79 research outputs found

    FarSense: pushing the range limit of WiFi-based respiration sensing with CSI ratio of two antennas

    Get PDF
    International audienceThe past few years have witnessed the great potential of exploiting channel state information retrieved from commodity WiFi devices for respiration monitoring. However, existing approaches only work when the target is close to the WiFi transceivers and the performance degrades significantly when the target is far away. On the other hand, most home environments only have one WiFi access point and it may not be located in the same room as the target. This sensing range constraint greatly limits the application of the proposed approaches in real life. This paper presents FarSense-the first real-time system that can reliably monitor human respiration when the target is far away from the WiFi transceiver pair. FarSense works well even when one of the transceivers is located in another room, moving a big step towards real-life deployment. We propose two novel schemes to achieve this goal: (1) Instead of applying the raw CSI readings of individual antenna for sensing, we employ the ratio of CSI readings from two antennas, whose noise is mostly canceled out by the division operation to significantly increase the sensing range; (2) The division operation further enables us to utilize the phase information which is not usable with one single antenna for sensing. The orthogonal amplitude and phase are elaborately combined to address the "blind spots" issue and further increase the sensing range. Extensive experiments show that FarSense is able to accurately monitor human respiration even when the target is 8 meters away from the transceiver pair, increasing the sensing range by more than 100%. 1 We believe this is the first system to enable through-wall respiration sensing with commodity WiFi devices and the proposed method could also benefit other sensing applications

    One Clock to Rule Them All: A Primitive for Distributed Wireless Protocols at the Physical Layer

    Get PDF
    Implementing distributed wireless protocols at the physical layer today is challenging because different nodes have different clocks, each of which has slightly different frequencies. This causes the nodes to have frequency offset relative to each other, as a result of which transmitted signals from these nodes do not combine in a predictable manner over time. Past work tackles this challenge and builds distributed PHY layer systems by attempting to address the effects of the frequency offset and compensating for it in the transmitted signals. In this paper, we address this challenge by addressing the root cause - the different clocks with different frequencies on the different nodes. We present AirClock, a new wireless coordination primitive that enables multiple nodes to act as if they are driven by a single clock that they receive wirelessly over the air. AirClock presents a synchronized abstraction to the physical layer, and hence enables direct implementation of diverse kinds of distributed PHY protocols. We illustrate AirClock's versatility by using it to build three different systems: distributed MIMO, distributed rate adaptation for wireless sensors, and pilotless OFDM, and show that they can provide significant performance benefits over today's systems

    Location Fingerprint Extraction for Magnetic Field Magnitude Based Indoor Positioning

    Get PDF
    Smartphone based indoor positioning has greatly helped people in finding their positions in complex and unfamiliar buildings. One popular positioning method is by utilizing indoor magnetic field, because this feature is stable and infrastructure-free. In this method, the magnetometer embedded on the smartphone measures indoor magnetic field and queries its position. However, the environments of the magnetometer are rather harsh. This harshness mainly consists of coarse-grained hard/soft-iron calibrations and sensor electronic noise. The two kinds of interferences decrease the position distinguishability of the magnetic field. Therefore, it is important to extract location features from magnetic fields to reduce these interferences. This paper analyzes the main interference sources of the magnetometer embedded on the smartphone. In addition, we present a feature distinguishability measurement technique to evaluate the performance of different feature extraction methods. Experiments revealed that selected fingerprints will improve position distinguishability

    BLoB: Beating-based Localization for Single-antenna BLE Devices

    Get PDF
    Low-power wireless communication protocols based on synchronous transmissions have recently gained popularity. In such protocols, packets can be demodulated correctly even though several devices transmit at the same time, which results in high reliability and energy efficiency. A by-product of synchronous transmissions is the beating effect: a sinusoidal pattern of constructive and destructive interference across the received signal. In this paper, we leverage this beating to propose a new localization approach. Specifically, we present BLoB, a system in which multiple anchors transmit packets synchronously using the constant tone extension, an optional bit sequence introduced by BLE 5.1, whose signal is sent with constant amplitude and frequency. We let mobile tags sample the superimposed signal resulting from the synchronous transmissions, and extract peaks in the beating and signal spectrum. These peaks provide key insights about the anchors’ location that complement received signal strength information and allow BLoB to derive a tag’s position with sub-meter accuracy. A key property of BLoB is that both anchors and tags employ a single antenna, in contrast to state-of-the-art localization schemes based on angle of arrival/departure information that require costly and bulky antenna arrays to achieve sub-meter accuracy. We implement BLoB on off-the-shelf BLE devices and evaluate its performance experimentally in both static and mobile settings, and in different environments: office rooms, library, meeting room, and sports hall. Our results show that BLoB can distinguish several anchors in a single synchronous transmission and that it retains a sub-meter localization accuracy even in challenging indoor environments

    Using Radio Frequency and Motion Sensing to Improve Camera Sensor Systems

    Get PDF
    Camera-based sensor systems have advanced significantly in recent years. This advancement is a combination of camera CMOS (complementary metal-oxide-semiconductor) hardware technology improvement and new computer vision (CV) algorithms that can better process the rich information captured. As the world becoming more connected and digitized through increased deployment of various sensors, cameras have become a cost-effective solution with the advantages of small sensor size, intuitive sensing results, rich visual information, and neural network-friendly. The increased deployment and advantages of camera-based sensor systems have fueled applications such as surveillance, object detection, person re-identification, scene reconstruction, visual tracking, pose estimation, and localization. However, camera-based sensor systems have fundamental limitations such as extreme power consumption, privacy-intrusive, and inability to see-through obstacles and other non-ideal visual conditions such as darkness, smoke, and fog. In this dissertation, we aim to improve the capability and performance of camera-based sensor systems by utilizing additional sensing modalities such as commodity WiFi and mmWave (millimeter wave) radios, and ultra-low-power and low-cost sensors such as inertial measurement units (IMU). In particular, we set out to study three problems: (1) power and storage consumption of continuous-vision wearable cameras, (2) human presence detection, localization, and re-identification in both indoor and outdoor spaces, and (3) augmenting the sensing capability of camera-based systems in non-ideal situations. We propose to use an ultra-low-power, low-cost IMU sensor, along with readily available camera information, to solve the first problem. WiFi devices will be utilized in the second problem, where our goal is to reduce the hardware deployment cost and leverage existing WiFi infrastructure as much as possible. Finally, we will use a low-cost, off-the-shelf mmWave radar to extend the sensing capability of a camera in non-ideal visual sensing situations.Doctor of Philosoph

    Opportunistic timing signals for pervasive mobile localization

    Get PDF
    Mención Internacional en el título de doctorThe proliferation of handheld devices and the pressing need of location-based services call for precise and accurate ubiquitous geographic mobile positioning that can serve a vast set of devices. Despite the large investments and efforts in academic and industrial communities, a pin-point solution is however still far from reality. Mobile devices mainly rely on Global Navigation Satellite System (GNSS) to position themselves. GNSS systems are known to perform poorly in dense urban areas and indoor environments, where the visibility of GNSS satellites is reduced drastically. In order to ensure interoperability between the technologies used indoor and outdoor, a pervasive positioning system should still rely on GNSS, yet complemented with technologies that can guarantee reliable radio signals in indoor scenarios. The key fact that we exploit is that GNSS signals are made of data with timing information. We then investigate solutions where opportunistic timing signals can be extracted out of terrestrial technologies. These signals can then be used as additional inputs of the multi-lateration problem. Thus, we design and investigate a hybrid system that combines range measurements from the Global Positioning System (GPS), the world’s most utilized GNSS system, and terrestrial technologies; the most suitable one to consider in our investigation is WiFi, thanks to its large deployment in indoor areas. In this context, we first start investigating standalone WiFi Time-of-flight (ToF)-based localization. Time-of-flight echo techniques have been recently suggested for ranging mobile devices overWiFi radios. However, these techniques have yielded only moderate accuracy in indoor environments because WiFi ToF measurements suffer from extensive device-related noise which makes it challenging to differentiate between direct path from non-direct path signal components when estimating the ranges. Existing multipath mitigation techniques tend to fail at identifying the direct path when the device-related Gaussian noise is in the same order of magnitude, or larger than the multipath noise. In order to address this challenge, we propose a new method for filtering ranging measurements that is better suited for the inherent large noise as found in WiFi radios. Our technique combines statistical learning and robust statistics in a single filter. The filter is lightweight in the sense that it does not require specialized hardware, the intervention of the user, or cumbersome on-site manual calibration. This makes the method we propose as the first contribution of the present work particularly suitable for indoor localization in large-scale deployments using existing legacy WiFi infrastructures. We evaluate our technique for indoor mobile tracking scenarios in multipath environments, and, through extensive evaluations across four different testbeds covering areas up to 1000m2, the filter is able to achieve a median ranging error between 1:7 and 2:4 meters. The next step we envisioned towards preparing theoretical and practical basis for the aforementioned hybrid positioning system is a deep inspection and investigation of WiFi and GPS ToF ranges, and initial foundations of single-technology self-localization. Self-localization systems based on the Time-of-Flight of radio signals are highly susceptible to noise and their performance therefore heavily rely on the design and parametrization of robust algorithms. We study the noise sources of GPS and WiFi ToF ranging techniques and compare the performance of different selfpositioning algorithms at a mobile node using those ranges. Our results show that the localization error varies greatly depending on the ranging technology, algorithm selection, and appropriate tuning of the algorithms. We characterize the localization error using real-world measurements and different parameter settings to provide guidance for the design of robust location estimators in realistic settings. These tools and foundations are necessary to tackle the problem of hybrid positioning system providing high localization capabilities across indoor and outdoor environments. In this context, the lack of a single positioning system that is able the fulfill the specific requirements of diverse indoor and outdoor applications settings has led the development of a multitude of localization technologies. Existing mobile devices such as smartphones therefore commonly rely on a multi-RAT (Radio Access Technology) architecture to provide pervasive location information in various environmental contexts as the user is moving. Yet, existing multi-RAT architectures consider the different localization technologies as monolithic entities and choose the final navigation position from the RAT that is foreseen to provide the highest accuracy in the particular context. In contrast, we propose in this work to fuse timing range (Time-of-Flight) measurements of diverse radio technologies in order to circumvent the limitations of the individual radio access technologies and improve the overall localization accuracy in different contexts. We introduce an Extended Kalman filter, modeling the unique noise sources of each ranging technology. As a rich set of multiple ranges can be available across different RATs, the intelligent selection of the subset of ranges with accurate timing information is critical to achieve the best positioning accuracy. We introduce a novel geometrical-statistical approach to best fuse the set of timing ranging measurements. We also address practical problems of the design space, such as removal of WiFi chipset and environmental calibration to make the positioning system as autonomous as possible. Experimental results show that our solution considerably outperforms the use of monolithic technologies and methods based on classical fault detection and identification typically applied in standalone GPS technology. All the contributions and research questions described previously in localization and positioning related topics suppose full knowledge of the anchors positions. In the last part of this work, we study the problem of deriving proximity metrics without any prior knowledge of the positions of the WiFi access points based on WiFi fingerprints, that is, tuples of WiFi Access Points (AP) and respective received signal strength indicator (RSSI) values. Applications that benefit from proximity metrics are movement estimation of a single node over time, WiFi fingerprint matching for localization systems and attacks on privacy. Using a large-scale, real-world WiFi fingerprint data set consisting of 200,000 fingerprints resulting from a large deployment of wearable WiFi sensors, we show that metrics from related work perform poorly on real-world data. We analyze the cause for this poor performance, and show that imperfect observations of APs with commodity WiFi clients in the neighborhood are the root cause. We then propose improved metrics to provide such proximity estimates, without requiring knowledge of location for the observed AP. We address the challenge of imperfect observations of APs in the design of these improved metrics. Our metrics allow to derive a relative distance estimate based on two observed WiFi fingerprints. We demonstrate that their performance is superior to the related work metrics.This work has been supported by IMDEA Networks InstitutePrograma Oficial de Doctorado en Ingeniería TelemáticaPresidente: Francisco Barceló Arroyo.- Secretario: Paolo Casari.- Vocal: Marco Fior
    • …
    corecore