G230 ._
A8 UNIVERSITA
'J}i.' | el Y §

e ¥ 54l <IZ) DEGLI STUDI
BV b Pabova

Universita degli Studi di Padova

Padua Research Archive - Institutional Repository

Hand gesture recognition with jointly calibrated Leap Motion and depth sensor

Original Citation:

Availability:
This version is available at: 11577/3146354 since: 2016-11-29T14:31:40Z

Publisher:
Springer

Published version:
DOI: 10.1007/s11042-015-2451-6

Terms of use:
Open Access

This article is made available under terms and conditions applicable to Open Access Guidelines, as described at
http://www.unipd.it/download/file/fid/55401 (Italian only)

(Article begins on next page)

Noname manuscript No.
(will be inserted by the editor)

Hand Gesture Recognition with Jointly Calibrated
Leap Motion and Depth Sensor

Giulio Marin - Fabio Dominio - Pietro
Zanuttigh

Received: date / Accepted: date

Abstract Novel 3D acquisition devices like depth cameras and the Leap Mo-
tion have recently reached the market. Depth cameras allow to obtain a com-
plete 3D description of the framed scene while the Leap Motion sensor is a
device explicitly targeted for hand gesture recognition and provides only a
limited set of relevant points. This paper shows how to jointly exploit the two
types of sensors for accurate gesture recognition. An ad-hoc solution for the
joint calibration of the two devices is firstly presented. Then a set of novel fea-
ture descriptors is introduced both for the Leap Motion and for depth data.
Various schemes based on the distances of the hand samples from the cen-
troid, on the curvature of the hand contour and on the convex hull of the
hand shape are employed and the use of Leap Motion data to aid feature
extraction is also considered. The proposed feature sets are fed to two dif-
ferent classifiers, one based on multi-class SVMs and one exploiting Random
Forests. Different feature selection algorithms have also been tested in order
to reduce the complexity of the approach. Experimental results show that a
very high accuracy can be obtained from the proposed method. The current
implementation is also able to run in real-time.

Keywords Depth - Gesture Recognition - Calibration - Kinect - Leap
Motion - SVM
1 Introduction

Automatic hand gesture recognition is a very intriguing problem that, if ef-
ficiently solved, could open the way to many applications in several different

All authors

Dept. of Information Engineering

Tel.: +39-049-8277774

Fax: +39-049-8277699

E-mail: maringiu,dominiof,zanuttigh@dei.unipd.it

2 Giulio Marin et al.

fields, e.g. human-computer interaction, computer gaming, robotics and auto-
matic sign-language interpretation. The problem can be solved both by using
wearable devices and with vision-based approach. Vision-based hand gesture
recognition [27] is less invasive and paves the way for a more natural interac-
tion, however it is also a very challenging problem.

Until a few years ago, all the available approaches were based on the ex-
traction of the information from images and videos [12]. These representations
contain a 2D description of the three-dimensional hand pose, which is often
difficult to properly understand, and consequently the performed gesture. This
is mainly due to the complex 3D movements that the hand and fingers can do
and to the presence of many inter-occlusions between the various hand parts.

The introduction of Time-Of-Flight cameras and of low cost consumer
depth cameras based on structured light [6] has made 3D data acquisition
available to the mass market, thus opening the way to a new family of com-
puter vision methods that exploit 3D information to recognize the performed
gestures. In particular the success of Microsoft’s Kinect™ has shown how
natural interfaces based on the acquisition of 3D data can be efficiently em-
ployed in commercial applications. However, notice how the standard usage
of this device allows to recognize the whole body gestures but not the small
details associated to the pose of the fingers. In order to exploit the data of the
Kinect and of similar devices for hand gesture recognition, several methods
have been proposed. The basic idea behind most of them is to extract relevant
features from the depth data and then applying machine-learning techniques
to the extracted features. An overview of the various available approaches will
be presented in Section 2.

The Leap Motion device is another recently introduced sensor based on
vision techniques targeted to the extraction of 3D data, but differently from
the Kinect that provides a 3D description of the framed scene, this device
is explicitly designed for hand gesture recognition and directly computes the
position of the fingertips and the hand orientation. Compared with depth
cameras like the Kinect, it produces a far more limited amount of information
(only a few keypoints instead of the complete depth description) and works on
a smaller 3D region. On the other side, the extracted data are more accurate
(according to a recent study [29] its accuracy is of about 200um) and it is
not necessary to use computer vision algorithms to extract the relevant points
since they are directly provided by the device. The software provided with the
Leap Motion recognizes a few movement patterns only, e.g., swipe or tap, and
the exploitation of Leap Motion data for more complex gesture recognition
systems is still an almost unexplored field.

Since the Kinect and the Leap Motion have quite complementary charac-
teristics (e.g., a few accurate and relevant keypoints against a large number of
less accurate 3D points), it seems reasonable to exploit them together for ges-
ture recognition purposes. If the information provided by the two devices has
to be jointly considered, a calibration of the whole system is needed. This pa-
per, following this rationale, presents a novel approach for the combined use
of the two devices for hand gesture recognition. Reliable feature extraction

Title Suppressed Due to Excessive Length 3

schemes from both the Kinect and the Leap Motion data are introduced. The
use of joint information from the two devices for more reliable and faster fea-
ture extraction is also considered. This is made possible by an ad-hoc approach
for the joint calibration of the two devices. Finally, two reliable classification
schemes based on Support Vector Machines (SVM) and Random Forests (RF)
are proposed. The performances of each of the two devices alone and of their
joint exploitation are evaluated. Finally feature selection schemes are consid-
ered in order to reduce the dimensionality of the feature vectors. This work
has several novel contributions: it presents the first attempt to detect gestures
from the data acquired by the Leap Motion proposing reliable approaches for
the feature extraction and for the gesture classification based on these features;
it shows how to jointly calibrate the Leap Motion with depth cameras like the
Kinect, a quite challenging task due to the limited amount of data provided
by the Leap Motion; finally it shows how to jointly exploit the two devices for
gesture recognition.

The paper is organized in the following way: Section 2 presents a brief
overview of the related works, then Section 3 presents the general architecture
of the proposed gesture recognition system. The two following sections present
the feature descriptors extracted from the Leap Motion data (Section 4) and
from depth data (Section 5). A method for the joint calibration of the 3D
measures from the two devices is presented in Section 6. Then the classification
stage is described in Section 7. Experimental results are presented in Section
8 and finally Section 9 draws the conclusions.

2 Related Works

Hand gesture recognition from data acquired by the Kinect or other consumer
depth cameras is a novel but very attractive research field. Many approaches
have been presented, mostly based on the standard scheme of extracting rel-
evant features from the depth data and then applying machine-learning tech-
niques to the extracted features. In the approach of [14], silhouette and cell
occupancy features are extracted from the depth data and used to build a
shape descriptor. The descriptor is then used inside a classifier based on action
graphs. Other approaches, e.g., [25] and [28] are based on volumetric shape
descriptors. The two approaches both exploit a classifier based on Support
Vector Machines (SVM). The histograms of the distance of hand edge points
from the hand center are instead used in the approaches of [23] and [22]. An-
other approach based on an SVM classifier is [8], that employs 4 different types
of features extracted from the depth data.

Other approaches instead estimate the complete 3D hand pose from depth
data. Keskin et Al. [11] try to estimate the pose by segmenting the hand depth
map into its different parts, with a variation of the machine learning approach
used for full body tracking in [24]. Multi-view setups have also been used for
this task [2], since approaches based on a single camera are affected by the
large amount of occluded parts, making the pose estimation rather challenging.

4 Giulio Marin et al.

Differently from the Kinect, the exploitation of Leap Motion data for ges-
ture recognition systems is still an almost unexplored field. A preliminary
study on the usage of this device for sign language recognition has been pre-
sented in [21]. The device has been used for Arabic sign language recognition
in [18]: in this work the data extracted from the sensor is fed directly to
two different machine learning classification algorithms, one based on a Naive
Bayes Classifier and one exploiting Multilayer Perceptron Neural Networks.
Another recent work [26] analyzes the trajectory of a finger returned by the
Leap Motion in order to recognize handwriting. The approach exploits Dy-
namic Time Warping and a nearest neighbor search. The sensor has also been
used for signature recognition using features based on the optical flow and on
the trajectories in a recent work [19]. A gesture interface based on the Leap
Motion has been presented in [9], where the authors use the device to control
a robot arm.

Finally the work that is more related to this one is [16]. In this work we
combined the depth-based descriptors of [8] with some ad-hoc descriptors for
the Leap Motion data and fed the two sets to an SVM classifier. However, this
approach handles the two sensors separately, with two independent processing
pipelines and without jointly calibrating them. The approach proposed in this
paper starts from [16] but presents a method for the joint calibration of the
two devices and exploits the calibration to extract the features with the com-
bined use of the two sensors. Furthermore the employed feature set has also
been updated with a larger feature set for the Leap Motion and new feature
descriptors for the depth data.

3 Problem Formulation

The general architecture of the approach presented in this paper is shown in
Fig. 1: there are two different feature extraction pipelines, one for the Leap
Motion data and one for depth data and finally a classification stage that takes
in input all the features and recognizes the performed gesture.

The Leap Motion feature extraction pipeline, described in Section 4 ex-
ploits only the data from this sensor and extracts 4 different types of features,
i.e., fingertip distances from the centroid of the hand, fingertip elevations from
the palm plane, the angles between the vectors connecting the fingertips with
the palm center and the 3D positions of the fingertips in the hand reference
system.

The second feature extraction pipeline, described in Section 5, is instead
mainly based on the information extracted from the depth sensor, even if it
exploits also some information from the Leap Motion. It extracts four different
sets of features based on the distances of the finger samples from the hand
center, on the local curvature of the hand contour, on the similarity between
distance feature histograms and on the connected components in the convex
hull of the hand shape. Note how the combined use of the data from the two
sensors requires the joint calibration of the two devices. An ad-hoc approach

Title Suppressed Due to Excessive Length 5

Leap Motion Depth sensor

|

Extraction of
hand regions

Distances
Elevations : 1\\!‘}\\”
[R] Curvat Connected
Positions 3D | :: . urvature components | :
i\ Correlation :

Multi-class SVM 1—>-

Fig. 1 Pipeline of the proposed approach.

for this critical step based on the fingertips positions in the two reference
systems is presented in Section 6.

Finally, the features are processed with the classification method based on
Support Vector Machines (SVM) presented in Section 7.

4 Feature extraction from the Leap Motion data

As already stated, the Leap Motion device provides only a limited set of rele-
vant points and not a complete description of the hand shape. The amount of
information is more limited if compared to the one from depth sensors like the
Kinect, but on the other side the device provides directly some of the most
relevant points for gesture recognition and allows to avoid complex computa-
tions needed for their extraction from depth and color data. The Leap Motion
sensor mainly provides the following data (Fig. 2):

— Number of detected fingers N € [0,5] that the device is currently
seeing.

— Position of the fingertips F;, 7 =1, ..., N. Vectors F; containing the 3D
positions of each of the detected fingertips. The sensor however does not
provide a mapping between the vectors F; and the fingers.

— Palm center C that represents the 3D location roughly corresponding to
the center of the palm region in the 3D space.

6 Giulio Marin et al.

Fingertips position

F. F;

Fi

orientatig

Hand radius

Fig. 2 Data acquired by the Leap Motion device.

— Hand orientation consists in two unit vectors representing the hand ori-
entation computed in the palm center C. The first vector, denoted with
h, points from the palm center to the direction of the fingers, while the
second, denoted with n, is the normal to the plane that corresponds to the
palm region pointing downward from the palm center.

— Hand radius r is a scalar value corresponding to the radius of a sphere
that roughly fits the curvature of the hand (it is not too reliable and it is
not used in the proposed approach).

Note that the accuracy is not the same for all the reported data vectors.
The 3D positions of the fingertips are quite accurate: according to a recent
research [29] the error is about 200 pm. This is a very good accuracy, specially
if compared to the one of depth data acquired by the Kinect and from other
similar devices. While the localization of the detected fingers is accurate, their
recognition is not too reliable. There are some situations in which the sensor
is not able to recognize all the fingers. Fingers folded over the hand or hidden
from the sensor viewpoint are not captured, furthermore fingers touching each
other are sometimes detected as a single finger. Even in situations where the
fingers are visible and separated from the hand and the other fingers it can
happen that some fingers are lost, specially if the hand is not perpendicular to
the camera. Another typical issue of this sensor is that protruding objects near
the hand, like bracelets or sleeve edges, can be confused with fingers. These
issues are quite critical and must be taken into account in developing a reliable
gesture recognition approach since in different executions of the same gesture
the number of captured fingers could vary. For this reason simple schemes
based on the number of detected fingers have poor performance.

As previously stated, the Leap Motion does not provide a one-to-one map
between fingers and fingertips detected. In the proposed approach we deal with
this issue by sorting the features on the basis of the fingertip angles respect to
the hand direction h. To this purpose, we consider the projection of the hand
region into the palm plane described by n and passing through C, as depicted
in Fig. 4. The plane is then divided into five angular regions S;, i = 1,...,5 as

Title Suppressed Due to Excessive Length 7

1007 | 100

-40° 40°

10 50

Fig. 3 Angular regions in the palm plane.

in Fig. 3, and each captured finger is assigned to a specific region according
to the angle between the projection of the finger in the plane and the hand
direction h. Note that a unique matching between the sectors and the fingers
is not guaranteed, i.e., some of the sectors S; could be associated to more than
one finger and other sectors could be empty. When two fingers lie in the same
angular region, one of the two is assigned to the nearest adjacent sector if not
already occupied, otherwise the maximum between the two feature values is
selected.

In this work we analyze 4 different types of features computed from the
Leap Motion data and these will be described in the rest of this section:

— Fingertip angles: angles corresponding to the orientation of each fingertip
projected on the palm plane with respect to the hand orientation h.

— Fingertip distances: 3D distances of the fingertips from the hand center.

Fingertip elevations: distances of the fingertips from the palm region

plane.

— Fingertip positions: z, y and z coordinates of the fingertips in the 3D
space.

All the feature values (except for the angles) are normalized in the interval [0, 1]
by dividing the values for the distance between the hand center and the middle
fingertip length S = ||Fmidadie — C|| in order to make the approach robust to
people with hands of different size. The scale factor .S can be computed during
the calibration of the system. Fig. 4 depicts a sample gesture acquisition and
the related feature set.

4.1 Fingertip angles

The computation of this feature plays a key role also for the other features
since the angle is used as a metric to order the fingertips. The fingertip angle

8 Giulio Marin et al.

m— Piltn hornal
. Hand direction h
;[Pl plane
sl ® Palmcenter
® Fingedip 30 positions
* Fingedip projections
Fingerdip distances
;= =Fingetip elevations

z

Fig. 4 Considered Leap Motion features on a gesture example (sample of gesture G8 from
our dataset).

is defined as:
A; = Z(FT -C,h),i=1,..,.N (1)

where FT is the projection of F; on the plane identified by n, and corresponds
to the orientation of the projected fingertip with respect to the hand orienta-
tion. The estimated hand orientation h and consequently the fingertips angles
are strongly affected by the number of detected fingers. In order to be scale
independent, the obtained values A; have been scaled and the interval has
been set to [0.5,1] to better discriminate, in the classification step, the valid
values from the missing ones, that have been set to 0. These values have also
been used to assign each finger to the corresponding sector as described before.
Fingertip angles features are then collected into vector F¢.

4.2 Fingertip distances

This feature represents the distance of each fingertip from the palm center.
Distances are defined as:

D; =||F; = Cl|/S;i=1,...,N (2)

and they are ordered according to increasing angles. At most one feature value
is associated to each sector and the missing values have been set to 0. Fingertip
distances are collected into vector F.

4.3 Fingertip elevations

Another descriptor for a fingertip is its elevation from the palm plane. Eleva-
tions are defined as:

E, = sgn((F, — F7) - n)|[F; — F7]|/S,i = 1,...N (3)

Title Suppressed Due to Excessive Length 9

and thanks to the sign operator it describes also to which of the two semi-
spaces, defined by the palm plane, the fingertip belongs. As for the previous
features, there is at most one feature value for each sector and the missing
values have been set to 0. Note that as for the fingertip angles, the values
range has been scaled to the interval [0.5, 1] and then collected into vector F¢.

4.4 Fingertip 3D positions

This feature set represents the positions of the fingertips in the 3D space. As
for the previous features, firstly the fingertips have been ordered according to
increasing angles, then, since a reliable hand gesture recognition system must
be independent from the hand position and orientation inside the frame, it is
necessary to normalize the coordinates with respect to the hand position and
orientation:

PY=(F;—-C) h (4)
P)iz:(Fi—C)~l’l

It is worth noticing that the fingertip 3D positions can be seen as the
compact representation of the combination of angles, distances and elevations,
i.e., of the first three features. Fingertip 3D positions have been collected into
vector FP.

5 Feature extraction from depth camera data

In the proposed approach, gestures are acquired with both a Leap Motion and
a depth camera. We used a Kinect for testing the algorithm but any other
depth camera can be used for this purpose. Feature extraction from depth
data requires two main steps: firstly the hand is extracted from the rest of the
scene using the acquired depth information, then, a set of features is computed
from the segmented region.

The first step is quite time-consuming if solved by using only the depth and
color data as we did in our previous works [7,8]. In addition, most of the works
available in the literature, dealing with hand extraction, assume that the hand
is the closest object to the camera, an assumption that is often violated in a
typical human-computer interaction domain, where there can be other objects
in the scene closer to the camera. In the proposed approach, the Leap Motion
information is exploited in this first step both to improve the accuracy and
to reduce the computation time. Using this information, the assumption that
the hand is the closest object can be safely removed.

In the second step four different kinds of features are computed from the
depth data:

— Curvature features: analyze the hand contour shape to extract the par-
ticular shape description.

10 Giulio Marin et al.

— Distance features: consider the distance of each point of the hand contour
from the palm center to describe the hand shape.

— Correlation features: these are a measure of similarity between distance

features.

Connected components features: exploiting the convex hull, compute

the size and the number of connected components in the performed gesture.

In the remaining section, firstly we will present our approach to segment
the hand using Leap Motion information, then the 4 different features are
described.

5.1 Extraction of the hand from the combined use of depth and Leap Motion
data

In our previous approach [8] the extraction of the hand from color and depth
data was performed with a time-consuming procedure based on several steps.
Firstly the closest point was localized on the depth data. Then a multiple
thresholding on the depth values, on the distance from the closest point and on
the color values with respect to the skin color was used to obtain a first estimate
of the hand samples. The hand centroid was estimated in the subsequent step
by finding the maximum of the output of a Gaussian filter with a large standard
deviation applied to the estimated hand mask (this corresponds to assume that
the densest region belongs to the hand palm). A circle is then fitted on the hand
palm to precisely locate its center and to divide the hand into palm, wrist and
fingers regions. Finally PCA is exploited to compute the hand orientation.
The details of this approach can be found in [8], however it is clear that it
is a quite complex operation as most of the computation time of the entire
pipeline of [8] was spent on this step. Moreover, there is a couple of critical
assumptions, i.e., that the closest point matching the skin color correspond
to the hand and that the palm is the densest region, that can lead to wrong
detections in particular situations. This typically does not happen in simple
settings with a user is in front of the computer, but limits the applicability of
the approach in more complex scenarios.

Since in the proposed approach the Leap Motion data are also available,
this information can be exploited to make the identification of the hand posi-
tion and of its orientation faster and more reliable. Firstly the hand centroid
computed by the Leap Motion C can be expressed according to the depth
camera coordinate system using the calibration information. In this way, if
the Leap Motion correctly recognizes the hand, we can ensure that the hand
is properly identified even if there are objects of similar shape and color in
the depth sensor acquisition. Moreover, we can also avoid the use of color
information thus making the approach faster and allowing the use of depth
sensors that do not have an associated color camera (e.g., industrial matricial
ToF sensors like MESA or PMD devices). In this section we will assume that
the two devices have been jointly calibrated obtaining a rotation matrix R
and a translation vector t between the two reference systems. How to perform

Title Suppressed Due to Excessive Length 11

the calibration will be the subject of Section 6. The location of the Leap Mo-
tion hand centroid in the depth camera reference system will be denoted with
Cp = RC + t and used as a starting point for the hand detection. A sphere
of radius rp is then centered on Cp and the samples inside the sphere are
selected, i.e:

H={X: X~ Cpl? < ri} (5)

where X is a generic 3D point acquired by the depth camera and rj is set
on the basis of the physical hand size (in the tests, 7, = 10[cm] has been
used). The points in the set H inside the sphere represent the initial hand
estimate. This allows to remove the assumption that the hand is the closest
point to the sensor. Furthermore, the thresholding in the color space can be
avoided, as well as the acquisition and processing of color data, making this
step faster and simpler. The centroid located by the Leap Motion is very
reliably located in the hand region but its localization is not too accurate, due
to the uncertainty in the position estimated from the Leap Motion. For this
reason, its position is optimized with the circle fitting scheme of [8]. A more
refined scheme employing an ellipse in place of the circle can also be used [17].
Let us denote with Cpqypm the final circle and with 7 its radius computed by
the algorithm.

The hand orientation can also be extracted from the Leap Motion data
(it is given by the vectors h and n as discussed in Section 4), therefore also
the computation of the PCA can be avoided. Another critical aspect in the
approach of [8] is that with PCA the orientation was quite well estimated,
but the direction was supposed always pointing upward. With the proposed
approach, instead, this assumption can be removed, relying on the direction
estimated by the Leap Motion.

Finally, the hand samples are subdivided into fingers, palm and wrist re-
gions. Palm samples (P) are the ones inside the circle of radius r centered on
Cpaim; the finger samples set F contains the samples X outside Cpair, that
satisfy (X — Cp)-h > r, i.e., the ones outside the circle in the direction of h;
the remaining samples are associated to the wrist region (W).

5.2 Distance features

This feature set aims at capturing the profile of the hand contour in order to
extract informative description of the performed gesture. We start by consid-
ering each point X in the hand contour, extracted from the hand mask in the
depth image, the distance d(X) with respect to the hand center Cpgim:

d(X) = [[X = Cpaim| (6)

Given the hand orientation, then, we are able to provide a coherent function
d(X) among different gestures and repetitions. For example we can set as
starting point X; the intersection between the hand contour and the hand
direction h, and then proceed clockwise with the other points until the last one

12 Giulio Marin et al.

X,,. For each acquisition, though, the number of points in the hand contour n
is not fixed, as it depends on the actual distance of the hand from the camera.
Therefore, in order to make the descriptor independent from the hand to
camera distance, the function d(X) is sampled to get 180 values (this value
can be chosen even smaller without excessively impacting the overall accuracy,
but reducing the computation time). An example of this function is shown in
Fig. 7a.

The distance function d(X) is then normalized by the length L, of the
middle finger in order to scale the values within the range [0, 1] and to account
for different hand sizes among people. The distance samples are collected into
feature vector F!. Notice that this descriptor is different from the distance
descriptors used in [8]: the approach proposed in this work turned out to be
simpler, faster and more accurate.

5.3 Correlation features

This feature set is based on the similarity between distance functions of sub-
section 5.2. For each considered gesture, a reference acquisition is selected and
the corresponding distance function is computed with the approach of Eq. 6,
thus obtaining a set of reference functions dj(X), where g is the considered
gesture. The distance function of the acquired gesture d(X) is also computed
and the maximum of the correlation between the current histogram d(X) and
a shifted version of the reference histogram d (X) is selected:

Ry = max [p (d(X), dy(X + A)) , p (d(=X), dy(X + 4))] (7)

where g = 1,..., G and d(—X) is the flipped version of the distance function to
account for the possibility for the hand to have either the palm or the dorsum
facing the camera. The computation is performed for each of the candidate
gesture, thus obtaining a set F* containing a different feature value f/ for each
of them. Note how, ideally, the correlation with the correct gesture should have
a larger value than the others.

5.4 Curvature features

This feature set describes the curvature of the hand edges on the depth map.
A scheme based on on integral invariants [15,13] has been used. The approach
for the computation of this feature is basically the same of [8]. The main
steps of the approach are here briefly recalled. The curvature feature extractor
algorithm takes as input the edge points of the palm and fingers regions and
the binary mask Bpang corresponding to the hand samples on the depth map.
A set of circular masks with increasing radius is then built on each edge sample
(for the results S = 25 masks with radius varying from 0.5¢m to 5¢m have
been used, the radius correspond to the scale level at which the computation
is performed).

Title Suppressed Due to Excessive Length 13

The ratio between the number of samples falling in Bjgy,q for each circular
mask and the size of the mask is computed. The values of the ratios (i.e., curva-
tures) range from 0 (extremely convex shape) to 1 (extremely concave shape),
with 0.5 corresponding to a straight edge. The [0, 1] interval is quantized into
N bins. Feature values fy . collects how many edge samples have a curvature
of a value inside bin b at scale level s. The values are finally normalized by
the number of edge samples and the feature vector F¢ with B x S entries is
built. For faster processing, the circular masks can be replaced with simpler
square masks and then integral images can be used for the computation. This
approximation, even if not perfectly rotation invariant, is significantly faster
and the performance loss is very small.

5.5 Connected components features

Another useful clue used for gesture recognition schemes [20] is the convex
hull of the hand shape in the depth map. The idea is to look for regions
within the convex hull of the hand shape but not belonging to the hand. These
typically correspond to the empty regions between the fingers and those are
a good clue to recognize the fingers arrangement. Let S = Cp(B) \ B be
the difference between the convex hull and the hand shape (see Fig. 5 a and
b). Region S is made of a few connected components S;. The size of each
region S; is compared with a threshold T,. and the ones that are smaller than
the threshold are discarded (this allows to avoid considering in the processing
small components due to noise, as the one shown on the right of the hand in
Fig. 5 c¢). The output of this procedure is the set S.. = {S; : S; > Te..} (Fig.
5 ¢ and d).

The feature set is given by the ratios between the area of each connected
components and the convex hull area, i.e.:

ce area(S;|S; € Scc)
fit= area(Cryu(B))) ()

where the areas have been sorted according to the angle of their centroid
with respect to the hand direction (i.e., from the thumb to the pinky). These
numbers are then collected into vector F<°.

6 Calibration

Since the employed acquisition setup jointly exploits the 3D measures from
two different sensors, i.e, the Leap Motion device and the depth sensor (with
optionally a color camera rigidly attached to the depth one), it is necessary to
jointly calibrate the two devices in order to bring the measures of one sensor in
the reference system of the other. The proposed approach is independent from
the relative position of the two sensors, however notice that a set of practical
limitations of the sensors limits the choices in the setup construction:

14 Giulio Marin et al.

a) b) <) d)

Fig. 5 Areas of the connected components: a) and b): difference between the convex hull
and the hand shape; b) connected components in set Scc highlighted in green.

— The Leap Motion must be placed under the hand, typically on the desk
looking up. Furthermore its operating range is limited.

— The depth sensor has typically a minimum distance that it can acquire.
This distance depends on the employed sensor, e.g., the Kinect we used
for the results section has the limitation that it cannot acquire objects
closer than 50[cm] to the sensor. The maximum distance is instead typically
bigger than the Leap Motion one.

— If the palm plane is roughly perpendicular to the optical axis of the depth
camera more depth samples are acquired for the hand leading to better
performances

— Inside the working range, also having the sensor closer to the hand leads
to more accurate data

Considering all the previous observations, we found that the setup that
allows to obtain the best performance is the one shown in Fig.6. As it is
possible to see from the figure, in the proposed setup the Leap Motion has to
be put under the performed gesture, while the depth sensor has been placed
a little more forward, facing the user, as in most gesture acquisition systems
using this sensor.

The aim of the calibration procedure is to estimate the extrinsic parame-
ters of the two devices, i.e., the coordinate system transformation between the
reference systems of the two devices, or equivalently the position of one sen-
sor with respect to the other one. Notice that our implementation for testing
the algorithm uses the Kinect sensor but the proposed calibration algorithm
remains valid also for other depth cameras. In particular, our approach does
not require an additional color stream. Furthermore, the two devices need also
to be independently calibrated in order to correctly locate points in the 3D
space. The Leap Motion software already provides a calibration tool, while the
Kinect requires an external calibration, e.g., it is possible to use the approach
of [10], in which both the color and the depth map from the sensor are used
to extract intrinsic and extrinsic parameters. Our gesture recognition scheme
requires to associate to each point in the scene a depth value, therefore only
the projection matrix of the depth camera will be used. Given the two sensors

Title Suppressed Due to Excessive Length 15

Fig. 6 Acquisition setup.

independently calibrated, for every acquisition we get two sets of data describ-
ing the scene. The Leap Motion provides a point cloud with up to 6 points,
including one for the palm center and up to 5 for the fingertips. Data retrieved
from the Kinect consist instead in a full frame depth map with an associated
color image (the latter is not used in the proposed approach).

In order to find the roto-translation between the two sensors, the standard
procedure requires to have the 3D coordinates of a set of points in the two
coordinate systems. From the description of Leap Motion data (Section 4), it
naturally follows that the only calibration clue that can be used is the hand
itself. We decided to use the open hand gesture as the calibration tool (i.e.,
gesture G9 of the results database, see Fig. 10). This is because the Leap Mo-
tion software is not able to provide a one-to-one map between fingertips and
real fingers, it just gives the positions in a random fashion: when 5 fingers are
detected, though, we are quite sure that all the fingertips have been detected
and with a few pre-processing they can be ordered and then associated to the
correct fingers. The same points then need to be detected also from the depth
camera. The two sets of points will then be used inside the calibration algo-
rithm. The proposed calibration of a Leap Motion and a depth sensor allows
to easily make the two devices working together, without the need of external
tools like checkerboards or other classic calibration devices. This is a key re-
quirement for a human-computer interaction system. Moreover, the proposed
approach allows to easily set up a gesture recognition system exploiting the
two devices, without the need of having them rigidly attached to a fixed struc-
ture. Whenever one of the two devices is moved, the system re-calibration
only requires the acquisition of a couple of frames of the user’s open hand.
Notice that a new calibration is mandatory only if the devices are moved, and
is optional when a new user starts to interact with the system.

16 Giulio Marin et al.

6.1 Extraction of fingertips position from Leap Motion data

Starting from the hand orientation and the palm center estimated from the
Leap Motion, the palm plane can be extracted and the fingertips projected on
it. We decided to use the hand direction as a reference and then to associate to
the thumb the fingertip with the most negative angle between the principal axis
and the projected fingertip, and to the other fingers the remaining fingertips
by increasing angular values, up to the fingertip with the greatest angular
value associated to the pinky. Section 4 presents a description of the data
acquired from the sensor and in particular provides more details on the angle
computation. After this operation we obtain a set of 5 points X, = X1, ..., X3
describing the fingertips in the Leap Motion coordinate system.

6.2 Extraction of fingertip positions from depth data

For the depth sensor, instead, a more complex approach is required to extract
fingertip positions from the acquired depth image. In order for the calibration
process to be completely automatic, we decided to avoid the need to manually
selecting points, relying instead on an automatic fingertips extraction algo-
rithm. The idea is to extract the hand region from the acquired depth stream
and then to process the hand contour to detect fingertips. Notice that the hand
extraction scheme of Section 5.1 exploits also the Leap Motion data so it can
not be directly applied in this case. The extraction of the hand has instead
been performed using the approach of [8] where the hand center is initially
estimated by using a Gaussian filter on the samples density and then refined
by fitting a circle on the palm. Finally PCA is used for the computation of the
hand orientation.

Then the hand contour is analyzed using the same approach used for the
distance features in Section 5. The distance d of each point X of the hand
contour from the palm center is computed, thus obtaining the function d(X).
The fingertips are then assumed to be the points of the fingers at the maximum
distance from the center. Given the function d(X), its local maxima are the
points X where f/(X) = 0 and f”(X) < 0. Due to the inaccuracy in the
depth image, the hand contour is usually irregular and needs to be smoothed
before searching for the local maxima. In addition, only the 5 highest maxima
are used and a minimum distance between two candidates is guaranteed in
order to avoid multiple detections on the same finger. Once these points have
been detected, the correspondent values in the depth image are selected and
through the projection matrix of the depth camera they are back-projected
in the 3D space obtaining the 3D coordinates of the fingertips in the depth
camera coordinate system Xp = {X}, ..., X3 1. Fig. 7 shows an example of
function d(X), of the detected local maxima and of the relative fingertips in the
depth image. It is worth noticing that the Leap Motion API does not specify
which actual point of the finger shape is returned as the fingertip, therefore
we decided to consider as fingertip the farthest point of the finger.

Title Suppressed Due to Excessive Length 17

Distance
o
2

160 180

b)

Fig. 7 Hand contour and detected fingertips: a) distance of each point of the hand contour,
the red circles are the detected local maxima; b) projected local maxima on the hand mask
of the depth image.

6.3 Roto-translation estimation

The final step is the computation of the roto-translation that links the two
reference systems. In order to be more robust against noise, even if a single
frame is theoretically sufficient we acquire several frames. Let us denote with
X1 r and Xp ¢ the sets of points acquired by the Leap Motion and the depth
camera respectively, each relative to each frame f = 1, ..., F. With the acquired
fingertip 3D positions, the goal is to find the roto-translation parameters R and
t that minimize the average reprojection error of all the considered fingertip
points in all the acquired frames:

F 5
(R,t) = argmin > S IRX ; + ¢~ X 1|1 (9)

R, .
f=11i=1

i.e., to find the best roto-translation that brings the point cloud X7, to the point
cloud Xp (the point clouds X7, and X'p are the union of all the points clouds of
the considered frames). Since the corresponding set of equations corresponds
to an over-determined system and the measures are affected by noise, we used
a RANSAC robust estimation approach to solve it. From our tests we found
out that the assumption of considering as fingertip the extreme point of the
finger is quite a valid assumption and that the mean error obtained from the
square root of (9) for all the tested people is about 9 [mm].

7 Gesture classification

The approaches of Sections 4 and 5 produce eight different feature vectors,
four for the Leap Motion data and four for the depth data. Each vector de-
scribes some relevant clues regarding the performed gesture and in order to
perform the recognition, two different classification schemes have been used,

18 Giulio Marin et al.
< e

2 3D Positions
k-] ===

=

Qo

3 Xe

-

- Distances

o ——]

X Jos)

Fig. 8 Feature vectors extracted from the two devices.

one based on a multi-class Support Vector Machine classifier and one based
on Random Forests. There are 8 feature vectors grouped into the two sets
Vieap = [F“,Fd,Fe,Fp} that contains all the features extracted from Leap
Motion data and Vgeps = [F!,F?,F¢ F| that collects the features com-
puted from depth information. Feature vectors extracted from the two devices
are visually summarized in Fig. 8. Each vector can be used alone or together
with any of the other descriptors. The combination of multiple feature de-
scriptors can be obtained by simply concatenating the vectors corresponding
to the selected features. The target of the approach is to classify the performed
gestures into G classes, one for each gesture in the considered database.

The first classification scheme exploits a multi-class SVM classifier [4] based
on the one-against-one approach. In the employed scheme a set of G(G —1)/2
binary SVM classifiers are used to test each class against each other. The
output of each of them is chosen as a vote for a certain gesture. For each sample
in the test set, the gesture with the maximum number of votes is selected as
the output of the classification. In particular a non-linear Gaussian Radial
Basis Function (RBF) kernel has been selected and the classifier parameters
have been tuned exploiting grid search and cross-validation on the training
set. Let us consider a training set containing data from M users. The space
of parameters (C,) of the RBF kernel is divided by a regular grid. For each
couple of parameters the training set is divided into two parts, one containing
M — 1 users for training and the other with the remaining user for validation
and performance evaluation. The procedure is repeated M times changing
the user in the validation set. The couple of parameters that gives the best
accuracy on average is selected as the output of the grid search. Finally the
SVM has been trained on all the M users of the training set with the optimal
parameters.

Alternatively we also tested a second classification scheme exploiting Ran-
dom Forests (RF) [3]. Each tree has been trained on a random sampling of the
training set leaving out one third of the sampled vectors for the estimation of
the out-of-bag error. The only model parameter to optimize, differently from
the pair for the RBF kernel of SVM, is the size m of the feature subset in
each node. The parameter controls a trade-off between the tree correlation
and the predictive “strength” of each tree, and may be easily found by ana-
lyzing the out-of-bag error. The size of the forest, is not a critical parameter
since the classification error remains relatively stable if a sufficient number of
trees is used. In our case we trained a Random Forest of 100 decision trees

Title Suppressed Due to Excessive Length 19

with a default value of m = /|F| with |F| the length of the feature vectors
in the dataset (JF| = 435 when all the considered features are used). The
implementation of the Random Forest classifier provided by Matlab has been
used.

Finally, since the considered vectors contain a large number of elements
we also considered the use of feature selection schemes in order to reduce the
number of features and avoid the usage of useless or redundant descriptors.
Three different feature selection schemes have been tested. The first uses the
F-score approach [5], i.e., the F-score is computed for each feature and the
most discriminative features according to this measure are selected (i.e., the
features with an F-score bigger than a pre-defined threshold). Two different
thresholds have been used in order to produce two subsets with 16 and 128
features.

The second scheme is based on the Forward Sequential Selection (FSS)
algorithm [1]. In this case, starting from the empty set, at each step a new
feature is added to the selected ones by choosing the one that allows to obtain
the larger improvement in the classification accuracy with respect to the pre-
vious step (the SVM classifier previously described has been used to evaluate
the classification accuracy).

Finally a third feature selection scheme exploiting Random Forests has
been tested. In this case a classification is performed with the approach of [3]
and the out-of-bag error is estimated. Then, in order to measure the impor-
tance of the various features, the values of one of the features are permuted
and the out-of-bag error is estimated again. The procedure is repeated for
each feature and the importance of each feature is given by the normalized
average increase of the out-of-bag error after the permutation. This approach
is detailed in [5]. The number of selected features is the same of the previous
cases in order to allow a fair comparison.

8 Experimental results

The results have been obtained using the setup depicted in Fig. 6. A Leap
Motion device and a Kinect have been used to jointly acquire the data relative
to the performed gestures. The first generation Kinect depth camera has been
selected due to its large diffusion, however any other depth camera, e.g., Cre-
ative’s Senz3D or the second generation Kinect can be used in the proposed
approach. The two devices have been jointly calibrated using the approach of
Section 6 and synchronized in time. A software synchronization scheme has
been used: its precision is sufficient for the recognition of gestures based on
static poses like the ones considered in this paper. The considered dataset of
gestures contains the 10 different gestures shown in Fig. 10 executed by 14
different people. Each user has repeated each gesture 10 times for a total of
1400 different data samples. Up to our knowledge this is the first database
containing both depth data and Leap Motion data and it is available on our
website at the url http://1ttm.dei.unipd.it/downloads/gesture. In order

20 Giulio Marin et al.

to compute the results we split the dataset in a train and a test set by using
the leave-one-person-out approach of Section 7, i.e., we placed in the training
set the data from all the users except one and in the test set the data from the
remaining user. Since the amount of data associated to a single user (100 sam-
ples) is not sufficient for a reliable assessment of the performances we executed
14 completely independent tests changing each time the person in the test set,
i.e., as shown in Fig. 9, in each test we used a train set with 13 people and a
test set with a single person that is the remaining one. The results of the 14
tests have been averaged to obtain the final accuracy. Note that this is a more
challenging test than the standard leave-one-out approach, since not only it
guarantees that the data in the train set is different from the ones in the test
set as in the standard case, but also that the train set does not contain any
sample from the user in the test set. This means that the system should be
able to classify the data from the user in the test set from what it has learned
from users different from the one that is using it, a typical situation in real
setups. This approach has been used to train both classifiers, i.e., the Support
Vector Machines (SVM) one and the one exploiting Random Forests (RF) as
explained in Section 7. In this section we will firstly report the performance
that can be obtained by using the SVM classifier (that is the better perform-
ing one) with the various feature types of each of the two sensors alone. Then
the results that can be obtained by combining the two sensors will be pre-
sented. Finally we will show the accuracy that can be obtained with various
combinations of classifiers (SVM or RF) and of feature selection strategies.

Test set Training set

Y YL YIYIIYIIIIY

Person 1 Person 2 Person 14

Training set Test set Training set

e LY LTYYYLTYIYIY

Person 1 Person 2 Person 14

Training set Test set

Y LY LT XYY YTYY I

Person 1 Person 2 Person 14

Fig. 9 The results are the average of 14 independent tests each one performed by placing
a person in the test set and the remaining 13 in the train set.

Let us start from the Leap Motion device. Table 1 shows the accuracy
obtained using the classification algorithm of Section 7 on the data from this
sensor. The 3D positions of the fingertips give a very good representation of
the arrangement of the fingers and allow to obtain an accuracy of 81.5%.
They allow to recognize the majority of the gestures even if the recognition of

Title Suppressed Due to Excessive Length 21

Fig. 10 Gestures from the American Sign Language (ASL) contained in the database that
has been acquired for experimental results.

some gestures is not always optimal, as it is possible to see from the confusion
matrix in Table 2. For example, gestures G2 and G3 are sometimes confused
with gesture G1. This is due mostly to the false positives returned by the Leap
Motion sensor that sometimes detects a raised finger in gesture G1.

Feature set Accuracy
Fingertips 3D positions (FP) 81.5%
Fingertips distances (F?) 76.1%
Fingertips angles (F%) 74.2%
Fingertips elevations (F¢) 73.1%
F?+F® + F° 80.9%

Table 1 Performance with the Leap Motion data.

G1 G2 G3 G4 G5 G6 G7 G8 G9 G10
G1]0.893 0.021 0.064 0.021
G2 | 0.300 0.564 0.136
G3]0.143 0.093 0.700 0.043 0.021
G4 |0.029 0.900 0.050 0.007 0.014
G5 | 0.050 0.050 0.029 0.021 0.757 0.014 0.021 0.021 0.036
G6 | 0.007 0.029 0.029 0.836 0.014 0.014 0.071
G70.014 0.036 0.079 0.814 0.029 0.007 0.021
G8 0.036 0.029 0.029 0.829 0.079
G9 0.007 0.007 0.014 0.971
G10 0.014 0.036 0.007 '0.050 0.007 0.886

Table 2 Confusion matrix for the 3D positions from the Leap Motion data. Yellow cells
represent true positive, while gray cells show false positive with failure rate greater than

5%.

Fingertip distance features allow to obtain an accuracy of about 76%: they
are able to recognize most gestures but there are some critical issues, e.g. G2
and G3 are easily confused. A relevant issue for this descriptor is the limited
accuracy of the hand direction estimation from the Leap Motion that does not

22 Giulio Marin et al.

allow a precise match between the fingertips and the corresponding angular
regions (i.e., it is not easy to recognize which finger has been raised if a single
finger is detected). The other two features have slightly lower performance. The
angles allow to obtain an accuracy of 74.2% and a similar result (73%) can be
obtained from the elevations alone. The last three features can be combined
together since they capture different properties of the fingers arrangement.
Their combination leads to an accuracy of almost 81%, better than any of the
three features alone. This result is quite similar to the performance of the 3D
positions, consistently with the fact that the two distances from the center and
the plane, together with the angle can be viewed as a different representation
of the position of a point in 3D space.

Results from the Leap Motion data are good but not completely satisfac-
tory. Better results can be obtained from the depth data, that offers a more
informative description of the arrangement of the hand in 3D space. Notice
that depth contains the complete 3D structure of the hand but it is also a
lower-level scene description and a larger amount of processing is needed in
order to extract the features from it.

Feature set Accuracy
Distance features (F7) 94.4%
Correlations features (F*) 68.7%
Curvature features (F¢) 86.2%
Convex Hull features(Fc¢) 70.5%
F 4+ F° 96.35%

Table 3 Performance with the depth data.

Table 3 shows the results obtained from the depth information acquired
with a Kinect. Distance features are the best performing descriptor and allow
to obtain an accuracy of 94.4%, much higher than the one that can be obtained
from the Leap Motion sensor. This descriptor alone allows to recognize all the
gestures with an high accuracy.

Correlation features have lower performance (68.7%). This descriptor is
also based on the distances of the hand samples from the hand centroid, but
compared to the distances they contain a less informative description (the
feature vector size is also much smaller) that is not sufficient for an accurate
recognition. However thanks to the small descriptor size and very fast com-
putation time they still can be considered for applications where the running
time and the memory footprint of the descriptors are critical.

Another very good descriptor is the curvature of the hand contour. It al-
lows a correct recognition of 86.2% of the considered gestures. Only distance
features outperforms this descriptor. It has also the advantage that it does
not rely on the computation of the hand center and orientation, making it
very useful in situations where an estimation of these parameters is difficult.
Finally, the convex hull features have an accuracy of 70.5%, slightly better
than the correlations even if not too impressive. Again its small size and sim-

Title Suppressed Due to Excessive Length 23

ple computation makes this descriptor interesting when a trade-off between
performance and accuracy is needed.

The combination of multiple descriptors allows to improve the performance,
e.g., by combining the two best performing descriptors, distances and curva-
tures a quite impressive accuracy of 96.35% can be obtained as it is possible
to see also from the corresponding confusion matrix (Table 4). This is an in-
dication that the different descriptors capture different properties of the hand
arrangement and contain complementary information.

G1 G2 G3 G4 G5 G6 G7 G8 G9 G10
G1/0.971 0.021 0.007
G2 |0.007 0.971 0.021
G3 | 0.007 0.986 0.007
G4 0.036 0.964
G5 0.007 0.986 0.007
G6 0.036 0.036 0.893 0.014 0.021
G7 0.014 0.986
G8 0.007 0.014 0.964 0.007 0.007
G9 0.007 0.007 0.986
G10 0.007 0.043 0.021 0.929

Table 4 Confusion matrix for the combined use of distance and curvature descriptors from
depth data. Yellow cells represent true positive.

Feature set Accuracy
F! | F¢ + FP 96.5%

Table 5 Performance from the combined use of the two sensors.

Descriptors based on the Leap Motion data and on the depth data can
also be combined together. In the last test we combined the 3D positions
from the Leap Motion with the two best descriptors from depth data, i.e.,
the distances and the curvatures. The obtained accuracy is 96.5% as shown
in Table 5. The corresponding confusion matrix (Table 7) shows also how the
recognition rate is very high for all the considered gestures. The improvement
with respect to depth data alone is limited, as expected since the accuracy from
the 3D positions of the Leap Motion is much lower. However consider that Leap
Motion data are used also for the computation of the depth-based features
(i.e., for the initial centroid and hand orientation) and allow to reduce the
computational time as it will be shown at the end of this section. Furthermore
Leap Motion data allow a more reliable extraction of the hand in some complex
settings, a feature that is not possible to appreciate on the employed dataset.
Finally the Leap Motion provides a few but very relevant features and allows
to obtain a good accuracy with a smaller number of features with respect to
the depth-based approach.

24 Giulio Marin et al.

A comparison with [16], that presents an earlier version of this approach,
shows how the proposed algorithm clearly outperform the previous method
(see Table 6). By exploiting both sensors, the accuracy is 96.5% against 91.3%
of the previous scheme, a quite relevant improvement. This result is mostly
due to the improvement in the feature extraction scheme from depth data,
that has an accuracy of 96.3% instead of 89.7% of the previous scheme. This
proves the reliability of the new depth features extraction algorithm exploiting
the Leap Motion data and a more refined distance features extraction scheme.

Feature set Accuracy
Marin et Al. [16] | Proposed method
Leap Motion features 80.9% 81.5%
Kinect features 89.7% 96.3%
Leap Motion + Kinect features 91.3% 96.5%

Table 6 Comparison between the performances of the proposed approach and of [16].

G1 G2 G3 G4 G5 G6 G7 G8 G9 G10
G1]0.979 0.021

G2 |0.014 0.964 0.021

G3 | 0.007 0.007 0.986

G4 0.029 0.971

G5 | 0.007 0.986 0.007

G6 0.029 0.043 0.886 0.007 0.036
G7 0.014 0.986

G8 0.014 0.014 0.957 0.007 0.007
G9 0.007 0.007 0.986

G10 0.007 0.029 0.014 0.950

Table 7 Confusion matrix for the combined use of Leap Motion and depth data. Yellow
cells represent true positive.

In Section 7 a second classification scheme based on Random Forests has
been presented. This approach is simple and fast and does not require the
complex grid search procedure for the optimization of the parameters. On
the other side this classifier has slightly lower performances than the SVM
approach and with the complete feature set is able to achieve an accuracy
of 94.7%, a very good result but about 2% lower than the one of the SVM
classifier.

The proposed approach makes use of a large number of features, with
the complete feature set each vector has 435 elements. Furthermore there
is also a much larger number of feature values extracted from the Kinect
data with respect to the ones from the Leap Motion. For these reasons it
is reasonable to employ a feature selection scheme to reduce the number of
features and to better balance the information coming from the two sensors. As
already described three different feature selection strategies have been tested,
i.e., F-Score, Sequential Feature Selection and Random Forests. All the three

Title Suppressed Due to Excessive Length 25

methods have been tested both with the SVM and the RF classifier. For each
combination of feature selection strategy and classifier we selected the 16 and
128 best features. The results are presented in Table 8. The table shows how by
properly selecting the best features it is possible to greatly reduce the number
of employed features with only a limited impact on the performances.

The F-Score feature selection method is the simplest and fastest but also
the one leading to the worst results. In particular if the number of features
is reduced to 128 (about one third of the original number of features), this
approach is still able to achieve acceptable performances with a loss of about
2% on the accuracy of the SVM classifier. If the number of features is further
reduced to 16 this approach is instead not able to properly select a good
combination of features, mostly due to the fact that it does not properly
account for the correlation between the different features. In this case there is
a huge performance drop with an accuracy of 60%, more than 36% less than
the one obtained with all the features. If the F-Score approach is used together
with the Random Forests classifier the results are very similar with losses on
the accuracy of 2.1% (128 features) and of 37.2% (16 features).

The sequential feature selection algorithm is instead the best performing
one when the SVM classifier is used. The accuracy is very close to the original
value with both 128 and 16 features. Even by using only 16 features the accu-
racy is only 0.7% less than the optimal value obtained by using all the features.
This is a quite impressive result and opens the way to several optimization
and simplification strategies for the proposed approach. Results are very good
also for the Random Forest classifier, the loss in this case is 0.6% with 128
features and 4% with 16 features. Notice how in this case the reduction to 16
features has a more noticeable impact.

Finally Random Forests can be used also for the feature selection. If they
are used together with the SVM classifier the performances are very good but
slightly worse than the ones of the sequential feature selection scheme, specially
if 16 features are used. In this case there is a loss of about 3%, much better
than the F-score but not so good as the sequential feature selection result.
When, instead, Random Forests are used for both the feature selection and
the classification, results are very similar to the sequential feature selection
strategy (in fact even better although with a very small difference), according
to the idea that having the same approach used for both steps also allows to
simplify and speed-up the training procedure.

Concluding, the best solution for optimal performances is to use the Se-
quential Feature Selection scheme together with the SVM classifier. The Ran-
dom Forests for both training and classification can be used when a simpler
and faster training phase is needed.

Finally, notice how the proposed approach is particularly suitable for real
time gesture recognition schemes. The current implementation in C++ (that
has not been fully optimized) has been tested on a not too performing desk-
top PC with an Intel Q6600 processor and 4Gb of RAM and real-time perfor-
mances have been obtained. The initial hand detection phase, that took 46ms
in the implementation of the approach of [8] and that we used to start the de-

26 Giulio Marin et al.

SVM RF
Feature selection strategy | 435 [128 [16 435 [128 [16
F-Score 94.5% | 60.1% 92.6% | 57.5%
Sequential 96.5 | 95.9% | 95.8% | 94.7 | 94.1% | 90.7%
Random Forests 95.8% | 93.7% 94.2% | 90.8%

Table 8 Performances with different combinations of classification algorithms and feature
selection strategies.

velopment of this work can now be completed in a few milliseconds thanks to
the exploitation of the Leap Motion centroid. Notice also that the processing
of color data for the check on skin color compatibility has also been removed
in this work since it was used only in the initial phase. The extraction of palm
and fingers regions with the circle fitting requires about 25ms. The orienta-
tion of the hand is also directly computed from the Leap Motion data (this
step took about 4ms in the old approach). Feature extraction is quite fast,
the most demanding ones are curvature descriptors that take about 28 ms to
be computed while the other features are way faster to be computed. Finally
SVM classification is performed in just 1ms. This allows to obtain a frame
rate of about 15 fps if depth data are used with respect to the 10 fps achieved
by the previous approach on the same computer. Gesture recognition with the
Leap Motion data alone is very fast (just a few milliseconds) but performances
are also lower.

9 Conclusions

In this paper an effective gesture recognition pipeline for the Leap Motion, for
depth sensors and for their combined usage has been proposed. The different
nature of data provided by the Leap Motion (i.e., a higher level but more
limited data description) with respect to the depth cameras, poses challenging
issues for which effective solutions have been presented. An ad-hoc calibra-
tion scheme allowed to jointly calibrate the Leap Motion with depth sensors.
The limited number of points computed by the first device makes this task
quite challenging but the proposed scheme allows to obtain a good accuracy
sufficient for the joint exploitation of the data from the two devices. Several
different feature sets have been presented for both sensors. Four different types
of features have been extracted from the Leap Motion while different types of
descriptors have been computed from the depth data based on different clues
likes the distances from the hand centroid, the curvature of the hand contour
and the convex hull of the hand shape. It has also been shown how to exploit
Leap Motion data to improve the computation time and accuracy of the depth
features.

Experimental results have shown how the data provided by Leap Motion,
even if not completely reliable, allows to obtain a reasonable overall accuracy
with the proposed set of features and classification algorithms. A very good
accuracy can be obtained from depth data that is a more complete description

Title Suppressed Due to Excessive Length 27

of the hand shape, in particular distance and curvature descriptors allow to
obtain almost optimal performances. Performances remain very good even
when the classification algorithm is changed or feature selection approaches
are used to reduce the dimensionality of the feature vectors.

Future work will address the the recognition of dynamic gestures with the
proposed setup and improved schemes for the detection and localization of the
fingertips jointly exploiting the data from the two sensors.

References

1. D.W. Aha and R.L. Bankert. A comparative evaluation of sequential feature selection
algorithms. In Doug Fisher and Hans-J. Lenz, editors, Learning from Data, volume 112
of Lecture Notes in Statistics, pages 199-206. Springer New York, 1996.

2. L. Ballan, A. Taneja, J. Gall, L. Van Gool, and M. Pollefeys. Motion capture of hands
in action using discriminative salient points. In Proc. of ECCV, October 2012.

3. L. Breiman. Random forests. Machine learning, 45(1):5-32, 2001.

4. Chih-Chung Chang and Chih-Jen Lin. LIBSVM: A library for support vector machines.
ACM Trans. on Intelligent Systems and Technology, 2:27:1-27:27, 2011.

5. Yi-Wei Chen and Chih-Jen Lin. Combining svms with various feature selection strate-
gies. In Feature extraction, pages 315—-324. Springer, 2006.

6. C. Dal Mutto, P. Zanuttigh, and G. M. Cortelazzo. Time-of-Flight Cameras and Mi-
crosoft Kinect. SpringerBriefs in Electrical and Computer Engineering. Springer, 2012.

7. F. Dominio, M. Donadeo, G. Marin, P. Zanuttigh, and G.M. Cortelazzo. Hand gesture
recognition with depth data. In Proceedings of the 4th ACM/IEEE international work-
shop on Analysis and retrieval of tracked events and motion in imagery stream, pages
9-16. ACM, 2013.

8. F.Dominio, M. Donadeo, and P. Zanuttigh. Combining multiple depth-based descriptors
for hand gesture recognition. Pattern Recognition Letters, 50:101—111, December 2014.

9. Cesar Guerrero-Rincon, Alvaro Uribe-Quevedo, Hernando Leon-Rodriguez, and Jong-
Oh Park. Hand-based tracking animatronics interaction. In Robotics (ISR), 2018 44th
International Symposium on, pages 1-3, 2013.

10. D. Herrera, J. Kannala, and J. Heikkila. Joint depth and color camera calibration with
distortion correction. IEEE Trans. Pattern Anal. Mach. Intell., 34(10):2058-2064, 2012.

11. C. Keskin, F. Kirac, Y.E. Kara, and L. Akarun. Real time hand pose estimation using
depth sensors. In ICCV Workshops, pages 1228 —1234, nov. 2011.

12. D.I. Kosmopoulos, A. Doulamis, and N. Doulamis. Gesture-based video summarization.
In Image Processing, 2005. ICIP 2005. IEEE International Conference on, volume 3,
pages 111-1220-3, 2005.

13. N. Kumar, P.N. Belhumeur, A. Biswas, D.W. Jacobs, W.J. Kress, I. Lopez, and J.V.B.
Soares. Leafsnap: A computer vision system for automatic plant species identification.
In Proc. of ECCYV, October 2012.

14. A. Kurakin, Z. Zhang, and Z. Liu. A real-time system for dynamic hand gesture recog-
nition with a depth sensor. In Proc. of EUSIPCO, 2012.

15. S. Manay, D. Cremers, Byung-Woo Hong, A.J. Yezzi, and S. Soatto. Integral invariants
for shape matching. IEEE Trans. on PAMI, 28(10):1602 —1618, 2006.

16. G. Marin, F. Dominio, and P. Zanuttigh. Hand gesture recognition with leap motion and
kinect devices. In Proceedings of IEEE International Conference on Image Processing
(ICIP), Paris, France, 2014.

17. G. Marin, M. Fraccaro, M. Donadeo, F. Dominio, and P. Zanuttigh. Palm area detection
for reliable hand gesture recognition. In Proceedings of MMSP 2013, 2013.

18. M. Mohandes, S. Aliyu, and M. Deriche. Arabic sign language recognition using the
leap motion controller. In Industrial Electronics (ISIE), IEEE 23rd International Sym-
posium on, pages 960-965, June 2014.

19. I. Nigam, M. Vatsa, and R. Singh. Leap signature recognition using hoof and hot
features. In Proceedings of IEEE International Conference on Image Processing (ICIP),
Paris, France, 2014.

28

Giulio Marin et al.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

F. Pedersoli, N. Adami, S. Benini, and R. Leonardi. Xkin - extendable hand pose
and gesture recognition library for kinect. In In: Proceedings of ACM Conference on
Multimedia 2012 - Open Source Competition, Nara, Japan, Oct. 2012.

L.E. Potter, J. Araullo, and L. Carter. The leap motion controller: A view on sign lan-
guage. In Proceedings of the 25th Australian Computer-Human Interaction Conference:
Augmentation, Application, Innovation, Collaboration, OzCHI ’13, pages 175-178, New
York, NY, USA, 2013. ACM.

Z. Ren, J. Meng, and J. Yuan. Depth camera based hand gesture recognition and its
applications in human-computer-interaction. In Proc. of ICICS, pages 1 -5, 2011.

Z. Ren, J. Yuan, and Z. Zhang. Robust hand gesture recognition based on finger-earth
mover’s distance with a commodity depth camera. In Proc. of ACM Conference on
Multimedia, pages 1093-1096. ACM, 2011.

J. Shotton, A. Fitzgibbon, M. Cook, T. Sharp, M. Finocchio, R. Moore, A. Kipman,
and A. Blake. Real-time human pose recognition in parts from single depth images. In
Computer Vision and Pattern Recognition (CVPR), 2011 IEEE Conference on, pages
1297-1304. IEEE, 2011.

P. Suryanarayan, A. Subramanian, and D. Mandalapu. Dynamic hand pose recognition
using depth data. In Proc. of ICPR, pages 3105 —3108, aug. 2010.

S. Vikram, L. Li, and S. Russell. Handwriting and gestures in the air, recognizing on
the fly. In ACM Conference on Human Factors in Computing Systems (CHI) Extended
Abstracts, 2013.

J.P. Wachs, M. Kolsch, H. Stern, and Y. Edan. Vision-based hand-gesture applications.
Commun. ACM, 54(2):60-71, February 2011.

J Wang, Z. Liu, J. Chorowski, Z. Chen, and Y. Wu. Robust 3d action recognition with
random occupancy patterns. In Proc. of ECCV, 2012.

F. Weichert, D. Bachmann, B. Rudak, and D. Fisseler. Analysis of the accuracy and
robustness of the leap motion controller. Sensors, 13(5):6380-6393, 2013.

