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Abstract
Low-power wireless communication protocols based on
synchronous transmissions have recently gained popularity.
In such protocols, packets can be demodulated correctly even
though several devices transmit at the same time, which
results in high reliability and energy efficiency. A by-product
of synchronous transmissions is the beating effect: a sinusoi-
dal pattern of constructive and destructive interference across
the received signal. In this paper, we leverage this beating to
propose a new localization approach. Specifically, we present
BLoB, a system in which multiple anchors transmit packets
synchronously using the constant tone extension, an optional
bit sequence introduced by BLE 5.1, whose signal is sent with
constant amplitude and frequency. We let mobile tags sample
the superimposed signal resulting from the synchronous trans-
missions, and extract peaks in the beating and signal spectrum.
These peaks provide key insights about the anchors’ location
that complement received signal strength information and
allow BLoB to derive a tag’s position with sub-meter accuracy.
A key property of BLoB is that both anchors and tags employ
a single antenna, in contrast to state-of-the-art localization
schemes based on angle of arrival/departure information that
require costly and bulky antenna arrays to achieve sub-meter
accuracy. We implement BLoB on off-the-shelf BLE devices
and evaluate its performance experimentally in both static and
mobile settings, and in different environments: office rooms,
library, meeting room, and sports hall. Our results show that
BLoB can distinguish several anchors in a single synchronous
transmission and that it retains a sub-meter localization accu-
racy even in challenging indoor environments.
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1 Introduction
Accurate localization of people and objects is a key require-
ment for several IoT applications, such as asset tracking [1],
smart manufacturing [2], and assisted living [3]. Unfortu-
nately, global navigation satellite systems are not applicable
indoors due to the inability of satellites’ signals to penetrate
many structures [4]. To tackle this problem, several works
have shown how to leverage ultra-wideband [5], Wi-Fi [6],
ZigBee [7], RFID [8], acoustic [9], and optical [10] technolo-
gies to develop highly-accurate indoor localization systems.
Bluetooth low energy (BLE) is another key technology en-
abling accurate indoor localization, and is especially attractive
due to its ubiquitous nature and low power consumption [11].
RSS-based localization is inaccurate. Many localization
systems based on BLE employ single-antenna boards and
leverage the received signal strength (RSS) of packets to
estimate the distance between devices [12, 13, 14], with
iBeacon [15] and Eddystone [16] being prominent examples.
Unfortunately, RSS-based localization approaches are known
to be brittle and have limited accuracy (≈ 1–2.5 meters), as the
RSS can easily be affected by changing environmental condi-
tions and human movements, even when carefully calibrating
the reference signal strength [17, 18, 19, 20]. Moreover, the
performance of RSS-based approaches is strongly affected by
the number of employed anchors (the more, the better) and
by their careful deployment, which increases costs [21, 22].
AoA-/AoD-based localization is impractical. To counter
this, BLE 5.1 introduced direction-finding features that sup-
port two methods for determining the direction of a signal:
angle of arrival (AoA) and of departure (AoD) [23, 24, 25].
These direction-finding features let BLE devices append a
constant tone extension (CTE) to the transmitted packets,
i.e., a sinusoidal waveform with constant amplitude and fre-
quency, as well as continuous phase. A receiver can sample
the constant tone and process the in-phase and quadrature-
phase (I/Q) components of the received signal, which is



then further processed to perform the AoA/AoD localiza-
tion [23, 26]. Whilst these techniques allow one to achieve a
sub-meter localization accuracy by leveraging angular infor-
mation [27, 28], they require the use of bulky antenna arrays
(at the receiver for AoA, at the transmitter for AoD). Such
antenna arrays are often larger than 15× 15 cm, and hence
unpractical for many applications [29]. Moreover, they are
costly and hard to find on the market, as the dependence of
angular measurements on the antenna separation increases the
complexity of the design [30]. AoA/AoD approaches hence
face major hurdles w.r.t. wider support and availability.

Sub-meter localization accuracy with single-antenna? In
this paper, we describe how to retain the simplicity of single-
antenna RSS-based approaches, while achieving a sub-meter
localization accuracy that is comparable to that obtained with
AoA/AoD-based systems. To this end, we let off-the-shelf
single-antenna BLE tags examine the beating patterns across
a CTE signal received when multiple single-antenna anchors
transmit data simultaneously. Recent studies have indeed
shown that synchronous transmissions (ST) produce beating,
i.e., a sinusoidal pattern between two or more signals trans-
mitted at slightly different frequencies, across the received
packet [31, 32]. We show that the relative carrier frequency
offset (CFO) between devices transmitting simultaneously
can be extracted from the received beating pattern, which
allows to reliably identify anchors. By exploiting this in-
formation and by analyzing the peaks in the beating and
signal spectrum, one can identify anchor nodes that strongly
contribute to the beating and are hence located nearby the
receiving tag. These observations allow to refine the loca-
tion estimates and to significantly improve the accuracy of
an RSS-based localization system running on single-antenna
BLE devices.

Contributions. Building upon these principles, we design
BLoB, a novel BLE-based localization system that can achieve
sub-meter accuracy despite the use of small and inexpensive
single-antenna devices as well as the absence of any angular
information. In BLoB, multiple anchors transmit packets
synchronously using the CTE, and mobile tags extract the
signal characteristics – especially the beating profile – from
the superimposed signal resulting from the synchronous trans-
missions, which enables an accurate position determination.
With BLoB, we make the following contributions:

i) We present signal processing techniques that allow the
identification of relevant anchor nodes based on the CFO
detected within the beating pattern.

ii) We showcase a method to determine the contribution
from a pair of dominant anchor nodes within the received
beating pattern (i.e., nodes that strongly contribute to
the beating and are hence located nearby the receiver),
which allows refinement of the location estimate.

iii) We present the design of BLoB, an indoor localization
system that integrates the aforementioned solutions and
that leverages ST and BLE’s CTE feature to achieve
accurate localization using single-antenna devices only.

iv) We implement a prototypical implementation of BLoB on
off-the-shelf Nordic Semiconductor nRF52833 boards
with a single PCB antenna. BLoB only requires support
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Figure 1: Sinusoidal interference patterns created by simple
(2 anchors) and complex (> 2 anchors) beating [31].

for the CTE feature, and it can hence run on any off-the-
shelf device compliant to BLE 5.1 and above.

v) We evaluate BLoB’s performance experimentally in sev-
eral indoor environments ranging from large public
spaces (e.g., tennis hall) to office rooms. Our results
in both static and mobile settings demonstrate that BLoB
can retain a sub-meter localization accuracy even in
multipath-rich environments. Such performance is su-
perior to classical RSS-based approaches and is compa-
rable to that of AoA-based systems: this is remarkable,
given that BLoB runs on single-antenna devices and does
not make use of any angular information.

This paper proceeds as follows. After providing background
information about ST, beating, and the CTE feature in § 2,
we provide an overview of BLoB in § 3, detailing its design
and implementation in § 4. We evaluate BLoB’s performance
experimentally in § 5 and discuss its limitations in § 6. After
reviewing related work in § 7, we conclude the paper in § 8.

2 Preliminaries
We discuss next how synchronous transmissions lead to the
so-called beating effect (§ 2.1) before introducing necessary
background information on the BLE 5.1 CTE feature (§ 2.2).

2.1 Synchronous Transmissions and Beating
Flooding protocols based on ST have been extremely pop-
ular within the low-power wireless community as a means
of providing highly reliable multi-hop communications [33].
In contrast to traditional RF communication practices, trans-
mitting nodes in ST-based communications intentionally send
packets at the same time as their neighbors. While this may
seem counter-intuitive (as one would assume the competing
signals would collide at the receiver) a high degree of syn-
chronization between nodes and certain physical layer (PHY)
aspects of low-power narrowband communications allow suc-
cessful demodulation of the overlapping signals, specifically
capture effect and non-destructive interference [34].
Particularly in IEEE 802.15.4-based ST and the coded BLE 5
PHYs, the capture effect plays a significant role, allowing
successful reception from nodes simultaneously sending dif-
ferent data [35]. However, when sending the same data (i.e.,
precisely the same packet or bit sequence, such as a con-
stant tone), successful reception is largely dependent on fre-
quency synchronization between the transmitting nodes [31].
While perfect synchronization would produce constructive
interference across the packet and an overall power gain,
small manufacturing imperfections result in marginally dif-
ferent carrier frequency offsets. This leads to non-destructive
interference consisting of sinusoidal periods of both construc-
tive and destructive interference across the packet, known



Table 1: Comparison of BLE-based localization techniques.
Method Anchor(s) Tag(s) Operation

AoA Single-antenna device transmits packets
embedding the CTE

Multiple-antenna device captures the I/Q data
of the CTE by switching between antennas

Receiving devices track other objects by measuring the phase
difference of the received waveform at different antennas

AoD Multiple-antenna devices transmit a
packet embedding the CTE while
switching through multiple antennas

Single-antenna device captures the I/Q data
of the CTE

Receiving devices track their own positions by measuring the phase
difference of the received waveform from different antennas

RSS Single-antenna device transmits packets
that do not embed the CTE

Single-antenna device measures signal
strength

Receiving devices track their own positions by estimating the distance
based on the received signal strength and a reference signal strength

BLoB Single-antenna devices synchronously
transmit packets embedding the CTE

Single-antenna device captures the I/Q data
of the CTE

Receiving devices track their own positions by analyzing the received
signal strength at beating and signal frequencies

----
----

----

BLE AoA 1 µs-

BLE AoA 2 µs-
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Figure 2: Overview of CTone sampling and of the stored I/Q samples at the receiver. Classical systems (e.g., AoA-based [26])
store h = 74 or h = 37 I/Q samples when using 1 µs- or 2 µs-long antenna-switching and sampling slots. In contrast, BLoB uses a
single antenna and leverages the antenna-switching slot for extra I/Q sampling, which results in up to h = 148 collected samples.

as the beating effect. Fig. 1 shows an example of simple
sinusoidal beating pattern created by two synchronous trans-
mitters, and how complex beating patterns are created when
an additional transmitter is overlapped. Importantly, Badde-
ley et al. [31] experimentally demonstrated the existence of
beating over synchronous transmissions (with an increasing
number of nodes) by evaluating errors across a large num-
ber of randomly-generated packets, resulting in clear beat-
ing patterns across a histogram of bit errors. Notably, this
study showed that not only is the beating frequency consistent
across different PHYs (for the same nodes), but that different
pairs of transmitters produce a frequency that is significantly
dissimilar, due to relative CFO between devices. Moreover,
subsequent studies have shown that the relative CFO between
synchronously transmitting devices can be predictably mod-
elled and estimated despite temperature variations [36].

2.2 Constant Tone Extension in BLE
In BLoB, we leverage the beating signal to capture the relative
CFO between devices (anchor nodes) and identify the devices
themselves by exploiting the CTE feature in BLE 5.1. The
latter allows to append to a BLE packet a constant-frequency
signal consisting of unwhitened and constant 1 digits, whose
length can vary between 16 µs and 160 µs [23]. The purpose
of the CTE is to provide a constant wavelength signal (CTone)
that can be sampled by a receiver, which then processes its
I/Q components to derive polar coordinates yielding the phase
angle and the amplitude value [25].
The CTE can be divided into several sub-fields, as illustrated
in Fig. 2, starting from a guard band of 4 µs followed by a ref-
erence period of 8 µs. The rest of the CTE field is then divided
into slots for antenna switching and sampling. The switching
and sampling slots can either be 1 µs or 2 µs long: this allows,
for example, AoA implementations to choose between a finer
localization (faster switching) and a higher energy efficiency,

or a simplified antenna design (slower switching) [26]. The
CTE field contains h = 74 and h = 37 samples when using
1 and 2 µs-long switching and sampling slots, respectively.
On the BLE receiver side, while receiving a packet (com-
posed of preamble, access address, protocol data unit, cyclic
redundancy check, and CTE), the radio also samples the I/Q
components of the baseband signal at 1 µs frequency. In BLoB,
as only single-antenna devices are used, also the I/Q samples
in the antenna switching slots can be leveraged, which re-
sults in up to h = 148 collected samples during the sample
slots. The additional number of samples allows the receiver
to more effectively separate and decode the individual signals
being transmitted and reliably detect beating patterns across
all BLE 5 PHY configurations, which makes our approach
independent of the underlying PHY. Please note that the CTE
field consists of only 1s with no information attached: there is
hence no requirement to demodulate the CTone at the receiver.

3 BLoB: High-level Overview
We provide a high-level overview of BLoB (§ 3.1), and a de-
tailed description on how ST-induced beating using the CTone
helps localization of single-antenna BLE mobile tags (§ 3.2).
3.1 System Overview
Fig. 3 illustrates BLoB’s architecture at-a-glance. In BLoB,
spatially-distributed anchors equipped with a single antenna
synchronously transmit identical packets with empty payload
and CTE appended, following a ST-based flooding protocol
(detailed in § 4.4). Due to the presence of inherently imper-
fect crystal oscillators, the CTone signals are sent at slightly
different frequencies from the intended center frequency by
each anchor (∆ fi). Surrounding tags, also equipped with a
single antenna, receive the superimposed CTone signal result-
ing from the synchronous transmissions and perform high-
resolution I/Q sampling using up to h = 148 samples, as
shown in Fig. 2. Signal analysis and beating characterization



Reference period
(8 µs)

Switch slot 2
(1 or 2 µs) ----------Sample slot 2

(1 or 2 µs)
Switch slot 1

(1 or 2 µs)
Sample slot 1

(1 or 2 µs)
Guard period

(4 µs)

Preamble
(1 or 2 octets)

Access address
(4 octets)

PDU* (2-258 octets)
*BLoB (0 octets)

Packets embed the Constant Tone Extension (CTE) introduced in BLE 5.1 to support direction-finding

Transmitter1
(Initiator)

Anchor 2
(Forwarder Fwd1)

Transmitter1
(Initiator)

Anchor n
(Forwarder Fwdn-1)

Mobile
Tag (T)

Sample slot h
(1 or 2 µs)

CRC
(3 octets)

...

Protocol based on synchronous transmissions (Section 4.4)

Signal analysis & beating
characterization (Section 3.2)

Anchors detection &
classification (Section 4.1)

Tag localization
(Section 4.2)

High-resolution
I/Q sampling

Freq. transform
(signal)

Envelope
extraction

Freq. transform
(beating)

Bandpass
filter

Peak
detection

Location engine
(weight

calculation)
Tag's X,Y

coordinates

Transmitter1
(Initiator)

Anchor 1
(Initiator I)

CTE 
(16-160 (µs)

Figure 3: Overview of BLoB, a localization system that uses up to n spatially-separated single-antenna anchors synchronously
transmitting packets embedding the CTE to localize single-antenna mobile tags by examining the beating characteristics across
the received signal. One of the anchors acts as initiator (I) and is responsible for time-synchronizing all network operations.

is then performed on the collected I/Q samples (§ 3.2). This
serves as input to anchor detection and classification (§ 4.1),
and subsequently to tag localization (§ 4.2). Hence, BLoB is
fundamentally different from other BLE-based localization
approaches, as summarized in Table 1.

3.2 Leveraging Beating For Localization
In BLoB, n anchor nodes synchronously transmit sufficiently-
long (160 µs) CTone signals with frequencies (ω1,ω2, . . . ,ωn)
to produce beating, as shown in Fig. 3. Mathematically, con-
sider the CTone signals from n spatially-distributed anchors,
represented as:

a1 cos(ω1t), . . . ,an cos(ωnt) and CTonei = ai cos(2π fit),
(1)

where ω is the angular frequency of the signal in radians and
ai is the amplitude of the ith transmitted signal.
For beating to occur, the CTone frequencies f1, . . . , fn should
not be equal to each other, and the separation between any
two frequencies must not be equal, e.g., the CTone frequency
can be chosen as:

fi = fCTE +∆ f with ∆ f = (m∗ fs)/L, (2)
where fCTE equals to 250 kHz, ∆ f is the frequency offset, fs
is the sampling rate, and L is the length of the CTone signal.
The parameter m is an integer value, provided fi should fall in
receiver bandwidth. The frequency offset can be deliberately
chosen using Eq. 2 to avoid side lobes interference; however,
the inherent CFO caused by the inaccuracy of crystal oscilla-
tors is sufficient to analyze beating in BLoB.
The tag receives the superimposed CTone signal (SICT) re-
sulting from the ST. Ignoring any channel impairments for
simplicity, such a superimposed signal can be described as:

SICT =
n

∑
i=1

Ai cos(2π fit), (3)

where A1,A2, . . . ,An are the amplitudes of individual CTone
signals received at the mobile tag. To obtain the amplitude
of the transmitted CTone signal frequencies, the receiver can
use the fast Fourier transform (FFT) to analyze the signal
spectrum of the received or beating signal. However, the
method for extracting the pairwise contribution of the CTone
signals in beating will be explained in the following section.

3.2.1 Envelope Extraction of the Beating Signal
To extract and analyze the pairwise contributions of

anchors’ amplitudes in the received beating signal, the tag
extracts the squared envelop of the received superimposed
ST-signal by taking the squared value of the Hilbert
transform [37], which can be expressed as∣∣∣∣∣Hilbert

(
n

∑
i=i

Ai cos(2π fit)

)∣∣∣∣∣
2

. (4)

By applying an FFT on the envelope obtained with Eq. 4, we
can characterize the resulting amplitude of beating frequen-
cies and their corresponding power amplitudes, as sketched
in Fig. 4. Within the beating spectrum, we can identify a
number of peaks, representing the contribution in beating
from each pair of anchor nodes. Such contribution is strongly
dependent on the tag’s position: if the tag is closer to a given
anchor, the amplitude of the peaks involving this anchor will
be higher: we call such an anchor a dominant anchor (or the
corresponding beating frequency a dominant frequency).
The maximum number of peaks in the beating spectrum is(n

2

)
. These peaks will be used together with the amplitude of

the transmitted CTone signal frequencies for localizing a tag’s
position (see § 3.2.2).
3.2.2 High-Resolution Tracking
The frequency power spectrum of the squared envelope of the
received analytic signal can be expressed as:

Sn(ω) = 2π

n

∑
i=1

a2
i δ(ω)

+2π ∑
k>l

akal [δ(ω−ωk +ωl)+δ(ω−ωk −ωl)] .

(5)
where k and l vary between 1 and n. Sn is the frequency power
spectrum received from the transmitters, whereas δ(ω) is a
Dirac delta function at the frequency ω.
In BLoB, by examining the peak amplitudes of beating fre-
quencies at |ωk−ωl | (along with the signal frequencies ωk,ωl
that capture the RSS information from the anchors), one can
obtain additional information compared to classical RSS-
based localization approaches (which only leverage RSS in-
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Figure 4: A single-antenna tag extracts the squared envelope of the received superimposed signal (i.e., deriving from the
synchronous transmissions of anchors A1,A2,A3,A4 embedding a CTone sent at frequency f1, f2, f3, f4). This allows the tag to
determine the contribution of the dominant anchors (by analyzing the highest peaks in the beating spectrum). The top-right figure
depicts the case in which there is no dominant frequency in the beating spectrum (in fact, the tag is located at the same distance
from all anchors). The bottom-right figure depicts a beating spectrum with a clearly dominant frequency, i.e., that of anchor A1.

formation without beating), and hence increase the accuracy
of the localization system. In other words, the computation
of the envelope and the extraction of the beating frequencies
and amplitudes enables a tag to use additional N(N − 1)/2
observations (on top of the N observations from the signal
spectrum), resulting in a finer location estimate. Notably, the
larger number of observations does not result in any addi-
tional traffic nor higher channel occupancy, and only leads
to a negligibly larger expense in terms of signal processing.
In § 4.1, we detail how to extract the dominant/true peaks
reflecting the signal and beating amplitudes information.

3.2.3 BLoB in Principle
Consider n = 4 transmitted CTone signals with unit am-
plitude, represented as cos(2π f1t), cos(2π f2t), cos(2π f3t),
cos(2π f4t) with CTone frequencies f1 = 2, f2 = 5, f3 = 10,
f4 = 17 Hz. The tag receives a superimposed signal (Eq. 3)
and performs the steps described in § 3.2.1 to extract the
amplitude of the signal at the beating frequencies and trans-
mitted CTone frequencies. We implement these steps in Mat-
lab assuming a path-loss channel model [38], and derive the
illustration shown in Fig. 4.

Specifically, Fig. 4 (top-right) shows the single-sided
power spectrum of the squared envelope of the received sig-
nal representing the frequency on the x-axis and the received
power at those frequencies on the y-axis. A total of six peaks
can be identified, i.e.,

(n
2

)
, corresponding to the absolute nu-

merical difference between CTone frequencies. Moreover, the
input CTone signals can be extracted directly from the signal
spectrum i.e. by applying an FFT on the received signal.

In this example, we assume uniform power of all transmit-
ted CTone signals. For this reason, in Fig. 4 (top-right), where
the tag is located exactly at the same distance from all anchors,
the peaks corresponding to the six beating frequencies have
the same amplitude. A change in the tag’s position is reflected
as a change in the peak amplitude of the beating frequencies.
Fig. 4 (bottom-right) shows an example where the tag moves
closer to anchor A1: in this case, the peaks related to A1 are
clearly dominant (i.e., their amplitude is higher).

4 BLoB: Design & Implementation
We next detail the design and implementation of BLoB with
a focus on anchor detection and classification in real-world
systems (§ 4.1) as well as on tag localization (§ 4.2). We then
model BLoB and analyze its performance in Matlab (§ 4.3). Fi-
nally, we present BLoB’s ST communication primitive (§ 4.4)
used to carry out the evaluation experiments shown in § 5.

4.1 Anchor Detection and Classification
The example in § 3.2 assumes a perfect channel model with
no impairments. In real environments, due to channel noise
and multipath effects, there will be many other peaks in the
extracted beating and signal spectrum other than those at
the anchor nodes’ frequency. Moreover, as BLoB exploits
the CFO and does not tune the anchors’ clocks, side lobe
interference creates more challenges to detect the true peaks
in the spectrum. We hence derive a method that allows BLoB
to determine the true dominant peaks in the beating and signal
spectrum that works in real-world environments.

4.1.1 Peak Searching
To determine the peaks in the beating and signal spectrum
(which helps determine the number of anchors present in a
ST-based network), BLoB performs the following steps:

(i) Determine all the local maxima values Lmax and their
neighbor local minima values Lmin1 , Lmin2 in the received
beating and signal spectrum. In the case of the signal
spectrum (provided the transmitted CTone frequencies are
known), the frequency corresponding to local maxima and
minima should satisfy the condition:

| fLmax − fLmini
|< ∆ fmin , (6)

where fLmax and fLmini
are the signal frequencies corre-

sponding to the local maxima sample point and nearest
minima sample point to local maxima, respectively. ∆ fmin
is the minimum CFO in the transmitted signal frequencies.

(ii) The local maxima found in step (i) should have amplitudes
greater than a threshold T1, which we empirically choose
(verified experimentally in § 5) to be equal to 1/5 of the



maximum received power in the signal spectrum. By set-
ting this threshold, we eliminate the unwanted spectral
peaks and channel noise.

4.1.2 Anchor Detection
In BLoB, we exploit both the beating and the signal spectrum
to determine the dominant number of anchors present in the
network. We first find peaks in the unfiltered signal and
beating spectrum and then configure the cutoff frequency of a
fixed impulse response (FIR) filter based on the found peaks.
The cutoff frequency for the FIR filter is calculated as follows:

flower = f1 ∗α1, fupper = f2 ∗α2, (7)

where f1, f2 are the frequencies corresponding to the first and
the last peak found in the spectrum, respectively, whereas
α1,α2 are the redundancy coefficients [39]. Next, we again
search the peaks in the filtered spectrum. A decision about
the total number of anchors present is made based on the
peaks found in the filtered signal spectrum and in the beating
spectrum. We call this method blended approach (MB),
as it uses both beating and signal spectrum. For comparison,
we also explore an approach that utilizes only the signal spec-
trum, i.e., we only utilize the amplitude at CTone frequency
signals, without access to any information about the pairwise
amplitude contributions from the beating spectrum (similar
to classical RSS methods) to determine the dominant anchors.
In this method, which we call freq approach (MF ), the
peaks found in the filtered signal spectrum are considered as
the number of dominant anchors present.

4.2 Tag Localization
In BLoB, we calculate the tag’s coordinates based on the ampli-
tude of the received signals at the beating and signal frequen-
cies from multiple anchors. Specifically, we use a weighted
centroid approach to determine the tag position, as in BLoB
we have the access to the amplitudes of individual anchor
nodes and the contribution of pairs of anchor nodes.
Step 1 (weights calculation). We calculate the weights (W )
corresponding to each dominant synchronous transmitter us-
ing the peak amplitude (denoted as P) at beating and signal fre-
quencies and assign the weights for the blended approach:

W (i) =
n

∑
i, j=1,i ̸= j

P|ωi −ω j|+P(ωi). (8)

Step 2 (2D localization). The weighted 2D coordinates xr,yr
of the mobile tag are computed as:

xr =
∑

n
i=1(W (i)∗ xt(i))

∑
n
i=1 W (i)

, yr =
∑

n
i=1(W (i)∗ yt(i))

∑
n
i=1 W (i)

, (9)

where xt(i),yt(i) are the known coordinates of anchor Ai.

4.3 Preliminary Results from Simulation
To validate the algorithms presented in § 4.1 and 4.2 as
well as to further investigate how different profiles of beat-
ing and signal frequency amplitude affect the location esti-
mates provided by our approach, we assume a 2D plane of
10×10 m2 with 4 anchor nodes (A1,A2,A3,A4) at the four cor-
ners of the square plane. These anchors operate at 250 kHz,
257.69 kHz, 269.23 kHz, and 273.08 kHz CTone frequencies,
respectively, which were chosen to satisfy Eq. 2. The length
of the CTE packet used is 160 µs with a sampling rate of

8 Msps. The BLE packets embedding a CTE are generated in
a Matlab-based BLE 5.1 simulator [40].
The tag collects the raw I/Q samples of the BLE packet. For
further processing of the received signal to obtain the power
amplitudes at beating and signal frequencies we evaluate only
the CTE field in the packet for location estimation, i.e., in
BLoB there is no requirement for payload data (§ 4.4). We sim-
ulate hundreds of tag locations to determine the position based
on our approach, assuming the path loss [38] and Rayleigh
fading channel model [41].
Figs. 5a and 5b show the calculated Euclidean localization er-
ror (defined as Eri(i)= ∥lk− lcal∥, where lk, lcal are the known
and calculated tag’s position, respectively) calculated for the
x,y coordinates of the tag at different positions using the freq
approach and the blended approach, respectively. For the
freq approach (only the signal frequency spectrum), we
assigned the weight as: W (i) = P(ωi).

The cumulative error distribution (CDF) derived over the Eri
of all location estimates for both methods is shown in Fig. 5c
under the path loss and Rayleigh fading channel models. Both
methods perform well when the tag is located at the centre
and receives equal power from all transmitters. However,
the blended approach performs better when the receiver
moves away from the centre position. The calculated mean
localization error is 0.6 m and 3.6 m, for the freq approach,
whereas it is 0.53 m and 2.3 m for the blended approach,
under the path loss and Rayleigh fading channel models, re-
spectively. This means that the additional information derived
by considering the beating characteristics (pairwise contribu-
tion of each anchor’s power) in the blended approach im-
proves the localization performance by up to 36% compared
to the freq approach (which is equivalent to conventional
RSS-based localization).
The above results are obtained in simulation. To study BLoB’s
real-world performance, we implement a ST-based protocol
and run it on off-the-shelf BLE devices, as detailed next.
4.4 ST-based Communication Primitive
Fig. 6 shows how a ST communication primitive can be mod-
ified to support CTE-based analysis of the beating effect. The
direction-finding radio extension was used within the ST pro-
tocol to generate and receive packets embedding a CTone.
During the first time slot, forwarders will act as a receiver to
perform time synchronization; in the next time slot, they start
synchronously transmitting CTone signals, and the receiver
will perform I/Q sampling. Support was added for the Nordic
Semiconductors nRF52833 SoC [42] to allow the use of the
radio’s I/Q sampling capability to obtain the raw baseband
samples needed for signal beating analysis.
As antenna switching is not required in neither transmitters
nor receivers, each device role is configured to expect its peer
to be responsible for switching. As such, the transmitters are
configured for AoA mode, while the receiver is configured for
AoD. Other utilized features of the radio peripheral include
the ability to capture I/Q samples across the entire received
packet, as opposed to just the CTE extension, and the ability
to over-sample at a spacing of 125 ns between samples [42].
It should be noted that while the BLoB concept is focused on
localization (using an empty payload), there is nothing to pre-
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Figure 5: Analyzing BLoB’s localization performance under different channel models in a Matlab environment. The colour bars
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Figure 6: ST-based protocol used in BLoB. The tag (T) syncs
on the first timeslot then localizes on the second.

vent BLoB being employed for simultaneous communication
and localization in a ST-based network, provided the proto-
col ensures that CTone from different anchors superimpose.
Moreover, with a suitable CTE length, it is possible to detect
beating across all BLE 5 PHY configurations – making the
approach independent of the physical layer [31].

5 Experimental Evaluation
We evaluate the performance of BLoB experimentally. First,
we study the accuracy of BLoB in detecting and classifying
dominant anchors (§ 5.1). We then quantify BLoB’s localiza-
tion accuracy in various environments and provide a perfor-
mance comparison with the SOTA AoA technique (§ 5.2).

5.1 Detection of Dominant Anchors
We start our evaluation by studying the accuracy of BLoB in
detecting and classifying dominant anchors. Our evaluation
provides a quantitative answer to the following questions:

• Is the inherent CFO caused by the inaccuracy of crystal
oscillators sufficient to discern anchors? (§ 5.1.2)

• Can we detect dominant anchors present in the network
by leveraging the beating induced by the CFO? Do
packet loss and antenna polarization affect the anchor
detection accuracy? (§ 5.1.3)

5.1.1 Experimental Setup
We conduct our experiments using Nordic Semiconductors
nRF52833-DK boards in an office room, as shown in Fig. 7,

(a) Same plane (b) Different plane (c) Up to 7 anchors
Figure 7: Experimental setup used in § 5.1.

and up to 7 anchors. To test BLoB’s anchor detection accuracy,
we consider four scenarios:
(S1) Anchors and tag are in the same plane (as in Fig. 7a)

with the same antenna polarization;
(S2) Anchors and tag are in the same plane (as in Fig. 7a)

with different antenna polarization;
(S3) Anchors and tag are in a different plane (as in Fig. 7b)

with the same antenna polarization;
(S4) Anchors and tag are in a different plane (as in Fig. 7b)

with different antenna polarization.

5.1.2 Inherent CFO Detection
We start by studying whether the inherent CFO caused by the
inaccuracy of crystal oscillators is sufficient to differentiate
between anchors in real-world settings. To this end, we mea-
sure and compare the CTone frequency shift due to CFO for
several nRF52833-DK boards. As the latter operate at a carrier
frequency of 2.4 GHz, the received baseband CTone signal
spectrum should peak at fCTE=250 kHz [23]. In practice, this
is not the case, as illustrated in Table 2. The CFO varies by as
much as 11.69 kHz compared to the nominal CTone frequency
of 250 kHz. These results confirm that a differentiation of
anchors based on their CFO is feasible in real-world settings.
The CFO present across different anchors can be determined
by following the steps described in the Appendix.
Importantly, while CFO is a property of the radio oscillator
and is thus sensitive to environmental factors such as tem-
perature variations, recent work has demonstrated that the
relative CFO between synchronously transmitting devices
can be predictably modeled and estimated as a function of
temperature [36]. This supports the practicality of our ap-
proach in harsh environmental conditions.

5.1.3 Anchor Detection
Next, we test BLoB’s anchor detection accuracy based on the
detection of dominant peaks. We use three configurations:



Table 2: Observed CFO on different nRF52833 boards. De-
vice 685508885 (underlined) acts as initiator. ∆ f represents
the detected CFO compared to the nominal 250 kHz value,
whilst ∆init captures the frequency delta w.r.t. the initiator.

Device ID Detected CTone freq. (kHz) ∆ f (kHz) ∆init (kHz)

685508885 252.453 +2.453 0
685557904 244.756 -5.244 -7.697
685939208 250.910 +0.910 +1.543
685695561 246.295 -3.705 -6.158
685435368 238.600 -11.40 -13.853
685083356 261.690 +11.69 -9.237
685465122 255.532 +5.532 +3.079

• With CRC: Only the cyclic redundancy check (CRC)
passed packets are considered and CRC failed packets
are discarded.

• Without (W/O) CRC: Only failed CRC packets are used.
• Both: Both failed and successful CRC packets are used.

We consider four anchors simultaneously transmitting CTone
signals (as in Fig. 7a), and tags detecting the presence of
dominant peaks in both the beating and signal spectrum. To
determine the actual anchors present in the network, we per-
form the analysis under the average peak and average packet
approach. In the former, the anchor detection accuracy is
determined by dividing the total number of true dominant
peaks detected in each received packet by the total number of
anchors present. In the latter, we first average out the I/Q sam-
ples over 20 packets (Empirical Statistical Optimization) and
then determine the true dominant peaks. Table 3 summarizes
anchor detection accuracy (captured as the number of times
in which the number of detected peaks determines the number
of actual anchors) obtained over several hundreds runs. It can
be seen that the average packet approach is more efficient, as
the averaging mitigates the impact of channel noise.
Corrupted packets. The beating effect may result in packet
loss in a communication link [31]. Although, intuitively, this
is undesirable, BLoB’s performance actually increases when
considering the failed CRC packets, as the beating pattern
will be more complex – hence leading to a higher detection
accuracy, as confirmed from the results in Table 3.
Antenna polarization. Further, we analyzed that changing
the antenna direction increases the number of CRC failed
packets received at the tag (W/O CRC configuration), which
in turn creates more complex beating patterns, helps to im-
prove accuracy, as can be analyzed in Table 3. In addition,
our results have proved that we can achieve 100% anchor
detection accuracy in most cases employing BLoB.
Maximum number of detectable anchors. We test the
maximum number of nodes detectable with BLoB and the
impact brought by the addition of further anchors on the
beating signal. We consider the Both configuration (i.e., using
both failed and successful CRC packets) and analyze it in
the S3 scenario. In this configuration, the node detection
accuracy was 100% (see Table 3) for both average peak and
packet method. To measure the maximum number of anchors
that can be detected, we increase the density of anchors in
the network by adding a new anchor in each new run in the

setup shown in Fig. 7b. Each new anchor is added at an
equal distance from the tag. Fig. 7c shows the setup with
seven anchor nodes. With the addition of a new anchor in the
network, the beating pattern changes (see Fig. 8), affecting the
accuracy of anchor detection. In fact, it can be analyzed that,
as we increase the number of anchors, more peaks of different
amplitude start appearing and the period between valleys
decreases in the beating patterns. That is, the peaks start
merging in the frequency spectrum, causing the degradation
in anchor detection accuracy. Nevertheless, it can be analyzed
from Table 4 that BLoB can successfully detect up to 6 anchors
with an accuracy of 100% in our experiments.
5.2 BLoB’s Localization Performance
We continue our evaluation by studying BLoB’s localization
performance in terms of accuracy, robustness to harsh envi-
ronments, as well as compare it with the SOTA AoA approach.
Our results answer the following questions quantitatively:

• How robust is BLoB localization in dynamic and
multipath-rich environments? (§ 5.2.2 and § 5.2.3)

• Does BLoB’s performance remain consistent as the
testing area increased? (§ 5.2.4)

• How does BLoB perform in mobile settings? (§ 5.2.5)
• Can BLoB achieve a performance that is comparable to

AoA-based solutions even though it does not explore
phase information? (§ 5.2.6)

5.2.1 Experimental Setup
To evaluate the localization performance of BLoB in realistic
scenarios, various dynamic multipath-rich environments are
being considered, listed in Table 5. These environments in-
clude offices, sports halls, libraries, and meeting rooms, each
of which contains a variety of reflective and scattering objects
such as chairs, desks, monitors, wardrobes, and RF-operated
equipment, creating a multipath-rich environment. Four an-
chor nodes are placed in a square formation on tripods at a
height of 1.8 m in the offices and sports hall, and on a table at
a height of 1 m in the library and meeting room, respectively
(see Fig. 10). The tag is placed at randomly-distributed testing
positions (denoted as NT L) with varying amounts based on the
environment being tested (as summarized in Table 5). At least
150 packets are collected at each position and the absolute
error at each NT L is calculated as the Euclidean localization
error (Er). Results are presented by averaging multiple com-
binations over time of 10 packets each and computing the
CDF over Er. It is important to note that all presented results
are raw measurements only, without the use of any filtering
techniques such as Kalman or particle filters.
5.2.2 Results in Static Multipath-rich Environments
To evaluate the localization performance of BLoB, we first
test without the addition of reflective objects in Office 1. The
real-time beating and signal spectrum with four active anchor
nodes can be seen in Fig. 9a. The results of this localization
performance test are presented in Fig. 11a.
Role of antenna orientation. We test the robustness of
BLoB by evaluating its localization performance with differ-
ent antenna polarizations in an office environment. As seen
in Fig. 11a, the results indicate that the majority of errors
(90%) are below 1 m. Furthermore, the mean localization er-
rors for horizontal Ah) and vertical (Av) antenna polarizations



Table 3: Anchor detection accuracy for avg. peak and avg. packet methods with four anchors with freq and blended approach.
Method Scenario With CRC (freq) With CRC (blended) W/O CRC (freq) W/O CRC (blended) Both (freq) Both (blended)

Avg. Peak

S1 21.90% 99.42% 11.11% 100 % 18.65% 100%
S2 19% 100% 20.66% 100 % 24.45% 99.18%
S3 21.93% 98.83% 30.56% 100 % 18.21% 98.55%
S4 20.94% 86.91% 31.93% 99.16 % 12.50% 89.17%

Avg. Packet

S1 25% 100% 75% 100 % 75% 100%
S2 75% 100% 100% 100 % 75% 100%
S3 100% 100% 100% 100 % 75% 100%
S4 100% 100% 75% 100 % 75% 100%

Table 4: Anchor detection accuracy using average peak and average packet methods.
Nodes

1 2 3 4 5 6 7

Avg. Peak Freq 100% 19% 20.66% 24.45 % 3.47% 1.37% 0%
Hybrid 100% 100% 100% 99.18 % 87.28% 84.96% 87.96%

Avg. Packet Freq 100% 100% 100% 75 % 60% 33.33% 57.14%
Hybrid 100% 100% 100% 100 % 100% 100% 57.14%

are 87.55 cm and 107.3 cm, respectively. Whilst in general
antenna orientation greatly impacts the localization perfor-
mance [43], this is not the case in BLoB, as it superimposed
CTone signals to create beating – less affected by antenna
polarization [44].
Addition of metallic wire. Further, we externally added a
dense/thick metallic wire at the same height of the anchor
nodes in Office 1 to test BLoB’s performance in more complex
reflective environments. Whilst not a full metal sheet, the
fence is more than just a simple wire, and adds significant
reflections. We tested different placements of metallic wire:
one in the x-direction (Fig. 10a) and another in the y-direction
(Fig. 10b) w.r.t to setup. Figs. 11b and 11c show that BLoB
still maintains sub-meter accuracy in a highly-reflective en-
vironment. In fact, unlike other BLE localization methods
exploiting angular information or RSSI [28], BLoB has the
capability to handle both low and high reflected environments
as it exploits more sampling points and the beating effect.
Performance in the proximity of an anchor. The simulta-
neous ranging approaches are susceptible to dynamic range
problems, as highlighted by [5, 45], particularly when the
tag is in close proximity to the anchor node. To test BLoB’s
performance in such scenarios, we conducted measurements
near the anchor A4 ( f4) within 1 m radius to the anchor. Al-
though the amplitudes of signals from other anchor nodes
transmitting at CTone frequencies f1, f2, and f3 in the signal
spectrum are relatively low, the analysis of the beating spec-
trum (shown in Fig. 9b) helps BLoB to determine the pairwise
contribution of each anchor’s power. As a result, an accuracy
of 0.93 m is achieved, which is only 0.07% less than the mean
average error obtained in this area.

5.2.3 Dynamic Environment
We now evaluate BLoB in three more dynamic environments
with the placement of anchors at different heights: Office 2,
a Library, and a Meeting Room (see Fig. 10). The obtained
results1 are presented in Fig. 11d. The Library has more error
in localization compared to other environments (93.43 cm),

1All presented results are averaged over different antenna configurations.

due to multiple book racks, and because the metallic down-
ceiling creates more multipath. Nevertheless, the accuracy
achieved by BLoB is still in the sub-meter range.

5.2.4 Large Environment
We also evaluate BLoB in a large sports hall with an area of
90m2, where it is being tested in one court while the adja-
cent courts are in use. We use the highly-accurate Optitrack
system [46] to provide the ground truth locations of the tag.
Specifically, we deployed eight Flex13 motion capture camera
systems as shown in Fig. 10f. The Optitrack can be calibrated
in a few minutes and provides mm-level accuracy without
the need of manually marking fixed positions on the ground.
We performed calibration during the first 5 minutes in our
experiments and achieved a localization accuracy of 0.401
mm, far less than what BLE can achieve. BLoB’s localization
accuracy results are presented in Fig. 11e, demonstrating 90%
of localization errors achieved are under 1.5 m with a mean
average localization error of 116 cm, validating the feasibility
of BLoB usage for large indoor public spaces.

5.2.5 Mobile Scenarios
To validate BLoB’s performance in mobile scenarios, we tested
with a mobile target in the multipath-rich Office 2 environ-
ment during normal office hours (thereby introducing mild
RF interference across the 2.4 GHz spectrum in the form of
everyday office activities). As shown in Fig. 12, anchors were
placed at A1 to A4, creating a 7 m by 1.5 m arena, while the
tag was placed on an autonomous robot which moved 6 m
along a predefined linear trajectory (this indicates by the red
dashed line) from right to left across the middle of the arena.
The estimated tag trajectory from BLoB is shown in blue, and
from 45 samples the mean estimated localization error ob-
tained with the mobile target was 96.58 cm. While this does
not represent a full study of BLoB’s performance in mobility
conditions, this indicated the viability of BLoB’s sub-meter
localization accuracy in real-world mobile scenarios.

5.2.6 BLoB vs. AoA-/AoD-based systems
We now show how BLoB’s localization performance is compa-
rable to that of AoA-based direction finding solutions, despite



Figure 8: CTE-derived beating patterns at the receiver.

(a) (b)
Figure 9: Office 1: Real-time received signal spectrum (left) as well as received beating spectrum (right) with 4 anchor nodes.
Fig. (a) refers to a tag placed in the middle of four anchors; Fig. (b) refers to a tag is in close proximity to anchor A4.

(a) Office 1 (metallic
wire in x-direction, Dx)

(b) Office 1 (metallic
wire in y-direction, Dy)

(c) Office 2

(d) Library (e) Meeting room (f) Sports hall

Figure 10: Environments used in the experiments in § 5.2.

it only uses single antennas and hence does not exploit an-
gular information. When using AoA, a tag is equipped with
multiple antennas controlled using an RF switch. By measur-
ing the phase difference observed at the multiple antennas, the
tag can locate a transmitter’s direction, and perform trilatera-
tion to find its position coordinates. If the separation between
antennas is known, the AoA is computed using Eq. 10:

θA = arccos((φλ)/(2πD)), (10)

where λ is the wavelength, φ is the phase difference, and
D is the distance between adjacent antennas in the antenna
array. To evaluate the performance of the AoA technique,
we employ four multiple-antenna arrays in Office 1 and place
the tag at the same locations where we tested BLoB using
Silabs EFR32xG22 boards [29] and Silabs’ AoA implemen-

tation [26, 47, 48]. Fig. 11f shows our results: BLoB achieves
a comparable localization performance to that obtained using
AoA, also in challenging non-line-of-sight (NLOS) condi-
tions (the tag is getting obstructed from two anchors due to
the boundary between two tables, see Fig. 10a). Specifically,
BLoB exhibits a 50% error of 87.55 cm, whereas AoA-based
localization exhibits an error of 95.72 cm. In NLOS condi-
tions, the difference in error is ≈ 18.66 cm in favor of BLoB.

6 Discussions & Limitations
In this section, we discuss additional features and benefits of
BLoB, along with its main limitations.
Minimizing channel occupancy. The use of ST reduces the
number of transmissions over the air and thus reduces signal-
ing overhead incurred system, minimizing channel occupancy.
This is a key advantage of BLoB in comparison to classical
systems which rely only on RSS: the latter require individ-
ual responses from each anchor, whereas in BLoB all anchors
synchronously transmit a response embedding a CTE. For ex-
ample, with 4 anchor nodes (A1, A2, A3, A4), in RSS-based
localization, multiple transmissions are required between the
mobile tag and anchors to record and process RSS values.
This process takes at least eight over-the-air transmissions
and consumes a significant amount of time. In contrast BLoB,
only two over-the-air transmissions over a single channel are
needed to complete the process. This considerably reduces
the localization time required. The RF footprint in time (chan-
nel occupancy) is short to complete such transactions even
on the congested Bluetooth advertising channels, the three
special ones out of 40 channels.
Scalable and privacy-preserving localization. Similar to
GNSS-based systems, in BLoB mobile tags are not actively
involved in the communication and hence do not disclose
their presence. In other words, BLoB enables fully-passive



Table 5: Mean BLoB localization error in different scenarios.

Environment Office 1 Office 2 Library Meeting Room Sports
HallW/o metallic wire Metallic wire Blockage

Area (m2), Testing Loc. (NT L) 20, 52 20, 52 20, 20 15, 15 15, 20 10, 30 90, 30

Mean Loc. Error (cm) freq 101.57 94.10 84.51 106.86 138.41 78.04 154.37
blended 87.55 91.47 70.25 72.06 93.43 50.84 116.18
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Figure 11: CDF of the localization error in different multipath environments. Office 1: different transmitter antenna polarization
(Av: vertical, Ah: horizontal) w/o metallic wire (a), a metallic wire placed at different positions (b), comparison of Loc. error of
setup- with and w/o metallic wire placement (c), Dynamic environment (considering blended approach): Library, Office 2,
Meeting Room (d), Large indoor tennis hall (e), BLoB’s localization performance compared to BLE’s AoA technique. The latter
uses bulky multiple-antenna arrays and yet achieves a comparable performance to BLoB, which is a single-antenna system (f).

Figure 12: Mobility experiment in the Office 2 environment.

localization that preserves the user’s privacy and allows to
potentially support countless tags. Moreover, BLoB does not
suffer from the disadvantages of AoA/AoD-based systems,
where it is challenging to verify the truthfulness of transmitted
CTones in such systems, a change in phase introduced by an
attacker can cause a significant shift in the AoA [49].

Channel hopping to improve performance. In our im-
plementation, we used channel hopping to average out I/Q
performance across multiple fading scenarios. As the beat-
ing spectrum is dependent on the carrier frequency of all
transmitters, averaging out I/Q samples taken across multiple

channels increases the probability of sampling a combination
that provides large beating amplitudes.
Computational complexity. Currently, the signal process-
ing in BLoB is carried out on MATLAB based on the traces
obtained with the actual BLE boards. However, the sig-
nal processing algorithms employed by BLoB are relatively
lightweight, and can be implemented on dual-core BLE-based
SoCs such as the nRF5340 by utilizing the second core and
the ARM CMSIS-DSP accelerated library to perform the FFT
operations required for the algorithm. We will implement
such an embedded prototype of BLoB in future work.
Dynamic range. The beating amplitudes extracted at the
|ωk −ωl | frequencies can be useful in addressing the dynamic
range issue in ST-based localization methods [5, 45]. This
issue occurs when the signal strength from one anchor node
is much higher than that of other sources, resulting in signal
clipping and making it challenging to accurately measure the
RSS or the time difference of arrival between the signals. By
using beating extraction in BLoB, the pairwise contribution
of each anchor’s power can be determined, aiding in the
calculation of the received power of every anchor node.



7 Related Work
BLE-based localization. In the pioneer study of BLE 5.1
AoA [49], the authors successfully demonstrated the effec-
tiveness of the technique on USRPs, achieving sub-meter
accuracy. However, the testbed scenario was limited to an
outdoor environment with few multipath reflections, and the
accuracy was calculated by averaging over a large number
of packets (1200 phase delay points), resulting in high com-
putational complexity and difficulty in reproducing real-time
results. Another experimental demonstration of AoA using
SiLabs boards [29, 48] was performed in [27], where the
authors reported an average distance error of 0.7m using a
hybrid solution based on RSS and AoA. However, this study
was limited to only eight static locations, positions were av-
eraged over 48 packets, and the tests were conducted in a
single controlled environment with no consideration for mul-
tipath interference. A study by Rinaldi et al. [50] examined
the effect of distance on AoA direction-finding techniques
for localization in industrial environments. It was found that
the angular error increases with distance (even beyond 10
degrees), and that it largely depends on the polarization of
the antenna array. Shuai et al. [51] studied the impact of
multipath, noise, and antenna switching on AoA calculations,
finding an angular error of 12.1 degrees. To mitigate this,
two algorithms based on non-linear recursive least square
and unscented Kalman filter were proposed, resulting in an
improvement of 7.1 degrees for line-of-sight. Finally, it has
been observed that direction-finding techniques are highly
impacted by channel selection [28, 52]. For instance, [49]
studied the impact of channel hopping on AoA and found
that the angular error spreads more at lower frequencies. In
this context, BLoB, overcomes the current hardware restric-
tions of AoA/AoD techniques, and has been thoroughly tested
in multipath-rich environments with both static and mobile
targets, where it sustains sub-meter accuracy.
UWB-based localization. Ultra-wideband (UWB) systems
are known to achieve a high localization accuracy thanks to
their fine-grained timing resolution [5, 53, 54, 55]. UWB
radios can in fact process ultra-narrow impulses of 2 ns and
precisely estimate the channel impulse response (CIR). By ap-
plying signal processing on the CIR, a mobile tag can extract
ToA information, which – combined with the known coor-
dinates of the anchors – allows to estimate its position with
cm-level accuracy. Unfortunately, narrowband systems such
as those based on BLE do not benefit from the fine time reso-
lution and the advanced hardware features present in UWB
radios. Nevertheless, BLoB achieves sub-meter localization
using BLE, a far more ubiquitous technology than UWB.
Other wireless localization technologies. Wi-Fi can provide
high-resolution indoor localization systems [6, 56]. However,
its high power consumption and the need of special chips
for beamforming and time-of-arrival analysis limits its wide
adoption [57]. The performance of LoRa for localization is
heavily affected by the signal configuration and the environ-
ment [58, 59]. Simka et al. [60] reported that the localization
error increases by 1.23 m using low-bandwidth signal configu-
rations. Moreover, LoRa’s localization performance degrades
for short distances and in indoor applications, making it un-
suitable for indoor localization at sub-meter accuracy [61].

8 Conclusion
In this paper, we have exploited BLE’s constant tone exten-
sion feature and the beating effect caused by synchronous
transmissions to design BLoB, a novel BLE-based localization
system capable of localizing mobile tags with sub-meter accu-
racy despite the use of small and inexpensive single-antenna
devices as well as the absence of any angular information.
We have evaluated BLoB through simulation and real-world
experimentation, across various indoor scenarios involving
multipath-rich environments, and across both static as well
as mobile settings. Our results show that BLoB’s performance
is superior to classical RSS-based approaches and is compa-
rable to that of AoA-based systems, which, however, rely on
bulky, costly, and hard-to-retrieve multi-antenna arrays. BLoB
is hence a viable approach for many IoT use-cases in which
the use of a bulky multi-array antenna would be impractical.

9 Appendix
Algorithm 1 To examine CFO across anchors in BLoB

Require: Extracted Signal & Beating spectrum
Ensure: CFO for each anchor

1: Turn on initiator and find dominant peak f1 using peak
search algorithm described in § 4.1.1

2: if Detected peak is not fCT E then
3: Set CFO as fCTE − f1
4: Set f1 as the true CTone frequency
5: end if
6: for each forwarder Fwdi do
7: Keep initiator on and activate Fwdi
8: Find dominant peaks in the signal spectrum
9: if two peaks are detected then

10: Set f2 as the frequency corresponding to the new
detected peak

11: Set f2 as the CTone frequency of Fwdi
12: else if only one dominant peak is detected then
13: Observe beating spectrum
14: if no beating occurs then
15: Fwdi shares the same CTone frequency with

the initiator
16: else
17: Identify dominant beating peak & assign its

frequency as ∆ f12
18: Calculate f2 for Fwdi as f2 = f1 ±∆ f12 with

two values
19: Resolve ambiguity by adding a new forwarder

and observing the beating spectrum to determine the
correct f2

20: end if
21: end if
22: end for
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