G networks is significant since
it is not only associated with the wireless aspect of the technology, but also with associating
technologies that are fundamental to 5G [7]. The large number of IoT devices and provisions
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for applications like smart homes, smart grids, transportation, and healthcare offers a significant
challenge when it comes to developing security solutions for 5G [8].

1.1 Background and Motivation

In future networks, a high level of attack scenarios are expected especially due to the leverage
of AI. Adversaries are capable of learning the network through use of AI to plan and carry out
intelligent attacks against the network. In such circumstances, conventional security mechanisms
which react only after an attack has been detected may not be the most efficient form of defense.
The future networks will need a system that can detect assaults early on and prevent them
from compromising the network performance. Therefore, a system that can deploy proactive,
self-adaptive and self intelligent securing measures is a definite requirement for beyond 5G
networks [8]. Proactive security schemes can ensure the mitigation of potential security flaws
in the network through the use of intelligence gathering [8]. In modern high-speed 5G networks
which assures high levels of latency, these security mechanisms should also guarantee that the
network is not subjected to bottlenecks. Therefore, the detection and mitigation techniques used
should be near real-time at all instances.

At this point, artificial intelligence (AI) and machine learning (ML) approaches may be able to
aid in delivering the above-mentioned intelligence in order to create proactive security systems.
The use of AI/ML algorithms in other domains indicate that it can be effectively applied for
network security as well. It can be used to build a secure network that can detect threats and offer
solutions in real time. AI and ML algorithms utilize massive volumes of data to identify common
patterns for intrusion detection. In this context, datasets are crucial to the effective application
of AI and ML-based security systems. The limited availability of datasets that corresponds to
modern networks has been a primary concern in security research. Specifically, despite the fact
that 5G networks are already been deployed globally, the non availability of a public dataset
which resembles the network flows in 5G is a significant issue. As a communication technology
that will define the next decade in telecommunications, a dataset to validate effective AI based
security measures would be a significant contribution.

1.2 Research Problem

The quality and quantity of data has a significant impact on the success of any ML/AI based
solution. A significant amount of data is always expected to be supplied into a machine learning
model in order for the model to train properly and identify sufficient patterns in the data. Due
to a lack of data, the system may record a large number of inaccurate predictions, jeopardizing
the system’s accuracy. In a similar vein, determining the applicability of a number of different
machine learning or deep learning models relies heavily on the quality of the data.

The ongoing research work in the context of AI based security solutions for 5G networks have
suffered due to lack of high quality training dataset to evaluate their solutions. For the most part,
researchers have chosen publicly available datasets that are out of date or limited in applicability
to 5G to test their security solutions. Furthermore, due to privacy concerns and other legal
barriers, mobile network operators have been hesitant to publish data from their networks.
Another reason for the reluctance could be the risk of exposing network vulnerabilities to third
parties. As a result, the AI based security implementations and research are been progressing
behind.

Therefore, developing a high-quality 5G dataset with a variety of attack types and sufficient
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data is vital for the entire research community. The end goal of this project is to create a 5G
intrusion detection dataset using a real-world 5G scenario with varying attack types.

1.3 Selected scope

Due to the multitude of applications supporting 5G, the networks can be far more complex than
in the previous generations. The incorporation of additional supporting technologies, such as
SDN, NFV, and concepts such as MEC, improves latency but also introduces new vulnerabilities
in the network.

This study centered on a plausible 5G network with Multiaccess Edge Computing (MEC)
capabilities. A MEC is designed to extend cloud capabilities of the network towards the edge.
This is achieved by deploying storage and processing resources near the RAN’s edge, which
allows some cloud capabilities to be moved closer to the network, hence reducing latency [9].
In our study, having a MEC allowed us to create distinct networks for the attacker and the target
while still allowing for sufficient attack variants.

Out of many possible attack scenarios, different types of DoS/DDoS attacks and port scans
which are frequent in today’s networks were carried out. Previous research efforts and the
capabilities of our test network were taken into consideration while selecting the types of attacks
to use. The attacks were chosen such that multiple characteristics are covered in terms of
protocols, rate of packets, duration of attack etc.

1.4 Methodology

As the underlying infrastructure for this experiment, the 5G test network (5GTN) at the University
of Oulu was utilized. Mobile devices, 2 base stations, firewalls, switches, 5G modems, and
personal computers were all part of the network that was put in place to make a modern 5G
wireless communication system possible. These components combined with MEC capabilities
ensured that the network closely resemble the network architectures of the modern age. The
attacks were carried out through Raspberry Pi’s connected to the 5G modems using Wifi. The
modems were connected to the Pico base stations. The victim was considered as a linux machine
at the MEC. Both the attacking network and the network belonging to the victim were built in
such a way that they were isolated from one another.

Tools such as Nmap, Hping3, Goldeneye, LOIC, HULK, Slowloris, and Torshammer were
utilized in the execution of various sorts of port scanning as well as DoS and DDoS attacks. The
availability of benign traffic was ensured at all times during the attacks by generating it using
actual mobile devices linked to each of the base stations. Data collection was carried out in two
days from both the Pico base stations in the network.

After the data collection, the analysis and data preprocessing was done through different
tools. The argus tool was used to generate the network flows from the packets. The network
flows in the dataset were labelled to ensure they can be used for supervised ML models. Also,
in order to feed the data into ML models, a feature selection had to be carried out to eliminate
irrelevant features from the dataset. The top most features were fed into different ML models
to examine their suitability for intrusion detection in this dataset. The best model was picked
based on the levels of accuracy as well as the training time of the model.
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Figure 1.1: Overview of the Methodology

1.5 Contribution

Since 1998 up till the present day, a variety of datasets have been made accessible for the
purpose of network intrusion detection. The vast majority of these datasets were produced with
the assistance of virtualized networks or networks that had been constructed with the explicit
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purpose of producing the dataset. In contrast, this dataset was constructed on a functional 5G
test network, which creates an environment that is quite similar to a real-world scenario. In
addition, the previous efforts have concentrated on the development of benign traffic through
the use of a variety of tools and simulators. On the other hand, this work made use of actual
mobile users within the coverage area of base stations in order to generate the benign traffic.

In addition to that, it can be claimed that this is the first dataset that is now accessible for
5G. The accuracy and effectiveness of machine learning-based intrusion detection is strongly
dependent on the quality of the data. Complete network configurations, a variety of attacks,
anonymity, heterogeneity, complete traffic, labeling, complete interaction, metadata, complete
capture, and feature sets are some of the characteristics that are considered to be essential for a
comprehensive and valid dataset for the purposes of network intrusion detection [10]. Despite
the fact that the majority of contemporary datasets have been able to address these criteria,
the behavior and traffic characteristics of 5G networks are very different from the testbeds and
simulation platforms that were used to collect these datasets. As a consequence of this, machine
learning-based network intrusion detection solutions have been implemented with datasets that
are either limited or irrelevant. This is a significant obstacle in the path of research on machine
learning-based intrusion detection.

Furthermore, one of the things that sets this dataset apart from others is the fact that data has
been collected from both of the Pico base stations. This may prove valuable in the development
of federated learning-based systems for the detection of network intrusions. Through the use of
it, one can realize a global intelligent security model for the entirety of the network. Therefore,
the overall contribution of this work is to provide a comprehensive, valid, and up-to-date dataset
for the research community in beyond 5G networks. This dataset will eventually assist in the
achievement of intelligent and self-adaptive networks in the future, which is the ultimate goal
of this work.

1.6 Organization of the thesis

The thesis contains six chapters in total with the first chapter giving a descriptive introduction
to the research. Chapter 2 provides a detailed litereature review on the existing datasets and
their shortcomings that can be addressed. Further, the section provides a review on the machine
learning and supervised learning specifically in intrusion detection of netwprks. In addition
a detailed idea about all the attacks performed as well as the tools used are presented. The
Chapter 3 focuses on the data collection phase of the work. A detailed description on the
network architecture, attacks and data collection are provided. A descriptive discussion on the
post data processing is provided in Chapter 4. This includes different steps from network flow
creation to feature selection. The Chapter 5 presents the results for different number of features
while Chapter 6 discusses the overall research and provide an analysis on overall results. The
thesis is ended with a conclusion that explores potential future work in Chapter 7.
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2 LITERATURE REVIEW

Since the initial attempt of building datasets for network intrusion detection in 1998, numerous
studies have been conducted and published. Throughout the years, datasets that are been
published have undergone several advancements in the variety of attacks, network configurations,
volume of traffic, types of protocols, etc. However, these datasets still contain certain limitations
and have failed to adequately represent the modern networks and the associated technologies.
This chapter will provide a comprehensive overview of existing datasets and their limitations, as
well as a thorough analysis of some common machine learning algorithms and their application
to intrusion detection especially in modern 5G networks. In addition, the various kinds of
attacks and tools utilized in the research are discussed.

2.1 Machine Learning and Supervised Learning in IDS

Recent improvements in 5G and beyond networks have led to its integration with a variety of
other technologies to give users the greatest experience possible in terms of speed, dependability,
and cost. The ever-increasing number of users and the number of devices resulting through
different use cases of 5G such as the Internet of Things (IoT), combined with these needs have
caused networks to become rather massive and significantly more complicated. This increased
complexity and data traffic have led to the emergence of new vulnerabilities, threats, and attacks
in modern 5G networks. In addition, the complex architecture and high latency requirements
has made it more difficult to efficiently detect network security risks. In addition, the increased
bandwidth, spectrum utilization, and data rates of 5G networks have shifted the security and
privacy landscape from the individual device to the service provider network [11]. In such
scenarios, the network should be intelligent enough to detect vulnerabilities and address them
in real time.

Therefore, network intrusion detection systems, also known as IDS, are essential for any
network because they have the capacity to withstand attacks from third parties outside the
network, whereas a firewall might not be able to accomplish this duty [12]. In the context of 5G
networks, it is anticipated that it would accommodate a far higher level of heterogeneity than the
previous generations. For example, 5G networks support vehicle to vehicle communications,
smart homes, smart buildings, and smart cities. Moreover, the 5G network architecture for the
Internet of Things (IoT) will necessitate more robust and adaptive approaches to handle the
primary network and device-side security flaws [11]. Due to both external and local intrusions,
the security of these networks will become significantly more challenging. As a result, the
network infrastructure should be equipped with a higher level of security to survive these
threats.

In the wider context, these intrusion detection systems (IDS) can be split into two categories
based on their method of detection, which can be signature-based or anomaly-based. Pattern
matching is the foundation of signature intrusion detection systems (SIDS) and these systems
are designed to identify and neutralize known threats [13]. They are also sometimes referred as
knowledge-based detection or misuse detection. In these systems, an alarm signal is triggered
when an intrusion coincides with a signature that already exists in the signature database
[14]. The disadvantage of this type of intrusion detection system is that it will have difficulty
detecting zero-day attacks because there will be no matching signature in the database until the
signature of the new attack is extracted and stored [14]. In the age of 5G networks, techniques
based on artificial intelligence are employed to study the network and then execute unique and
sophisticated attacks. Signature-based intrusion detection systems are insufficient to detect
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these types of attacks. . Additionally, conventional SIDS identify attacks by inspecting network
packets and comparing them with signatures in the database. However, they are unable to
recognize attacks that spans across multiple number of packets at a time. Therefore, SIDS will
be inadequate due to the ever-increasing frequency of zero-day attacks that may employ AI
techniques to learn the network and plan attacks accordingly in 5G networks.

It has been identified that the potential solution to address these limitations in SIDS is the
use of Anomaly based Intrusion Detection Systems (AIDS). Machine learning, statistical based
or knowledge based methods are used in AIDS to make the system learn the normal behavior
of traffic. Then, any variation from this typical trend in the observed flow of traffic will be
considered as an intrusion [14]. Machine learning in particular has shown to be particularly
helpful in this area because it has the ability to learn from a huge number of data and then
apply the learnt output to recognize deviations from the behaviors that are considered normal.
In the era of 5G networks, the generation of large amounts of data in the network and the
computational ability of processing such data enables the efficient use of AI/ML techniques for
intrusion detection. In a fast phased and latency intolerant network environment, ML and AI
techniques could be used to simulate resilient and dynamic security algorithms that can help
detect network intrusions and provide potential solutions in real time.

The use of ML in intrusion detection has the advantage of allowing systems to learn and
enhance their automatic capacity from experience without the need for programming specifically
[15]. Also, it is able to function accurately to detect attacks in vast amounts of data in a shorter
period of time, which is a significant advantage. Under ML too, a wide variety of approaches
are available for use in the process of intrusion detection. Learning can be primarily broken
down into three categories: supervised learning, unsupervised learning, and semi-supervised
learning.

For the purpose of determining a relationship with the data, supervised learning approaches
make use of classes that are completely labeled. The classification process has two phases
namely, training phase and the testing phase. In the training phase, a dataset is fed into the
model, which is then utilized to determine normal and malicious behavior patterns and features.
In the testing phase, the system is fed an entirely new set of data to determine the accuracy of
the predictions done based on previously trained model. Logistic Regression, Decision Trees,
Random Forest, Nearest Neighbor, Naive Bayes, and Neural Networks are some of the most
common forms of supervised learning algorithms that are accessible for classification. These
many models can be utilized in accordance with the various kinds of data that are available in
order to attain the best possible prediction accuracy or other metrics.

Unsupervised learning differs from supervised learning in that there are no labeled data. This
method attempts to discover the hidden structure inside unlabeled data to determine the intru-
sions. Therefore, no training data exists for unsupervised learning. Methods of unsupervised
learning could be effective in situations in which labeling attack data is difficult or even impos-
sible to do [16]. Unsupervised learning can be carried out either through clustering techniques
or dimensionality reduction techniques [15]. K-means, K-mediods and C-means are some of
the popular clustering based methods available. The Principal Component Analysis (PCA) and
Single Value Decomposition (SVD), among others are both examples of dimension reduction
methods.

Semi-supervised learning is theoretically positioned between supervised and unsupervised
learning, and it enables the use of huge quantities of unlabeled data available in the majority of
use cases in conjunction with generally smaller amounts of labeled data [17]. Also, it should be
noted that it can be used vice versa too as these semi-supervised algorithms attempts to improve
the performance of supervised or unsupervised learning by making use of relevant data that is
usually available with the other.
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Among these different ML techniques, each one of them has their advantages according to
the type of data available and the application. However, in the case of intrusion detection,
supervised learning-based algorithms have been more prevalent. Using supervised learning to
detect network intrusions is largely reliant on the quality of the available data. The quality can
be attributed to the correct labeling of the data, as it plays a crucial part in supervised learning
algorithms. The correct labeling of malicious and non-malicious data, as well as other forms of
attacks, is extremely challenging in some networks. Therefore, a dataset with proper labelling
and sufficient amounts of data is a scarce resource for most researches.

During the training phase of supervised learning, the relevant features and classes are discov-
ered, and the algorithm learns from the data samples that are provided [14]. In order to shorten
the time required for the training process, it is possible to feed the model with fewer features
while maintaining an acceptable degree of accuracy. This technique, known as feature selection
or feature reduction is capable of determining the attributes that have the most impact on the
target variable. These attributes can then be used to discover the underlying relationship with
the target variable. In the testing phase of supervised learning, a previously unknown set of data
is fed into the model so that it predicts the outcome based on previously acquired knowledge.

Different kinds of supervised learning algorithms have been used in literature for intrusion
detection purposes. The learning algorithm must be able to predict the accuracy of any com-
bination of unknown data at a level that is acceptable. Hence, the classification algorithm
should have the ability for reasonable generalizations [14]. The Decision Tree algorithm is a
basic supervised learning technique that is available. It is applicable to both classification and
regression issues. The categorization in decision tree classification is based on rules. Decision
trees consist of three components namely decision nodes, branches and leaves. A test attribute
is recognized at the decision node. Then, each branch represents a potential decision based on
the test attribute’s value. The leaves indicate the class to which an instance belongs [18].

Another supervised learning model is the Random forest. This can be considered as an
extension of decision trees as it contains multiple decision trees and is based on ensemble
learning. The final classification result is determined by a vote from all the decision trees.
Random forest can address the over-fitting issue of decision trees and has a high tolerance for
noise and outlier data [19].

The K-nearest neighbors is also quite a popular non-parametric classifier used in supervised
learning. The objective of K-nearest neighbors is to assign unlabeled samples requiring catego-
rization to the class of their nearest neighbors. The number of neighbors to be considered can be
specified. KNN can be applied as a benchmark for all other classifiers as it generally provides
good performance in IDS [20].

The Support Vector Machines algorithms works to identify a hyperplane in N-dimensional
space which classifies the data distinctly. SVM does this by maximizing the distance between
the data points in the classes and the hyperplane. SVM’a are said to be valuable when a large
number of attributes are present with lesser amounts of data points [14]. Also, they use kernel
function to map data into higher dimensional space and different types of kernel functions such
as linear, Radial Basis Function (RBF), polynomial can be used. SVM can also be used for
multi class classification as seen from the literature.

Apart from these machine learning models, neural networks can also be used to increase
the accuracy’s further using different numbers of hidden layers and neurons. Artificial Neural
Networks (ANN) are inspired by the human brain and can be used to solve complex classification
problems. They are usually made up of a number of highly interconnected processing com-
ponents called neurons that collaborate to resolve complicated problems [21]. A Multi Layer
Perceptron (MLP) is a type of fully connected feed-forward ANN that is widely used in IDS as
one of the most adaptable and powerful classification methods [22]. By manipulating the design
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of an MLP, a successful classification with increased speed and precision can be achieved [23].
This is often accomplished by adjusting the number of hidden layers and the number of neurons
in each layer until the optimal configuration is found.

2.2 Existing Datasets

The datasets are crucial for assessing the performance of intrusion detection systems. There
have been numerous datasets available for this purpose under various network architectures and
conditions over the years. As the capabilities of attacks and corresponding technology grew,
new datasets were developed to remedy flaws in existing ones. Following is a discussion of
popular publicly accessible datasets, their features and limitations.

The DARPA dataset is considered the first publicly accessible dataset for intrusion detection
purposes. At the time, the dataset introduced by the MIT Lincoln laboratory was an enormous
contribution to the IDS research community. The DARPA 1998 and DARPA 1999 datasets were
generated with attacks such as port scans, denial of service, buffer overflow, and rootkits and
contained seven and five weeks of network traffic, respectively [24]. Although this dataset was
widely utilized for research work, it was heavily criticized for ignoring real-world circumstances
[25]. The criticisms are mostly due to the insertion of artificial traffic, high quantities of
redundancy, absence of false positive occurrences, and abnormalities in attack data [26][27].
In addition, it is deemed obsolete for evaluating IDS on modern networks in terms of both the
variety of attacks and the network infrastructure [10].

To address some of the problems involved with the DARPA datasets, the tcpdump component
of the DARPA dataset was utilized to generate the KDD CUP 99 dataset. However, the majority
of deficiencies associated with the DARPA dataset were also present in this dataset [10]. KDD
CUP 99 includes over 20 distinct kinds of attacks, such as DoS and buffer overflows, and an
explicit test and training subsets. The datset is not accessible in either the standard packet format
or the flow-based format. This dataset is critiqued for holding a huge number of redundant and
duplicate instances, and as a result, it is riddled with data corruptions that have contributed
to distorted conclusions [10]. Nevertheless, despite its flaws, it is still widely utilized by the
research community.

The Shmoo group created the DEFCON dataset in 2000, which included DoS and buffer
overflow attacks. Subsequently, the DEFCON-8 dataset was also made available in 2002, along
with a number of additional attacks, such as port scans, sweeps, FTP, and telnet protocol attacks
[10]. This data collection differed from the previous ones because it featured information
gathered during a "Capture the flag" competition [27]. This strategy faltered, as the production
of network packets during a competition is significantly different from network traffic in general.
Due to the nature of the competition, this contains very high amount of attack traffic as opposed
to normal traffic.

There are also a variety of datasets that have been released by CAIDA. This primarily consists
of the CAIDA OC48 dataset, which is data observed on an OC48 link in San Jose, the CAIDA
DDoS attack dataset, which covers network traffic during a one-hour DDoS attack, and the
CAIDA Internet trace released in 2016, which includes passive traffic traces from CAIDA’s
equinix-chicago monitor on high speed internet backbone [10]. Reportedly, the CAIDA records
contain instances that are unique to a certain type of attack or internet activity [27]. In addition,
the payload, protocol details, and destination of these datasets were anonymised.

The LBNL dataset that was made public by Lawrence Berkeley National Laboratory includes
100 hours of network traffic with traces of entire packet headers captured from their enterprise
networks [10][27]. The dataset has been subjected to a significant amount of anonymization,
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particularly with regard to packet headers and IP addresses [28].
The CDX dataset that was developed by the United States military put forward the idea of

constructing an intrusion detection dataset through the use of network warfare competitions.
The recorded traffic from the network warfare competition that took place over the course of
four days is available in a packet based format [29]. In order to carry out the attack, the attackers
made use of various attacking tools, such as Nikto and Nessus. The capture also involved benign
traffic in the form of web, email and DNS lookups [29]. The absence of diverse range of attacks
and the lower volume of data are identified as major concerns in this dataset.

Datasets were published by Kyoto University from 2006 onwards with data created through
honeypots. This restricts the attack scope to only those attacks that can be directed at honeypots.
Normal traffic in this dataset was derived from DNS and email traffic, which may not accurately
represent the traffic in an actual network [10]. This dataset was converted from packet-based
data to a new format termed sessions using the IDS Bro tool in which each session comprised
of 24 attributes [30]. The dataset contains a vast amount of information because it was collected
over a three-year period. However, the non representation of common normal traffic protocols
and the limitations of the attacks is identified as drawbacks.

In 2009, the University of Twente introduced a dataset also based on honeypots that offer web,
FTP, and SSH services. This dataset likewise suffered the same fate as the Kyoto dataset because
it only comprises network traffic that was collected using honeypots. As a result, practically all
of the flows in this dataset are malicious, and there are very few instances of normal traffic [31].
The dataset has labels and is realistic; nonetheless, there is a lack of a variety of attacks and a
significant amount of traffic, which is been regarded as concerns.

The ISCX2012 dataset introduced by University of New Brunswick contained attacks such
as DoS, DDoS, Brute force, Infiltration attacks. The dataset was created by carrying out
traffic capture in an emulated network over a period of one week. It was generated through
a dynamic approach with alpha profiles representing attack scenarios and beta profiles with
normal background traffic. The resulting dataset was generatd in a packet based format as well
as bidirectional flow based formats [32]. The network traffic comprised of protocols such as
HTTP, SMTP, SSH, IMAP, POP3, and FTP, but modern protocols such as HTTPS were absent
[10].

The AFDA dataset from University of New South Wales and Australian Defense Force
Academy consists of two datasets namely ADFA-LD and ADFA-WD. The two separate data
collections was done through Linux and Windows operating systems. Since the dataset contains
information on zero-day assaults, it is ideal for illustrating the distinctions between SIDS and
AIDS. The typical behavior of a user was demonstrated using a variety of different tasks, ranging
from browsing of websites to preparing documents in LATEX [14]. The dataset also included
system calls for different types of attacks. The dataset is accused of lack of attack diversity and
variety of attacks. In addition some attacks in this dataset are considered to be hardly separable
from the normal behavior [33].

A more recent dataset: UNSW-NB15 dataset contains data that includes both regular and
malicious traffic in a packet-based format. This data was produced using the IXIA Perfect Storm
program in a smaller emulated environment over the course of 31 hours. The data includes a
variety of attacks, including denial-of-service, exploits, fuzzers, backdoors, and worms among
others. This dataset is also accessible in a flow-based format, complete with predefined test
train splits, and is publicly available [34]. However, the dataset was created using a simulated
or artificial environment to carry out different types of attacks [35].

The Canadian Institute of Cyber Security has published multiple network intrusion detection
datasets. The CICDS 2017 dataset includes many sorts of attacks, including Brute Force FTP
and SSH, DoS, DDoS, HeartBleed, and Infiltration attacks [36]. The dataset is labeled with the
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use of five primary characteristics, including timestamp, source and destination IP addresses,
and source and destination ports [14]. With a network consisting of servers with different
operating systems and involvement of network components such as modems, routers, firewalls
and switches, the networking infrastructure can be considered as realistic. Non-malicious
background traffic was generated using a benign traffic profile that was collected from a number
of real users. In a real network, the inherent intricacy of this type of data from a concept such as
profiling could be a challenge. The same institution has produced another dataset with different
types of DoS attacks named as CIC DoS. In this dataset, preceding the CICDS 2017, the authors
have focused on the application layer DoS attacks [37]. 8 different DoS attacks have been carried
out on a similar network as in the previous work. The attack free traffic from the ISCX 2012
dataset has been used to form the benign traffic and attack data has been combined only after
the data collection [32]. This has reduced the realistic nature of the dataset as timestamps may
differ.

The BoT-IoT dataset introduced in 2019 tries to address the non availability of datasets with
IoT traffic. In this work different types of attack scenarios including probing attacks, DoS and
information theft have been conducted. The network comprised of virtual machines (VM) and
additional firewalls and IoT services were simulated through the Node-red tool. The Ostinato
tool was responsible for the generation of benign traffic artificially [35].

The datasets generated over the years has addressed certain issues related to attack types and
formation of benign traffic in their work. However, none of them have addressed the specificity
of traffic generated in a 5G network along with its associated technologies. In fact none of the
datasets has accompanied mobile phones in their work. This sets our dataset apart from other
datasets as we will be using mobile phones to generate live traffic including different protocols.
In an age where mobile phones, laptops, IoT devices, machines etc. are interconnected through
networks, this produces a realistic network architecture of a modern network. Additionally, in
the past, the production of benign traffic has been inconsistent, with some datasets introducing
benign traffic after data collection. Our focus was to generate live traffic in the network in
real time to represent a realstic network even in a small scale. Moreover, as can be seen from
the descriptions of previous datasets, the use of emulated environments for data collection has
been a common occurrence throughout. In contrast our work comprises of a functional 5G test
network which signifies the validity of it further. Further, our work will provide the dataset in
packet-based format and flow-based format as well. The existence if data from multiple points
of the network is also a unique feature in our dataset. With this availability, one can realize
federated learning based security solutions using our dataset. In this way, the non availability of
modern datasets has hindered and limited the research progress in ML based intrusion detection
systems for 5G networks and we hope that this dataset will be able to address it.

2.3 Attacks

The dispersed and heterogeneous nature of 5G networks has increased the number of potential
attack scenarios significantly. Specifically, the 5G HetNets threat surface includes threats such
as denial of service (DoS), malware propagation, and malicious port scanning among others
[38]. The integration of different radio technologies as well as associated technologies in 5G
HetNets has resulted in further increase of the impact of these attacks. Hence, port scanning
and Denial of Service (DoS), which can be prominent in different 5G network configurations,
are the focus of this work.

In a typical 5G HetNet, attackers inside or outside the network can perform such attacks
and due to the distributed nature of users, the detection may need to be performed at different
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locations [38]. To address this need, we perform the attacks from two separately isolated
networks to a target in a completely isolated network.

2.3.1 Port Scans

Port scan is a process typically carried out before performing attacks, in order to identify the
open ports and attack opportunities present in a vulnerable host. This is carried out through
observing the response of each port in a host by sending out different types of requests. The
status of the received response may even define the operating system of the target along with
the open ports and other available services [39]. Majority of attacks are preceded by a scanning
procedure such as port scanning before execution since it aids in identifying the exploitable
hosts. An IDS that can detect port scans is usually advantageous, as they are a precursor to more
severe attacks in the future. Therefore, it enables the system to recognize attacks early on and
prevent more serious forms of attacks that may occur subsequently.

Different types of port scanning techniques exists which effectively performs the same task.
However, the message requests that are sent differ in most of these techniques in terms of the
protocols and flags. In a typical network, devices are connected with multiple other devices
and services are maintained through different ports. Generally, there are 65536 defined ports in
a device, which can be classified as well known ports (0-1023), registered ports (1024-49151)
and private ports (49152-65535) [39]. Any port scan will consist of sending a message to each
individual port and waiting for a response. The response usually defines the status of the port.
TCP based port scans are common as it provides a good feedback for the attacker due to its
connection oriented nature. UDP-based port scanning can also be observed; however, because it
is connectionless, this type of scanning does not provide the attacker with sufficient information
in most cases. Port scans can be mainly divided into five types based on their characteristics as
shown in 2.1. The stealth scans involves sending of TCP packets to the destination with stealth
flags such as SYN, FIN, NULL. SYN scan can be considered as a type of stealth scan. SOCKS
is an Internet Protocol that enables a client and server to communicate with one another by
exchanging information via a proxy server. An attacker who is doing a SOCKS port scan is able
to access other hosts on the internet while concealing their true identity and location behind a
proxy. Bounce scan exploits a vulnerability of the FTP protocol in order to scan into another
device. A TCP scan is a hard to detect scan performed by sending requests for TCP three way
handshake. Some of the TCP scans include TCP Connect(), reverse identification, IP header
dump scan etc. In an UDP scan, UDP packets are sent to the related ports in order to observe the
status of their response. In this work, three different types of port scans were performed namely
SYN scan, TCP Connect scan and UDP scan.

2.3.1.1 SYN Scan

SYN scan can be described as the most prominent type of port scanning method available.
This falls under the type of stealth scan where TCP packets are sent to the destination with
stealth flags set. This scanning method can be considered speedy as it can scan thousands of
ports in a matter of seconds.In addition to this, it may be used against any TCP stack that is
compliant, as opposed to FIN/NULL/Xmas scans, which are dependent on the peculiarities of
certain platforms.

During SYN scan, the attacker first sends a TCP packet with SYN flag set which exactly
resembles the initiation of the three way handshake in any legitimate TCP connection. After
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Figure 2.1: Main classification of Port Scans

this packet arrives to the targeted port, it sends back a response with SYN and ACK flags in the
case of an open port. The attacker gets to know that the port is open from the response with
SYN and ACK flags set. If the port is closed, the response would be a RST packet. Due to the
fact that the attacker already possesses the necessary information from the first two packet flows
between each other, the three-way handshake never gets completed in this kind of port scans.
Therefore, it is sometimes referred to as half-open scanning. However, if the target has an open
port, the attacker may send a RST paket in order to terminate the connection because, in the
absence of this action, the target would continue re-sending packets that have the SYN and ACK
flag set. In addition, if a port is unresponsive to a TCP initiation packet, this could be due to the
presence of a firewall or the host being down. Figures 2.2 and 2.3 shows the packet flow during
SYN scan for open and closed ports.

Figure 2.2: SYN scan of an open port

Figure 2.3: SYN scan of an closed port
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2.3.1.2 TCP Connect Scan

TCP connect scan belongs to the TCP scan type in the initial classification done on Figure 2.1.
This takes a similar approach to the SYN scan but the complete TCP three way handshake is
made. This results in a longer time for the port scanning process and also require more packets
to acquire the same information as in SYN scan.

Figure 2.4: TCP connect scan of an open port

In the first two stages of a TCP connect scan, the same packet flows are anticipated as in a
SYN scan (SYN and SYN ACK). However, in TCP connect scan the complete TCP connection
is established in the subsequent phase without terminating the connection as with the SYN scan.
This happens through an ACK sent by the attacker to the target as an acknowledgement for the
SYN ACK that was sent. After the TCP connection is established, there exists possibility for
the devices to exchange data as well. However, as soon as the attacker OS is aware that the
connection is established, it terminates it through a RST packet as indicated in figure 2.4.

In the case of a closed port, the packet flows behave similar to the SYN scan in which an RST
packet is sent from the closed port. Similarly, a firewall or host being down may indicate that
the port is filtered.

2.3.1.3 UDP Scan

As the name suggests, an UDP scan involves sending UDP packets to the ports in the target to
determine their response. For the majority of these ports, packets will be sent without a payload,
with the exception of UDP ports, for which a protocol specific payload will be available. The
response of the target or unresponsiveness is used to determine the status of the port. With UDP,
a response from a desired port is highly unlikely, as an open port hardly responds to an empty
packet. Due to this, the majority of ports may be in the open | filtered state, indicating that
either the TCP/IP stack forwards empty packets to a listening application and discards them as
invalid or a firewall is dropping packets without a response. This makes it difficult to determine
whether a port is in open state exactly. However, the packets sent to a UDP port is likely to get
an response as the packet payload is not empty. A response will be a clear indication of the open
state. If the response is an ICMP port unreachable error, the port is determined to be closed.



21

Figure 2.5: Instances of UDP Scan

2.3.2 DoS / DDoS Attacks

A Denial of Service (DoS) or Distributed Denial of Service (DDoS) attack is an expected and
common attack in any type of network configuration. Typically, a DoS attack is carried out
to slow down or fully shut down a targeted server or a network, leaving it inaccessible to its
intended users. The majority of the time, this is accomplished through the deployment of
flooding techniques or transmitting of information that can trigger a crash. DDoS attacks are
essentially the same type of attacks performed by multiple devices simultaneously. This could
generate massive amounts of traffic on the network and eventually make it unreachable to other
users. During a DDoS attack, the variety of network traffic originating from various network
devices may vary. Traditional security methods may therefore be incapable of detecting these
threats.

In the case of 5G network architecture, the DoS/DDoS attacks spans a large area in terms of
the targeted resources. DoS attacks are designed to overwhelm physiscal and logical resources
of target. In the context of 5G, there can be DoS attacks targetting the network infrastructure as
well as the users or devices [40]. In this work, the focus will be on the DoS attacks targeted at
users or devices. Since there are no security mechanisms that can be guaranteed for operating
systems, configuration data and applications on user devices [7], it is necessary for the network
infrastructure to provide some level of protection against these types of assaults.

Mainly there are various kinds of DoS and DDoS attack scenarios that can be executed on a
targeted device. The classification of these attacks can be done in number of ways. One of the
primary classification that is available is shown in figure .DoS/DDoS attacks can fall into one
of three categories: volume-based, protocol, or application layer [41]. The volume-based DoS
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attacks comprise of attacks that deplete the target’s bandwidth through the delivery of massive
volumes of traffic. A typical examples for these type of attacks are ICMP flood, UDP flood
etc. Protocol attacks are the type of attacks that take use of the weaknesses that are present in
the protocols. Two common types of protocol attacks are the SYN flood and the Smurf attack.
Application layer attacks are so-called because they concentrate on exploiting application layer
services and protocols. Prominent examples for these kinds of assaults include HTTP flood
attacks and slow rate DoS attacks [41].

Figure 2.6: DoS/DDoS Classification

To ensure that all types are covered, attacks such as ICMP flood, UDP flood, SYN flood,
HTTP flood, and slow rate DoS were chosen to be carried out for data collection in our dataset.
A description on each of the attack scenarios is explained below,

2.3.2.1 ICMP flood

An ICMP flood attack typically involves ICMP echo requests that are sent to a target at a very
high rate. In a normal network ICMP echo requests are used to ping a device to diagnose the
health and connectivity between two devices. An ICMP reply is often received when such a
request is sent. For this response to be sent, the destination server may need to allocate some
resources to process each request. In ICMP flooding large number of ICMP echo requests are
directed toward the target at a very high frequency. As a result, the targeted server has to use
its resources in order to respond to the ICMP echo requests. This results in massive amounts of
traffic that would overwhelm the network.

Figure 2.7: ICMP flood
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2.3.2.2 UDP flood

This attack is quite similar to the ICMP flood, but instead of using ICMP packets, it uses UDP
packets to overwhelm the target server. In contrast to TCP, the UDP protocol is a connection-
less and session-less protocol. This means that no initial connection needs to be established
before communication between two devices. Since enormous amounts of "best effort" traffic
can be sent across UDP channels to any site without any limitation on the rate, UDP might be
considered to be a protocol that is more susceptible to vulnerabilities. Because of this, UDP
flooding is extremely effective regardless of the network configuration being used because it
can be carried out with a minimal amount of resources. In a UDP flooding scenario, once the
UDP datagram is received at the target, it checks for a associated application. If there exists no
such application, a ’Destination Unreachable’ packet will be sent back to the attacker. As large
amounts of UDP datagrams are received and responded, the system may become unresponsive
and unavailable for other users with time.

Figure 2.8: UDP flood

2.3.2.3 SYN flood

The TCP three way handshake is exploited in these type of attacks as was the case in SYN scan
and TCP connect scan. In a TCP handshake, initial connection is made through a SYN packet
sent to the destination. In response to this, a SYN ACK is received from the destination. In
order to complete the three way handshake another ACK is sent as a response to the SYN ACK
received. This establishes a TCP connection between two devices. In TCP flood, the initial two
steps are completed. However, the final step of establishing the connection is not performed
by the attacker. This leaves the port half open while large number of SYN packets are been
continuously sent to the target. The arrival of each new SYN packet forces a new half open
connection for a certain length of time with the attacker. Once all accessible ports are occupied,
the server will be incapable of responding to any legitimate user.
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Figure 2.9: SYN flood

2.3.2.4 HTTP flood

A HTTP flood attack is a popular DoS/DDoS attack method which is used to attack web
servers and applications. Hence it is considered to be application layer attack according to the
classification in figure 2.6. An application layer attack uses vulnerabilities in the application
layer protocols for exploitation. Among application layer protocols, HTTP exists as one of
the most widely spread protocols due to its capability of integration with online services [41].
HTTP flood is one of the most effective forms of DoS attacks due to the wide use of the protocol
and security equipment not blocking them by default. The HTTP flood attacks can be effective
to mimic human behavior so that attacks may go undetected.

The HTTP flood can take place in two different methods by sending HTTP-GET requests
or HTTP-POST requests. GET requests, which are used in HTTP, are used to obtain static
content like images, whereas POST requests are used to access dynamically produced resources
like forms. HTTP flood attacks do not utilize packet spoofing or packet malformation as some
other attacks. However, it needs less bandwidth compared to other methods for bringing down
a target.

Figure 2.10: HTTP flood

2.3.3 Low rate DoS/DDoS

The low rate DoS attacks differentiate from other attacks due to its low speed compared to the
comparatively high flooding rates seen in other attacks. These slow and low attacks targets on
the application layer through the use of HTTP protocol in most cases. The attack types in LDoS
can be categorized into two as slowloris and slow POST attacks. Slowloris attacks are carried
out by establishing several connections with a targeted web server and maintaining them for as
long as possible. This is accomplished by sending HTTP partial headers continually without
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completion [42]. The web server will keep opening large number of connections while waiting
for each request to complete, which never occurs. This continues until the server encounters a
communication timeout or the attacker terminates the attack. Eventually, server resources are
exhausted to the point where genuine connections cannot be serviced.

An attacker will send genuine POST requests to a web server in slow POST attacks. In
these requests, packet size will be specified as a large value in the packet header. However, the
message’s body will be sent at a very slow rate sometimes as low as one byte per each transmission
[42]. The server will wait for the complete duration of the message that is indicated in the header.
This will render server resources inaccessible until the request has been fulfilled.

LDoS attacks are difficult to detect due to their slow and low nature, which closely resembles
normal traffic. In addition, the sending of partial requests rather than malformed packets makes
it easier to evade conventional intrusion detection techniques.

Figure 2.11: Slow Rate DoS attacks (i) Slowloris (ii) Slow POST attack

2.4 Tools

During this work, different tools were used at each stage of the data collection process. Initial
data collection was carried out in packet based format and hence Wireshark tool was used to
open and examine packets. Following this, the packets had to be processed in order remove
GTP protocol from them using Tracewrangler tool. Argus tool was used extensively in order to
create network flows from the packets and then to convert those flows into a csv.

The different types of attack scenarios were executed through a variety of tools. Port scans
were carried out through the Nmap open source tool. Hping3 was used to execute flooding
attacks such as ICMP flood, UDP flood and SYN flood. LOIC, Goldeneye, HULK, Slowloris
and Torshammer was used to conduct application layer attacks.
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2.4.1 Wireshark

Wireshark is a well known network packet analyzer that is capable of performing multitude
of functions. Wireshark is most often used for packet capture in a network of even multiple
devices. The packet sniffing of multiple devices mainly depends on the location of the host with
Wireshark in the network. In addition to packet capture, Wireshark can also filter packets based
on several properties. Through the use of filters, only the necessary data can be examined and
even extracted into a separate file. The ability of Wireshark to portray packet information in a
graphical format that can be comprehended by any user is also a significant advantage that it
provides.

Wireshark can be considered an essential tool for network performance analysis. It can
be used to troubleshoot networks with performance issues and assist security professionals in
monitoring suspicious network transactions.

Wireshark uses the standard file formats:pcap and pcapng as the default formats for read
and write. In addition to that, it has the ability to read and write to a number of other formats
supported by other capturing tools.

2.4.2 Tracewrangler

Tracewrangler is a Windows-based network capture toolkit that supports the same file for-
mats:pcap and pcapng. This tool’s primary purpose is the sanitization, anonymization, and
scrubbing of packets created by Wireshark/tcpdump, etc. It can also be used to editing packets
in large quantities at once by removing layers such as GTP, MPLS, GRE etc. The tool has the
ability to merge and aggregate pcaps recorded in more than one interface.

2.4.3 Argus

Argus is an open source project which aims at delivering network flows from packet based
formats. Since its inception in the late 1980s at Carnegie Mellon’s Software Engineering
Institute by Carter Bullard, Argus has been an active and essential component in the development
of network flow technologies for modern networking and cyber security. The Argus tool seeks
to handle a variety of network flow data processing concerns, including scale, performance,
applicability, confidentiality, and utility.

Argus is a system for network auditing which comprises of two packages. A packet processing
network flow sensor argus, which generates Argus flows and a collection of argus data processing
programs called argus clients which can be used together in order to build high quality data flow
channels that could process network data in real time or even uncoupled to assist in large-scale
data analysis. Argus clients supports a set of different functions and operations on streaming
network flows as well as files. Some of the basic client programs include, ra, racluster, rasplit,
rasort, raconvert which are used to print, cluster, split, sort and convert to other file formats
respectively.

2.4.4 Nmap

Nmap is one of the most popular network scanning tools used for penetration testing, port
scanning and network mapping. Nmap uses raw IP packets to determine the status of ports in
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a host through multiple different scanning techniques. Nmap can be run on all major operating
systems including Windows, Linux and Mac OS X and also supports some older operating
systems such as Solaris, AIX and AmigaOS.

Various types of port scanning can be performed through Nmap including SYN scan, TCP
connect scan and UDP scan. The user/attacker can specify the command to execute the type of
attack through the command prompt. The IP address of the target and the type of attack will
need to be specified in these commands. Typically, it is possible to scan all the ports of a given
IP address or specify a range of ports to be scanned. Scanning all ports may take a considerable
amount of time depending on the type of port scan. Furthermore, users can set the depth of the
scan to a light scan or more detailed one.

2.4.5 Hping3

Hping3 is another network tool that can transmit customized ICMP/TCP/UDP packets which
could be used to perform a DoS attack. Hping3 is able to tolerate fragmentation as well
as arbitrary packet payload sizes, which may enable DoS attacks to circumvent the network
security systems. The tool has the capability to perform DoS attacks such as ICMP flood, UDP
flood and SYN flood with varied number of packet sizes and fragmentation.

The tool may also be used to test the network performance using various protocols and packet
sizes. In addition it can also be used to perform port scanning, remote OS fingerprint, testing
firewall rules, path MTU discovery etc. The commands to perform different attacks are executed
through a command line interface.

2.4.6 LOIC

Low Orbit Ion Canon, abbreviated as LOIC, is a well-known open source tool utilized for
network stress testing and DoS/DDoS assaults. An attacker can use this tool to carry out DoS
attacks by flooding the target with TCP, UDP or HTTP GET requests. With its graphical user
interface, an attacker only needs to enter the target IP address and the intended port.

Once launched, LOIC generates massive number of traffic and sends them continuously to the
targeted server. As the quantity of message requests increases, the server becomes overloaded
and is eventually unable to serve normal users.

2.4.7 Goldeneye

Goldeneye is another python based tool used to perform DoS attacks involving HTTP GET
requests. Goldeneye is a application layer attack tool which attempts to keep the connections
alive along with cache control options to persist the socket connection smashing via caching
until all available sockets have been consumed.

The tool is powerful for carrying out DoS attacks as a single machine has the capability to
take down a server. After making a full TCP connection, Goldeneye needs only a few hundred
legitimate HTTP requests to disrupt a web server.

As the tool is based on python, the python file should be called from the command line along
with the target IP address in order to perform this attack.
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2.4.8 HULK

HULK is a DoS tool designed to attack web servers by producing unique and masked traffic
volumes. The word HULK stands for "HTTP Unbearable Load King" and also bases its attack
on HTTP GET requests. HULK flood differentiates from the majority of other DoS/DDoS attack
programs, which generate easily detectable, repeatable patterns. The HULK flood operates on
the principle that a unique pattern is generated for each request, with the purpose of raising
server load and eluding intrusion detection and prevention systems.

This attack is also conducted using HTTP requests that attempt to maintain open connections
by utilizing Keep-Alive with a flexible time window. When the maximum number of simulta-
neous connections allowed by a server is reached, the server is unable to fulfill the requests of
any further users.

2.4.9 Slowloris

Slowloris is another DoS attack program that is used to attack vulnerabilities present in the
application layer through the use of partial HTTP requests. This attack type falls under the low
rate DoS attack type. The attack operates by establishing and maintaining connections with a
targeted Web server for as long as possible. Slowloris is a specific attack tool designed to allow
a single computer to bring down a server without consuming a massive amount of bandwidth.
Slowloris utilizes a negligible amount of bandwidth and attempts to drain server resources by
delivering requests that seem slower than usual but are otherwise nearly identical to authentic
user traffic.

On the server, there will be a limited number of threads available to manage concurrent
connections. Each server thread will attempt to maintain its existence while awaiting the
conclusion of the slow request, which will never occur. Once the server reaches its maximum
number of connections, future connections will not be accepted, resulting in a denial of service.

As slowloris is also available as a Python script, its execution entails invoking the Python file
along with the IP address of the destination from the terminal.

2.4.10 Torshammer

Torshammer is also a slow rate DoS attack tool that attacks a web server using slow POST
requests. It can be described as an efficient and disruptive attack tool. In these slow POST
attacks, the attacker will issue POST requests very slowly in order to direct the server into keeping
the connections open. As POST requests are commonly used to submit data to a server, the
server will typically allocate a longer connection timeout [43]. An attacker will take advantage
of this to send repeated POST requests at very slow rates, thereby establishing new connections.

Torshammer is also python based and can be executed through the terminal with a simple
command together with the IP address of the target server.
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3 IMPLEMENTATION

This chapter will discuss the data collection stage of the work. The 5G Test Network at University
of Oulu was used as the core network in this instance. The architecture of the network will be
discussed in more detail during this chapter. Further, the generation of benign traffic and the
attack scenarios are discussed extensively. All commands used from different attack tools are
also described individually.

3.1 Network Architecture

The data was collected on a real 5G network with a variety of capabilities. The network
architecture consisted of mobile users, 5G modems, PICO base stations, Raspberry Pi’s, linux
servers, firewalls and switches. In order for the network design to accurately mimic a real-world
scenario, it was necessary to isolate the attack network and the target network. This is because
the attack threat in modern networks with an unimaginable number of devices could originate
from outside of the network in most cases. In addition, the attacks could originate from a variety
of entry points and be directed toward the same target. To illustrate this, the attacks were carried
out by two attackers on two separate networks. This further demonstrates the necessity of a
coordinated global security mechanism for future wireless networks.

Figure 3.1: Network architecture of the testbed

In the attacker network, a Raspberry Pi 4 Model B computer running Ubuntu operating
system was used to execute the varied attack types. This attacker was connected to the Wifi
through a modem which is connected to the 5G pico base stations. The use of Raspberry Pi
computer enabled us to carry out different types of attacks effectively from a separate network.

The victim/target network was deployed in the MEC. MEC is an integral part of the 5G
networks since it pushes application hosting from centralized data centers to the network’s edge.
This is considered vital for 5G networks to satisfy its requirements, which include low latency
and bandwidth to support massive numbers of IoT devices and mission critical applications
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[44]. Having the target PC placed at the MEC permits us to establish a distinct network for
the victim and to replicate a real-world 5G network scenario that employs additional supporting
technologies such as the MEC. A PC running Ubuntu was placed at the MEC to act as the target
during the data collection process.

In this network, two Pico base stations are present to which the two attack networks are
connected. A pico base station, also known as a pico cell, is a compact cellular base station (BS)
that serves as an alternative to a repeater predominately in indoors. It is often used to extend
wireless coverage to areas that cannot be accessed by networks served through large cell towers,
such as the inside of buildings or remote locations.

The two pico base stations are connected to the eNodeB which is the main macro base
station at University of Oulu through the x2-c interface. Typically, the x2-c interface between
eNBs is responsible for functions such as mobility management, changeover preparation, status
transfer, UE context release, handover cancellation, inter cell interference cooperation, and load
management. The pico base stations are also connected to the switch through the S1-U interface.

Table 3.1: Network devices
Network Device Description

Attacker Raspberry Pi 4 Model B with Ubuntu 21.10 - Impish
Victim HP with Ubuntu 18.04.5 LTS - Bionic

Base Station Nokia - Flexi Zone Indoor Pico BTS
Modem HUAWEI - E6878

Mobile devices Motorola - Moto g50 5G
Switch Dell - N1524

3.2 5G Test Network Finland (5GTNF)

5G Test Network Finland is a developing, open innovation ecosystem that supports technological
development beyond 5G [45]. The overall objective of the 5G Test Network Finland (5GTNF) is
to bridge the gap between laboratory-based 5G and beyond testing environments and commercial
network deployments. Additionally, the 5G Test Network Finland (5GTNF) will provide trialing
support as well as tailored infrastructure configurations for the telecommunications industry,
vertical industries, and the scientific community. The primary focus of the 5GTNF is to
incorporate inter-disciplinary competences, such as beyond 5G network and radio enablers,
cyber security, use of AI and develop technologies related to them. The 5GTNF is a collaborative
effort of the industry, academics and the government of Finland [45].

In this work the 5GTNF site at University of Oulu was used as the underlying infrastructure
in the 5G testbed. The Non Stand Alone architecture for 4G and 5G dual connectivity specified
in option 3a of [46] is used in this network. In non-standalone (NSA) architecture, NR radio
cells and LTE radio cells interoperate via dual connectivity to provide UEs with combined radio
access. In this architecture, both the eNB and the gNB can connect directly with the EPC.
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Figure 3.2: 5G Implementation using option 3a

3.3 Benign Traffic

This dataset is distinguished by the availability of benign traffic from genuine devices as opposed
to simulations as seen in majority of previous work. In several of the past studies, the benign
traffic from devices have been captured at a prior time and the traffic profiles have been later
introduced in the network during the period of the attacks. This may have a impact on the dataset
in terms of the source IP address, timestamps and other crucial characteristics expected in a live
network. In contrast, the benign traffic within this network is generated in real-time from the
devices to represent a more realistic scenario.

In addition, this is the first time that mobile devices are deployed to build normal network
traffic in major datasets that are available. The mobile devices were connected to each of the
pico base stations in order to generate the traffic. The Network Monitor tool was used to make
sure that each mobile device is connected to the relevant pico base station.

The mobile devices were used to provide traffic in different types of protocols such as HTTP,
HTTPS, SSH and SFTP to account for variety. The HTTP and HTTPS traffic was generated
through live streaming services as well as web browsing. SSH and SFTP was deployed through
SSH clients and servers installed on mobile devices. It was ensured that the normal traffic is
available at all times during the data captures and attacks.

3.4 Attack Scenarios

The attacks were operated from the Raspberry Pi 4 Model B computers with Ubuntu 21.10
running. Attack tools such as Nmap, Hping3, LOIC were installed on the Raspberry Pi in their
newest versions. The python scripts of Goldeneye, HULK, Slowloris and torshammer were
called with the required python versions.

The port scans were executed from the Nmap tool. The tool is available for download from
the internet as an open source tool. The SYN scan, TCP connect scan and UDP scan were
executed from the terminal in Ubuntu. The target was set to the destination IP address of the
victim deployed at the MEC. In all the instances, the IP address of the target was 10.41.150.68
The network architecture was same as indicated in the Figure 3.1. The following commands
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were given to execute port scans from Nmap tool.

SYN Scan

sudo nmap -sS ’Target IP address’ -p ’Targeted port / range of ports’

TCP Connect Scan

sudo nmap -sT ’Target IP address’ -p ’Targeted port / range of ports’

UDP Scan

sudo nmap -sU ’Target IP address’ -p ’Targeted port / range of ports’

The -sS, -sT and -sU in these commands stands out for the different types of attacks. The -p
is used to specify the targeted ports. If no value is provided for this, the tool will carry out the
scan for all the ports in the target.

The Hping3 tool was used to carry out different types of volume based DoS attacks as well as
protocol based DoS attacks. Specifically, they were ICMP flood, UDP flood and SYN flood. In
all these attacks, the target is flooded with different types of packets at a very high rate. Hping3
is also a freely available tool and commands were executed from the Ubuntu terminal.

ICMP flood

sudo hping3 –flood –rand-source -1 -p ’Targeted port / range of ports’ ’Target IP address

UDP flood

sudo hping3 –flood –rand-source –udp -p ’Targeted port / range of ports’ ’Target IP address

SYN flood

sudo hping3 -S -p ’Targeted port / range of ports’ –flood –rand-source ’Target IP address’

Here, the –flood command provides frequency of sending packets while –rand-source directs
the tool to send packets with hidden source IP or more specifically with random IP addresses.
The -1. –udp, -S suggests the type of protocol to be used when flooding with packets. The
targeted port or range of port is specified after -p. In addition to this, a user can set the values
like packet size, packet count, interval between packets etc.

The HTTP flood attacks were performed using multiple tools. This include the LOIC,
Goldeneye and the HULK tool. Before carrying out these attacks, a web server had to be
installed at the target. The web server that was used for this purpose was Apache2 web server.
Apache is the most regularly used web server for linux systems. Apache2 web server was
installed on the Ubuntu machine which acted as the target in the previous scenarios. After the
installation, the firewall was configured in order to let outside parties access the web server.

The HTTP flood attacks were then carried out with the target set to the IP address of the
web server. Among other tools, the LOIC tool comes with a graphical user interface where the
target IP and the target port can be specified as shown in figure 3.3. Here, target IP address was
10.41.150.68 and the target port was set to port 80.
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Figure 3.3: LOIC Graphical User Interface

Goldeneye is another tool used to carry out the HTTP flood attacks. It is a script written in
python and therefore the file needs to be called from the terminal along with other speifications.
The following command was given from the Ubuntu terminal.

Goldeneye

sudo python3 ./goldeneye.py http://’Target IP address of the web server’

The target IP address of the Apache2 web server was set as http://10.41.150.68 in this instance.
HULK also acts in a similar manner as it is also a python script that needs to be called through

the terminal. The following command was used in order to generate an HTTP flood using HULK.

HULK

sudo python3 hulk.py http://’Target IP address of the web server : Targeted port’

Similar to the Goldeneye, the IP address of the web server was given in this one. The targeted
port was set as port 80.

The slow rate DoS attacks were carried out by using Slowloris and Torshammer which were
also scripts based on python. For the slowloris attack, the following command was given through
the Ubuntu terminal after getting into the directory of the python file.
The target IP address was specified to be 10.41.150.68

Slowloris

python3 slowloris.py ’Target IP address of the web server’
Similarly, the slow rate DoS using HTTP POST requests was executed through the Torsham-

mer python script. This was based on python version 2 and had to be called using the following
command.
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Torshammer

python2 torshammer.py -t ’Target IP address of the web server’

3.5 Data collection

The data collection was carried out on two consecutive days. For the purpose of data collection,
a PC was connected to the base station through its management port.

Initially, different types of DoS/DDoS attacks were carried out. It was made sure that the data
capture was done for 30 minutes from both the base stations for each type of attack. Throughout
this time, the benign traffic was available continuously. During this 30 minute period for data
collection, an attack was carried out for 10 minutes from attackers connected to each of the base
stations. This was done such that there exist a time period where the attacks are carried out from
both base stations simultaneously as well as other time periods where only an attacker connected
to one individual base station is carrying out the attacks. This scenario is understandable from
the table 3.2.

Table 3.2: Schedule of the DoS/DDoS attacks

Type of DoS/DDoS Attack Date
Period of
data collec-
tion

Period
of attack
(Base Sta-
tion 1)

Period
of attack
(Base Sta-
tion 2)

Slow rate DoS - Slowloris 16/6/2022 2.45pm-
3.15pm

2.55pm-
3.05pm

2.50pm-
3.00pm

HTTP flood - LOIC 16/6/2022 3.30pm-
4.00pm

3.40pm-
3.50pm

3.45pm-
3.55pm

SYN flood - Hping3 16/6/2022 4.30pm-
5.00pm

4.35pm-
4.45pm

4.40pm-
4.50pm

HTTP flood - Goldeneye 16/6/2022 5.30pm-
6.00pm

5.35pm-
5.45pm

5.50pm-
6.00pm

Slow rate DoS - Torshammer 17/7/2022 10.30am-
11.00am

10.40am-
10.50am

10.45am-
10.55am

HTTP flood - HULK 17/6/2022 11.30am-
12.00am

11.40am-
11.50am

11.45-
11.55

UDP flood - Hping3 17/6/2022 12.15pm-
12.45pm

12.25pm-
12.35

12.30pm-
12.40pm

ICMP flood - Hping3 17/6/2022 2.00pm-
2.30pm

2.10pm-
2.20pm

2.15pm-
2.25pm

After, the collection of data from DoS attacks, the data was collected for port scans. Here,
each data collection cycle was carried out for 10 minutes time. Here also, we ensured that benign
traffic is deployed at all times from the mobile users. During this time period of 10 minutes,
multiple number of port scans were executed as the time taken for a port scan was quite short.
The table 3.3 shows the schedule of the port scans that were carried out.
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Table 3.3: Schedule of the Port Scans

Type of Port Scan Date

Period
of attack
(Base Sta-
tion 1)

Period
of attack
(Base Sta-
tion 2)

SYN Scan 17/6/2022 3.00pm-
3.10pm

3.00pm-
3.10pm

TCP Connect Scan 17/6/2022 3.20pm-
3.30pm

3.20pm-
3.30pm

UDP Scan 17/6/2022 3.45pm-
3.55pm

3.45pm-
3.55pm
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4 DATA PROCESSING

The data collected from the base stations were available as pcap files for each of the attacks
separately. Therefore, 22 pcap files were collected in total from both base stations with 11 from
each of the base stations. The overall time in these data accounted for nearly 9 hours.

Data pre-processing can be considered an important step in achieving the best results in
machine learning models. The raw data collected should be converted to information that can
be fed into a machine learning model. This can involve several steps. The figure 4.1 shows the
main steps that were involved with our work.

Figure 4.1: Steps for Data Processing before feeding onto the ML models

4.1 GTP layer removal

The data collected from the two base stations were first analysed through the Wireshark tool.
A portion of the acquired data that was available in packet-based format contained the GPRS
Tunneling Protocol (GTP) layer. GTP is a form of protocol utilized by IP-based communication
protocols in order to transport General Packet Radio Service (GPRS) across GSM, UMTS, LTE,
and 5G New Radio (NR) networks. Again, GTP can be divided into three distinct protocols:
GTP-C, GTP-U, and GTP’ (GTP Prime). GTP-C is used for communication between gateway
GPRS support nodes and serving GPRS support nodes within the GPRS core network. On the
other hand, GTP-U is used to transport user data inside the GPRS core and between the radio
access network and the core network. GTP’ (GTP prime) employs similar message structure to
GTP-C and GTP-U, but has a different purpose. It can be used to deliver charging data from
the GSM or UMTS network’s charging data function (CDF) to the charging gateway function
(CGF).

The data collected from the base stations contained packets with GTP-U protocol. This
needed to be removed in order to reflect the actual protocols in the network flows which were
generated subsequently. Therefore, in order to remove this GTP layer, the TraceWrangler tool
was used which had the capability to remove the GTP layer in large batches of packets. The
packets without the GTP layer was saved again in the pcapng format for each individual attack.
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4.2 Conversion to network flows

After the removal of GTP layer, the data was available in the pcapng format which is a packet
based format supported by Wireshark. Training of data in either a packet-based format or a
flow-based format can be utilized for intrusion detection. Both strategies have been extensively
practiced in earlier studies, demonstrating that both can have favorable effects in varying aspects.

Deep packet inspection or packet-based intrusion detection will discover intrusions based on
a combination of packet header and payload analysis and scans [47]. Typically, this strategy
is implemented using tools like tcp dump. Signature based intrusion detection most often use
this strategy to spot malicious packets. Despite the fact that large amounts of data are analyzed
and processed, the drawback of this type of a approach is that it takes a considerable amount of
time to scan headers and payloads of every single packet notably in the context of today’s high
speed networks. Therefore, to prevent packet-based intrusion detection schemes from becoming
a network bottleneck, a high processing throughput is required [48]. However, sophisticated
systems that can monitor every single packet in a high-speed network may be extremely costly
and resource-intensive [47].

A flow is considered as a unidirectional stream of packets between two devices with identical
source and destination IP addresses, source and destination ports, and protocol [47]. In addition
to these characteristics, different tools may incorporate different features for the purpose of clas-
sification of flows. Flow based detection approaches are been commonly deployed for machine
learning based intrusion detection. In contrast to packet based formats, the flow based formats
provides a high-level description about the communications in the network while protecting the
privacy of the users [49]. The approach is also regarded to be more efficient since the amount
of data and size of data is drastically reduced compared to packet-based formats. This will
significantly reduce the processing capabilities required for intrusion detection. Consequently,
performance difficulties associated with flow-based approaches are not a concern in high-speed
networks. Furthermore, the growing numbers of threat surfaces has resulted in attacks that can-
not be identified through a single packet but spans across a multiple number of packets. These
attacks and other zero day attacks can effectively be identified through flow based approach
rather than a packet based one.

In this work, the packet based data collected was converted into a flow based format without
loosing the most important features. This was done using the Argus tool. Argus supports
generation of network flows in real-time as well as conversion of pcap files into network flows.
The following commands were used in order to convert the packets into flows. Each of the files
available were converted separately.

Conversion of packets to flows

/usr/local/sbin/argus -r filename.pcap -w filename.argus

Read and display the network flows in a Argus file

/usr/local/bin/ra -r filename.argus

The -r specifies the name of the file to be read and the -w specifies the file that data is been
written. The network flows available in the argus file format was then written into a csv file.
All the fields, that are extracted through the argus tool were written into the csv file using the
following command.
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Writing into a csv file

/usr/local/bin/ra -c , -s srcid rank stime ltime trans flgs seq dur runtime idle mean stddev
sum min max smac dmac soui doui saddr daddr proto sport dport stos dtos sdsb ddsb sco dco
sttl dttl shops dhops sipid dipid smpls dmpls autoid sas das ias cause nstroke snstroke dnstroke
pkts spkts dpkts bytes sbytes dbytes appbytes sappbytes dappbytes pcr offset smeansz dmeansz
load sload dload loss sloss dloss ploss psloss pdloss retrans sretrans dretrans pretrans psretrans
pdretrans sgap dgap rate srate drate dir sintpkt sintdist sintpktact sintdistact sintpktidl sintdistidl
dintpkt dintdist dintpktact dintdistact dintpktidl dintdistidl sjit sjitact sjitidle djit djitact djitidle
state label suser duser swin dwin svlan dvlan svid dvid svpri dvpri srng erng stcpb dtcpb tcprtt
synack ackdat -r filename.argus > filename.csv

In here the -c specifies the type of separator to be used when writing into the csv file and -s
specifies the fields to be written. In total, 116 features were extracted and written into the csv
format. This includes some main features such as source and destination IP addresses, source
and destination port numbers, protocol, number of packets, packet size in bytes etc. 1

A total of 22 csv files were available for all attacks in both the base stations with each having
11. All the aforementioned fields were present in each and every csv file.

4.3 Data aggregation and labelling

The separately available data for each attack had to be combined in order for further analysis.
The data was first aggregated based on the base station from which the data was collected as this
will be beneficial for implementation and testing of federated learning based security solutions.
Then the data from each base station was combined to generate the total number of network
flows. Before the aggregation, the data was labeled based on 2 characteristics for further analysis
which included a binary classification as well as a multi class classification.

First, the labelling process considered whether a flow was malicious or benign. This was
decided based on the source IP address and the destination IP address. As the source IP address
and the destination IP address were already known, the condition was set to decide a flow is
malicious if either of the source IP or destination IP matches with the known IP addresses of the
victim or attacker and then the remaining one of the source IP or destination IP matches with the
one remaining out of victim and attacker. Flows from both directions were considered malicious
since the responses from target to the attacker also resulted due to the attacks. In the dataset, the
column ’Label’ specified whether a flow is malicious or benign with the use of numbers 1 and
0 respectively.

Table 4.1: Meaning of values specified in the ’Label’ column of the dataset
’Label’ cat-
egories Meaning

0 Benign
1 Malicious

1All features generated by Argus tool along with their meanings are available at https://manpages.ubuntu.
com/manpages/trusty/man1/ra.1.html
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The type of attack was specified using the same rules used for classification in the previous
scenario with the separate csv files allowing in identification of the attack type. The identification
of the attack type is beneficial in the multi class classification that will be performed. The ’Attack
type’ column in the dataset identified benign traffic, port scans, UDP flood, ICMP flood, SYN
flood, HTTP flood and Slowrate DoS attacks and is represented as 0,1,2,3,4,5 and 6 respectively
in the dataset. Furthermore, each type of the 11 attacks were also classified separately in another
column for our own reference as well as the identification.

Table 4.2: Meaning of values specified in the ’Attack Type’ column of the dataset
’Attack
Types’
categories

Meaning

0 Benign
1 Port scans
2 UDP flood
3 ICMP flood
4 SYN flood
5 HTTP flood
6 Slowrate DoS

Following the labelling process, data was aggregated by merging the separate csv files into
one through a python script. Separate datasets were initially created for data collected from
different base stations and later combined them to make one dataset. The data collected from
either of the base stations are available separately as well for the purpose of federated learning
based research.

The total number of flows in the dataset was 851205. Among these flows the following attack
variety was seen.

Table 4.3: Composition of the Dataset
Type of Attack Number of flows
Benign traffic 32995
Port Scans 32313
UDP flood 223401
ICMP flood 266816
SYN flood 155986
HTTP flood 96249
Slowrate DoS 43444

4.4 Encoding

The combined dataset consisted of all the fields in the table ?? along with the three additional
columns used for the purpose of labelling. The combined dataset contained 851205 records
of network flows in total. Most of the fields in the dataset contained numerical figures while
several categorical data also existed.
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In machine learning, categorical data is frequently employed for classification and regression
problems. However, the only form of data that can be fed onto a machine learning model as
an input is numerical data [50]. Therefore, this demands encoding of categorical data into
numerical values such that each categorical attribute is represented through a number [50].

Among different techniques available for encoding categorical data, we used one hot encoding
in our dataset. One hot encoding is one of the most commonly used techniques in data encoding
for machine learning as well as neural networks. One hot encoding works by transforming a
particular variable of n observances and d distinct categories into d binary variables each with n
observations [50]. Each of the d variable or category will contain either 1 or 0 representing the
availability or non-availability of that category. The one hot encoding will increase the number
of columns or fields in the dataset depending on the number of possible categories. Therefore,
this may not be feasible when there is a large number of distinct categories.

In this dataset, as there were no variables with far too many categories in the fields that
were considered, the one hot encoding technique was utilized to transform categorical variables
to numerical variables. One more rationale for using one hot encoding was that it achieved
acceptable accuracy levels with less complexity, as demonstrated in [50]. The variables ’Flgs’,
’State’ and ’Proto’ were transformed into numerical variables before feeding onto ML models.
These variables included 10, 16 and 3 distinct categories in each of them respectively. Therefore,
a total of 29 extra fields were added onto the dataset as a result of one hot encoding. The table
4.4 shows the extra fields that were added into the dataset.

Table 4.4: Fields added from One Hot Encoding (Notations from Argus flow features given in
[51] are are adopted

Variable Categories
’Flgs’ ’ e’

’e g’
’e i’
’e r’
’e &’
’e *’
’e d’
’ e s’
’e’
’e s’

’State’ CON
ECO
FIN
INT
RST
TST
REQ
RSP
ACC
ECR
SRC
PAR
URP
URH
CLO
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NaN
’Proto’ tcp

udp
icmp

4.5 Feature selection

In most cases, a sizeable amount of data is required in order to train a machine learning model
for the purpose of identifying and differentiating between legitimate traffic and malicious traffic.
In the context of 5G, integrated technologies such as IoT and V2X will increase the frequency
with which enormous amounts of data must be processed. The amount of data collected poses a
significant challenge in resource management. The selection and storage of only the essential and
adequate characteristics for AI/ML model training and tuning is one of the most straightforward
methods for minimizing the volume of the datasets [52].

Therefore, feature selection is one of the most important aspects of data processing for any
machine learning task, as it has a substantial impact on the accuracy of the resultant predictions
and the training time. In order to predict the outcome of an unknown instance, machine learning
models utilize a variety of features to learn. However, the possession of a large number of
features, or high dimensionality in data, is mostly regarded as a challenge for the majority of
machine learning models. In both theory and practice, feature selection has been shown to be
effective in processing high-dimensional data and improving the learning efficiency [53]. It is
regarded as an effective approach in saving computational time and improving learning accuracy
through the removal of irrelevant and redundant data [54].

Feature selection mainly involves selecting a subset of features from an original set of
features. This can be performed through different methods such as filter, wrapper and embedded
methods. Filter methods are statistically based and operate independently of the characteristics
and parameters of the model used for classification [55]. These statistical based methods
mostly involve concepts such as correlation, mutual information and other statistical tests.
The concept of filter method for feature selection is regarded as a general technique, and this
generality could be interpreted as the potential applicability to any model [55]. In the wrapper
technique, feature selection is carried out by observing the performance of the model under
various feature configurations. In the majority of cases, prediction accuracy has been the
primary selection criterion in these methods. The reliance on a specific classifier results in a
loss of generality and bias, however adapting the set of inputs to local requirements typically
improves the performance. Embedded approaches are based on algorithms inherent to the
learning system for feature selection and elimination [55].

In this work, the filter methods were utilized owing to the generality it provides as different
machine learning models will be applied for this dataset. The feature selection process was
done in three steps. As the first step, some of the features were removed due to the complete
unavailability of values whilst some features were removed due to presence of constant values.
Most of the features that were removed due to the constant values were observed to be zeros.
Moreover, in order to maintain the intrusion detection system’s generality, certain features had
to be eliminated. The intrusion detection should not rely on features such as the IP addresses
of the target or attacker, destination and source port numbers, which in this instance were
largely unique. In other words, the inclusion of these variables in the training dataset will make
malicious traffic classification rather straightforward. Therefore, as the next step towards feature
selection these features were removed in order to have a system capable of identifying and
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detecting malicious traffic originating from any source and directing towards any destination.
Finally, statistical techniques such as Pearson correlation coefficient and Chi-square test was
employed in order to choose the final set of features.

4.5.1 Pearson Correlation Coefficient

The remaining features in the dataset comprised a number of features that provide similar in-
formation in determining the target variable. Therefore, in order to achieve the goal of feature
reduction, one out of each such pair had to be eliminated. This task was achieved through the use
of Pearson correlation. The Pearson correlation is a popular statistical method used to evaluate
the linear correlation between two variables X and Y. The value of Pearson correlation coeffi-
cient exists in the range of -1 to +1 where a value of +1 suggests that X is completely positively
linearly correlated to Y while a value of -1 implies complete negative correlation between the
two variables as shown in the figures 4.2 [56]. If there exists no correlation between X and Y
the correlation coefficient becomes 0. The following equation is used in order to calculate the
Pearson correlation coefficient (PCC).

𝜌𝑥,𝑦 =
𝐶𝑂𝑉 (𝑋,𝑌 )

𝜎𝑥𝜎𝑦

=
𝐸 (𝑋 − `𝑥) (𝑌 − `𝑦)

𝜎𝑥𝜎𝑦

(4.1)

Figure 4.2: Pearson Correlation Coefficient for complete positive correlation, complete negative
correlation and no correlation

In equation 4.1, the function 𝐶𝑂𝑉 (𝑋,𝑌 ) expresses the covariance between X and Y. `𝑥 and
`𝑦 are the mean values of X and Y while 𝜎𝑥 and 𝜎𝑦 relates the standard deviation of X and Y.
In this work, the Pearson correlation coefficient was obtained for every single pair of features
in order to remove features with multicollinearity. This was carried out through a python script
in Jupyter Notebook. The correlation was applied to the training set of the data. The figure 4.3
shows the heatmap that was generated along with the correlation coefficient values. The heatmap
displays highly correlated values in darker colors, while less correlated values are depicted in
lighter hues.

The observed data contained both negative and positive correlation values. In order to remove
highly correlated data, the threshold was set to 0.90 with the correlation coefficients converted
to absolute values in order to account for both positve and negative correlation. One feature
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from each pair with a correlation greater than 0.90 was eliminated based on its correlation with
the target. Out of a given pair of features, the eliminated feature was the one with the lowest
correlation towards the target variable.

After the elimination of these redundant information, the Pearson correlation between the
different variables and the target was also considered. Here, a higher correlation value means
that the feature has a high impact on the output. The table 9.1 and 9.2 in Appendix 1 shows the
PCC values obtained for the target variable in both binary and multi class classifications.
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Figure 4.3: Heatmap with Pearson correlation between all features
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4.5.2 Chi-square test

After the elimination of features using PCC, the best features in the dataset was chosen using a
combination of PCC and Chi-square test. The Chi-square test is a another statistical test used
mostly for the feature selection when categorical data are available.

In statistics, the chi-square test is used to assess the independence of two events. In equation
4.2, the 𝑂𝑖 represents the observed values and 𝐸𝑖 represents the expected values. In the case
when two features are independent, the observed count will be closer to expected count which
will result in lower chi-square values. A high chi-square value, on the other hand, suggests that
the feature is highly reliant and should be considered for model training.

In this instance, the Chi-square test was used as the dataset contained some categorical
features too. The tables 9.3 and 9.4 in Appendix 1 shows the ranking obtained from the
Chi-square scores.

Although, the dataset contained categorical features, the majority of the features were nu-
merical values. Therefore, to take both these factors into account a combined score from PCC
and Chi-square test was used. The scores from the Chi-square tests shown in tables 9.3 and 9.4
were first normalized to a range of [0,1] before combining with PCC to obtain tables 4.5 and
9.4. The top most features from these tables were considered to be the most impactful features
in determining a specific class.

𝑋2
𝑐 = Σ

(𝑂𝑖 − 𝐸𝑖)2

𝐸𝑖

(4.2)

Table 4.5: Ranking based on both PCC and Chi-square test for binary classification

Feature
Absolute
value of
PCC

Normalized value
of Chi-square test Total score

SrcTCPBase 0.023536 1.000000e+00 1.023536
SrcLoad 0.017765 7.686946e-01 0.786459
TotBytes 0.313687 4.105528e-01 0.724240
SrcBytes 0.382140 2.445810e-01 0.626721
sMeanPktSz 0.586275 4.213180e-04 0.586696
dTtl 0.562927 1.380461e-06 0.562928
CON 0.530657 1.561801e-06 0.530659
SrcPkts 0.409042 9.511207e-05 0.409137
sTtl 0.402824 6.824088e-07 0.402825
TotPkts 0.313170 1.984701e-04 0.313369
Load 0.002067 3.090770e-01 0.311144
dMeanPktSz 0.309784 4.005733e-04 0.310185
dHops 0.277891 1.125245e-07 0.277891
udp 0.171260 1.226915e-07 0.171260
e r 0.166214 1.669391e-07 0.166215
e i 0.132709 1.032687e-07 0.132709
sHops 0.121578 5.037728e-07 0.121578
SrcWin 0.115640 1.308016e-03 0.116949
REQ 0.105914 4.940390e-08 0.105914
icmp 0.095541 3.715706e-08 0.095541
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Offset 0.049753 4.055701e-02 0.090310
INT 0.079350 3.246522e-08 0.079350
Dur 0.075601 9.182656e-08 0.075601
tcp 0.070020 1.829477e-08 0.070020
e s 0.054293 1.571344e-08 0.054293
RST 0.053286 1.515984e-08 0.053286
ACC 0.048298 1.326219e-08 0.048298
SrcLoss 0.044073 1.302477e-08 0.044073
DstWin 0.041482 5.336539e-04 0.042015
Loss 0.039236 1.441908e-08 0.039236
e g 0.037960 8.431214e-09 0.037960
RSP 0.035984 8.734909e-09 0.035984
URP 0.032955 7.861389e-09 0.032955
FIN 0.031316 5.919000e-09 0.031316
e & 0.028903 4.891424e-09 0.028903
IdleTime 0.028158 7.310063e-10 0.028158
TcpRtt 0.024803 1.158371e-09 0.024803
AckDat 0.023935 1.046364e-09 0.023935
e d 0.013665 1.153915e-09 0.013665
SynAck 0.011245 2.256173e-10 0.011245
CLO 0.011194 1.047939e-09 0.011194
DstTCPBase 0.002806 8.008176e-03 0.010814
Rate 0.009414 9.413640e-04 0.010355
DstLoss 0.010298 2.415295e-09 0.010298
nan 0.008086 3.832500e-10 0.008086
DstRate 0.005708 1.992057e-04 0.005907
e * 0.004907 1.586530e-10 0.004907
e 0.004386 2.233556e-10 0.004386
SRC 0.004385 1.127874e-10 0.004385
ECR 0.002294 3.352372e-11 0.002294
PAR 0.001601 1.448907e-11 0.001601
TST 0.001039 4.545590e-12 0.001039
URH 0.000936 4.545590e-12 0.000936
e s 0.000260 0.000000e+00 0.000260

Table 4.6: Ranking based on both PCC and Chi-square test for multi class classification

Feature
Absolute
value of
PCC

Normalized value
of Chi-square test Total score

SrcTCPBase 0.095418 1.000000e+00 1.095418
tcp 0.672815 7.550484e-09 0.672815
udp 0.639528 8.393535e-09 0.639528
RST 0.471204 6.983077e-09 0.471204
Load 0.024665 4.067659e-01 0.431431
INT 0.379360 4.925269e-09 0.379360
sHops 0.270401 3.689460e-08 0.270401
dTtl 0.254632 2.997173e-09 0.254632
e s 0.245781 6.787404e-09 0.245781
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Loss 0.241873 6.575312e-09 0.241873
SrcLoss 0.235020 7.476499e-09 0.235020
AckDat 0.231549 6.710481e-10 0.231549
TcpRtt 0.222615 4.493688e-10 0.222615
FIN 0.213388 1.474718e-09 0.213388
IdleTime 0.198134 4.153752e-10 0.198134
SrcBytes 0.170545 5.311210e-04 0.171077
dMeanPktSz 0.166248 3.469100e-06 0.166252
ACC 0.160435 3.119457e-09 0.160435
dHops 0.149132 2.483168e-10 0.149132
SrcPkts 0.143269 2.124265e-07 0.143269
DstWin 0.137342 1.290847e-04 0.137471
TotBytes 0.131801 8.956791e-04 0.132697
e d 0.127613 4.189570e-10 0.127613
REQ 0.121778 4.083746e-09 0.121778
DstLoss 0.115615 1.266933e-09 0.115615
sMeanPktSz 0.107542 1.258462e-06 0.107543
TotPkts 0.100205 4.493885e-07 0.100205
sTtl 0.090589 2.360515e-09 0.090589
SynAck 0.084669 3.182591e-10 0.084669
e r 0.076001 3.623512e-10 0.076001
icmp 0.072593 8.747194e-09 0.072593
CON 0.070229 6.517445e-09 0.070229
e * 0.062180 1.277205e-10 0.062180
Offset 0.052609 8.091226e-03 0.060700
SrcWin 0.060693 5.034954e-06 0.060699
e i 0.058434 2.245652e-10 0.058434
Dur 0.040427 8.427850e-09 0.040427
SrcLoad 0.019892 8.316288e-03 0.028208
Rate 0.021532 5.527116e-05 0.021587
DstRate 0.019422 3.466995e-05 0.019457
RSP 0.016510 1.889539e-11 0.016510
URP 0.015120 1.699903e-11 0.015120
e g 0.014919 1.862780e-11 0.014919
e & 0.013261 1.055143e-11 0.013261
TST 0.008047 6.521014e-12 0.008047
URH 0.007558 1.298516e-12 0.007558
CLO 0.005136 2.207460e-12 0.005136
nan 0.003252 4.515457e-11 0.003252
DstTCPBase 0.002969 1.231003e-04 0.003092
SRC 0.001764 1.326417e-11 0.001764
ECR 0.000922 3.918134e-12 0.000922
e s 0.000849 0.000000e+00 0.000849
e 0.000822 4.571247e-13 0.000822
PAR 0.000644 1.673747e-12 0.000644
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4.6 Data Normalization

The preprocessing of data is a crucial step in attaining strong classification performance using
machine learning models. As one of the primary data preprocessing steps, normalization entails
the adjustment of features to a common range such that larger numeric feature values do not
predominate smaller numeric feature values [57]. This makes all features in a dataset equally
significant through equal numeric contribution in determining the output class.

Many different methods are been proposed to normalize raw data to a specified range through
various statistical measures. In this instance, we employed the Z-score scalar for all ML models
with the exception of Support Vector Machines (SVM). The Min-max scaler was utilized for the
SVM because it accelerated the SVM’s learning process.

4.6.1 Z-Score

In Z-Score normalization, the data are rescaled using the mean and standard deviation values so
that the resulting features have a zero mean and a unit variance [57]. The equation 4.3 is been
used to calculate the normalized values.

𝑥𝑖,𝑛 =
𝑥𝑖,𝑛 − `𝑖

𝜎𝑖
(4.3)

where 𝑥𝑖,𝑛 is the resultant normalized value and 𝑥𝑖,𝑛 is the original value of 𝑛𝑡ℎ data in the 𝑖𝑡ℎ
feature column. `𝑖 is the mean and 𝜎𝑖 is the standard deviation of the 𝑖𝑡ℎ feature. The Z-Score
normalization was performed through the Standard scaler in Scikit learn library.

4.6.2 Min-max Normalization

This technique uses the minimum and maximum values of a specific feature to scale the data to
a predetermined range. Usually, the range is specified as [0,1] or [-1,1]. The MinMax Scaler in
Scikit learn was used to normalize the values before feeding onto SVM model. The equation
4.4 demonstrate formula used for the calculation of normalized values using this technique.

𝑥𝑖,𝑛 =
𝑥𝑖,𝑛 − 𝑚𝑖𝑛(𝑥𝑖)

𝑚𝑎𝑥(𝑥𝑖) − 𝑚𝑖𝑛(𝑥𝑖)
(𝑈𝑝𝑝𝑒𝑟𝑏𝑜𝑢𝑛𝑑 − 𝐿𝑜𝑤𝑒𝑟𝑏𝑜𝑢𝑛𝑑) + 𝐿𝑜𝑤𝑒𝑟𝑏𝑜𝑢𝑛𝑑 (4.4)

The 𝑥𝑖,𝑛 represent the normalized value while 𝑥𝑖,𝑛 is the original value available in the
dataset. The maximum and minimum values in a particular feature is represented by 𝑚𝑖𝑛(𝑥𝑖)
and 𝑚𝑎𝑥(𝑥𝑖). The upper bound and the lower bound specifies the boundaries of the normalized
range. In this work, the range was set as [-1,1]
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5 RESULTS

5.1 Performance measuring metrics

The performance of different machine learning models were evaluated through several parame-
ters that are been commonly used for evaluation purposes. This includes performance indicators
such as precision, recall, F1-score, accuracy along with the confusion matrix. Further, concepts
such as ROC and AUC were examined in comparing the machine learning models.

5.1.1 Confusion Matrix

For a classification problem, the performance can be measured in many different techniques
depending on the characteristics of data. The performance metrics used for the measurement
is mostly computed using a confusion matrix. The confusion matrix is a representation of all
the test samples categorized into either True Positive (TP), False Negative (FN), False Positive
(FP) or True Negative (TN) for a binary classification. The rows in table 5.1 demonstrate the
predicted class after classification and the columns represent the actual class that the sample
belongs to. TP and TN reflect the number of correctly categorized positive and negative cases,
whereas FP and FN indicate the number of incorrectly classified instances [58].

Table 5.1: Confusion Matrix for binary classification
Actual Positive Class Actual Negative Class

Predicted Positive Class True Positive (TP) False Negative (FN)
Predicted Negative Class False Positive (FP) True Negative (TN)

The confusion matrix for a multi-class classification consists of rows and columns propor-
tional to the number of possible classes. As in the binary classification, the rows reflect the
predicted class and the columns represent the actual class of the data. The table 5.2 shows a
confusion matrix for a multi class classification between 3 classes. Since the classes are listed
in the same order in both rows and columns, the correctly categorized elements are positioned
along the diagonal, from the top left to the bottom right [59].

Table 5.2: Confusion Matrix for multi class classification
Actual

Classes Class 1 Class 2 Class 3

Predicted Class 1 TP E21 E31
Class 2 E12 TP E32
Class 3 E13 E23 TP

Here TP has the usual meaning while E is the error in classification which occurs when the
predicted class and the actual class does not match.
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5.1.2 Precision

The precision is defined as the proportion of true positives to the total number of values that
were predicted as positive. Precision measures the accuracy with which a model classifies a test
sample as positive. For a classification with multiple classes, precision is determined by having
the ratio of the total number of true positives of all classes with the total number of true positives
and false positives of all classes.

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
(5.1)

5.1.3 Recall

Recall can be computed as the ratio of correctly classified positive samples to the total number
of actual positive samples. In a classification problem involving more than two classes, recall is
determined by dividing the total number of true positives across all classes by the total number
of true positives and false negatives across all classes.

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
(5.2)

5.1.4 F1-Score

The F1-Score is a measurement that takes both Precision and Recall into account. Increasing
either precision or recall typically decreases the other measure. In such situations, F1-Score will
be a useful metric for determining a model’s performance. F1-Score is defined as the harmonic
mean or weighted average of recall and precision.

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 =
2 ∗ (𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙)

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
(5.3)

5.1.5 Accuracy

Accuracy is a measure of number of correctly classified samples to the total number of samples.

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁 + 𝑇𝑁
(5.4)

5.1.6 ROC Curves and AUC values

ROC curves are a popular method used for comparison of different classification methods. It is
a probability curve with x axis representing the false positive rate (FPR) and y axis representing
the true positive rate (TPR). The TPR is the same as recall given in 5.2. The FPR is defined to
be the value of 1 − 𝑆𝑝𝑒𝑐𝑖 𝑓 𝑖𝑐𝑖𝑡𝑦 where specificity is defined as in equation 5.5
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𝑆𝑝𝑒𝑐𝑖 𝑓 𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
(5.5)

The AUC value which is the Area under the ROC curve represents the degree of separability.
To elaborate further, it specifies the model’s capacity to differentiate between different classes.
The greater the value of AUC, the more accurately the model predicts the proper class. A
number closer to 1 indicates that the model performs well in terms of separability [60].

5.2 Model Parameters

Following the processing of data, a some common machine learning models and neural networks
were employed to evaluate their performance on the dataset. Decision Tree, Random Forest,
K-Nearest Neighbor, Support Vector Machines, and Multi Layer Perceptron as a neural network
were among the chosen models. The python scripts were developed using the Scikit learn library.
The model parameters for each of the ML models were set to attain maximum accuracy as well
as considerably less training times. The model parameters used for each of the classification
models are given below under each subsection.

5.2.1 Decision Tree

The scikit learn DecisioTreeClassifier was used in order to model. The criterion parameter
was set to "gini" and no maximum depth was specified in order to achieve the maximum
accuracy levels. All other parameters were set as default values. The data was normalized using
StandardScaler in scikit learn library and the test sample was considered to be 30% of the total
data.

5.2.2 Random Forest

RandomForestClassifier from the scikit learn library was used to implement the model. The
number of trees was given as 10 in order to obtain the optimum accuracy levels at lower
computational time. All other parameters were kept at their default values. In here too, the
data was normalized using the Z-score normalization and test sample of 30% of the data was
considered.

5.2.3 K-Nearest Neighbor

The K-Nearest Neighbor classifier algorithm from scikit learn library was used. The number
of neighbors k was set as 5 in order to have the best possible accuracy along with the optimal
time for prediction. The distance metric to use was set as ’minkowski’ with a power parameter
of 2 which represents the euclidean distance. The algorithm to be used was set to ’auto’ so that
the most appropriate algorithm based on the values passed will be applied. For the KNN, the
number of test samples was set to 0.30 and Z-Score normalization was used.
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5.2.4 Support Vector Machines

The Support Vector Classification (SVC) library of scikit learn was used for the implementation
of SVM. The regularization parameter C was set to 1 and the kernel was set to linear to achieve
a lower training time while obtaining the best accuracy levels. The model was trained with only
20% of the whole data as it performs better with fewer data.

5.2.5 Multi Layer Perceptron

The MLPClassifier in neural network class of the scikit learn library was used to train the
model. Three hidden layers was specified with 10,20 and 10 neurons in each to obtain the
highest possible accuracy levels.

Figure 5.1: MLP Neural Network for Binary classification with 15 input features
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Figure 5.2: MLP Neural Network for Multi-class classification with 20 input features

5.3 Optimal number of feature selection for binary classification

The binary classification was done in order to predict whether a data sample is malicious or not
using different machine learning techniques. The results are accumulated for different number of
features using the evaluation metrics described in section 5.1. The number of features chosen to
evaluate were 5, 10, 15, 20 and 25. The features which contributed significantly to the decision
making process was selected as the top most features to aid the classification. These top features
were selected using the feature ranking given in table 4.5. The obtained results for different
number of features are followed in the next 5 sub sections.

5.3.1 Best 5 features

Table 5.3: Results of different evaluation metrics obtained for binary classification with top 5
features

Model 0/1 Precision Recall F1-
Score Accuracy Training

Time (s)
Prediction
Time (s)

Decision
Tree

0 0.1295 0.8583 0.2251 0.76910033 1.0286 0.01731 0.9925 0.7655 0.8643
Random
Forest

0 0.1517 0.8230 0.2561 0.81322201 6.6054 0.20211 0.9912 0.8128 0.8932

KNN 0 0.7430 0.7361 0.7396 0.97974248 0.4987 899.35061 0.9912 0.8128 0.8932

SVM 0 0.9637 0.4957 0.6547 0.97973020 139.0524 535.68661 0.9893 0.9896 0.9895

MLP 0 0.3717 0.7034 0.4864 0.94194516 217.9660 0.39101 0.9875 0.9516 0.9892
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5.3.2 Best 10 features

Table 5.4: Results of different evaluation metrics obtained for binary classification with top 10
features

Model 0/1 Precision Recall F1-
Score Accuracy Training

Time (s)
Prediction
Time (s)

Decision
Tree

0 0.6000 0.9977 0.7493 0.97391937 1.3565 0.03111 0.9999 0.9730 0.9862
Random
Forest

0 0.5552 0.9981 0.7135 0.96867975 7.4246 0.20611 0.9999 0.9675 0.9834

KNN 0 0.9990 0.9952 0.9971 0.99977287 1.1754 1219.28771 0.9998 1.0000 0.9999

SVM 0 0.9740 0.7148 0.8245 0.98819173 270.7133 104.14691 0.9893 0.9896 0.9895

MLP 0 0.9987 0.9961 0.9974 0.99979636 53.7057 0.47371 0.9998 0.9999 0.9999

5.3.3 Best 15 features

Table 5.5: Results of different evaluation metrics obtained for binary classification with top 15
features

Model 0/1 Precision Recall F1-
Score Accuracy Training

Time (s)
Prediction
Time (s)

Decision
Tree

0 0.9995 0.9981 0.9988 0.99990601 2.0064 0.03921 0.9999 0.9730 0.9862
Random
Forest

0 0.9989 0.9976 0.9982 0.99986293 8.2830 0.23141 0.9999 1.0000 0.9999

KNN 0 0.9999 0.9965 0.9982 0.99985902 1.7229 1343.31341 0.9999 1.0000 0.9999

SVM 0 0.9999 0.7702 0.8702 0.99105532 547.8780 100.94131 0.9908 1.0000 0.9954

MLP 0 0.9998 0.9972 0.9985 0.99988251 50.5964 0.37051 0.9999 1.0000 0.9999
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5.3.4 Best 20 features

Table 5.6: Results of different evaluation metrics obtained for binary classification with top 20
features

Model 0/1 Precision Recall F1-
Score Accuracy Training

Time (s)
Prediction
Time (s)

Decision
Tree

0 0.9912 0.9995 0.9953 0.9996318 2.4720 0.04281 1.0000 0.9996 0.9998
Random
Forest

0 0.9966 0.9998 0.9982 0.99985902 10.0376 0.24661 1.0000 0.9999 0.9999

KNN 0 0.9989 0.9968 0.9978 0.97974248 0.0761 4725.56201 0.9999 1.0000 0.9999

SVM 0 0.9985 0.7910 0.8827 0.99183216 123.6066 99.96571 0.9916 1.0000 0.9958

MLP 0 0.9965 0.9989 0.9977 0.99981986 52.0740 0.31561 1.0000 0.9999 0.9999

5.3.5 Best 25 features

Table 5.7: Results of different evaluation metrics obtained for binary classification with top 25
features

Model 0/1 Precision Recall F1-
Score Accuracy Training

Time (s)
Prediction
Time (s)

Decision
Tree

0 0.9933 0.9992 0.9963 0.99970629 4.7324 0.05841 1.0000 0.9997 0.9998
Random
Forest

0 0.9992 0.9989 0.9990 0.99992559 13.1982 0.24601 1.0000 1.0000 1.0000

KNN 0 0.9995 0.9944 0.9969 0.99976112 0.0761 5643.88331 0.9998 1.0000 0.9999

SVM 0 0.9599 0.9033 0.9307 0.99480736 2119.9760 92.44671 0.9916 1.0000 0.9958

MLP 0 0.9995 0.9982 0.9988 0.99990993 43.2163 0.23381 0.9999 1.0000 1.0000

5.3.6 Comparison of performance with number of features

The analysis of values obtained for the performance evaluation metrics under different number
of features show that the overall accuracy levels has increased with the number of features.
The Decision Tree model has shown a significant increase in accuracy through the selection of
10 features rather than 5. However, even with 10 features, the Precision and Recall values for
detecting benign flows has been lower for Decision Tree as seen in table 5.4. An overall better
values for Precision and Recall in Decision Tree can be seen from 15 features and upwards.
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The training time and prediction time has seen a slight increase with the increase of number of
features in Decision Tree.

A similar phenomena is observed in the Random Forest classifier as well with training times
increasing slightly and prediction times staying largely constant. The Random Forest classifier
based on number of Decision Trees also fared similar in Precision and Recall values for lesser
number of features. An overall satisfactory values for these two evaluation metrics was seen
after 15 features.

The K-Nearest Neighbor classifier performed exceptionally well across all evaluation metrics
when 10 or more features were used. KNN is distinguished by its shorter training time but
extremely lengthy prediction times. In this instance too, despite the fact that the training time
for all the samples was very short and around the same, the prediction time has been extremely
lengthy and has increased as the number of features has grown.

The results obtained for SVM shows a very high training time compared to other models.
Overall, the training time has increased with the increase in number of features except on the
instance of using 20 features which was unexpected. In comparison to most other models,
considerably good levels of accuracy was obtained even with 5 features. The recall and f1-score
for detecting 0 were, however, relatively low. Despite the fact that the values for these parameters
increased as the number of features increased, they remained lower than those of other models.

The Multi Layer Perceptron neural network with 3 hidden layers achieved overall good
accuracy levels from 10 features upwards. Apart from the occasion where training 5 features
took around 217 seconds, the average training time was around 50 seconds on other instances.
A drop in the prediction time with the increase of number of features can be seen but it is
insignificant in the larger context.

Overall, the results indicate that exceptionally high levels of accuracy could be reached using
15 features for all evaluation measures across all models. As expected, the growing number of
features has led to an increase in accuracy across all models. In an IDS, however, both training
time and prediction time are crucial measures for an efficient network. Therefore, due to the fact
that the training time and prediction time for most models increases as the number of features
increases, the optimal number of features to attain a high level of accuracy was determined to
be 15.

5.4 Comparison of performance between ML models for binary classification

A comparison of different machine learning models was done in order to identify the suitability
of each of the models. For this purpose, the confusion matrices and ROC curves were generated.
Tables 5.8, 5.9, 5.10, 5.11 and 5.12 show the confusion matrices obtained for each of the
classifiers. The classes 0 and 1 in the confusion matrices represent the benign and malicious
traffic flows. Further, the figure 5.3 show the ROC curves and AUC values obtained for all the
classifiers.

Table 5.8: Confusion Matrix for Decision Tree at 15 features
True - 0 True - 1

Predicted - 0 9959 19
Predicted - 1 5 245379

The Decision Tree classifier has performed well with only 19 out of all malicious flows being
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undetected. Compared to other models however, both Decision Tree and Random Forest have
slightly higher number of false positives. The ROC curves show that the accuracy levels are
very close to ideal levels in both Decision Tree and Random Forest classifiers. Random Forest
with multiple Decision Tree classifiers has been able to achieve a better AUC score than the
Decision Tree classifier. The training time for Random Forest has been little lengthy compared
to Decision Tree.

Table 5.9: Confusion Matrix for Random Forest at 15 features
True - 0 True - 1

Predicted - 0 9954 24
Predicted - 1 11 245373

The KNN classifer has also performed exceptionally well with only 1 flow being identified
as a false alarm. In comparison to both Decision Tree and Random Forest, this is an improved
performance. This is also reflected in the AUC score on the ROC curve. However, as expected
in KNN, the time taken for prediction has been very large.

Table 5.10: Confusion Matrix for KNN at 15 features
True - 0 True - 1

Predicted - 0 9943 35
Predicted - 1 1 245483

A higher number of network flows in the testing phase of SVM is seen as the test train split
was different. However, the confusion matrix for SVM has demonstrates a larger percentage of
malicious flows has not been detected. This is clearly seen when the ROC curve is analysed as
it goes below the diagonal at lower false positive rates. On the other hand, it has fared very well
by keeping the false positive rate to a minimum. As seen from table 5.5 the SVM has taken a
very long time to train and also in prediction compared to other models.

Table 5.11: Confusion Matrix for SVM at 15 features
True - 0 True - 1

Predicted - 0 20412 6089
Predicted - 1 2 654461

The MLP classifier has fared well with the AUC score being the largest out of all models.
However, the number of malicious flows passed undetected has been slightly higher than both
Decision Tree and Random Forest. In contrast, it has performed exceptionally well in producing
very low false positives. Although, prediction times have been smaller, the training time can be
considered average.
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Table 5.12: Confusion Matrix for MLP at 15 features
True - 0 True - 1

Predicted - 0 9950 28
Predicted - 1 2 245382
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(a) ROC Curve for Decision Tree (b) ROC Curve for Random Forest

(c) ROC Curve for K-Nearest Neighbor (d) ROC Curve for Support Vector Machines

(e) ROC Curve for Multi Layer Perceptron
Figure 5.3: ROC Curves for all ML models
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5.5 Optimal number of feature selection for multi class classification

A multi-class classification was conducted to evaluate the levels of accuracy that may be attained
when identifying various sorts of attacks. In order to attain homogeneity, the machine learning
models utilized for binary classification were also applied here. The ML models were evaluated
using the top 5, 10, 15, 20, and 25 features to discover the ideal number of features for achieving
high levels of accuracy in the shortest amount of time. The parts that follow in this section will
provide both results and a comparative analysis.
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5.5.1 Best 5 features

Table 5.13: Results of different evaluation metrics obtained for multi class classification with
top 5 features

Model Class Precision Recall F1-
Score Accuracy Training

Time (s)
Prediction
Time (s)

Decision
Tree

0 0.0498 0.8110 0.0938

0.13210266 2.9302 0.0465

1 0.0000 0.0000 0.0000
2 0.0000 0.0000 0.0000
3 0.0000 0.0000 0.0000
4 0.0000 0.0000 0.0000
5 0.2779 0.8902 0.4236
6 0.1267 0.0084 0.0157

Random
Forest

0 0.0503 0.8069 0.0947

0.13767122 11.4922 0.4204

1 0.0000 0.0000 0.0000
2 0.0000 0.0000 0.0000
3 0.0000 0.0000 0.0000
4 0.0000 0.0000 0.0000
5 0.2851 0.9432 0.4379
6 0.1545 0.0041 0.0079

KNN

0 0.0497 0.8057 0.0936

0.14101941 0.4377 21.5446

1 0.1724 0.0005 0.0010
2 0.0000 0.0000 0.0000
3 0.0000 0.0000 0.0000
4 0.7199 0.0290 0.0558
5 0.2952 0.9080 0.4455
6 0.1649 0.0434 0.0688

SVM

0 0.0000 0.0000 0.0000

0.81107224 266.0979 1576.1416

1 0.0000 0.0000 0.0000
2 0.8720 1.0000 0.9316
3 0.9881 1.0000 0.9940
4 0.6437 0.9963 0.7821
5 0.5349 0.4636 0.4967
6 0.0000 0.0000 0.0000

MLP

0 0.0894 0.6927 0.1584

0.52167119 267.8803 0.3698

1 0.6685 0.0620 0.1134
2 0.0000 0.0000 0.0000
3 0.9878 1.0000 0.9939
4 0.7041 0.4898 0.5777
5 0.3595 0.7999 0.4961
6 0.0000 0.0000 0.0000
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5.5.2 Best 10 features

Table 5.14: Results of different evaluation metrics obtained for multi class classification with
top 10 features

Model Class Precision Recall F1-
Score Accuracy Training

Time (s)
Prediction
Time (s)

Decision
Tree

0 0.9995 0.8892 0.9411

0.84428380 2.8585 0.0453

1 0.0082 0.0008 0.0015
2 0.9565 1.0000 0.9778
3 1.0000 1.0000 1.0000
4 0.9906 0.6699 0.7993
5 0.4464 0.9487 0.6071
6 0.3363 0.0748 0.1243

Random
Forest

0 0.9344 0.9534 0.9438

0.50228694 10.7951 0.4070

1 0.0077 0.0007 0.0013
2 0.9655 1.0000 0.9824
3 0.0000 0.0000 0.0000
4 0.9901 0.4906 0.6561
5 0.1960 0.9661 0.3259
6 0.0739 0.0566 0.0641

KNN

0 0.9979 0.9899 0.9939

0.90033756 0.9209 1338.7454

1 0.8653 0.7014 0.7748
2 1.0000 1.0000 1.0000
3 1.0000 1.0000 1.0000
4 0.8957 0.8286 0.8599
5 0.6466 0.8415 0.7313
6 0.3234 0.2410 0.2762

SVM

0 0.8871 0.6329 0.7388

0.90190083 161.4029 1041.1428

1 0.8921 06760 0.7692
2 0.9701 1.0000 0.9848
3 0.9998 0.9930 0.9964
4 0.7864 0.9962 0.8790
5 0.8508 0.7006 0.7684
6 0.4446 0.3176 0.3705

MLP

0 0.9997 0.9900 0.9948

0.92565847 204.1593 0.4191

1 0.9884 0.6858 0.8098
2 1.0000 1.0000 1.0000
3 1.0000 1.0000 1.0000
4 0.8214 0.9977 0.9010
5 0.8465 0.7442 0.7921
6 0.4870 0.3561 0.4114
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5.5.3 Best 15 features

Table 5.15: Results of different evaluation metrics obtained for multi class classification with
top 15 features

Model Class Precision Recall F1-
Score Accuracy Training

Time (s)
Prediction
Time (s)

Decision
Tree

0 0.3148 0.8935 0.4655

0.84668039 2.5443 0.0558

1 0.2094 0.0637 0.0977
2 0.9565 1.0000 0.9778
3 1.0000 1.0000 1.0000
4 0.9988 0.6739 0.8048
5 0.6957 0.9120 0.7893
6 0.3855 0.1380 0.2032

Random
Forest

0 0.0966 0.9614 0.1755

0.55332038 9.0797 0.3796

1 0.6613 0.5211 0.5829
2 1.0000 1.0000 1.0000
3 0.0000 0.0000 0.0000
4 0.9984 0.6738 0.8046
5 0.5537 0.9141 0.6897
6 0.7315 0.1204 0.2068

KNN

0 0.9987 0.9881 0.9934

0.97267017 1.5253 2557.4026

1 0.9737 0.8323 0.8974
2 1.0000 1.0000 1.0000
3 1.0000 1.0000 1.0000
4 0.9625 0.9984 0.9801
5 0.9192 0.9053 0.9122
6 0.8003 0.8127 0.8064

SVM

0 0.9103 0.6332 0.7469

0.93868545 132.8353 1122.0557

1 0.9387 0.6894 0.7949
2 0.9700 1.0000 0.9848
3 0.9998 0.9929 0.9964
4 0.9416 0.9970 0.9685
5 0.8238 0.8924 0.8567
6 0.6548 0.5996 0.6260

MLP

0 1.0000 0.9898 0.9949

0.97516466 388.7545 0.4038

1 0.9789 0.8363 0.9020
2 1.0000 1.0000 1.0000
3 1.0000 1.0000 1.0000
4 0.9625 1.0000 0.9809
5 0.8916 0.9607 0.9249
6 0.9054 0.7296 0.8081
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5.5.4 Best 20 features

Table 5.16: Results of different evaluation metrics obtained for multi class classification with
top 20 features

Model Class Precision Recall F1-
Score Accuracy Training

Time (s)
Prediction
Time (s)

Decision
Tree

0 0.9992 0.9887 0.9939

0.97088055 2.5026 0.0637

1 0.8441 0.3121 0.4557
2 1.0000 1.0000 1.0000
3 1.0000 0.9934 0.9967
4 0.9275 0.9985 0.9617
5 0.9990 0.9984 0.9987
6 0.8033 0.9995 0.8907

Random
Forest

0 0.7184 0.9965 0.8349

0.97415825 8.1971 0.3779

1 0.8985 0.5036 0.6454
2 0.9819 1.0000 0.9908
3 1.0000 0.9934 0.9967
4 1.0000 0.9996 0.9998
5 0.9835 0.9752 0.9794
6 0.9665 0.9622 0.9643

KNN

0 0.9991 0.9960 0.9975

0.99671838 0.0829 4408.4057

1 0.9981 0.9965 0.9973
2 1.0000 1.0000 1.0000
3 1.0000 1.0000 1.0000
4 0.9990 1.0000 0.9995
5 0.9815 0.9915 0.9865
6 0.9824 0.9602 0.9712

SVM

0 0.9890 0.8852 0.9342

0.97291339 59.9453 575.5416

1 0.9867 0.8131 0.8915
2 0.9991 1.0000 0.9996
3 0.9954 1.0000 0.9996
4 0.9557 1.0000 0.9774
5 0.9120 0.9431 0.9273
6 0.8783 0.8214 0.8489

MLP

0 0.9992 0.9966 0.9979

0.99967497 463.5667 0.5153

1 0.9978 0.9982 0.9980
2 1.0000 1.0000 1.0000
3 1.0000 1.0000 1.0000
4 0.9998 1.0000 0.9999
5 0.9993 0.9996 0.9994
6 0.9982 0.9985 0.9984
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5.5.5 Best 25 features

Table 5.17: Results of different evaluation metrics obtained for multi class classification with
top 25 features

Model Class Precision Recall F1-
Score Accuracy Training

Time (s)
Prediction
Time (s)

Decision
Tree

0 0.7737 0.9866 0.8672

0.98612166 2.9903 0.0515

1 0.9373 0.9993 0.8672
2 0.9999 1.0000 0.9999
3 1.0000 0.9934 0.9967
4 1.0000 0.9393 0.9687
5 0.9998 0.9994 0.9996
6 0.9999 0.9988 0.9993

Random
Forest

0 0.8425 0.9614 0.8980

0.97640995 7.6865 0.3904

1 0.8763 0.9974 0.9330
2 0.9999 1.0000 1.0000
3 1.0000 0.9934 0.9967
4 0.9996 0.9637 0.9813
5 0.9113 0.9956 0.9516
6 0.9934 0.7497 0.8545

KNN

0 0.9995 0.9953 0.9974

0.99758382 0.0902 5769.9772

1 0.9989 0.9979 0.9984
2 1.0000 1.0000 1.0000
3 1.0000 1.0000 1.0000
4 0.9992 1.0000 0.9996
5 0.9861 0.9941 0.9901
6 0.9876 0.9707 0.9791

SVM

0 0.9963 0.8558 0.9207

0.97205872 110.5324 1569.6127

1 0.9889 0.8127 0.8922
2 0.9990 1.0000 0.9995
3 0.9952 1.0000 0.9976
4 0.9555 1.0000 0.9773
5 0.9089 0.9436 0.9259
6 0.8664 0.8255 0.8455

MLP

0 0.9996 0.9959 0.9977

0.99855890 461.1033 0.7032

1 0.9979 0.9959 0.9977
2 1.0000 1.0000 1.0000
3 1.0000 1.0000 1.0000
4 0.9998 1.0000 0.9999
5 0.9960 0.9927 0.9944
6 0.9833 0.9919 0.9875
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5.5.6 Comparison of performance with number of features

The general expectation of increased accuracy scores resulting through increased number of
features could be seen in this scenario as well. However, the relationship between the training
times and prediction times with increasing number of features was not consistent at all times.

The Decision Tree algorithm has shown a great improvement in accuracy levels from 5 to
10 features and then from 15 to 20 features. The training times and prediction times have been
largely constant throughout all the instances. The Decision Tree algorithm has been able to
achieve considerable levels of precision, recall and f1-score at around 20 features across all the
classes.

The figures have been similar in Random Forest classifier with increase in number of features
showing a considerable increase in evaluation metrics. Compared to the Decision Tree classifier,
RF has not fared very well under 10 and 15 features. The evaluation metrics have been
considerably greater with 20 features and above and has largely been constant thereafter. A
major change is not seen with training and prediction times as they have been relatively constant
throughout different number of features.

The typically higher prediction times were observed in this instance as well with the KNN
classifier. The general trend of increase in prediction times was seen with training times being
quite short and constant. The KNN classifier was able to achieve considerably good values for
evaluation metrics from 15 features onward while achieving excellent results at 20 features.

The SVM classifier achieved significant levels of accuracy from a very small number of
features compared to others. However, the overall values for all evaluation metrics was at
a satisfactory level only at around 20 features. The training and prediction times were also
comparatively lower with 20 features. A highlight with SVM classifier was that the training
time decreased in general with the increase in number of features.

The MLP classifier was capable to achieve considerably good scores at 15 features while
improving further to attain excellent outcomes at 20 features. The accuracy levels at 20 and 25
features did not have significant change as well as the training times and prediction times.

The overall results show that the selection of 20 features is the most optimal option in terms
of the scores across all evaluation metrics, training times and prediction times.

5.6 Comparison of performance between ML models for multi class classification

The most optimal number of features to achieve a high level of accuracy in all models was
considered to be 20. In order to compare the performance of machine learning models, further
analysis was done by evaluating the confusion matrices for each of the attacks. The tables 5.18,
5.19, 5.20, 5.21 and 5.22 shows the confusion matrices for each of the classifiers. The classes 0,
1, 2, 3, 4, 5, and 6 represents the benign flows, port scans, UDP flood, ICMP flood, SYN flood,
HTTP flood and Slowrate DoS respectively.

The confusion matrix for Decision Tree shows that, it has been able to achieve almost 0 levels
of false alarms. Similarly, all UDP flood and ICMP flood flows have been identified correctly.
A higher percentage of false classifications can be seen for slowrate DoS attacks, port scans
and SYN flood attacks. The overall values obtained for evaluation metrics at 20 features also
produced good results except for port scans and slowrate DoS attacks which produced lower
levels of Recall and Precision scores.
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Table 5.18: Confusion Matrix for Decision Tree multi class classification with 20 features
True - 0 True - 1 True - 2 True - 3 True - 4 True - 5 True - 6

Predicted - 0 9865 31 0 0 28 28 34
Predicted - 1 1 3027 0 0 3587 0 3084
Predicted - 2 0 0 67352 0 0 0 0
Predicted - 3 0 528 0 79323 0 0 0
Predicted - 4 0 0 0 0 46696 0 72
Predicted - 5 1 0 0 0 44 26637 0
Predicted - 6 0 0 0 0 0 0 13026

The Random Forest classifier has not fared very well with predicting benign traffic as very
high amounts of false alarms are observed. The classifier has performed considerably well in
detecting ICMP flood attacks and SYN flood attacks. Higher levels of inaccuracies were seen in
classification of benign traffic, port scans, UDP flood, HTTP flood and Slowrate DoS attacks.

Table 5.19: Confusion Matrix for Random Forest multi class classification with 20 features
True - 0 True - 1 True - 2 True - 3 True - 4 True - 5 True - 6

Predicted - 0 9943 4 30 0 0 1 0
Predicted - 1 3598 4884 1215 0 0 0 2
Predicted - 2 0 0 67352 0 0 0 0
Predicted - 3 0 528 0 79323 0 0 0
Predicted - 4 15 0 0 0 46750 3 0
Predicted - 5 266 11 0 0 0 27972 433
Predicted - 6 19 9 0 0 0 465 12539

The KNN classifier has shown an overall good performance for all the classes except for
detection of HTTP flood and Slowrate DoS attacks. A considerable portion of HTTP flood
flows was seen classified as Slowrate DoS flows while it is same for vice-versa. In terms of time,
a higher prediction time with KNN is a challenge for it to be deployed for IDS.

Table 5.20: Confusion Matrix for KNN multi class classification with 20 features
True - 0 True - 1 True - 2 True - 3 True - 4 True - 5 True - 6

Predicted - 0 9938 3 2 0 19 14 2
Predicted - 1 6 9665 0 0 6 8 14
Predicted - 2 0 0 67352 0 0 0 0
Predicted - 3 0 0 0 79851 0 0 0
Predicted - 4 0 0 0 0 46768 0 0
Predicted - 5 3 10 0 0 24 28437 208
Predicted - 6 0 5 0 0 0 514 12513

The SVM multi class classifier has not performed exceptionally well as seen with the binary
classifier also. Comparatively it has shown good performance in detecting UDP flood attacks
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and benign flows. However, in comparison to the previous models, the overall performance
could be described as inadequate.

Table 5.21: Confusion Matrix for SVM multi class classification with 20 features
True - 0 True - 1 True - 2 True - 3 True - 4 True - 5 True - 6

Predicted - 0 23359 224 153 982 610 822 237
Predicted - 1 64 20974 0 4 4694 40 20
Predicted - 2 0 0 178649 0 0 0 0
Predicted - 3 0 0 0 213472 0 0 0
Predicted - 4 0 0 0 0 124894 0 0
Predicted - 5 3 162 19 0 8 478 72564
Predicted - 6 34 39 0 3 6 6139 28607

The Multi Layer Perceptron classifier in multi class classification has shown excellent results.
The model has been able to achieve almost zero false classifications for all the attack types.
However, compared to Decision Tree and Random Forest models, the amount of time taken for
training process has been quite longer. Therefore, the selection or application of the ML model
for any IDS system would depend on the performance metrics required in the specific network.

Table 5.22: Confusion Matrix for MLP multi class classification with 20 features
True - 0 True - 1 True - 2 True - 3 True - 4 True - 5 True - 6

Predicted - 0 9944 18 0 2 8 6 0
Predicted - 1 0 9682 0 0 0 0 17
Predicted - 2 0 0 67352 0 0 0 0
Predicted - 3 0 0 0 79851 0 0 0
Predicted - 4 0 0 0 0 46768 0 0
Predicted - 5 3 3 0 0 0 28670 6
Predicted - 6 5 0 0 0 0 15 13012
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6 DISCUSSION

This research was conducted to provide a high-quality labeled dataset with a variety of attack
types in a real 5G environment, which has long been unavailable to the 5G security research
community. The objective of the thesis was achieved through the generation of a dataset in
both packet based and flow based formats with all the flows labeled to identify malicious flows
as well as different attack types. In addition to this a subsequent analysis was done with some
general machine learning models to evalaute the performance of the dataset. This discussion
will provide a detailed analysis on the work carried out in building the dataset by comparing it
to past works and a descriptive analysis of the results presented in Chapter 5.

6.1 Comparison with other datasets

As described in Chapter 2, numerous datasets have been created for the aim of intrusion
detection over the years, with varying degrees of progress. Popular datasets among them, such
as KDDCUP99 and DARPA, have proven highly valuable for AI/ML-based intrusion detection
research. However, these datasets are extremely outdated and do not reflect the traffic of modern
networks, rendering them irrelevant in the current setting. Recent published datasets, such as the
BoT-IoT dataset and CAIDA2017, have solved this issue to some extent. However, it is believed
that the traffic flows in a real 5G environment will differ due to the merging of numerous
technologies as well as high speeds. In light of the growing global deployment of 5G, the
security research community needs specific datasets to evaluate their security solutions on 5G
networks. This dataset addresses the lack of a 5G-specific dataset by providing a comprehensive
dataset involving mobile users and MEC.

In addition to the novel aspect of generating a 5G dataset for the first time, our effort addresses
a number of deficiencies in previous datasets. A comprehensive review of the vast majority of
datasets reveals that the data were acquired either from virtualized networks through simulation
or from networks created solely for the purpose of data collection. More often than not this
does not typically provide a complete picture of network traffic in the actual world. In contrast
the data collection in this work is carried out from a fully functional 5G network at University
of Oulu.

Furthermore, the development of benign traffic is regarded as an essential part of any dataset.
Various datasets have utilized different methods to perform the addition of considerable amounts
of benign traffic into the network. The production of benign traffic through simulators and the
inclusion of previously obtained user profiles into the network at the time of data collection
were approaches frequently seen. In distinction, this study explored the possibility of producing
traffic in real time from genuine mobile users connected to base stations. We feel this contributes
to the enhancement in resembling a real network of mobile users.

This dataset is further distinguished by the availability of data from numerous network
nodes. As 5G evolves into a network comprised of a high number of networked devices and
integrating technologies, attackers will be able to identify routes with less security mechanisms
implemented. Therefore, a global model of coordinated security is needed throughout the
network. In the context of 5G, this can be achieved through federated learning based security
implementations. Federated learning based security research is been carried out extensively in
this age but more often than not the datasets allocated for different workers are splits of the same
dataset. The availability of data collected from both base stations in the network will make this
dataset useful for federated learning based research in 5G networks too.

Therefore, not limiting to the aspect of uniqueness gained through involvement of 5G, we
have addressed limitations in general datasets as well through this work.
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6.2 Further analysis of Results

The subsequent testing and validation of the dataset was done through application of common
ML classifiers to classify the network flows as a binary classification as well as a multi class
classification. The binary classification involved identification of flows as malicious or non
malicious while the multi class classification was performed to identify each type of attack.

The binary classification showed that several classification models outperformed others in
terms of the accuracy, precision, recall, f1-score and training, prediction times. verall accuracy
scores of more than 0.99 have been achieved by each of the five ML models for the top 15
characteristics. The Decision Tree model has demonstrated the highest overall accuracy despite
requiring minimal training time. However, compared to other models, the Recall and F1-score
for detecting malicious traffic have been lower, as depicted in the table 5.5.

The Random Forest binary classifier with 15 features outperformed the Decision Tree clas-
sifier, despite the accuracy score suggesting otherwise. Random Forest provides superior preci-
sion, recall, and f1-score values overall. This is demonstrated when the numerical AUC scores
of Decision Tree and Random Forest are compared. The lower training times and prediction
times is a major feature that is highlighted in both Decision Tree and Random Forest classifiers
rather than other classifiers.

As expected, the KNN algorithm has produced extremely short training times. However,
the prediction time is extremely lengthy, which may not be optimal in an IDS scenario. The
accuracy levels have been extremely good with all evaluation metrics for determining malicious
traffic achieving scores very close or equal to one.

The SVM binary classifier has taken a quite a long time for training with only a 20% of
data. The accuracy levels achieved by SVM with only 20% of training data is commendable.
The recall and f1-score for detecting benign traffic has been very low when compared to other
models. This is reflected in the comparatively very low AUC score. This could have been
improved with more data, but the time consumption for training the model makes it not the most
optimal choice.

The MLP classifier has fared extremely well for precision, recall and f1-score in detecting
both malicious and non malicious flows. The training times have been comparatively more with
regard to some other models. Out of all classification models, MLP has been able to achieve the
highest AUC score.

When the overall context is taken into account, MLP, KNN and Random Forest have generally
fared well in terms of all evaluation metrics. However, as speed and latency plays a major role
in advanced 5G networks, the intrusion detection needs to be in real-time such that it would not
be a bottleneck for the network. Taking these aspects into account, the Random Forest and MLP
classifier stands out against other models. However, the application of the classifier is totally
dependant on the requirement of the intrusion detection system.

In the multi-class scenario, the confusion matrices demonstrated that different ML models
are capable of delivering adequate levels of accuracy in detecting various types of attacks. Both
the Decision Tree and the Random Forest classifiers have shown that there is great room for
improvement in the prediction of class 1 which corresponds to Port scans. Further, the precision
scores for detection of slowrate DoS attacks has been lower for Decision Tree while the precision
value for the detection of non-malicious traffic has been lower in the case of Random Forest
classifier.

The KNN classifier has fared very well on all the evaluation metrics. However, the larger
prediction times is always a drawback with the KNN classifier in a real-time system. Disregarding
this, it has performed well in efficient detection of all attack types. SVM on the other hand,
has also produced moderate accuracy levels but have not fared well in detecting certain types of
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attacks. The performance has been considerably low in detecting attacks such as Slowrate DoS,
HTTP flood etc as observed in the confusion matrix shown in table 5.21. Moreover, low recall
scores are been seen for both normal traffic and traffic from port scans.

‘MLP classifier with 10,20 and 10 neurons each in 3 hidden layers has outperformed most
of the other ML models. It has been able to achieve excellent scores across all the evaluation
metrics for all attack classes as seen from the confusion matrix in table 5.22. However, the
training time of the model has been longer than all other ML models while prediction time being
quite small.

In general the observations in the confusion matrices show that there has been difficulties
in differentiating between the HTTP flood attacks and Slowrate DoS attacks. The ML models
Decision Tree, Random Forest, and KNN has performed well in detecting some of the specific
attacks which emphasize that not all models suit all types of attacks. However, MLP has shown
to be accurate in detecting all types of attacks.

In terms of the overall average accuracy levels both MLP and KNN have shown excellent
results in detecting all attack types. However, both of them have drawbacks in training time
and prediction time respectively. On the other hand, Decision trees and Random Forests have
been robust in terms of time while achieving considerable levels of accuracy. However, the
lower evaluation metrics recorded for some of the attack types constitute a major limitation.
Therefore, the selection of best ML model will be based on the requirements in the specific
intrusion detection environment. However, a more sophisticated and optimized neural networks
may be helpful in achieving higher accuracy with lesser time.
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7 CONCLUSION

This dataset was created to give the research community with a well-defined and high-quality
dataset for intrusion detection in 5G networks, which had previously been unavailable. Aside
from using a fully operational 5G network for data collection, this dataset has overcome several
of the recognized drawbacks in earlier datasets. The network architecture is fully defined with
attack network and target network isolated from each other. This facilitated in carrying out
attacks typically seen in modern networks from attackers outside of the network. Moreover, the
benign traffic is created in real time by actual mobile users rather than agents or simulators. The
data collection has also been carried out at multiple points in the network creating a large and
diverse dataset. All these factors have combined to improve the environment of the dataset to
mimic real-world scenario.

The dataset contains 851205 network flows, with 365480 and 485726 flows from each pico
base station. All of these network flows have been properly labeled in terms of their malicious
and non-malicious natures as well as the attack types. Both packet-based and network flow-based
versions of the dataset is available. The data collected from each base station are also available
independently. Additionally, data acquired during each attack is available individually prior to
aggregation.

To assess the quality of data, the dataset is analysed through popular machine learning
models. Before, the application of these models, data was processed in different steps. A feature
selection was performed to identify the best features which contribute to the predictions. The
ML models were applied on the dataset and tests were carried out for different number of features
to determine the optimal number of features required to achieve considerable levels of accuracy.

Several common attack scenarios were executed during this study to generate a diverse
dataset. As port scans and DoS/DDoS assaults are pervasive across a range of network setups,
they dominated the focus of this particular dataset. Moreover, 5G networks are known to be
susceptible to these main types of attacks and the occurrence of them are known to be common
in a general network setting. The architecture of our network had to be also taken into account
when choosing the type of attacks. To accurately reflect a real-world scenario of an attack, it
was crucial that the attackers’ network and the victims’ network to be isolated from one another.
This restriction hindered the execution of some kinds of attacks. However, variety of attacks of
port scans and DoS/DDoS can be seen as present in this work. Although this dataset presents
a valuable content for the research community in 5G AI based security implementation, this
could be further developed through addition of some modern attack types with alterations in the
network if required.

This attack dataset can also be used for federated learning based security solutions as well
since data has been collected from multiple points in the network. However, during this first
attempt of dataset generation from this test bed, data was collected from only two points
specifically at two base stations. This can be developed to collect data from other points of the
network too such as the MEC, switch etc. This will generate specific datasets which can be
useful in application and testing of federated learning based security solutions.
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Appendix 1 Tables related to feature selection

Table 9.1: Ranking from PCC for binary classification
Feature PCC
sMeanPktSz -0.586275
dTtl -0.562927
CON -0.530657
SrcPkts -0.409042
sTtl -0.402824
SrcBytes -0.382140
TotBytes -0.313687
TotPkts -0.313170
dMeanPktSz -0.309784
dHops -0.277891
udp -0.171260
e r -0.166214
e i -0.132709
sHops -0.121578
SrcWin -0.115640
Dur -0.075601
e g -0.037960
RSP -0.035984
URP -0.032955
FIN -0.031316
e & -0.028903
IdleTime -0.028158
SrcTCPBase -0.023536
SrcLoad -0.017765
CLO -0.011194
Rate -0.009414
DstRate -0.005708
e -0.004386
DstTCPBase -0.002806
e s 0.000260
URH 0.000936
TST 0.001039
PAR 0.001601
Load 0.002067
ECR 0.002294
SRC 0.004385
e * 0.004907
nan 0.008086
DstLoss 0.010298
SynAck 0.011245
e d 0.013665
AckDat 0.023935
TcpRtt 0.024803
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Loss 0.039236
DstWin 0.041482
SrcLoss 0.044073
ACC 0.048298
Offset 0.049753
RST 0.053286
e s 0.054293
tcp 0.070020
INT 0.079350
icmp 0.095541
REQ 0.105914

Table 9.2: Ranking from PCC for multi class classification
Feature PCC
udp -0.639528
INT -0.379360
sHops -0.270401
dTtl -0.254632
IdleTime -0.198134
SrcBytes -0.170545
dHops -0.149132
SrcPkts -0.143269
TotBytes -0.131801
REQ -0.121778
sMeanPktSz -0.107542
TotPkts -0.100205
sTtl -0.090589
e r -0.076001
icmp -0.072593
SrcWin -0.060693
e i -0.058434
Offset -0.052609
RSP -0.016510
URP -0.015120
e g -0.014919
e & -0.013261
TST -0.008047
CLO -0.005136
nan -0.003252
DstTCPBase -0.002969
SRC -0.001764
ECR -0.000922
e -0.000822
PAR -0.000644
e s 0.000849
URH 0.007558
DstRate 0.019422
SrcLoad 0.019892
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Rate 0.021532
Load 0.024665
Dur 0.040427
e * 0.062180
CON 0.070229
SynAck 0.084669
SrcTCPBase 0.095418
DstLoss 0.115615
e d 0.127613
DstWin 0.137342
ACC 0.160435
dMeanPktSz 0.166248
FIN 0.213388
TcpRtt 0.222615
AckDat 0.231549
SrcLoss 0.235020
Loss 0.241873
e s 0.245781
RST 0.471204
tcp 0.672815

Table 9.3: Ranking from Chi-squared test for binary classification
Feature Chi-square score
SrcTCPBase 1.419429e+11
SrcLoad 1.091107e+11
TotBytes 5.827505e+10
Load 4.387128e+10
SrcBytes 3.471654e+10
Offset 5.756779e+09
DstTCPBase 1.136704e+09
SrcWin 1.856636e+08
Rate 1.336199e+08
DstWin 7.574838e+07
sMeanPktSz 5.980309e+07
dMeanPktSz 5.685852e+07
DstRate 2.827583e+07
TotPkts 2.817141e+07
SrcPkts 1.350048e+07
CON 2.216865e+05
dTtl 1.959467e+05
sTtl 9.686312e+04
sHops 7.150701e+04
e r 2.369586e+04
udp 1.741522e+04
dHops 1.597209e+04
e i 1.465829e+04
Dur 1.303417e+04
REQ 7.012572e+03
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icmp 5.274221e+03
INT 4.608248e+03
tcp 2.596853e+03
e s 2.230451e+03
RST 2.151872e+03
Loss 2.046727e+03
ACC 1.882514e+03
SrcLoss 1.848814e+03
RSP 1.239898e+03
e g 1.196791e+03
URP 1.115909e+03
FIN 8.402003e+02
e & 6.943431e+02
DstLoss 3.428742e+02
TcpRtt 1.644629e+02
e d 1.638304e+02
CLO 1.487878e+02
AckDat 1.485642e+02
IdleTime 1.038015e+02
nan 5.443994e+01
SynAck 3.206509e+01
e 3.174407e+01
e * 2.255999e+01
SRC 1.604970e+01
ECR 4.798780e+00
PAR 2.096946e+00
TST 6.855400e-01
URH 6.855400e-01
e s 4.032588e-02

Table 9.4: Ranking from Chi-squared test for multi class classification
Feature Score
SrcTCPBase 6.538323e+13
Load 2.659567e+13
SrcLoad 5.437457e+11
Offset 5.290304e+11
TotBytes 5.856239e+10
SrcBytes 3.472641e+10
DstWin 8.439972e+09
DstTCPBase 8.048695e+09
Rate 3.613807e+09
DstRate 2.266833e+09
SrcWin 3.292015e+08
dMeanPktSz 2.268209e+08
sMeanPktSz 8.228229e+07
TotPkts 2.938248e+07
SrcPkts 1.388913e+07
sHops 2.412293e+06
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icmp 5.719242e+05
Dur 5.510445e+05
udp 5.488008e+05
tcp 4.936795e+05
SrcLoss 4.888421e+05
RST 4.565805e+05
e s 4.437868e+05
Loss 4.299195e+05
CON 4.261361e+05
INT 3.220344e+05
REQ 2.670130e+05
ACC 2.039646e+05
dTtl 1.959693e+05
sTtl 1.543426e+05
FIN 9.642625e+04
DstLoss 8.284059e+04
AckDat 4.387975e+04
TcpRtt 2.938564e+04
e d 2.739721e+04
IdleTime 2.716303e+04
e r 2.369615e+04
SynAck 2.081327e+04
dHops 1.624021e+04
e i 1.468725e+04
e * 8.355237e+03
nan 2.956808e+03
RSP 1.239898e+03
e g 1.222403e+03
URP 1.115909e+03
SRC 8.717109e+02
e & 6.943431e+02
TST 4.308219e+02
ECR 2.606372e+02
CLO 1.487878e+02
PAR 1.138919e+02
URH 8.935807e+01
e 3.434522e+01
e s 4.456926e+00
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Appendix 2 Code for feature selection

Figure 9.1: Code for feature selection - Part 1
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Figure 9.2: Code for feature selection - Part 2
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Figure 9.3: Code for feature selection - Part 3
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Appendix 3 Code for ML model evaluations

Figure 9.4: Code for ML model evaluation - Part 1
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Figure 9.5: Code for ML model evaluation - Part 2
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Figure 9.6: Code for ML model evaluation - Part 3


