2,307 research outputs found

    A multi-projector CAVE system with commodity hardware and gesture-based interaction

    Get PDF
    Spatially-immersive systems such as CAVEs provide users with surrounding worlds by projecting 3D models on multiple screens around the viewer. Compared to alternative immersive systems such as HMDs, CAVE systems are a powerful tool for collaborative inspection of virtual environments due to better use of peripheral vision, less sensitivity to tracking errors, and higher communication possibilities among users. Unfortunately, traditional CAVE setups require sophisticated equipment including stereo-ready projectors and tracking systems with high acquisition and maintenance costs. In this paper we present the design and construction of a passive-stereo, four-wall CAVE system based on commodity hardware. Our system works with any mix of a wide range of projector models that can be replaced independently at any time, and achieves high resolution and brightness at a minimum cost. The key ingredients of our CAVE are a self-calibration approach that guarantees continuity across the screen, as well as a gesture-based interaction approach based on a clever combination of skeletal data from multiple Kinect sensors.Preprin

    Robust Intrinsic and Extrinsic Calibration of RGB-D Cameras

    Get PDF
    Color-depth cameras (RGB-D cameras) have become the primary sensors in most robotics systems, from service robotics to industrial robotics applications. Typical consumer-grade RGB-D cameras are provided with a coarse intrinsic and extrinsic calibration that generally does not meet the accuracy requirements needed by many robotics applications (e.g., highly accurate 3D environment reconstruction and mapping, high precision object recognition and localization, ...). In this paper, we propose a human-friendly, reliable and accurate calibration framework that enables to easily estimate both the intrinsic and extrinsic parameters of a general color-depth sensor couple. Our approach is based on a novel two components error model. This model unifies the error sources of RGB-D pairs based on different technologies, such as structured-light 3D cameras and time-of-flight cameras. Our method provides some important advantages compared to other state-of-the-art systems: it is general (i.e., well suited for different types of sensors), based on an easy and stable calibration protocol, provides a greater calibration accuracy, and has been implemented within the ROS robotics framework. We report detailed experimental validations and performance comparisons to support our statements

    A Fast and Robust Extrinsic Calibration for RGB-D Camera Networks

    Get PDF
    From object tracking to 3D reconstruction, RGB-Depth (RGB-D) camera networks play an increasingly important role in many vision and graphics applications. Practical applications often use sparsely-placed cameras to maximize visibility, while using as few cameras as possible to minimize cost. In general, it is challenging to calibrate sparse camera networks due to the lack of shared scene features across different camera views. In this paper, we propose a novel algorithm that can accurately and rapidly calibrate the geometric relationships across an arbitrary number of RGB-D cameras on a network. Our work has a number of novel features. First, to cope with the wide separation between different cameras, we establish view correspondences by using a spherical calibration object. We show that this approach outperforms other techniques based on planar calibration objects. Second, instead of modeling camera extrinsic calibration using rigid transformation, which is optimal only for pinhole cameras, we systematically test different view transformation functions including rigid transformation, polynomial transformation and manifold regression to determine the most robust mapping that generalizes well to unseen data. Third, we reformulate the celebrated bundle adjustment procedure to minimize the global 3D reprojection error so as to fine-tune the initial estimates. Finally, our scalable client-server architecture is computationally efficient: the calibration of a five-camera system, including data capture, can be done in minutes using only commodity PCs. Our proposed framework is compared with other state-of-the-arts systems using both quantitative measurements and visual alignment results of the merged point clouds

    Cross-calibration of Time-of-flight and Colour Cameras

    Get PDF
    Time-of-flight cameras provide depth information, which is complementary to the photometric appearance of the scene in ordinary images. It is desirable to merge the depth and colour information, in order to obtain a coherent scene representation. However, the individual cameras will have different viewpoints, resolutions and fields of view, which means that they must be mutually calibrated. This paper presents a geometric framework for this multi-view and multi-modal calibration problem. It is shown that three-dimensional projective transformations can be used to align depth and parallax-based representations of the scene, with or without Euclidean reconstruction. A new evaluation procedure is also developed; this allows the reprojection error to be decomposed into calibration and sensor-dependent components. The complete approach is demonstrated on a network of three time-of-flight and six colour cameras. The applications of such a system, to a range of automatic scene-interpretation problems, are discussed.Comment: 18 pages, 12 figures, 3 table

    Hand gesture recognition with jointly calibrated Leap Motion and depth sensor

    Get PDF
    Novel 3D acquisition devices like depth cameras and the Leap Motion have recently reached the market. Depth cameras allow to obtain a complete 3D description of the framed scene while the Leap Motion sensor is a device explicitly targeted for hand gesture recognition and provides only a limited set of relevant points. This paper shows how to jointly exploit the two types of sensors for accurate gesture recognition. An ad-hoc solution for the joint calibration of the two devices is firstly presented. Then a set of novel feature descriptors is introduced both for the Leap Motion and for depth data. Various schemes based on the distances of the hand samples from the centroid, on the curvature of the hand contour and on the convex hull of the hand shape are employed and the use of Leap Motion data to aid feature extraction is also considered. The proposed feature sets are fed to two different classifiers, one based on multi-class SVMs and one exploiting Random Forests. Different feature selection algorithms have also been tested in order to reduce the complexity of the approach. Experimental results show that a very high accuracy can be obtained from the proposed method. The current implementation is also able to run in real-time

    Creating Simplified 3D Models with High Quality Textures

    Get PDF
    This paper presents an extension to the KinectFusion algorithm which allows creating simplified 3D models with high quality RGB textures. This is achieved through (i) creating model textures using images from an HD RGB camera that is calibrated with Kinect depth camera, (ii) using a modified scheme to update model textures in an asymmetrical colour volume that contains a higher number of voxels than that of the geometry volume, (iii) simplifying dense polygon mesh model using quadric-based mesh decimation algorithm, and (iv) creating and mapping 2D textures to every polygon in the output 3D model. The proposed method is implemented in real-time by means of GPU parallel processing. Visualization via ray casting of both geometry and colour volumes provides users with a real-time feedback of the currently scanned 3D model. Experimental results show that the proposed method is capable of keeping the model texture quality even for a heavily decimated model and that, when reconstructing small objects, photorealistic RGB textures can still be reconstructed.Comment: 2015 International Conference on Digital Image Computing: Techniques and Applications (DICTA), Page 1 -

    A framework for realistic 3D tele-immersion

    Get PDF
    Meeting, socializing and conversing online with a group of people using teleconferencing systems is still quite differ- ent from the experience of meeting face to face. We are abruptly aware that we are online and that the people we are engaging with are not in close proximity. Analogous to how talking on the telephone does not replicate the experi- ence of talking in person. Several causes for these differences have been identified and we propose inspiring and innova- tive solutions to these hurdles in attempt to provide a more realistic, believable and engaging online conversational expe- rience. We present the distributed and scalable framework REVERIE that provides a balanced mix of these solutions. Applications build on top of the REVERIE framework will be able to provide interactive, immersive, photo-realistic ex- periences to a multitude of users that for them will feel much more similar to having face to face meetings than the expe- rience offered by conventional teleconferencing systems

    REAL-TIME CAPTURE AND RENDERING OF PHYSICAL SCENE WITH AN EFFICIENTLY CALIBRATED RGB-D CAMERA NETWORK

    Get PDF
    From object tracking to 3D reconstruction, RGB-Depth (RGB-D) camera networks play an increasingly important role in many vision and graphics applications. With the recent explosive growth of Augmented Reality (AR) and Virtual Reality (VR) platforms, utilizing camera RGB-D camera networks to capture and render dynamic physical space can enhance immersive experiences for users. To maximize coverage and minimize costs, practical applications often use a small number of RGB-D cameras and sparsely place them around the environment for data capturing. While sparse color camera networks have been studied for decades, the problems of extrinsic calibration of and rendering with sparse RGB-D camera networks are less well understood. Extrinsic calibration is difficult because of inappropriate RGB-D camera models and lack of shared scene features. Due to the significant camera noise and sparse coverage of the scene, the quality of rendering 3D point clouds is much lower compared with synthetic models. Adding virtual objects whose rendering depend on the physical environment such as those with reflective surfaces further complicate the rendering pipeline. In this dissertation, I propose novel solutions to tackle these challenges faced by RGB-D camera systems. First, I propose a novel extrinsic calibration algorithm that can accurately and rapidly calibrate the geometric relationships across an arbitrary number of RGB-D cameras on a network. Second, I propose a novel rendering pipeline that can capture and render, in real-time, dynamic scenes in the presence of arbitrary-shaped reflective virtual objects. Third, I have demonstrated a teleportation application that uses the proposed system to merge two geographically separated 3D captured scenes into the same reconstructed environment. To provide a fast and robust calibration for a sparse RGB-D camera network, first, the correspondences between different camera views are established by using a spherical calibration object. We show that this approach outperforms other techniques based on planar calibration objects. Second, instead of modeling camera extrinsic using rigid transformation that is optimal only for pinhole cameras, different view transformation functions including rigid transformation, polynomial transformation, and manifold regression are systematically tested to determine the most robust mapping that generalizes well to unseen data. Third, the celebrated bundle adjustment procedure is reformulated to minimize the global 3D projection error so as to fine-tune the initial estimates. To achieve a realistic mirror rendering, a robust eye detector is used to identify the viewer\u27s 3D location and render the reflective scene accordingly. The limited field of view obtained from a single camera is overcome by our calibrated RGB-D camera network system that is scalable to capture an arbitrarily large environment. The rendering is accomplished by raytracing light rays from the viewpoint to the scene reflected by the virtual curved surface. To the best of our knowledge, the proposed system is the first to render reflective dynamic scenes from real 3D data in large environments. Our scalable client-server architecture is computationally efficient - the calibration of a camera network system, including data capture, can be done in minutes using only commodity PCs

    Joint kinect and multiple external cameras simultaneous calibration

    Get PDF

    T-LESS: An RGB-D Dataset for 6D Pose Estimation of Texture-less Objects

    Full text link
    We introduce T-LESS, a new public dataset for estimating the 6D pose, i.e. translation and rotation, of texture-less rigid objects. The dataset features thirty industry-relevant objects with no significant texture and no discriminative color or reflectance properties. The objects exhibit symmetries and mutual similarities in shape and/or size. Compared to other datasets, a unique property is that some of the objects are parts of others. The dataset includes training and test images that were captured with three synchronized sensors, specifically a structured-light and a time-of-flight RGB-D sensor and a high-resolution RGB camera. There are approximately 39K training and 10K test images from each sensor. Additionally, two types of 3D models are provided for each object, i.e. a manually created CAD model and a semi-automatically reconstructed one. Training images depict individual objects against a black background. Test images originate from twenty test scenes having varying complexity, which increases from simple scenes with several isolated objects to very challenging ones with multiple instances of several objects and with a high amount of clutter and occlusion. The images were captured from a systematically sampled view sphere around the object/scene, and are annotated with accurate ground truth 6D poses of all modeled objects. Initial evaluation results indicate that the state of the art in 6D object pose estimation has ample room for improvement, especially in difficult cases with significant occlusion. The T-LESS dataset is available online at cmp.felk.cvut.cz/t-less.Comment: WACV 201
    corecore