1,268 research outputs found

    Calculations of the thermodynamic and kinetic properties of LiV3O8

    Full text link
    The phase behavior and kinetic pathways of Li1+xV3O8 are investigated by means of density functional theory (DFT) and a cluster expansion (CE) methodology that approximates the system Hamiltonian in order to identify the lowest energy configurations. Although DFT calculations predict the correct ground state for a given composition, both GGA and LDA fail to obtain phase stability consistent with experiment due to strongly localized vanadium 3d electrons. A DFT+U methodology recovers the correct phase stability for an optimized U value of 3.0eV. GGA+U calculations with this value of U predict electronic structures that qualitatively agree with experiment. The resulting calculations indicate solid solution behavior from LiV3O8 to Li2.5V3O8 and two-phase coexistence between Li2.5V3O8 and Li4V3O8. Analysis of the lithiation sequence from LiV3O8 to Li2.5V3O8 reveals the mechanism by which lithium intercalation proceeds in this material. Calculations of lithium migration energies for different lithium concentrations and configurations provides insight into the relevant diffusion pathways and their relationship to structural properties

    Propane Oxidative Dehydrogenation Under Oxygen-free Conditions Using Novel Fluidizable Catalysts: Reactivity, Kinetic Modeling and Simulation Study

    Get PDF
    Propane oxidative dehydrogenation (PODH) was studied using VOx/γAl2O3 and VOx/ZrO2-γAl2O3 (1:1 wt.%) catalysts, as well as consecutive propane injections under oxygen-free conditions. These catalysts were synthesized with 2.5, 5 and 7.5 wt.% vanadium loadings, and prepared using a wet saturation impregnation technique. Different characterization techniques were used to establish catalyst properties including NH3-TPD, pyridine FTIR and NH3-TPD kinetics. As well, PODH runs in the CREC Riser Simulator were developed under oxygen free atmospheres at 500-550°C, close to 1 atm., 10-20 s and 44.0 catalyst/propane weight ratio (g/g). Propylene selectivity obtained were up to 94%, at 25% propane conversion. Using this data, a “parallel-series” model was established based on a Langmuir-Hinshelwood rate equation. Adsorption constants were defined independently, with this leading to a 6-independent intrinsic kinetic parameter model. These parameters were calculated via numerical regression with reduced spans, for the 95% confidence interval and low cross-correlation coefficients. A larger 2.82×10-5 mol.gcat-1s-1 frequency factor for propylene formation versus the 1.65×10-6 mol.gcat-1s-1 frequency factor for propane combustion was obtained. The calculated energies of activation (55.7 kJ/mole for propylene formation and 33.3 kJ/mole for propane combustion) appeared to moderate this effect, with the influence of frequency factors prevailing. Furthermore, propylene conversion in COx oxidation appeared as a non-favored reaction step, given the 98.5 kJ/mole activation energy and 4.80×10-6 mol.gcat-1s-1 frequency factor. This kinetic model was considered for the development of a scaled-up twin fluidized bed reactor configuration. For this, a hybrid computational particle-fluid dynamic (CPFD) model featuring either “Particle Clusters” or “Single Particles” was employed. Results obtained in a 20-m length downer unit showing a 28% propane total conversion and a 93% propylene selectivity using the “Single Particle” model. However, and once the more rigorous particle cluster flow was accounted for, propane conversion was limited to 20%, with propylene selectivity staying at 94% level. Thus, the obtained results show that a PODH simulation using CPFD requires one to account for “Particle Clusters”. This type of comprehensive model is needed to establish unambiguously the PODH downer reactor performance, being of critical value for the development of down-flow reactors for other catalytic processes

    Classical and reactive molecular dynamics: Principles and applications in combustion and energy systems

    Get PDF
    Molecular dynamics (MD) has evolved into a ubiquitous, versatile and powerful computational method for fundamental research in science branches such as biology, chemistry, biomedicine and physics over the past 60 years. Powered by rapidly advanced supercomputing technologies in recent decades, MD has entered the engineering domain as a first-principle predictive method for material properties, physicochemical processes, and even as a design tool. Such developments have far-reaching consequences, and are covered for the first time in the present paper, with a focus on MD for combustion and energy systems encompassing topics like gas/liquid/solid fuel oxidation, pyrolysis, catalytic combustion, heterogeneous combustion, electrochemistry, nanoparticle synthesis, heat transfer, phase change, and fluid mechanics. First, the theoretical framework of the MD methodology is described systemically, covering both classical and reactive MD. The emphasis is on the development of the reactive force field (ReaxFF) MD, which enables chemical reactions to be simulated within the MD framework, utilizing quantum chemistry calculations and/or experimental data for the force field training. Second, details of the numerical methods, boundary conditions, post-processing and computational costs of MD simulations are provided. This is followed by a critical review of selected applications of classical and reactive MD methods in combustion and energy systems. It is demonstrated that the ReaxFF MD has been successfully deployed to gain fundamental insights into pyrolysis and/or oxidation of gas/liquid/solid fuels, revealing detailed energy changes and chemical pathways. Moreover, the complex physico-chemical dynamic processes in catalytic reactions, soot formation, and flame synthesis of nanoparticles are made plainly visible from an atomistic perspective. Flow, heat transfer and phase change phenomena are also scrutinized by MD simulations. Unprecedented details of nanoscale processes such as droplet collision, fuel droplet evaporation, and CO2 capture and storage under subcritical and supercritical conditions are examined at the atomic level. Finally, the outlook for atomistic simulations of combustion and energy systems is discussed in the context of emerging computing platforms, machine learning and multiscale modelling

    Multiscale approaches toward advanced lithium-ion battery: From nano to meso scale

    Get PDF
    “Battery performance and its degradation are determined by various aspects such as the transport of ions and electrons through heterogeneous internal structures composed of constituent particles, kinetic reactions at the interfaces, and a corresponding interplay between mechanical, chemical, and thermal responses. Further, modern battery materials require a variety of engineering processes such as coating, doping and mixing. As a result, in order to fully understand the behavior of the battery material and improve battery performance, it is necessary to understand and control the individual particle behavior and then connect it to the electrode. This study elucidated the physical phenomena associated with coating and grain boundaries and addressed the impact on cell-level performance. We also studied how to improve battery performance by changing the material and geometry of electrode components. The study was divided into three topics. First, it has been proved how an optimal layer thickness of CeO2 layer by ALD is better than too think or too thick layer in terms of li-ion diffusion, transition metal-ion dissolution and mechanical damage. Second, it was shown that how grain boundary can improve the cell performance significantly. Grain-boundary possesses different diffusion co-efficient than the bulk and thus the performance is different than the electrodes where no grains are considered. Also, it was shown how grain boundary has impact on stress generation for both cathode and anode particles. Finally, an attempt has been made to use Ni-VOx based nanofiber supported with carbon nanofiber to be used as an anode for advanced li-ion battery. Not only the process is simple but also the cell showed improved reversibility at a current rate of 100 mA/g”--Abstract, page iv

    Reaction kinetics of NH3-SCR over Cu-CHA from first principles

    Get PDF
    Ammonia assisted selective catalytic reduction (NH3-SCR) is a leading technology that is used for NOx reduction to N2 and H2O in oxygen excess. Thanks to its high activity, high selectivity, and durability, Cu-CHA is commercialized as an NH3-SCR catalyst. Despite the superior catalytic performance, small amounts of nitrous oxide (N2O) are formed during the NH3-SCR as an unwanted by-product. N2O has a strong greenhouse potential and should be avoided. To further enhance the performance of NH3-SCR catalysts to handle the increasingly stringent emission standards, understanding the mechanism for NH3-SCR and, in particular, N2O formation over Cu-CHA is essential.In this thesis, density functional theory (DFT) calculations and first principles microkinetic simulations are used to investigate the reaction path and the reaction kinetics for low temperature-NH3-SCR. Based on a previously proposed catalytic cycle for NH3-SCR over Cu-CHA, an N2O formation path is put forward. It is proposed that N2O can form over linear [Cu(NH3)2]+ complexes, which are present during low temperature operation. N2O is formed from H2NNO, which is generated via NH2-NO coupling over a Cu-OOH-Cu site. The reaction proceeds with a low barrier and rationalizes the low-temperatureN2O emission peak observed experimentally at high Cu-loadings. N2O formation at high temperatures is instead proposed to occur through the decomposition of NH4NO3.With a catalytic cycle including N2O formation, a first principles microkinetic model is developed to investigate the reaction kinetic of NH3-SCR over Cu-CHA. When developing the model, special attention is paid assessing the change in entropy for each reaction step. The results from the kinetic model show good agreement with the experimental data of apparent activation energies, reaction orders and N2O selectivity. The model links the catalytic performance with structure and forms the basis for further developments of the NH3-SCR technology

    A Review On Alpha Case Formation And Modeling Of Mass Transfer During Investment Casting Of Titanium Alloys

    Get PDF
    Titanium alloys have excellent corrosion resistance, high temperature strength, low density, and biocompatibility. Therefore, they are increasingly used for aerospace, biomedical, and chemical applications. Investment casting is a well-established process for manufacturing near-net-shape intricate parts for such applications. However, mass transfer arising from metal-mold reactions is still a major problem that drastically impairs the surface and properties of the castings. Although there have been astounding developments over the past 20 years, they remain scattered in various research papers and conference proceedings. This review summarizes the current status of the field, gaps in the scientific understanding, and the research needs for the expansion of efficient casting of titanium alloys. The uniqueness of this paper includes a comprehensive analysis of the interfacial reactions and mass transfer problems. Additionally, momentum and heat transfer are presented where applicable, to offer a holistic understanding of the transport phenomena involved in investment casting. Solutions based on modeling and experimental validation are discussed, highlighting ceramic oxide refractories like zirconia, yttria, calcia, alumina, and novel refractories namely, calcium zirconate and barium zirconate. It was found that while mold material selection is vital, alloy composition should also be carefully considered in mitigating metal-mold reactions and mass transfer

    Lanthanum Zirconate Based Thermal Barrier Coatings: A Review

    Get PDF
    This review article summarizes the latest information about the manufacturing techniques of lanthanum zirconate (La2Zr2O7, LZ) powder and La2Zr2O7 based thermal barrier coatings (TBCs). Lanthanum zirconate is a promising candidate material for TBC applications, due to its lower thermal conductivity and higher thermal stability compared to other traditional TBC systems. In this work, the physical, thermal, and mechanical properties of the powder and coatings are evaluated. The durability experiments of the TBCs in various thermal, mechanical, and corrosive conditions are also reviewed. In addition, theoretical studies on the powder and coatings properties are presented. Finally, future research directions of lanthanum zirconate as TBC applications are proposed

    Conference proceedings: Thermo-mechanical processing of Steels & 5th Gleeble User Workshop India

    Get PDF
    To bring together the national experts, academia, R&D establishments, industries and students on a common platform for learning, sharing and updating the latest developments in the area of thermo-mechanical processing of steels. To provide a platform for Gleeble users in India to discuss the Gleeble related applications, operations and maintenance issues

    CARBON-BASED COMPLEX STRUCTURE AND MODEL DEVELOPMENT

    Get PDF
    Growing concerns about the environment and energy crisis prompt a search for effective carbon-based materials due to their low cost, renewability, sustainability, easy accessibility and excellent properties. We study the model development, structure and properties of graphene oxide, cellulose and their nanocomposites in order to obtain a better fundamental understanding of carbon complex materials and construct a structure-property relationship via reactive molecular dynamics simulations. In chapter 3, the model development of GO is studied. Theoretical GO models developed so far present a good description of its chemical structure. However, when it comes to the structural properties, such as the size and distribution of vacancy defects, the curvature (or roughness), there exist significant gaps between computational models and experimentally synthesized GO materials. We carry out reactive molecular dynamics simulations and use experimental characteristics to fine tune theoretical GO models. Attentions have been paid to the vacancy defects, the distribution and hybridization of carbon atoms, and the overall C/O ratio of GO. The GO models proposed in this work have been significantly improved to represent quantitative structural details of GO materials synthesized via the modified Hummers method. The temperature-programmed protocol and the computational post analyses of Fourier-transform infrared spectroscopy, X-ray photoelectron spectroscopy, vacancy size and curvature distribution, are of general interest to a broad audience working on GO structures from other synthesis methods and other two-dimensional materials and their composites. In Chapter 4, we outline the state-of-the-art understanding of cellulose structures, and discuss in details cellulose interactions, dissolutions and decompositions via computational methods of molecular dynamics (MD) and reactive molecular dynamics (RxMD) simulations. In addition, cellulose characterizations, beneficial to validate and support computational results, are also briefly summarized. Such a state-of-the-art account of atomistic computational studies could inspire interdisciplinary collaborations, optimize process design, promote cellulose-based materials for emerging important applications and shed a light on fundamental understandings of similar systems of biomolecules, polymers and surfactants. In Chapter 5, we investigate the fundamental mechanism of how cellulose structure transforms under pyrolysis conditions and the practical guideline of how cellulose properties are fined tuned accordingly. A series of reactive molecular dynamics calculations has been designed to reveal the structural evolution of crystalline cellulose under pyrolysis treatments. Through the detailed analysis of cellulose configuration change, hydrogen bonding network variation, reaction and redistribution of carbon, oxygen and hydrogen elements, and Young’s modulus, a molecule level insight of crystalline cellulose and its structural evolution under pyrolysis conditions has been constructed via reactive molecular dynamics simulations. We anticipate those theoretical results could effectively promote the design, the manufacture, and the optimization of cellulose based materials for relevant emerging applications. In Chapter 6, we combined the results from previous chapters and explore a new composite material that incorporating amorphous cellulose chains on GO surface, which is barely reported by recent publications. A series of RxMD simulations have been carried out to reveal the mechanical properties of pure GO and cellulose-GO nanocomposites. Two different cellulose-GO composites are constructed, namely, cellulose (monolayer)-GO model and cellulose (multilayer)-GO model. The tensile deformation, Young’s modulus and mechanical strength of GO and cellulose-GO composites have been recorded and calculated under the temperature of 300, 500 800 K, with two strain rates of 10-4/fs and 10-5/fs. We hope the GO model with the simultaneously description to both structural and chemical properties can provide a new fundamental understanding of the mechanical performance of GO and cellulose-GO composites, and could add some advancement to existing knowledge of carbon-based materials
    • …
    corecore