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Abstract

Spatially-immersive systems such as CAVEs provide users with surrounding worlds by projecting 3D models
on multiple screens around the viewer. Compared to alternative immersive systems such as HMDs, CAVE
systems are a powerful tool for collaborative inspection of virtual environments due to better use of peripheral
vision, less sensitivity to tracking errors, and higher communication possibilities among users. Unfortunately,
traditional CAVE setups require sophisticated equipment including stereo-ready projectors and tracking sys-
tems with high acquisition and maintenance costs. In this paper we present the design and construction of a
passive-stereo, four-wall CAVE system based on commodity hardware. Our system works with any mix of a
wide range of projector models that can be replaced independently at any time, and achieves high resolution
and brightness at a minimum cost. The key ingredients of our CAVE are a self-calibration approach that
guarantees continuity across the screen, as well as a gesture-based interaction approach based on a clever

combination of skeletal data from multiple Kinect sensors.
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1 Introduction

CAVE systems are known to be highly immersive
back-projected VR rooms. Classical CAVE systems
from the 90’s and beginning of the past decade were
using expensive CRT projectors and magnetic head
and hand tracking. Unfortunately, most projection
systems of the existing CAVE’s are becoming obsolete
after several years, and updating them can be rather
expensive. In the meantime, however, multi-projector
systems and cheap motion capture systems have ap-
peared. These recent technologies can be efficiently
used for CAVE updates, resulting in higher image res-
olution, better brightness and lower costs.

In this paper, we present a novel four wall multi-
projector CAVE architecture which is powered by 40
off-the-shelf projectors controlled by 12 PCs. It op-
erates in passive stereo, providing high brightness at
2000 x 2000 pixel resolution on each of the 4 walls.
We have achieved high resolution while significantly
reducing the cost and increasing versatility: the sys-
tem works with any mix of a wide range of projector

models that can be individually substituted at any
time for more modern or cheaper ones. The unifor-
mity of the final image is achieved using a specially
designed self-calibration software which adapts each
of the 40 projectors and guarantees concordance and
continuity. The main contributions of our approach
are:

e The design and construction of a passive stereo,
four-wall CAVE system with commodity hard-
ware is presented. It is based on 40 off-the-shelf
DLP projectors and 12 PCs. The CAVE design
achieves higher resolution and brightness than al-
ternative installations, at significantly lower total
cost.

e The system is versatile: it works with any mix of
a wide range of projector models that can be indi-
vidually substituted at any time for more modern
or cheaper ones. The software and system archi-
tecture can be easily adapted to different screen
configurations.

e Uniformity of the final image is guaranteed by a



specially designed self-calibration software which
adapts each of the 40 projectors and guarantees
concordance and continuity. Independent self-
calibration of the different CAVE walls is suffi-

cient.

e A gesture-based, ergonomic  interaction
paradigm, based on dynamically merging
the information from two nearly-orthogonal
Kinect sensors. Interaction is intuitive and
cable-less.

The paper is organized as follows. After reviewing
the previous work in next Section, Section 3 presents
the architecture of the CAVE system. Sections 4 and 5
are devoted to presentation of the self-calibration algo-
rithms and the software infrastructure for application
development. Section 6 presents the Kinect-based ges-
tural interaction scheme, while Section 7 discusses the
system performance through a number of examples.
Conclusions and future work are listed in Section 8.

2 Previous work

Multi-projector systems and calibration

The work on multi-projector displays using camera-
based registration started at the end of the 90’s, see for
instance [21]. The design of projection-based tiled dis-
play systems was considered shortly afterwards [12],
and the use of homographies and hierarchical ho-
mography settings for geometric automatic calibration
started in 2002 with the work of Wallace et al. [7].
Since then, a number of papers have addressed the
problem of designing tiled displays for planar Power
Walls, but, with few exceptions, like [23], almost no
work has been done for CAVE systems.

The color variation in multi-projector displays is
due to the spatial variation in the color gamut across
the display [17, 18]. This variation can be classified
into three different categories: intra-projector varia-
tion (within a single projector), inter-projector vari-
ation (across different projectors), and overlap varia-
tion. For an analysis of perceptual aspects, see for in-
stance [19]. In [22] a new method was presented which
addressed spatial variation in both luminance and
chrominance in tiled projection-based displays. Their
approach morphs the spatially-varying color gamut of
the display in a smoothly constrained manner while
retaining the white point.

The system which is probably closest to our pro-
posal is the Star CAVE project [8]. It uses passive
stereo and multi-projection on a five-sided small room
with three horizontal display layers with a total of

15 projection surfaces and two projectors per sur-
face. However, the Star CAVE is not using commod-
ity hardware and it is not able to benefit from existing
CAVE settings. Our proposal, instead, works with any
mix of commodity projector models and results on a
higher resolution and brightness at a significantly re-
duced total cost.

Kinect-based interaction

The Microsoft Kinect provides a convenient and in-
expensive depth sensor and skeleton tracking system
for VR applications [29, 26]. Different authors have
measured and reported the performance of the Kinect
tracking software. Most of these studies refer to the
first version of the sensor [15, 16, 6, 9] whereas only a
few [11, 1] report on the Kinect V2 sensor. Livingston
et al. [15] have conducted multiple tests to evaluate the
noise, accuracy, resolution, and latency of the Kinect
V1 skeleton tracking software. At 1.2m the position
noise was found to be 1.3 mm (sd=0.75mm), whereas
at 3.5m, the noise increased to 6.9 mm (sd=5.6 mm).
Noise was found to differ by dimension (z values were
noisier than x and y values) and joint (wrist and hand
exhibited more noise than other joints). Average end-
to-end latency on a machine equipped with two Intel
Core2 6600 2.4 GHz processors was found to be ap-
proximately 125ms [15]. Minimum latency has been
reported to be 102 ms for V1 and 20-60 ms for V2 [1].
In all these tests users were facing a single Kinect sen-
sor during the data acquisition.

Several authors have explored the use of multiple
Kinect cameras for a number of applications ranging
from real-time 3D capture of scenes [16] to gesture-
based interaction [6]. The infrared dot patterns pro-
jected by multiple Kinects [10] are known to inter-
fere with each other [9]. Several works have addressed
the multi-Kinect interference problem, including hard-
ware solutions for time-multiplexing [24, 3, 9] and soft-
ware solutions [16, 6]. Maimone and Fuchs [16] have
observed that the difference between the depth images
with and without interferences corresponds mostly to
the missing data rather than differences in depth val-
ues. They propose a modified median filter to fill miss-
ing points (using data from other units), allowing the
3D reconstruction of dynamic scenes for telepresence
systems. Maimone and Fuchs also show how to com-
bine 2D eye recognition with depth data to provide
head-tracked stereo.

Caon et al. [6] use two Kinect sensors to get skeletal
data from multiple users. Their skeleton fusion algo-
rithm calculates the coordinates of every joint of the
final skeleton as a weighted average of the joints at
the individual skeletons, where weights are assigned
according to the number of joints detected by each
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Figure 1: Architecture of the system. It consists of two
Kinects controlled by a dedicated PC, a master PC
which handles interaction and orchestrates rendering,
10 rendering PCs and 40 DLP projectors. The system
also includes four digital cameras for calibration, not
shown in the image.

sensor. We also use two Kinects but our fusion algo-
rithm uses more elaborated, per-joint data to estimate
position reliability.

3 System Architecture

The architecture of the system is shown in Figure 1.
A first PC receives events from two tracking Kinects
and sends them to the Master PC via VRPN. The
Master PC sends camera events to a total of 10 ren-
dering PCs. Rendering PCs have 12-16 GB of RAM,
2.66 GHz and two Nvidia GTX 580 boards, driving 4
projectors. Rendering PCs are network synchronized,
each drawing the same scene with different cameras
and viewports. Display on each vertical CAVE wall is
performed by 3 PCs which manage 12 projectors. Dis-
play on the CAVE floor is performed by a single PC,
the output being directed to four HD projectors. We
used Stewart FilmScreen 100 screens for the CAVE
walls.

The projection setup includes two towers per verti-
cal CAVE wall, supporting a total of 12 DLP, 1024 x
768 projectors per wall, Figure 2. Direct (without
mirrors) rear projection is used. Four digital cameras
(Canon EOS 1100-D) are used for the calibration step.
Cameras capturing vertical walls have been fixed to
the room walls to minimize the need for repeating the
first phase of the calibration step (Section 4). We use
front-projection on the floor with four HD DLP pro-
jectors at the top of the front wall and a mirror. The
camera that captures the floor surface is fixed at the
top of the wooden structure at the CAVE entrance. A

Figure 2: The supporting towers, holding 12 projec-
tors per vertical CAVE wall.

mix of 26 Mitsubishi XD550U (1024 x 768, 3000 1m),
12 Casio XJ-S32(1024 x 768, 2300 Im) and 2 Mitsubishi
FD630U (1920 x 1080, 40001m) projectors is used in
the present setup, see Figure 3. New DLP projec-
tors like the BenQ MXT768, the ViewSonic PJD7333,
or similar models could also be used. Led-laser DLP
technology, however, is not recommended, because of
the interaction between polarization and color.

The overall system achieves higher resolution and
brightness while significantly reducing the total con-
struction and maintenance cost, as discussed in Sec-
tion 7.4

Two Kinect devices are located at the top of the two
edges between the side walls and the front wall. Our
current setup uses Kinect V1 sensors (with a 57.5 hor-
izontal fov) although we plan to test also V2 sensors
(with a 70 horizontal fov). The sensors are positioned
in a way that users at the center of the CAVE are in
the area of maximum tracking resolution for both of
them. The location of the Kinects at a height of three
meters is not optimal, but it is the best option to min-
imize optical disturbances. Lower limbs are hardly
detected, but a good tracking of the head and upper
limbs is achieved. A MultiKinect software module re-
ceives the 3D coordinates of the user skeleton joints
as detected by both Kinects, and merges them accord-
ing to the user position and orientation, as detailed in
Section 6. The VRPN client in the Master PC re-
ceives the merged skeleton, estimates the user gesture
type and computes the new rendering settings for the
rendering PCs.

The next three sections describe the self-calibration
software, our software infrastructure for application
development and the gesture interaction module.



Figure 3: The auto-calibration algorithm supports
mixed projectors from different suppliers, as shown
in these towers holding the projectors of one wall.

4 Adaptive auto-calibration

system

Manual calibration in a projection system with 40 pro-
jectors is unaffordable. Solving the calibration prob-
lem requires finding a set of suitable transformations
to be used in each rendering PC, the final goal be-
ing that users should perceive a unique, smooth and
surrounding image along the CAVE walls. We now
describe an algorithm for the automatic calibration of
the whole set of projectors which succeeds in obtaining
a unique image in the CAVE without user interven-
tion. The algorithm is able to calibrate any mix of
different projectors even from different suppliers, as
shown in Figure 3.

The auto-calibration is an off-line process which can
be run at any time (although, in our experience, once
a week is sufficient). It is performed in three steps, as
detailed in the next paragraphs. During calibration,
projectors are made to project specific patterns on the
CAVE walls which are captured by four computer-
controlled cameras (one per CAVE wall). Calibration
involves three types of coordinate systems, as shown
in Figure 4: the projector coordinate systems (40 in
total), the camera coordinate systems (four cameras
in total) and the CAVE coordinate system. Figure 2
shows the setup for one of the vertical CAVE walls,
involving two towers with 12 projectors and one digital
camera to capture the projected patterns.

Auto-calibration output consists of a deformation
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Figure 4: Geometric calibration involves three types of
coordinates: projector coordinates, image coordinates
and CAVE coordinates.

matrix and a texture mask per projector. Deforma-
tion matrices will be inserted in the rendering pipeline
just after the projection matrix, in order to produce a
projection adapted to the targeted region in the CAVE
wall. On the other hand, texture masks will be used
by fragment shaders as detailed below to blend the
projections of neighboring projectors. Calibration in-
volves two basic steps: geometric calibration [7] and
chromatic calibration. Deformation matrices are pro-
duced by the geometric calibration whereas the chro-
matic step creates the texture masks. Our method,
well adapted to planar screen configurations and con-
sumer hardware, is simpler than that proposed in [23].

Before calibration, projectors are uncoordinated
and neighbor images do not match, Figure 5(a). Ge-
ometric calibration starts by detecting the eight ver-
tices of the CAVE cube. A lamp is located inside (Fig-
ure 5(b) and images of the CAVE walls are captured
by the four cameras, Figure 5(c). Camera distortions
are then removed, and we use implicit information to
link vertices that appear in two or in three images:
the cube has 4 vertices which belong to a single wall,
2 vertices which belong to two neighbor walls and 2
vertices belonging to three walls (two vertical walls
and the floor). We then estimate the positions of the
relevant wall vertices in each of the undistorted camera
images by computing them as the intersections of the
wall edge lines in camera coordinates. These refined
positions are used to compute the Homographies [7]
H(C,W) for each CAVE wall W. The Homographies



H(C,W) convert from camera image coordinates of W
to normalized CAVE coordinates (Figure 4), allowing
us to use the cameras as an optical measuring system
for the physical CAVE walls. We take special care
in minimizing errors when computing the vertex posi-
tions in the captured wall images and the four camera-
wall Homographies H(C, W). Captured images of the
front wall and floor have four relevant vertices each,
whereas the two side walls have three of them each,
as they have one unshared vertex. Proper matching
among CAVE walls in the final result depends on the
2D image coordinates of these 14 relevant vertices. We
therefore iterate the geometric calibration algorithm
to optimize the 2D coordinates of the 14 relevant ver-
tices: we estimate them, we complete the second ge-
ometric calibration phase, we detect mismatches be-
tween neighbor walls, and we use them to improve
the estimates of the 2D image coordinates of the 14
vertices and to run again the second geometric calibra-
tion phase. We rely on the fact that 2D coordinates
of the relevant vertices and Homographies H(C, W)
are quite stable, as they only depend on the camera
and CAVE wall locations and cameras are usually well
fixed. Recomputation of camera-wall Homographies
H(C,W) is therefore unnecessary in most cases and
should only be performed from time to time. It should
be observed that, once proper Homographies H (C, W)
have been computed, the geometric calibration prob-
lem has been decoupled and simplified: the second
geometric calibration phase consists on four indepen-
dent CAVE wall calibrations.

In the second phase of the geometric calibration
algorithm we sequentially visit the individual CAVE
walls. The algorithm for each wall runs in two iter-
ations, the first one involving all projectors for the
left eye and the second one including all projectors
which generate images for the right eye. The process
involves six projectors for the vertical walls and two
projectors in the case of the floor. Each projector Py
displays a pattern grid with 30 vertices, as shown in
Figure 5(d), and this projection is captured by the
corresponding camera. After removing image distor-
tions, the coordinates of the 30 grid vertices in the
captured image are computed at subpixel resolution.
We use standard image processing algorithms for line
detection followed by the analytical computation of
line intersections in image space. By solving a least
squares problem, we compute the Homography matrix
Hp, ¢ that converts from projector P coordinates to
camera C' coordinates (we have 60 equations for the
8 unknown components of Hp, ¢, as any grid vertex
generates two independent equations). At this point,
the Homography H(W, P.) = (Hp, c * Ho.w) ™! re-
lates points in the CAVE wall coordinates to their im-

ages in projector coordinates. Now, by just imposing
suitable target positions in CAVE coordinates of the
4 corner vertices of the pattern grid, we obtain the de-
formation matrix for P, which precisely ensures a pro-
jection on the desired rectangular region of the CAVE
wall. Figure 7 shows the result after running the cal-
ibration algorithm on the four CAVE walls. Observe
that matrices Hp, ¢ are used to calibrate the projec-
tions within each of the CAVE walls, whereas the four
matrices H(C,W) are responsible for seamless image
continuity between neighbour walls.

For the chromatic calibration we have implemented
the algorithms from Sajadi et al. [22]. Individual color
gamuts are measured for each projector and these
gamuts are morphed along horizontal and vertical
overlap bands. The result is a texture mask for each
one of the individual projectors. During the interac-
tive visualization, fragment colors will be multiplied
by the value of the corresponding texel in the mask be-
fore being written to the frame buffer, to compensate
gamut differences and to smoothly blend overlapping
areas between projectors. Figure 6 shows the CAVE
with two projected models after this final calibration
step. The complete calibration procedure —geometric
and chromatic— takes less than half an hour; most of
that time is consumed by the chromatic calibration,
which seldom needs to be repeated.

Our auto-calibration software is flexible, and it is
straightforward to adapt it to the calibration of VR
systems with different screen configurations in terms
of size, relative positions and number of projection
walls. It is also possible to use other projector com-
binations. For example, each wall may be served by
only four FullHD projectors, splitting each wall in two
halves, simplifying the architecture at the expense of
brightness.

5 Software infrastructure for

application development

To maximize the ease with which new developers
can write software for this CAVE —or adapt old
applications— we developed a generic rendering en-
gine that abstracts the multi-projector architecture
and the calibration process, providing a relatively lean
APIL.

In fact, this API sits between the user application
and whichever other software is being used for con-
trolling the projectors, so an installation may choose
to use VRJuggler [4], for instance, and another may
use Unity3D [14], or yet another Qt framework (http:
//wwu.qt.io). (for a recent review of frameworks for
VR applications see [5]). A developer may be inter-
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Figure 5: Calibration process: (a) uncalibrated projections, (b) interior lighting for wall image capturing, (c)
capture of one CAVE wall by the corresponding camera, (d) pattern as displayed by one of the projectors.

Figure 6: Two medical models, displayed after the calibration process. The camera does not have a filter, so
the picture shows the left-eye and right-eye images overlapped.



Figure 7: Patterns in Figure 5(a), redisplayed after
geometric calibration.

ested in developing using one of these platforms, per-
haps on a desktop, and then deploy it in the CAVE
using a different one. Because of this, the abstrac-
tions the API offer have been conceived to make this
unimportant and transparent.

To create a new application, the user creates an ap-
plication object of class "App’ and assigns a scene and
a set of events to which the application shall respond.
The scene class contains implementations of all of its
methods (most of them empty) so the user needs only
to refine the ones relevant to his application. The two
main things one must redefine are the initialization (an
opportunity to initialize any resources the application
will need later) and the render method (which must
only take care of sending the adequate information to
the pipeline; the library will otherwise concern itself
with the low level details of integrating this stream
with whichever rendering platform is being used).

Events are handled through a callback system that
allows the user to subscribe a function to a certain
event (all input and all relevant user actions trigger
events that can be handled in this way. The App
class provides a method associateEvent() to declare
this connection. Furthermore, there is a plugin mech-
anism to reuse navigation or interaction modes. The
user may dynamically load or replace these plugins to
alter the behavior of the application without exiting,
and may easily develop his own plugins to test new
interaction modes.

Our auto-calibration process puts minimum require-
ments in terms of shader programming. For exam-
ple, our basic shader for Unity has 7 lines of code
for the vertex program (this includes the application
of the deformation matrix) and 9 lines of code for
the fragment program (the blending mask is encoded
as a texture). Closed-source applications relying on
OpenGL can also be supported via function call in-

(a)

(b)

Figure 8: Interaction space with one Kinect (a) and
two Kinects (b).

terception [30] to activate the appropriate shaders, al-
though we have not experimented with this option yet.

6 Kinect-based Gestural Inter-
action

In this section we discuss how we support head-
tracking and gesture-based interaction in our CAVE
by means of Kinect cameras. Although the Kinect
does not reach the position accuracy of traditional
tracking systems, it provides full-body motion capture
at a much lower cost.

The Kinect V1 sensor has a field of view of 57.5
degrees (horizontal) and 43.5 degrees (vertical), with a
physical depth range of 0.8 m to 4 m [20]. Depth values
of objects beyond the 4m limit can also be retrieved
but at the expense of tracking noise.

6.1 Analysis of kinect placement

Figure 8(a) shows a single-Kinect setup along with
the resulting interaction space. It turns out that this
setup has two important limitations. On the one hand,
a large portion of the CAVE is outside the field of view
of the sensor, resulting in a rather limited interaction
space. Since the head position provided by the Kinect
is used for head-tracking, this fact limits the freedom
of movement of the tracked user. On the other hand,
skeletal tracking is stable when the user faces the sen-
sor, but gets noisier and unreliable as the user turns
left or right, or gets partially occluded by other users.
Since CAVE users often face the side screens, a single
Kinect provides unreliable tracking data even with a
single user. In practice, existing CAVEs using a sin-
gle Kinect force the user to face the front screen, thus
severely reducing the advantages of head-tracking.
The above limitations can be addressed using addi-
tional depth cameras with overlapping fields of view.
However, the infrared dot patterns projected by mul-
tiple Kinects are known to interfere each other. Ex-
perimentally we have found that using two Kinects to



Figure 9: Depth images and reconstructed skeleton of
a static user from two slightly rotated Kinects. The
images in (a) were taken sequentially, with one Kinect
being covered while the other captured the subject,
whereas those in (b) were taken simultaneously and
thus suffer from mutual interferences.

illuminate the target area does increase noise in the
depth images but only at a moderate level (having al-
most no effect on skeletal tracking accuracy) whereas
using three or more sensors results in more severe arti-
facts. This is also in agreement with previous studies
on Multi-Kinect interference issues [9, 6]. Figure 9
illustrates the effect of such mutual interference on
the depth images. Despite the depth images in Fig-
ure 9(b) are clearly noisier, the skeletal tracking of the
Kinect [25] seems to be quite resilient to noise, as evi-
denced by the nearly identical skeletons reconstructed
with and without interference noise.

Since we aim at improving both the physical area
covered by the Kinects and the stability of gesture
recognition, a reasonable option is to place the Kinects
on the edges of the front screen (Figure 10). We tested
several combinations of height and tilt angles: (a)
at 3m from the floor with a tilt angle of -21.75 de-
grees (half the vertical field of view, Fig. 10a), (b)
at 1.8m with no tilt rotation (Fig. 10b), and (c) at
0.04 m from the floor with a tilt angle of 21.75 degrees
(Fig. 10c). In all three cases the rotation around the
vertical axis was approximately +28.75 degrees (half
the horizontal field of view of the Kinect), as shown in
Figure 8b. Since we aim to get skeletal data through
the Kinect for Windows SDK, which predicts 3D po-
sitions of body joints through a classifier optimized
for people facing the sensor [25], we did not consider
alternative configurations (such as placing one Kinect
on top of the CAVE looking downwards).

An informal user study with a variety of selection,
manipulation and navigation gestures revealed that

Figure 10: Different setups with two Kinects. Both
Kinects are placed on the top (a), middle (b) or bot-
tom (c) of the vertical edges of the front screen. Only
one frustum is shown for clarity; the other frustum is
placed symmetrically on the opposite vertical edge of
the front screen.

placing the Kinects at floor level (configuration c)
is the worst option, because the head is often oc-
cluded by the arms, both during interaction gestures
and inadvertent gestures. The other two options pro-
vided more robust skeletal tracking. In our experi-
ments we adopted configuration (b) because the phys-
ical space with full-body tracking better matches the
CAVE space, and because it better mimics the front-
facing scenario the Kinect software body-part classifier
has been trained for [25].

with two

6.2 Gesture interaction

kinects

The relative pose between the two Kinects can be
determined in a number of ways. We adopted the
joint depth and color calibration procedure described
in [13] which, as most camera calibration procedures,
is based on capturing a checkerboard pattern at differ-
ent poses. We first register both Kinects with respect
to a high-resolution camera (placed at the center of
front screen), and then we compose the resulting rigid
transformations to get the relative pose between the
Kinects.

Since each Kinect provides its own skeleton recon-
struction, the two skeletons need to be combined into
a single one before joint data can be delivered to the
VR application. Let PL (resp. Pf) be the (z,y, 2) po-
sition of the i-th joint of the skeleton as reported by
the Kinect placed on the left (resp. right) edge. From
now on we will use P/ with j € {L, R} to refer to
these joint positions. We use a simple skeleton combi-
nation algorithm based on assigning a confidence value
to each joint. This confidence value is the product of
the confidence values described below. _

We define the detection confidence of P} as

cfp(P]) =27"F) (1)

where n(Pf ) is the number of frames the i-th joint
has not been detected by the j-th Kinect (this value



Figure 11: Depth image from a Kinect sensor. The
right hand appears unoccluded, and thus most depth
values in the vicinity (yellow circle) approximately
match the depth of this joint as reported by the Kinect
software. Conversely, the left hand is completely oc-
cluded; if the Kinect software still estimates its po-
sition behind the user, its visibility confidence value
would be close to zero.

is reset when the joint is detected again). The joint
detection flag is provided by the Kinect software. No-
tice that Equation 1 halves the confidence of a joint
each time it is not detected.

We define the within-frustum confidence of Pij as

cfr(P?) =1 —max(0, (NDCx(P/)| - 0.8)/1.1, (2)

where NDCx(P/) returns the 2 coordinate of point
Pij in the normalized device space of the j-th Kinect.
The bounds 0.8 and 1.1 have been found empirically.
Equation 2 assigns a confidence value of 1 to joints
with NDC |z| in [0,0.8] (thus reasonably apart from
the frustum boundary) and linearly decreases the con-
fidence to 0 in the interval [0.8,1.1]. We use a 1.1
value (which indicates that the joint is actually out-
side the frustum) because when some body parts leave
the frustum, the Kinect software often still continues
to predict the clipped parts, but with much less accu-
racy. '

Let A be the screen projection of a small sphere
centered at Pij with respect to the j-th Kinect (we
used a sphere with a radius of 4 cm in our tests). The
visibility confidence cfy (P!) is defined as the ratio
of pixels (labeled as part of the user) in AZ whose
depth value (from the j-th Kinect’s depth image) is
less than the depth value corresponding to P/. In
the comparison we use a 12cm offset to account for
the fact that the Kinect returns joints at some learnt
distance from the body surface, rather than on the
surface [25]. This confidence value attempts to iden-
tify poorly-recognized joints due to self-occlusion (see
Figure 11).

We also compute an alignment confidence value that
measures roughly to which extent the upper torso of

Figure 12: Pose reconstruction examples. The skele-
ton shown on the left (resp. right) corresponds to the
Kinect located on the left (resp. right) edge. The
middle skeleton is the combined skeleton. Joints in
red correspond to non-detected nodes (shown at the
last known position). In (a), the left Kinect is unable
to detect the right arm due to occlusion, but the com-
bined skeleton uses joint data from the other Kinect.
A symmetric situation is shown in (b), this time af-
fecting also the left ankle. In both cases the combined
skeleton provides an accurate estimation of the pose.

the j-th skeleton is facing the sensor. We compute
cfa(P!) as 1 — |s; - v;| where s is the vector joining
the left and right shoulder joints (according to the j-th
Kinect), and v; is the view vector of the j-th Kinect.

Finally, the confidence value of a joint cf (Pf ) is
the product of the four confidence values defined
above. The combined position of the i-th joint P;
is defined as the weighted average (cf(PE)/W)PL +
cf(Pf)/W)PE, where W = cf(P}) + cf(P).

Source code and binaries of our software for com-
bining two or more Kinect skeletons is publicly avail-
able [28]. For maximum portability, the skeletal track-
ing is implemented as a VRPN [27] server, allowing an
arbitrary number of clients (running on Linux in our
CAVE) to connect to the VRPN server (currently run-
ning on Windows 7 and Kinect for Windows 1.8) to
receive joint data.  Figure 12 shows different pose
estimations from two Kinects configured as in Fig-
ure 10(b).

7 Results and Discussion

7.1 Calibration

Geometric calibration results are shown in Figure 7
and in the accompanying video. The feedback from
users about the calibration is discussed in section 7.3.

Regarding chromatic calibration, however, there is
still room for improvement, as discussed in Section 8.
The main problem is related to the differences between
wall and floor projections, as we use four HD DLP pro-
jectors for front-projection on the floor and 12 stan-



Figure 13: Path followed by the head of a moving user.
The middle skeleton is the combined skeleton, which
is resilient to the severe head misplacements when the
user is partially outside the Kinect’s frustum.

dard 1024 x 768 DLP projectors in the back of each
vertical wall. The result is that the floor is darker than
the walls as seen in Figure 6. We have decided to ac-
cept some degree of brightness discontinuity between
walls and floor in order not to darken excessively the
wall projectors, with the goal of keeping the maxi-
mum CAVE brightness. Tuning this brightness dis-
continuity can be a good avenue for future research.
However, the main fact is that the brightness discon-
tinuity does not affect the immersive experience. In
our user tests, brightness and chromatic calibration
discontinuities were perceived by less than 2% of the
users.

7.2 Interaction

We now discuss some performance measures of the
Kinect-based tracking system in our CAVE. For the
experiments we used two Kinects V1 placed on the
vertical edges of the front screen, as in Figure 10(b).

The physical space with head tracking (that will
be referred to as target space) covers the most rele-
vant portion of the CAVE. For an average adult user
standing up, head tracking is available in 78% of the
CAVE floor (about 7m?). This contrasts with the 53%
(4.7m?) available in a single-Kinect configuration.

Figure 13 shows the path followed by the head of a
moving user. The relative pose of the Kinects guar-
antees robust head tracking also near the side walls of
the CAVE (see the accompanying video).

We did not measure head-tracking accuracy since a
minor shift in the head location does not cause im-
portant artifacts in the rendered images. Instead, we
compared the noise of the head position coordinates of
a still user adopting several poses. We measured the

noise as y /02 + 02 + 02 where 0, is the standard devi-

ation of the x coordinate of the reported head position
in a 400 ms window (12 samples on a 30fps Kinect).
We found the average head noise within the target
space to be less than 0.1 mm, but this increased up to
5mm in poses with the arms partially occluding the
head. Using data from a single Kinect also provided
an average deviation of about 0.1 mm (on a restricted
target space though), but noise increased up to 56 mm

Figure 14: Pointing with two Kinects. The combined
skeleton (middle) is resilient to non-detected joints on
one of the Kinects.

in the problematic poses, making the single-Kinect op-
tion less usable.

We also evaluated the suitability of Kinect-based
tracking for virtual pointing, as this is the prevalent
interaction metaphor for 3D selection tasks [2]. Again,
the use of two Kinects was found to be of great value
(Figure 14). We conducted an informal user study
to measure the accuracy of the path followed by the
pointing tool (a virtual ray) when the user was asked
to follow a predefined path (both the predefined path
and the pointing tool were shown on the screen). The
path consisted of five horizontal segments at eleva-
tion angles 45, £22.5 and 0, with heading angle
—45 < 0 < 45. We tested three different pairs of
joints for defining the pointing direction: the elbow-
wrist pair, the shoulder-wrist pair, and the hip-wrist
pair. We will refer to these conditions as ELBOW,
SHOULDER and HIP. The hip point considered was
the central hip joint returned by the Kinect, whereas
the elbow, shoulder and wrist correspond to the user’s
dominant hand, which was selected manually. Fig-
ure 15 shows the paths followed by the pointing tool
for a representative right-handed user. We measured
the standard deviation of the angle between the actual
pointing vector and its closest match in the path. The
ELBOW condition was the noisiest option, with an av-
erage deviation among the six participants of o = 2.4
degrees. The SHOULDER condition was more stable
(o = 2.0 deg), although it still had significant jitter-
ing, especially when pointing at or above the horizon.
The HIP condition was slightly more stable (¢ = 1.7
deg).

In practice, the suitability of these options for 3D
selection depends on a number of factors [2]. When
pointing accuracy is not critical (e.g. large, unoc-
cluded targets) the ELBOW condition is a suitable
option requiring little physical effort from the user.
In other scenarios the SHOULDER or HIP conditions
are more suitable, at the expense of less natural move-
ments and higher physical effort.

In terms of gesture-based interaction, our two-
Kinect configuration provides two significant advan-
tages: (a) a relaxation of the front-facing constraint,
increasing by about 28 degrees the range of orienta-
tions for which most gestures can be recognized (with
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Figure 15: Path followed by the pointing tool using
the ELBOW (a), SHOULDER (b) and HIP (c) con-
ditions. We use an equirectangular projection to map
unit vectors to the plane (d).

respect to a single Kinect), and (b) a pose estimation
more stable on the presence of other users inside the
CAVE, gestures being recognized as long as the joints
involved are seen by at least one of the two Kinects.
According to our experiments, most typical gestures
can be recognized within a £90 degree rotation with
respect to the front-face direction, which in practice is
enough for casual CAVE interaction. The accompany-
ing video shows how the combined skeleton facilitates
pose reconstruction for different gestures and at dif-
ferent facing conditions.

7.3 User feedback

A large number of persons (well over a hundred) have
tested our CAVE enviroment over the last months.
The vast majority of these users were not practition-
ers. Across the board, the informal feedback gath-
ered validates both the geometric calibration and im-
age blending, as no users complained of any defects,
and when asked, they concurred that the visualization
was satisfactory and perceptually correct.

The immersive experience was usually rated as
"high’, and users were only aware of the chromatic cal-
ibration discontinuities at the end, after having been
informed by us of the problem. Our main conclusion is
that users are more tolerant to chromatic calibration
biases during immersive experiences, and that percep-
tive metrics for chromatic calibration discontinuities
in immersive VR settings should be investigated.

Users with previous CAVE experiences unani-
mously considered that this Multi-resolution CAVE
was brigther than the previous ones, with a resolu-
tion and visual quality significantly higher. The main
comment was related to the gesture-based interaction,
which is still not intuitive, and to the Kinect latency.

7.4 Cost analysis

We have compared the multi-projector CAVE system
presented in this paper with a standard commercial
system. This commercial system uses active stereo
with four projectors and four front surface mirrors.
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Synchronization is achieved through Nvidia Quadro
boards with Nvidia Sync cards. The results are shown
in Table 1.

The table shows that we achieve a much higher lu-
minosity (with a factor of ~ 5.25) at a higher reso-
lution while having a significantly reduced cost. The
projectors maintenance cost is the cost of replacing
a projector when it crashes. This cost is remarkably
low in the proposed system as a consequence of using
off the shelf DLP projectors. Moreover, we have ob-
served that circular polarization in conjunction with
bright images projected in the walls produces a high
immersive perception and a significant presence level,
probably similar to active stereo VR systems. Exper-
iments to confirm this last hypothesis will be part of
our future work.

8 Conclusions and Future Work

We have presented a novel four wall multi-projector
CAVE architecture, powered by 40 off the shelf pro-
jectors and controlled by 12 PCs. It operates in pas-
sive stereo, providing high brightness at 2000 x 2000
pixel resolution on each of the four walls. We have
achieved high resolution while significantly reducing
the cost and having increased versatility: the sys-
tem works with any mix of a wide range of pro-
jector models that can be substituted at any time
for more modern or cheaper ones. The uniformity
of the final image is achieved using a specially de-
signed self-calibration software which guarantees con-
cordance and continuity. Interaction is intuitive and
cable-less, operating on a gesture-based, ergonomic in-
teraction paradigm. We dynamically merge the in-
formation from two nearly-orthogonal Kinect sensors.
Having a two-Kinect configuration results in a more
stable pose estimation and a relaxation of the front-
facing constrain. Most typical gestures are well rec-
ognized within any face and body rotation up to 90
degrees with respect to the frontal CAVE direction.

In the future we plan to optimize the chromatic cali-
bration differences between wall and floor projections,
in order to have a maximum brightness in the verti-
cal walls while keeping a high immersive perception.
Perceptive metrics for chromatic calibration disconti-
nuities in CAVE settings should also be investigated.
We also plan to position the Kinects in configuration
(b) —Figure 10— for optimal gesture recognition, as
well as to test Kinect V2 sensors.



Cost of projectors  Cost of projectors  Resolution = Lumens

and computers maintenance per wall per wall

Standard commercial CAVE 299 K€ n.a. 1920 x 1200 4000
Multi-projector CAVE 52 K€ 0.6 K€ 2000 x 2000 ~ 21000

Table 1: Comparison between a commercial CAVE-like system and the proposed setup
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