395 research outputs found

    E3MS: A traffic engineering prototype for autoprovisioning services in IP/DiffServ/MPLS networks

    Get PDF
    This paper presents the testbed definition, implementation and trials of a new strategy for traffic autoprovisioning for MPLS and IP/DiffServ. This is the proof of concept of a new scenario for traffic engineering, for selfconfiguring control and end-to-end quality of service management by means of a tool based on Web Services. The system is structured in 3 layers: A Graphical User Interface, a Network Elements layer (an interface to physical devices) and, in the middle, a Network Management System layer, where decisions about admission, load balancing, path selection, rerouting and bandwidth allocation per class are taken. The system includes Dynamic Resource Allocation (DRA) and Background Monitoring System (BMS) modules to globally manage network resources. The so-called Squatter and Legalization mechanisms are introduced as novelties added to traffic engineering. Those strategies permit the use of part of the available resources from other classes only while unused by the class owning them. The trials hav validated the management system, using Cisco routers.Postprint (published version

    End to End Quality of Service in UMTS Systems

    Get PDF

    EVEREST IST - 2002 - 00185 : D23 : final report

    Get PDF
    Deliverable públic del projecte europeu EVERESTThis deliverable constitutes the final report of the project IST-2002-001858 EVEREST. After its successful completion, the project presents this document that firstly summarizes the context, goal and the approach objective of the project. Then it presents a concise summary of the major goals and results, as well as highlights the most valuable lessons derived form the project work. A list of deliverables and publications is included in the annex.Postprint (published version

    An emulator framework for a new radio resource management for QoS guaranteed services in W-CDMA

    Get PDF
    In the context of third-generation (3G) systems a mix of services with different requirements are expected. Consequently, packet scheduling mechanisms for quality of service (QoS) guarantees will play a key role. This paper proposes a new scheduling strategy that makes consistent the target quality in the radio link with the priority level assigned to each user. The performance of such a strategy is assessed by system level simulations and, in order to gain more insight into the difficulties of this optimization problem, it is compared to other alternatives. This work is part of the Wineglass project, within the Fifth Framework Program of the European Commission (IST), where a real time demonstrator including the radio resource management tasks is being developed. Thus, an implementation approach of the proposed scheduling is also described. The implementation is based on lookup tables and this approach is validated by simulation.Peer Reviewe

    An optimum dynamic priority-based call admission control scheme for universal mobile telecommunications system

    Get PDF
    The dynamism associated with quality of service (QoS) requirement for traffic emanating from smarter end users devices founded on the internet of things (IoTs) drive, places a huge demand on modern telecommunication infrastructure. Most telecom networks, currently utilize robust call admission control (CAC) policies to ameliorate this challenge. However, the need for smarter CAC has becomes imperative owing to the sensitivity of traffic currently being supported. In this work, we developed a prioritized CAC algorithm for third Generation (3G) wireless cellular network. Based on the dynamic priority CAC (DP-CAC) model, we proposed an optimal dynamic priority CAC (ODP-CAC) scheme for Universal Mobile Telecommunication System (UMTS). We then carried out simulation under heavy traffic load while also exploiting renegotiation among different call traffic classes. Also, we introduced queuing techniques to enhance the new calls success probability while still maintaining a good handoff failure across the network. Results show that ODP-CAC provides an improved performance with regards to the probability of call drop for new calls, network load utilization and grade of service with average percentage value of 15.7%, 5.4% and 0.35% respectively

    Quality of service optimization of multimedia traffic in mobile networks

    Get PDF
    Mobile communication systems have continued to evolve beyond the currently deployed Third Generation (3G) systems with the main goal of providing higher capacity. Systems beyond 3G are expected to cater for a wide variety of services such as speech, data, image transmission, video, as well as multimedia services consisting of a combination of these. With the air interface being the bottleneck in mobile networks, recent enhancing technologies such as the High Speed Downlink Packet Access (HSDPA), incorporate major changes to the radio access segment of 3G Universal Mobile Telecommunications System (UMTS). HSDPA introduces new features such as fast link adaptation mechanisms, fast packet scheduling, and physical layer retransmissions in the base stations, necessitating buffering of data at the air interface which presents a bottleneck to end-to-end communication. Hence, in order to provide end-to-end Quality of Service (QoS) guarantees to multimedia services in wireless networks such as HSDPA, efficient buffer management schemes are required at the air interface. The main objective of this thesis is to propose and evaluate solutions that will address the QoS optimization of multimedia traffic at the radio link interface of HSDPA systems. In the thesis, a novel queuing system known as the Time-Space Priority (TSP) scheme is proposed for multimedia traffic QoS control. TSP provides customized preferential treatment to the constituent flows in the multimedia traffic to suit their diverse QoS requirements. With TSP queuing, the real-time component of the multimedia traffic, being delay sensitive and loss tolerant, is given transmission priority; while the non-real-time component, being loss sensitive and delay tolerant, enjoys space priority. Hence, based on the TSP queuing paradigm, new buffer managementalgorithms are designed for joint QoS control of the diverse components in a multimedia session of the same HSDPA user. In the thesis, a TSP based buffer management algorithm known as the Enhanced Time Space Priority (E-TSP) is proposed for HSDPA. E-TSP incorporates flow control mechanisms to mitigate congestion in the air interface buffer of a user with multimedia session comprising real-time and non-real-time flows. Thus, E-TSP is designed to provide efficient network and radio resource utilization to improve end-to-end multimedia traffic performance. In order to allow real-time optimization of the QoS control between the real-time and non-real-time flows of the HSDPA multimedia session, another TSP based buffer management algorithm known as the Dynamic Time Space Priority (D-TSP) is proposed. D-TSP incorporates dynamic priority switching between the real-time and non-real-time flows. D-TSP is designed to allow optimum QoS trade-off between the flows whilst still guaranteeing the stringent real-time component’s QoS requirements. The thesis presents results of extensive performance studies undertaken via analytical modelling and dynamic network-level HSDPA simulations demonstrating the effectiveness of the proposed TSP queuing system and the TSP based buffer management schemes

    Intelligent adaptive bandwidth provisioning for quality of service in umts core networks

    Get PDF
    Master'sMASTER OF ENGINEERIN

    Resource Allocation for Cellular/WLAN Integrated Networks

    Get PDF
    The next-generation wireless communications have been envisioned to be supported by heterogeneous networks using various wireless access technologies. The popular cellular networks and wireless local area networks (WLANs) present perfectly complementary characteristics in terms of service capacity, mobility support, and quality-of-service (QoS) provisioning. The cellular/WLAN interworking is thus an effective way to promote the evolution of wireless networks. As an essential aspect of the interworking, resource allocation is vital for efficient utilization of the overall resources. Specially, multi-service provisioning can be enhanced with cellular/WLAN interworking by taking advantage of the complementary network strength and an overlay structure. Call assignment/reassignment strategies and admission control policies are effective resource allocation mechanisms for the cellular/WLAN integrated network. Initially, the incoming calls are distributed to the overlay cell or WLAN according to call assignment strategies, which are enhanced with admission control policies in the target network. Further, call reassignment can be enabled to dynamically transfer the traffic load between the overlay cell and WLAN via vertical handoff. By these means, the multi-service traffic load can be properly shared between the interworked systems. In this thesis, we investigate the load sharing problem for this heterogeneous wireless overlay network. Three load sharing schemes with different call assignment/reassignment strategies and admission control policies are proposed and analyzed. Effective analytical models are developed to evaluate the QoS performance and determine the call admission and assignment parameters. First, an admission control scheme with service-differentiated call assignment is studied to gain insights on the effects of load sharing on interworking effectiveness. Then, the admission scheme is extended by using randomized call assignment to enable distributed implementation. Also, we analyze the impact of user mobility and data traffic variability. Further, an enhanced call assignment strategy is developed to exploit the heavy-tailedness of data call size. Last, the study is extended to a multi-service scenario. The overall resource utilization and QoS satisfaction are improved substantially by taking into account the multi-service traffic characteristics, such as the delay-sensitivity of voice traffic, elasticity and heavy-tailedness of data traffic, and rate-adaptiveness of video streaming traffic

    Overview of UMTS network evolution through radio and transmission feature validation

    Get PDF
    This project is based on several UMTS network feature validation with the aim to provide an end-to-end in-depth knowledge overview gained in parallel in the areas of radio network mobility processes (cell camping and inter-system handover), Quality of Service improvement for HSPA data users and transport network evolution towards the All-IP era.Hardware and software validation is a key step in the relationship between the mobile network operator and the vendor. Through this verification process, while executing that functionality or testing a specific hardware, the difference between the actual result and expected result can be better understood and, in turn, this in-depth knowledge acquisition is translated into a tailored usage of the product in the operator’s live network. As a result, validation helps in building a better product as per the customer’s requirement and helps satisfying their needs, which positively impacts in the future evolution of the vendor product roadmap implementation process for a specific customer. This project is based on several Universal Mobile Telecommunication Services (UMTS) network feature validation with the aim to provide an end-to-end in-depth knowledge overview gained in parallel in the areas of radio network mobility processes (cell camping and inter-system handover), Quality of Service improvement for High Speed Downlink Packet Access (HSPA) data users and transport network evolution towards the All-IP era.Las campañas de validación hardware y software son un paso clave en las relaciones comerciales establecidas entre un operador de telecomunicaciones y su proveedor de equipos de red. Durante los procesos de certificación, mientras se ejecuta una funcionalidad software o se valida un determinado hardware, se obtiene un conocimiento profundo de la diferencia entre el resultado obtenido y el esperado, repercutiendo directamente en un uso a medida de dicha funcionalidad o hardware en la propia red del cliente. Como consecuencia de lo anterior, podemos aseverar que los procesos de validación permiten en gran medida al proveedor adaptarse mejor a los requerimientos del cliente, ayudando a satisfacer realmente sus necesidades. Esto implica directamente un impacto positivo en la futura evolución del portfolio que el fabricante ofrece a un determinado cliente. Este proyecto está basado en la validación de diferentes funcionalidades de red UMTS, cuyo objetivo es proporcionar un conocimiento global de distintos aspectos que conforman el funcionamiento de una red de telecomunicaciones 3G, como son los procesos de movilidad de acceso radio (acampado de red y handover inter-sistema), las mejoras en la calidad de servicio para usuarios de datos HSPA y la convergencia de la red de transporte hacia la era IP.Els processos de validació hardware i software són un punt clau en les relacions comercials establertes entre un operador de telecomunicaciones i el proveïdor d'equipament de la xarxa. En el transcurs dels processos de certificació, a la mateixa vegada que s'executa una funcionalitat software o es valida un determinat hardware, s'obtenen grans coneixements respecte la diferència entre el resultat obtingut i l'esperat, que són d'aplicació directa a l'hora d'establir un ús adpatat a la xarxa del client. En conseqüència, podem asseverar que les campanyes de validació permeten en gran mesura al proveïdor adaptar-se millor als requeriments del client, ajudant a satisfer realment les seves necessitats. Això implica directament un impacte positiu en la futura evol.lució del portfoli que el fabricant ofereix a un determinat client. Aquest projecte es basa en la presentació d'un procès de validació de diferents funcionalitats relacionades amb la xarxa UMTS, amb l'objectiu de proporcionar un coneixement global de la varietat d'aspectes que conformen el funcionament d'una xarxa de telecomunicacions 3G, com són els processos de mobilitat en accès radio (acampat de l'usuari i handover inter-sistema), millores en la qualitat de servei per a usuaris de dades HSPA i la convergència de la xarxa de transport cap a l'era IP
    corecore