925 research outputs found

    Impact of flow unsteadiness on steady-state gas-path stagnation temperature measurements

    Get PDF
    Steady-state stagnation temperature probes are used during gas turbine engine testing as a means of characterising turbomachinery component performance. The probes are located in the high-velocity gas-path, where temperature recovery and heat transfer effects cause a shortfall between the measured temperature and the flow stagnation temperature. To improve accuracy, the measurement shortfall is corrected post-test using data acquired at representative Mach numbers in a steady aerodynamic calibration facility. However, probes installed in engines are typically subject to unsteady flows, which are characterised by periodic variations in Mach number and temperature caused by the wakes shed from upstream blades. The present work examines the impact of this periodic unsteadiness on stagnation temperature measurements by translating probes between jets with dissimilar Mach numbers. For conventional Kiel probes in unsteady flows, a greater temperature measurement shortfall is recorded compared to equivalent steady flows, which is related to greater conductive heat loss from the temperature sensor. This result is important for the application of post-test corrections, since an incorrect value will be applied using steady calibration data. A new probe design with low susceptibility to conductive heat losses is therefore developed, which is shown to deliver the same performance in both steady and unsteady flows. Measurements from this device can successfully be corrected using steady aerodynamic calibration data, resulting in improved stagnation temperature accuracy compared to conventional probe designs. This is essential for resolving in-engine component performance to better than +/-0.5% across all component pressure ratios

    Stereo Photogrammetry Measurements of the Position and Attitude of a Nozzle-Plume/Shock-Wave Interaction Model in the NASA Ames 9- by 7-Ft Supersonic Wind Tunnel

    Get PDF
    Stereo photogrammetry was used to measure the position and attitude of a slender body of revolution during nozzle-plume/shock-wave interaction tests in the NASA Ames 9- by 7-Ft Supersonic Wind Tunnel. The model support system was designed to allow the model to be placed at many locations in the test section relative to a pressure rail on one sidewall. It included a streamwise traverse as well as a thin blade that offset the model axis from the sting axis. With these features the support system was more flexible than usual resulting in higher-than-usual uncertainty in the position and attitude of the model. Also contributing to this uncertainty were the absence of a balance, so corrections for sting deflections could not be applied, and the wings-vertical orientation of the model, which precluded using a gravity-based accelerometer to measure pitch angle. Therefore, stereo photogrammetry was chosen to provide independent measures of the model position and orientation. This paper describes the photogrammetry system and presents selected results from the test

    Design and testing methodologies for UAVs under extreme environmental conditions

    Get PDF
    L'abstract è presente nell'allegato / the abstract is in the attachmen

    Underpinning UK High-Value Manufacturing: Development of a Robotic Re-manufacturing System

    Get PDF
    Impact and its measure of outcome is a given performance indicator within academia. Impact metrics and the associated understanding play a large part of how academic research is judged and ultimately funded. Natural progression of successful scientific research into industry is now an essential tool for academia. This paper describes what began over ten years ago as a concept to automate a bespoke welding system, highlighting its evolution from the research laboratories of The University of Sheffield to become a platform technology for aerospace remanufacturing developed though industry-academia collaboration. The design process, funding mechanisms, research and development trials and interaction between robotic technology and experienced welding engineers has made possible the construction of a robotic aerospace turbofan jet engine blade re-manufacturing system. This is a joint collaborative research and development project carried out by VBC Instrument Engineering Limited (UK) and The University of Sheffield (UK) who are funded by the UK governments’ innovation agency, Innovate-UK with the Aerospace Technology Institute, the Science and Facilities Technology Council (STFC) and the Engineering and Physical Sciences Research Council (EPSRC)

    Flow distortion measurements in convoluted aero engine intakes

    Get PDF
    The unsteady flowfields generated by convoluted aero engine intakes are major sources of instabilities that can compromise the performance of the downstream turbomachinery components. Hence, there exists a need for high spatial and temporal resolution measurements that will allow a greater understanding of the aerodynamics. Stereoscopic Particle Image Velocimetry is capable of providing such fidelity but its application has been limited previously as the optical access through cylindrical ducts for air flow measurements constitutes a notable pitfall for this type of measurements. This paper presents a suite of S-PIV measurements and flow field analysis in terms of snapshot, statistical and time-averaged measurements for two S-duct configurations across a range of inlet Mach numbers. The flow assessments comprise effects of inlet Mach number and S-duct centerline offset distance. Overall, the work demonstrates the feasibility of using S-PIV techniques for determining the complex flow field at the exit of convoluted intakes with at least two orders of magnitude higher spatial resolution than the traditional pressure rake measurements allow. Analysis of the conventional distortion descriptors quantifies the dependency upon the S-duct configuration and highlights that the more aggressive duct generates twice the levels of swirl distortion than the low offset one. The analysis also shows a weak dependency of the distortion descriptor magnitude upon the inlet Mach number across the entire range of Mach numbers tested. A statistical assessment of the unsteady distortion history over the data acquisition time highlights the dominant swirl patterns of the two configurations. Such an advancement in measurement capability enables a significantly more substantial steady and unsteady flow analyses and highlights the benefits of synchronous high resolution three component velocity measurements to unlock the aerodynamics of complex engine-intake systems

    Aeronautical engineering: A continuing bibliography with indexes, supplement 100

    Get PDF
    This bibliography lists 295 reports, articles, and other documents introduced into the NASA Scientific and Technical Information System in August 1978

    Capacitance tip timing techniques in gas turbines

    Get PDF
    The vibration of turbomachinery blades is an important phenomenon to understand, observe and predict and is the reason for developing a tip timing measurement system. Vibration leads to High Cycle Fatigue (HCF), which limits blade durability and life. HCF can result in blade failure, having expensive consequences for the engine involved. The traditional method for monitoring blade vibration under test conditions is to use blade mounted strain gauges. However, strain gauges are costly and time consuming to install. They have a limited operating life as they are subjected to the harsh on-engine conditions. Only a limited number of blades can be monitored with strain gauges as the number that can be used is limited by the number of channels in the slip ring or telemetry. They can also interfere with the assembly aerodynamics. Consequently non-intrusive alternative techniques such as tip timing are sought. Capacitance probe based clearance measurement systems see widespread use in turbomachinery applications to establish rotor blade tip clearance. This thesis reports investigations into an alternative and additional use in aero-engine rotor blade tip timing measurement for these commercially available systems. Tip clearance is of great importance in the gas turbine industry; this is clear from the fact that gas turbine efficiency has an inverse relationship with tip clearance. Large tip clearance leads to large leakage flows, hence low efficiency, thus the common use of the capacitance probe clearance measurement technique in monitoring turbomachinery. Optical systems have been successfully used to measure rotor blade tip timing on test rigs with several optical probes mounted equally spaced around the turbomachine casing. However, there are practical problems associated with mounting such monitoring systems on in-service jet engines. Optical probes require high maintenance to keep the lenses clean, probably incorporating a purge air system to keep the lenses from fouling. Such impracticalities and added weight make it unlikely that an optical probe based tip timing system will be fitted on an in-service engine in the foreseeable future. In this thesis the scope for a dual use sensor to measure both turbomachinery tip clearance and tip timing is investigated. Since it is impractical to measure blade tip clearance with an optical probe, then the obvious choice for such a sensor is a capacitance probe. Therefore, a commercially available FM capacitance probe based blade tip clearance measurement system is used in a series of tip timing practical investigations. The equipment and instrumentation designed, assembled and produced to facilitate this investigation is documented. These include the development of an optical once per revolution sensor and the design of an independent vibration measurement system based on blade mounted strain gauges. Through an extensive body of experimental work the practicalities in this alternate use of the tip clearance measurement equipment have been assessed. System responses pertaining to tip timing measurement have been investigated, characterised and quantified. The accuracy by which tip timing can be measured using the system has been reported through the findings of an experimental programme carried out on a full-sized, low-speed compressor. Specifically, dual capacitance probe tip timing derived vibration amplitudes have been compared to those derived from blade mounted strain gauge signals. Sources of error have been identified and quantified. Amplitudes were found to agree within the calculated error bands. Instantaneous resonant blade vibrations measured through single capacitance probe tip timing have been correlated with strain gauge derived vibration levels. This has also been done as the rotor traverses blade resonant speed. In this case the vibration phase change across resonance expected from theory was successfully detected through tip timing. Also, the accuracy by which blade time of arrival can be determined by using capacitance probe tip timing has been assessed using a precision OPR sensor and a non-vibrating compressor rotor blade. The characteristics of a DC capacitance probe based clearance measurement system's response to movement in 3D space in proximity to a blade tip have been mapped. Detection of small vibrations have also been investigated in a series of static impulse tests.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    12th International Conference on Vibrations in Rotating Machinery

    Get PDF
    Since 1976, the Vibrations in Rotating Machinery conferences have successfully brought industry and academia together to advance state-of-the-art research in dynamics of rotating machinery. 12th International Conference on Vibrations in Rotating Machinery contains contributions presented at the 12th edition of the conference, from industrial and academic experts from different countries. The book discusses the challenges in rotor-dynamics, rub, whirl, instability and more. The topics addressed include: - Active, smart vibration control - Rotor balancing, dynamics, and smart rotors - Bearings and seals - Noise vibration and harshness - Active and passive damping - Applications: wind turbines, steam turbines, gas turbines, compressors - Joints and couplings - Challenging performance boundaries of rotating machines - High power density machines - Electrical machines for aerospace - Management of extreme events - Active machines - Electric supercharging - Blades and bladed assemblies (forced response, flutter, mistuning) - Fault detection and condition monitoring - Rub, whirl and instability - Torsional vibration Providing the latest research and useful guidance, 12th International Conference on Vibrations in Rotating Machinery aims at those from industry or academia that are involved in transport, power, process, medical engineering, manufacturing or construction
    corecore