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Abstract 

Growing concerns about the environment and energy crisis prompt a search for effective 

carbon-based materials due to their low cost, renewability, sustainability, easy accessibility and 

excellent properties. We study the model development, structure and properties of graphene oxide, 

cellulose and their nanocomposites in order to obtain a better fundamental understanding of carbon 

complex materials and construct a structure-property relationship via reactive molecular dynamics 

simulations.  

In chapter 3, the model development of GO is studied. Theoretical GO models developed 

so far present a good description of its chemical structure. However, when it comes to the structural 

properties, such as the size and distribution of vacancy defects, the curvature (or roughness), there 

exist significant gaps between computational models and experimentally synthesized GO materials. 

We carry out reactive molecular dynamics simulations and use experimental characteristics to fine 

tune theoretical GO models. Attentions have been paid to the vacancy defects, the distribution and 

hybridization of carbon atoms, and the overall C/O ratio of GO. The GO models proposed in this 

work have been significantly improved to represent quantitative structural details of GO materials 

synthesized via the modified Hummers method. The temperature-programmed protocol and the 

computational post analyses of Fourier-transform infrared spectroscopy, X-ray photoelectron 

spectroscopy, vacancy size and curvature distribution, are of general interest to a broad audience 

working on GO structures from other synthesis methods and other two-dimensional materials and 

their composites. 

In Chapter 4, we outline the state-of-the-art understanding of cellulose structures, and 

discuss in details cellulose interactions, dissolutions and decompositions via computational 

methods of molecular dynamics (MD) and reactive molecular dynamics (RxMD) simulations. In 



 

 xiv 
 

addition, cellulose characterizations, beneficial to validate and support computational results, are 

also briefly summarized. Such a state-of-the-art account of atomistic computational studies could 

inspire interdisciplinary collaborations, optimize process design, promote cellulose-based 

materials for emerging important applications and shed a light on fundamental understandings of 

similar systems of biomolecules, polymers and surfactants. 

In Chapter 5, we investigate the fundamental mechanism of how cellulose structure 

transforms under pyrolysis conditions and the practical guideline of how cellulose properties are 

fined tuned accordingly. A series of reactive molecular dynamics calculations has been designed 

to reveal the structural evolution of crystalline cellulose under pyrolysis treatments. Through the 

detailed analysis of cellulose configuration change, hydrogen bonding network variation, reaction 

and redistribution of carbon, oxygen and hydrogen elements, and Young’s modulus, a molecule 

level insight of crystalline cellulose and its structural evolution under pyrolysis conditions has been 

constructed via reactive molecular dynamics simulations. We anticipate those theoretical results 

could effectively promote the design, the manufacture, and the optimization of cellulose based 

materials for relevant emerging applications. 

 In Chapter 6, we combined the results from previous chapters and explore a new composite 

material that incorporating amorphous cellulose chains on GO surface, which is barely reported 

by recent publications. A series of RxMD simulations have been carried out to reveal the 

mechanical properties of pure GO and cellulose-GO nanocomposites. Two different cellulose-GO 

composites are constructed, namely, cellulose (monolayer)-GO model and cellulose (multilayer)-

GO model. The tensile deformation, Young’s modulus and mechanical strength of GO and 

cellulose-GO composites have been recorded and calculated under the temperature of 300, 500 

800 K, with two strain rates of 10-4/fs and 10-5/fs. We hope the GO model with the simultaneously 
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description to both structural and chemical properties can provide a new fundamental 

understanding of the mechanical performance of GO and cellulose-GO composites, and could add 

some advancement to existing knowledge of carbon-based materials. 
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Chapter 1: Introduction 

1.1 Carbon-Based Material Model Development 

Carbon-based materials consist a large family of diverse structures of solid carbon and 

carbides have been attracting more and more interest worldwide [1]. Several thousands of studies 

have been published since the twentieth century with searching topics “carbon materials”. The 

versatility of carbon-based materials is due to their excellent physical and chemical properties, and 

the easy accessibility to bond with many other materials. Therefore, carbon-based materials have 

shown a variety of structures with remarkable properties such as high mechanical strength, high 

thermal stability, high surface area and great electrical conductivity, etc. [2, 3]. Their excellent 

properties lead to a diversity of applications in catalysis [4, 5], separation [6-8], sensor [9-11], 

degradation of organic pollutants [5, 12, 13], biomedical engineering [14-16], and clean energy-

related fields [17-20]. 

 For example, graphene, with exotic electronic properties and excellent mechanical strength 

of ~1 TPa [21], is widely used in sensing, separation, catalysis, and energy-related applications 

[21-25]. Additionally, the polymer-functionalized graphene showed great enhancement in the 

mechanical, thermal, electrical and optical properties [26-29]. The graphene precursor, graphene 

oxide (GO) derivatives, has been considered as a promising candidate in polymer nanocomposites 

due to the accessibility of macro-scale production, interfacial modification, and better 

dispersibility [30-34]. The extensive applications of GO include composites [35], separation [36-

38], catalysis [39, 40], sensing [41, 42], electronics [43, 44], energy storage [45, 46], biological 

and drug delivery [47-50]. With the increasing global demand, carbon-based catalysts, such as GO, 

carbon nanotubes and metal-free porous graphitic carbon nitride (g-C5N2), provide alternative way 
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for green and renewable processes to generate H2O2 in aqueous conditions [17, 51, 52]. 

Furthermore, cellulose, as the most abundant carbon-based materials to civilization, has an annual 

production of about 700 billion tons. Owing to properties such as renewability, sustainability, low 

cost, tunable mechanical strength, high biodegradability and excellent biocompatibility, cellulose 

has been widely used in biofuel productions [53, 54], energy related applications [55-58], 

biomedical engineering [59-67], paper and construction industry [68-72]. 

 Despite these encouraging progresses and applications of carbon-based materials, detailed 

fundamental understandings at atomistic level are still incomplete. The challenges in the 

theoretical study of carbon-based materials are: (1) lack of representative models that includes 

both structural and chemistry properties compared with realistic materials; (2) lack of a structure- 

properties -process relationship that could benefit both experiment and simulation studies. In this 

thesis, we choose GO, cellulose and cellulose-GO nanocomposites as the carbon-based material 

representatives, and carry out computational studies (1) to investigate the model development, the 

structural and mechanical properties of these materials; (2) to bridge the connection between 

experiments and simulation via various characterization techniques; and (3) to understand from 

the atomistic levels that how the properties of these materials can be fine-tuned via the 

manipulation of structures. Those molecular level understandings can provide a new fundamental 

understanding of carbon-based materials and add advancement to existing carbon-based materials 

knowledge. And such understandings could also shed a light on the construction of a structure-

property relationship and further inspire interdisciplinary collaborations, optimize process design, 

and promote carbon-based materials for emerging important applications. 
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1.2 Graphene Oxide 

Two-dimensional (2D) nanomaterials typically refer to flat or slightly corrugated sheets 

with nanometer thicknesses and infinite lateral dimensions, such as graphene, single-layer boron 

nitride (BN), molybdenum disulfide (MoS2) and so on (Figure 1). The quantum confinement on 

the thickness direction results in exotic electronic properties and enhanced surface effects that can 

be useful in sensing, separation, catalysis, energy-related applications, etc. [25]. In 2005, Geim’s 

group obtained the first real piece of graphene, and experimentally observed the quantum hall 

effect on the sample at room temperature [73, 74]. Soon after that, a storm of graphene research 

dominated the world of carbon nanomaterial research. Recently, 2D materails have attracted 

tremendous attention, since they belong to a major category in nanomaterials that has not yet been 

well explored. 

 

 

Figure 1. Schematic of single-atomic-layer structure of (a) graphene; (b) h-BN, with blue spheres 

representing boron atoms and pink spheres representing nitrogen atoms; (c) MoS2, with blue 

spheres as Mo atoms and yellow spheres as sulfur atoms; (d) graphene oxide (GO), with epoxy 

Graphene                                         h-BN                                                   MoS2

Graphene Oxide (GO)

(a) (b) (c)

(d)
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(red), hydroxyl (black), ketone (green), lactol (blue), and ester (pink) functionalities highlighted 

in different colors [75]. 

One of the biggest challenges in graphene research was the large-scale production of graphene. 

The original method Geim’s group adapted, named as mechanical exfoliation of highly oriented 

pyrolytic graphite (HOPG) [73, 74], was both time consuming and extremely low in yield. 

Different strategies have been introduced for graphene production, including metal ion 

intercalation[76], liquid phase exfoliation of graphite [25, 77], chemical vapor deposition (CVD) 

growth[78], vacuum graphitization of silicon carbide (SiC) [79], bottom up organic synthesis of 

large polycyclic aromatic hydrocarbons(PAHs) [80-82], and most importantly, chemical reduction 

of graphene oxide (GO) [83, 84]. Pros and cons exist for each strategy; nevertheless, GO was 

believed to be one of the most promising pathways to the mass production of graphene, mainly 

due to its wet-chemical processability, large-scale availability in monolayers, and relatively low 

cost as compared to that of graphene (either CVD grown or mechanically exfolicated). In addition, 

GO and its derivatives have shown several promising applications in catalysis, composites, energy 

storage, sensing, water purification, electronics, etc. Therefore, GO has been established as an 

important and technologically relevant material during the past decade. There now exists an 

extensive literature regarding the synthesis, chemical structure, reactivity, properties of GO, as 

well as its use in multiple applications. However, GO has recently been reported to degrade after 

about a month of synthesis at room temperature [85]. Loss of epoxy groups is believed to be the 

major structural change during the degradation process of GO. This structural change presents a 

significant challenge for all potential applications of GO. Therefore, a better understanding of GO, 

especially regarding its structural stability and chemical reactivity, via the intertwined 

experimental and theoretical studies. Understanding these fundamental concepts is key to the 

development of all the GO-based applications, such as catalysis and separation.  
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 Experimentally, one of the most widely used GO models in literature is from Lerf and 

Klinowski, where hydroxyl and epoxy groups exist mainly on the basal plane and carboxyl groups 

are located at edges [86-88]. With the advance of modern characterization techniques, Gao and 

co-workers proposed a more detailed GO model that has large vacancy defects, and other 

quantitative features, such as the overall carbon/oxygen (C/O) ratio (2.44); the relative ratio of 

major functional groups, namely, 115 (hydroxyl and epoxide): 3 (lactol O–C–O): 63 (graphitic sp2 

carbon): 10 (lactol + ester + acid carbonyl): 9 (ketone carbonyl) [89]. Since GO material is 

sensitive to the synthesis protocols (temperature and oxidants), a static GO structure with a 

‘dynamic structure’ which constantly evolves with its environment has been proposed.[90] In 

addition, the experimental results also indicate that a good GO model shall capture both structural 

(i.g. vacancy defects, curvature) and chemical information (i.g. C/O ratio, major functional groups, 

etc.). 

From the computational point of view, efforts have been made via ab initio density functional 

theory (DFT) method to study GO materials and their properties [91-94]. Using the knowledge 

from DFT calculations, more attempts have been made to develop GO models via molecular 

dynamics (MD) simulations.[95-104] Theoretical GO models developed so far present a good 

description of its chemical structure. However, when it comes to the structural properties, such as 

the size and distribution of vacancy defects, the curvature (or roughness), there exist significant 

gaps between computational models and experimentally synthesized GO materials. The GO 

models proposed in this thesis inherit both structural and chemistry information of previous GO 

models but have significantly improved to represent quantitative structural details of 

experimentally synthesized GO materials. 
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1.3 Cellulose 

Cellulose is a polysaccharide that consisting linear chains of hundreds of b-1,4-linker 

glucose units. As a primary component of cell walls of plants, algae, bacteria and other natural 

biomaterials, cellulose is the most abundant and widespread natural resource with an annual 

production of about 700 billion tons. Due to its renewability, sustainability, low cost, tunable 

mechanical strength, high biodegradability and excellent biocompatibility, cellulose has been 

widely used in biofuel productions [53, 54], energy related applications [55-58], biomedical 

engineering [59-67], paper and construction industry [68-72]. 

Remarkable studies have been published for the cellulose dissolution/interactions [105, 

106], cellulose degradation/conversion via enzymes [107, 108], catalysis [109-114], hydrolysis 

[111, 115-117] and pyrolysis processes [116, 118], as well as numerous cellulose applications in 

experiments [55, 56, 67, 119-129].  As for theoretical efforts, reports are available regarding model 

developments of cellulose microfibril and plant cell wall [130], mathematical models for cellulose 

plant growth [131], computational studies of the decomposition of lignocellulosic materials 

(cellulose, hemicellulose and lignin) via catalyzes, enzyme, pyrolysis and dissolution methods 

[132, 133], and computational NMR predictions of carbohydrate materials [134]. 

It is accepted that the utilization of cellulose is highly dependent on the effective and 

selective modification of the 1,4-β glycosidic linkages and the inter/intra hydrogen bonding 

networks. In order to effectively convert natural cellulose into processable advanced functional 

materials, various treatments have been proposed in industrial such as mechanical treatment [135-

139], chemical treatments [139-148], hydrolysis treatments [140, 149-169] and pyrolysis 

treatments [170-174]. More recently, a new strategy that maintaining inherent structural features 

and manipulating subtle properties have brought applications of cellulose-based materials to a new 
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horizon [142, 175-178]. For example, Song et al. [141] proposed a subtle two-step treatment to 

obtain advanced materials from cellulose resources. They processed natural wood to firstly remove 

lignin and hemicellulose, followed by a mechanical compressing to fine-tune properties of the 

remaining cellulose. The transformed wood, mostly the structurally manipulated cellulose, is 

mechanically more than 10 times stronger than steel.  

For the theoretical understanding, ab initio and classical MD simulations were used to 

simulate the surface of cellulose Ib and its interactions and dissolution with water [179] and ILs 

[180-182]. Recently, the computational study of cellulose pyrolysis has attracted more and more 

interest [183-185]. BergenstråhleLars et al. [183] reported that cellulose Iβ crystal changed its 

structure when the temperature was above 450 K via classical MD simulations. Zheng and co-

workers [186] studied the pyrolysis process of amorphous cellulose at temperatures from 500 to 

1400 K via RxMD, and their pyrolysis products is consistent with available experiments. Paajanen 

et al. [187] also studied the amorphous cellulose decomposition from 1400 to 2000 K. They 

observed that the breaking of 1-4-β bonds eventually leads to the cellulose decomposition, and that 

the decomposition products are mainly glycolaldehyde, water, formaldehyde and formic acid, 

which agreed with experimental results. Although numerous efforts have been made 

experimentally and theoretically, a molecular level understanding of how cellulose structure 

transforms under different treatments and how its property could be fine-tuned accordingly, is still 

incomplete. In this thesis we have focused on the crystalline cellulose and its structural evolution 

under pyrolysis conditions  
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1.4 The Mechanical Properties of GO and Cellulose-GO Composite 

 As aforementioned, GO has become one of the most widely utilized two-dimensional (2D) 

nanomaterials during the past decade [73, 74, 83, 188, 189]. The extensive applications of GO 

include composites [35], separation [36-38], catalysis [39, 40], sensing [41, 42], electronics [43, 

44], energy storage [45, 46], biological and drug delivery [47-50]. Due to the accessibility of 

macro-scale production, interfacial modification, and good dispersibility, GO and its derivatives, 

has been considered as a promising candidate in polymer nanocomposites recently [30-34]. And 

the prediction of mechanical properties is one of the important parts for the investigation of the 

incorporated composites. 

 Since GO generated by different synthesis method showed different concentration and 

distribution of functional groups (mainly hydroxyl, epoxide and carboxyl) [86-89, 189], and 

defects located on GO surface. The mechanical and fracture studies of GO itself is still ambiguous 

and conflicting. Both the structural (defect, curvature) and chemical (functional groups) properties 

of GO significantly affect the mechanical behavior of GO. Experimentally, Gao and co-workers 

[190] reported that the grip pressure, length and loading rate highly affect the measurement of GO 

mechanical properties. Sakorikar et al. [191] demonstrated that the thickness of reduced graphene 

oxide (rGO) determines the crack propagation process of rGO films. An increasing thickness 

results in the decrease of the crack density and the increase of crack width. Similarly, Cao et al. 

[192] found that the random distribution of functional groups between GO multiple layers prevents 

the growth of preexisting crack. In theoretical studies, Cao et al. [193] studied mechanical 

properties of the monolayer GO membranes with 20% degree of oxidation via DFT and found that 

the brittle failure of GO occurred along the connecting oxidized carbon atoms on GO surface. On 

the contrary, Wei and co-workers [194] observed ductile behavior for 70% oxidization monolayer 
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GO via density functional-based tight binding (DFTB). Their reported elastic modulus (256.4 ± 

28.2 GPa) is lower than the value (384 ± 31 GPa) proposed from Cao et al. [193], which indicated 

that the increasing of oxidation of GO might lead to the decrease of elastic modulus. It is reported 

that the hydroxyl groups cause the brittle behavior, whereas the ductile failure occurred when the 

transformation of epoxide-to-ether groups is dominated on GO surface [195, 196]. Using reactive 

force field (ReaxFF), Verma et al. [197] proposed that the spatial distribution and concentration of 

hydroxyl and epoxide groups are critical for the ductile behavior of GO. Although the 

functionalized GO materials demonstrate unique anisotropic mechanical, electrical and many other 

properties, which could bring the research and utilization of 2D nanomaterial to a next level, a 

better fundamental understanding of GO mechanical properties at atomistic level is still required. 

 Cellulose and its derivatives have been used to functionalize GO for GO/cellulose 

nanocomposites due to its excellent mechanical strength. Effort has been made experimentally in 

order to evaluate the properties and applications of GO/cellulose composites [198, 199]. The 

Young’s modulus was reported to be improved by ~30% for GO/cellulose [200, 201]. Li et al. 

[202] incorporated GO with nanofibrillated cellulose (NFC) fibers and reported that this hybrid 

fibers are stronger than the pure GO and NFC due to the synergistic effect of bonds between NFC 

fibers and GO sheets. Peng and co-worker [203] proposed a cellulose/rGO paper with tunable 

mechanical properties and high biocompatibility, which could be used in biomaterial scaffolds for 

biomedical and tissue engineering. A potential electrochemical film consisting of nanocrystalline 

cellulose acetate (NCCA) and GO showed not only the enhancement of 61.92% in tensile strength 

compared with pure NCCA, but the electrical properties are greatly improved as well.[204] 

 Theoretically, RxMD was carried out to study the mechanical properties of multilayered GO 

composite paper [96, 205]. It is reported that the HBs network and water molecules influence the 
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mechanical behavior of multilayered GO composite. The control of structural and mechanical 

properties of the GO composite can be achieved by adjusting the amounts of functional groups, 

adding extra H-bonding favorable polymers (e.g. polyvinyl alcohol) and changing the 

concentration of water between GO layers. Zhang and Jiang [206] found that a large number of 

functional groups between graphene/GO layers increases the overall stiffness by increasing the 

number of HBs in the graphene/GO paper composite. While the elastic modulus of single GO sheet 

decreased with more functional groups in the surface. Rahman et al. [207] reported that the 

Young’s modulus of graphene/cellulose composites with 5% graphene are 100% higher than pure 

cellulose resin system. Despite of the plenty computational studies aforementioned, there is barely 

no published work comparing the mechanical performance of monolayer GO and new cellulose-

GO nanocomposites after incorporating amorphous cellulose chains on GO surface. In this thesis, 

the tensile deformation, Young’s modulus and yield strength of GO and cellulose-GO composites 

will be studied. 

 

1.5 Reach Approach 

 Despite of the progressing studies and applications of carbon-based materials, fundamental 

understanding of the structure and properties of these materials is far from complete. Form the 

view of computational studies, the challenge is due to the absence of representative models that 

could contain both structural and chemistry of carbon-based materials. And the mechanism of how 

structure changes affect the properties of these materials at atomistic level is still remain unclear. 

In this thesis, we use GO, cellulose and cellulose-GO composites to investigate the model 

development via reactive molecular dynamics simulations. And multiple calculated 

characterization techniques are carried out in order to construct a structure-property relationship 
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and bridge the connection between experiment and simulations. The thesis is organized as follows: 

In Chapter 2, a brief introduction of quantum mechanics (QM), molecular mechanics (MM) and 

reactive force field (ReaxFF) method is given. The calculation methods of some commonly used 

characterization techniques are also introduced in this chapter. Chapter 3 discusses the model 

development of GO. Chapter 4 summarized the recent atomistic studies about the structure, 

properties and process of cellulose. The studies of cellulose via simulation method of MM and 

MD based on ReaxFF are reviewed. Based on Chapter 4, we investigate the structural evolution 

of crystalline cellulose under the isolated pyrolysis process in Chapter 5. The pyrolysis temperature, 

the change of cellulose crystallinity, the variation of inter/intra HB networks, the reaction and 

distribution of C, O and H elements and mechanical properties of cellulose crystal have been 

analyzed. In Chapter 6, we combined the results from Chapter 3 (GO) and Chapter 5 (cellulose) to 

propose a cellulose-GO nanocomposite model. The model development and mechanical behavior 

of pure GO and cellulose-GO nanocomposites are investigated. Finally, the results we obtained 

are conclude in Chapter 7, and future research plans about carbon-based material model 

development and properties studies has been given. 
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Chapter 2: Simulation Methodology 

2.1 Quantum Mechanics 

Quantum mechanics (QM) has been used to study the electron and chemistry of materials 

at subatomic level over decades [1, 2]. Instead of describing the motion of a particle by position 

and momentum, a wavefunction is used to specify the state of motion in QM. Generally, the time-

dependent Schrödinger’s wave equation is the form of  

!ℏ!

#$
∇#Ψ(𝐫) + 𝑉(𝐫)Ψ(𝐫) = 𝐸Ψ(𝐫)                                           (2-1) 

Where ℏ is the reduced Planck constant, 𝑚 is the electrion mass, ∇ is the Laplacian operator, Ψ is 

the wave function, 𝑉 is the potential energy, 𝐸 is the energy eigenvalue and (𝐫) represents the 

quantities are functions of spherical polar coordinates (r, θ, φ). 

In principle, solving the Schrödinger equation exactly will increase the accuracy in the 

prediction of atoms and molecules, whereas in practice it is only possible to get the exact solution 

for one electron systems. Therefore, numerous methods have been developed to approximately 

calculate the electronic energy, electron density and other properties for multi-electron system[3-

8] including: (1) ab initio, (2) density functional theory (DFT), (3) semi-empirical methods. 

The ability of describing electronic structures makes QM the most accurate predictive 

method compared with other simulation approaches. Because of this supreme accuracy and 

predictability of QM method, it is widely used to evaluate and verify the structural and electronic 

properties of carbon-based materials and compared with experimental results. For example, with 

the reported unit cell parameters from experiments, QM is able to perform optimizations in 

material geometry and regenerate optimal lattice parameters based on the energy calculations of 

QM method. Similarly, QM method can be used to determine the most energetically favorable 
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bond lengths, bond angle and HBs patterns inside materials and offer useful information in the 

manipulation of advanced materials. Furthermore, QM is commonly used to interpret the 

interactions, adsorptions and dissolution mechanism associated with experiments. When 

considering the calculation of some mechanical properties, technically QM method could be able 

to provide correct predictions. However, due to the limitations of system size and simulation time, 

the small representative model used in QM might result in the lack of description of synergetic 

effects belongs to complex bulk structures, as well as the description of macroscopic structures 

and properties. Several possible ways to solve this problem are to: (1) make more approximations 

(which might conflict with the accuracy of QM method); (2) allow the combination of QM and 

other (MM or COSMO-RS) methods; (3) develop methods or hardware that can highly promote 

the QM calculations.  

 

2.2 Molecular Mechanics 

Force field based computational methods, such as molecular mechanics (MM), molecular 

dynamics (MD) simulations and Monte Carlo (MC) calculations have been applied in a large 

variety of scientific fields [9, 10]. MD is one of the mostly used MM methods which generate the 

trajectory of atom positions, velocities and accelerations by calculating the motions based on 

classical Newtonian equation under a time evolution at finite temperatures [11-13]  

𝐹 = 𝑚 ∙ 𝑎 = 𝑚 ∙ %&
%'
= 𝑚 ∙ %

!𝐱
%'!

                                              (2-2) 

Where F is the force exerted on particle, m is the mass of the particle, a is the acceleration of 

particle and x is the cartesian vector of the system. 

 The calculation of total energy (𝐸')') in MM includes bonded terms (𝐸*)+%,%) that are 

interactions involved with atoms linked by covalent bonds and nonbonded terms (𝐸+)+*)+%,%) that 
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related with long-range electrostatic and van der Waals forces. Although the detailed equation 

varies depends on different force fields, a general for 𝐸')' could be describe as: 

𝐸')' = 𝐸*)+%,% + 𝐸+)+*)+%,%                                                   (2-3) 

With 

𝐸*)+%,% = 𝐸*)+% + 𝐸-+./, + 𝐸%01,%2-/                                          (2-4) 

𝐸+)+*)+%,% = 𝐸,/,3'2)4'-'03 + 𝐸&-+	%,2	6--/4                                      (2-5) 

The ability of simulating large system with ~500,000 atoms in the system makes MD a 

proper tools in the studies of molecular structures and properties predictions [9, 10, 14], drug 

design [15, 16] and complex protein and DNA system [17, 18]. Although these advantages allow 

the wide applications of MD methods, the limitation of MD is obvious. The accuracy and 

predictability of MD method are highly dependent on refinement of force field parameters. The 

relatively long equilibrium time (over a microsecond in time scale) for large systems is another 

challenging problem need to be solved for MD method. Also, the bonds and angles of atoms are 

fixed without any breaking, which is opposites from the realistic molecules. Another widely used 

MM method is energy minimization to obtain the most stable conformers of molecules with force 

fields as the criterion. It is widely used in the calculations of elastic modulus of cellulose, and a 

detailed discussion will be found in session 8. Different from MD methods, MC method compute 

the properties of molecules as long as it has a probabilistic interpretation (such as the free energy) 

without out the involvement of time [19].The MC method is widely used in the studies of 

molecular conformations [20, 21], adsorptions [22-24], diffusions [25-27] and estimation of 

kinetic parameters [28-30]. Several popular force fields for MM studies are GROMOS [31-33], 

CHARMM [34-36], COMPASS [37], AMBER [38-41], GLYCAM06 [42], OPLS-AA [43-46], 

PCFF [37], UFF [47], CVFF [48], DREIDING [49], MM2 [50], MM3 [51], MM4 [52]. 
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2.3 QM/MM method and Ab Initio Molecular Dynamics 

However, QM method is not capable to describe large system, especially with protein or 

enzyme in the model, due to its limitation in simulating systems within 1-10 nm. To address this 

issue, a combination QM/MM method is developed to contain both accuracy (QM) and speed (MM) 

[53]. The QM region calculates the molecules that involved with bonds formations and breaking, 

while MM part contains large molecules such as protein residues or solution elements via classical 

force fields. This advantage allows QM/MM method to widely used for the calculations of 

chemical reactions in solutions, biological systems, and other complex systems. 

Despite the success of MD method in describing both equilibrium and dynamical properties 

of systems, it still has limitations because of the force fields. The accuracy of MD method highly 

depends on the force fields. Additionally, classical MD method cannot allow bonds formation and 

breaking during the simulations. In order to address these problems, ab initio molecular dynamics 

(AIMD) method has been developed and successfully combined finite temperature dynamics with 

on-the-fly force that based on the accurate electronic structure calculations. Based on Schrödinger 

equation, classical, Ehrenfest, Born-Oppenheimer and Car-Parrinello molecular dynamics (CPMD) 

has been derived via separating the nuclear and electronic degrees of freedom [54]. The utilization 

of electronic structure calculation not only allows AIMD to represent bonds forming and breaking, 

but also make it possible to describe system with unusual chemical bonds and reactions as well. 

Therefore, AIMD is widely applied in the calculations including the structure, dynamic and proton 

transport in aqueous solutions, cluster and ice system [55-66],complex polymer and protein system 

[67-70] and surface catalysis [71, 72]. However, AIMD is only capable of describing small system 

with up to hundreds of atoms and timescale (tens of picoseconds) compared with MD method 
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because of the expensive electronic calculations. Similar to MD method, the accuracy of AIMD is 

dependent on the electronic structure method used. More details of AIMD can be find in the 

reference and reviews [54, 73-80]. 

 

2.4 Reactive Force Field Method 

        Due to the advantage that electronic/reaction details and large time/space scale computations 

can be achieved simultaneously, molecule dynamics based on reactive force field (ReaxFF) has 

gained more and more attention from the cellulose community recently. ReaxFF has been 

developed by van Duin in 2001 [81] with a bond-order concept adopted from Tersoff [82] to 

develop a reactive empirical force field (ReaxFF) for hydrocarbon systems. In the ReaxFF 

description, the bond order 𝐵𝑂078  for a pair of atoms can be obtained directly from the interatomic 

distance 𝑟07, as illustrated in Eq. (2-6) 

                (2-6) 

Where the 𝑝*)9, 	𝑝*)# , 𝑝*):, 	𝑝*); , 	𝑝*)<  and 𝑝*)=  are used to describe the 𝜎, 𝜋  and 𝜋𝜋  bonds, 

respectively. Eq. (2-6) is defined so that the value of the three exponentials is unity below a 

threshold interatomic distance and zero at longer distances.  

        The assumption of the bond orders 𝐵𝑂078  concept allows the spontaneous bond breaking or 

forming while keeping the energy and force continuous during the simulation. The bond order 

values need to be updated at each MD step in order to determine the total energy of the system. 

Generally, the total energy for ReaxFF is in the form of 
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                                                       (2-7) 

For instance, the bond energy  is calculated from the bond order  as: 

                                 (2-8) 

where 𝐷,> , 𝐷,? , 𝐷,?? ,𝑝*,9  and𝑝*,#  are the bond parameters, 	𝐵𝑂07> , 	𝐵𝑂07?  and 𝐵𝑂07??  are the 

corrected bond orders for the 𝜎, 𝜋 and 𝜋𝜋 bonds, respectively. Similarly, in order to describe the 

connectivity, the nonbonded van der Waals and Coulomb interactions are also calculated between 

every atom pair at each MD step. In addition, the electronegativity equalization method (EEM) 

[83] is applied to dynamically derive the atomic charges for the polarization effects. More detailed 

descriptions of specific energy terms in Eq. (2-7) and the algorithms for the nonbonded calculation 

can be found from the ReaxFF manual [84] and publications [81, 85, 86]. It is worth noting that to 

ensure a smooth transition of the energy and the force for the ReaxFF calculations, the bond order 

and the energy terms for the bond, the angle and the dihedral angle are zero when considering the 

dissociation of this bond. 

ReaxFF has been successfully used in describing complex and large-scale reactive systems 

that contained many hundreds to several thousands of atoms such as protein/DNA [87, 88], 

membrane fuel cell systems [89], and very complex coal structure and properties [90, 91]. Because 

of the bond-order concept, ReaxFF is able to widely used in the study of adsorption, dissociation, 

complicated reactions [92-94] and specialized in predicting structural evolution, tracing 

intermediates, and analyzing final products [95-98]. Although ReaxFF is generally an order slower 

than nonreactive force fields, because of the expensive charge calculations via the electronegativity 

equalization method (EEM) [99-101], a time scale of microseconds trajectory could be archived 

Etot = Ebond + Elp + Eover + Eunder + Eval + Epen + Ecoa + EC2

         + Etriple + Etors + Econj + EH−bond + EvdWaals + ECoulomb
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with the help of parallel calculations. More details of ReaxFF are available from recent reviews 

[86, 102, 103]. 

 

2.5 Simulation Methodology and Computational Characterizations          

2.5.1 The Temperature-Programmed RxMD Simulation 

 A temperature-programmed RxMD simulation process is used to generate GO in order to to 

overcome reaction energy barriers in our research.[96, 97] A detailed description of the simulation 

protocol is provided in Figure 2. For each RxMD simulation, we start with the isothermal–isobaric 

ensemble for 100 ps at low temperature and 5 ns for annealing process at 1 atm and Ttri, where the 

number of atoms (N), the pressure (P) and the temperature (T) are fixed. This is to relax the initial 

structure to an appropriate volume and reduce stresses from the basal plane. After this annealing 

process, another 5 ns of RxMD simulation at room temperature (300K) with canonical (NVT) 

ensemble is carried out for post-analyses. For the annealing parts, 5 ns is enough to allow the 

energy of the system and the productions of side products reach equilibrium. All generated GO 

structures are further relaxed at room temperature (300 K) for 5ns with the same criteria to reach 

stable structures. A timestep of 0.25 fs is used throughout the calculations. The Berendsen method 

with the damping constant 100 fs is applied to maintain the temperature of the system. Initial 

velocity is generated by the Boltzmann distribution. 
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Figure 2. The temperature-programmed RxMD simulation process. I and F represent initial and 

final stage of the GO model; A, B, C, D are the intermediate GO structures. A timestep of 0.25 fs 

is used in the RxMD simulations. 

 

2.5.2 Computational Characterizations 

 In experiments, Fourier-transform infrared spectroscopy (FTIR), X-ray photoelectron 

spectroscopy (XPS) and X-ray powder diffraction (XRD) are commonly used for carbon-based 

material characterization. The calculation of these methods can be carried out via MD simulations, 

numerical calculations and commercial software. 

 

2.5.2.1 Fourier-transform infrared spectroscopy (FTIR) 

 FTIR provides a fast and easy way to gain the bonding information via characteristic 

vibration spectra. For the computational FTIR analysis, one has to be careful with noise peaks. 

This is due to a rich number of functional groups in materials. In the trajectory of RxMD simulation, 

functional groups are flexible and can interact with each other or with the basal plane, producing 

ambiguous peaks and overlaps in the FTIR fingerprint region. 
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 The principles of FTIR are based on the facts that electromagnetic radiation of the 

wavenumber range from 400-4000 cm-1 can be absorbed by materials. Characteristic peaks are 

distinguishable due to different functional groups and their unique vibrational spectra. In this work, 

the FTIR spectrum calculation is summarized as the following: firstly, the dipole moment of the 

system is collected from the RxMD trajectory. 

�̅� = ∑ 𝑞0(�̅�0 − �̅�@)0                                                          (2-9) 

 Secondly, the autocorrelation function of dipole moment is calculated via the equation 

below[104-108], 

𝑅A(𝜏) = 𝐸[𝑥(𝑡)𝑥(𝑡 + 𝜏)] = lim
B→D

9
B ∫ 𝑥(𝑡)𝑥(𝑡 + 𝜏)𝑑𝑡B

@                        (2-10) 

 Finally, fast Fourier transform is applied to process the calculated autocorrelation function 

and generate the IR spectra. We adopted the python script template provided by Efrem Braun[109], 

and modified it to our cases. Benchmark calculations and FTIR analyses have been performed to 

systems of liquids (bulk water and bulk ethanol) and solids (metal-organic framework, MOF-5). 

Those benchmark FTIR calculations agree well with corresponding FTIR experiments.  

 We carried out several benchmark calculations about water systems to validate the accuracy 

and predictivity of their methods as well. Figure 3 showed the comparison of calculated FTIR 

between different force fields and systems. A single water molecule system calculated with 

Lennard-Jones (LJ) potential and ReaxFF are compared in Figure 3 (a) and (b). Both force fields 

can qualitatively reproduce main characteristic peaks compared with colored region of 

experimental value. Figure 3 (c) and (d) showed the bulk water system calculated with LJ potential 

and ReaxFF. Although the peak of O-H stretch is not large compared with results based on LJ 
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potential, ReaxFF is able to generate correct characteristic peaks for water. The peak intensity is 

commonly used to quantitively calculate the concentration of the target functional groups on 

materials. In the simulation, the peak intensity can be adjusted via parameters in the python code 

if possible.  

 

Figure 3. Calculated FITR of a single water molecule via (a) LJ potential; (b) ReaxFF; Calculated 

FITR of bulk water system via (c) LJ potential and (d) ReaxFF. Experimental data is provided in 

colored regions in each plot. Green, pink and orange regions represent peaks generated by O-H 

stretch peak, H-O-H bend and liberation, respectively. 

 

2.5.2.2 X-ray photoelectron spectroscopy (XPS) 

 XPS provides quantitative information of element percentage analysis. In this work, we used 

the experimental XPS data from Ganguly [110], Mariana and co-workers [111], and compared 
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with the calculated hybridization and distribution of carbon atoms of GO. Figure 4 provides GO 

structures analysis outline for hybridization of carbon atoms and their distribution analysis. The 

bond connections can be obtained from the bond order output via LAMMPS. Fortran codes were 

carried out for the corresponding post-analysis of hybridization. 

 

Figure 4. GO structures analysis outline for hybridization of carbon atoms and their distribution 

analysis. 
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2.5.2.3 X-ray powder diffraction (XRD) 

X-ray diffraction (XRD) patterns are capable of determining the orientation of a single 

crystal or grain since they are sensitive to spacings between layers or rows of atoms. For the past 

decades, XRD has been utilized to identify crystal structures, measure the size, shape and internal 

stress of small crystalline regions. It is also a primary tool for determination of nano-crystallite 

orientation in polymers. In this thesis XRD plots were calculated to monitor the structural 

evolution of crystalline cellulose: the peak positions are determined by the lattice parameters, 

while the peak intensities are from the motif. XRD calculations were carried out by the Mercury 

and Diamond software, more information is available from the software manual [112, 113]. 
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Chapter 3: Graphene Oxide Model with Desirable Structural and 

Chemical Properties* 

3.1 Introduction 

 Graphene oxide (GO) has been one of the most widely studied and utilized two-dimensional 

(2D) nanomaterials during the last decade[1-4]. As a promising precursor for graphene mass 

production, GO has unusual electronic properties and other features such as wet-chemical 

processability, large-scale availability as monolayers, and much lower cost as compared to that of 

chemical vapor deposition (CVD) or mechanical exfoliation products[5]. In addition, GO and its 

derivatives have shown promising applications in catalysis[6, 7], composites[8], energy storage[9, 

10], sensing[11, 12], separation[13-15], electronics[16, 17], biological and drug delivery,[18-21] 

etc.. GO has been established as an important and technologically relevant material in the past 

decade, and there now exist a large number of literatures about GO synthesis, some of which dated 

back to 150 years ago. However, GO structure with molecular level details remains inaccessible. 

On the other hand, despite the lack of structural details, many renovated GO applications[22-29] 

are indeed based on the tunability of GO properties, through the structural and surface chemistry 

control of defects and oxygen-containing functional groups. The functionalized GO materials 

demonstrate unique anisotropic electrical, magnetic, and optical properties, which could lead the 

research and application of 2D nanomaterial to the next level, and in turn require a better 

fundamental understanding of atomic GO structures.  

 Historically, the first widely accepted GO model from experiments was proposed by 

Hofmann and Holst, with repeating units of 1,2-epoxides[30]. Later, Ruess deduced a new model 
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based on sp3 hybridized graphene basal planes[31]. Scholz and Boehm proposed a GO model in 

1969 that only contains hydroxyl and ketone groups[32]. Dekany and co-workers proposed another 

model, which has trans-linked cyclohexane chairs and corrugated hexagon ribbons[33]. One of the 

most widely used GO models in literature is from Lerf and Klinowski, where hydroxyl and epoxy 

groups exist mainly on the basal plane and carboxyl groups are located at edges[34-36]. With the 

advance of modern characterization techniques, more quantitative features have been revealed. For 

example, through X-ray photoelectron spectroscopy (XPS) and solid-state magnetic resonance 

(ssNMR) analyses, Gao and co-workers proposed a GO model that has large vacancy defects, and 

other quantitative features, such as the overall carbon/oxygen (C/O) ratio (2.44); the relative ratio 

of major functional groups, namely, 115 (hydroxyl and epoxide): 3(lactol O–C–O): 63 (graphitic 

sp2 carbon): 10 (lactol + ester + acid carbonyl): 9 (ketone carbonyl)[37]. The reported lactol groups 

was also interpreted as hydrates of ketones groups (geminal diols)[38]. It is worth noting that GO 

material is sensitive to the synthesis protocols, such as temperature and oxidants used. 

Experimentally synthesized GO materials are generally amorphous and will degrade even under 

ambient conditions. A static GO structure with definitive functional groups probably does not exist, 

one has to treat GO as a ‘dynamic structure’ which constantly evolves with its environment[39]. 

In addition, the experimental results also indicate that a good GO model shall capture both 

structural (i.g. vacancy defects, curvature) and chemical information (i.g. C/O ratio, major 

functional groups, etc.). 

 As for GO models proposed by theoretical efforts, early studies were from ab initio 

quantum mechanics methods[40-43]. Despite the accuracy, quantum mechanics calculations 

typically deal with small systems, on the order of tens of atoms. Such system size limitation 

prevents a simultaneous description of defects, functional groups and their correlations. Ab initio 
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density functional theory (DFT) method has been also widely applied to study GO materials and 

their properties[44-47]. But it is still challenging to use ab initio DFT method to develop a dynamic 

GO structure at finite temperatures. The expensive computational cost also prevents studies 

involving multiple phases and multiple reacting species during GO synthesis. This explains why 

for most ab initio DFT studies, usually one feature of GO is studied. Using the knowledge from 

DFT calculations, more attempts have been made to develop GO models via molecular dynamics 

(MD) simulations[48-57]. Among those efforts, the reactive force field (ReaxFF) based molecular 

dynamics (RxMD) method is promising for GO model development.  

  Previously, we proposed a protocol to perform temperature-programmed RxMD 

simulations[58] and controllably generate GO structures with different functional groups and 

defects. The produced GO models capture critical chemical characteristics of GO, agreeing with 

the results from ab initio quantum calculations and having been further validated with reactive 

adsorption experiments for H2S removal. Also using a ReaxFF force field, Bagri et al. studied the 

residual oxygen distribution and structural evolution of reduced GO (rGO) via a thermal annealing 

process[59]. The rGO structures received from their calculations agree with Fourier-transform 

infrared spectroscopy (FTIR) and XPS characterizations,[60-62] which further demonstrates that 

ReaxFF based RxMD simulations can accurately describe GO structures at finite temperature and 

pressure conditions. Medhekar and co-workers applied RxMD to investigate humidity effect on 

GO materials[49]. According to their study, ReaxFF is able to describe both GO models and 

hydrogen bond network formed between GO and water molecules at the GO interlays.  Srinivasan 

et al. adopted RxMD simulations to study hyperthermal collisions of atomic oxygens with 

graphene,[63] and generated GO models with defects and epoxide functional groups. ReaxFF-

based RxMD simulations were also carried out to investigate mechanical properties of polyvinyl 
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alcohol-graphene oxide nanocomposite by Compton and co-workers[64]. In their study, the GO 

models have the same stoichiometry of C6O3H1 but differ in the distribution of hydroxyl and epoxy 

groups.  The behavior of water in GO and GO nanocomposites was elucidated and agreed well 

with experimental results.  

  Most theoretical models developed so far have archived a good description of chemical 

properties of GO. But for the structural properties, such as the size and distribution of vacancy 

defects, the curvature (or roughness) dependence on temperature and pressure conditions, no 

systematic understanding has been achieved. Considering the great potential of GO-based 

materials in drug delivery[65-67], separation and storage applications[68-73], there is a strong 

need of theoretical efforts in GO model development, capable of predicting both structural and 

chemical properties of GO, and correlating structure-property-application relationships. In this 

work, using experimental GO characteristics mainly from modified Hummers method[4, 37, 38, 

74-76], we reevaluate critical controlling parameters to GO model development. Specific 

attentions have been paid to the vacancy defects, the distribution and hybridization of carbon atoms, 

and the overall C/O ratio of GO. Morphology of defects in GO models are compared with lattice 

defects in both graphene[77, 78] and graphene oxide[4, 79]. Chemical properties are discussed 

with related experimental results and characterization methods (FTIR, XPS). The GO models 

proposed in this work inherit both structural and chemistry information of previous GO models 

but have significantly improved to represent quantitative structural details of experimentally 

synthesized GO materials. It is worth noting that the structural and chemistry properties of GO are 

intrinsically coupled at the atomic level. A change of the C/O ratio will potentially affect the 

number and the size of vacancy defects. In return, the defects will stabilize a different combination 

of functional groups, as well as the overall C/O ratio. We hope the revisit to GO model 
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development, especially the simultaneously description to both structural and chemical properties, 

will provide a new fundamental understanding of GO model and add advancement to existing GO 

knowledge. The article is organized as follows: Section 2 presents a brief introduction to the 

ReaxFF reactive force, a discussion of the simulation method and calculation setup, and a list of 

experimental characterizations. In the Results and Discussion of Section 3, we summarize in order 

the three tunable parameters for GO model, the chemistry and structural characteristics, and the 

comparison between theoretical calculations and experiments. Conclusions are presented in 

Section 4. 

 

3.2 Methods and Simulation Details 

3.2.1 ReaxFF Reactive Force Field 

ReaxFF reactive force field was developed in 2001 by van Duin and co-workers to study 

chemical reactions of hydrocarbon systems[80]. Over the development of the last fifteen years, 

ReaxFF potential has become a powerful computational tool to explore, develop and optimize 

material properties. It is widely used in disciplines of science and engineering for multi-scale 

fundamental studies involving chemisorption and reactions of complex systems[81-83]. Instead of 

explicitly defining molecular topology (such as bonds, angles and dihedrals) like traditional non-

reactive force fields, ReaxFF uses the concept of bond order[84-88] to calculate and update atomic 

pair connections, structural details, potential chemisorption and reactions. This allows a 

continuous structural evolution and enables the bond breaking or formation along the interaction 

pathway[80]. During the RxMD simulation, atomic charge information is fitted via the 

electronegativity equalization method (EEM) of Mortier and co-workers[89, 90], which is also the 

most computationally expensive part of the RxMD simulations[91]. Compared with non-reactive 
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MD simulations, RxMD via ReaxFF reactive force field is generally one order slower. However, 

RxMD simulations are capable of describing systems composed of hundreds of thousands of atoms. 

With the advance of hardware and efficient parallel computations, RxMD simulation can archive 

a trajectory to the time sale of microseconds[82]. To date, under the framework of ReaxFF, force 

fields have been developed for more than 40 elements of the periodic table, capable of describing 

systems like hydrocarbon reactions, alkoxysilane gelation, transition-metal-catalyzed nanotube 

formation, and high-energy materials. More details of ReaxFF force field are available from the 

website of the developers[92] as well as recent review papers[93-95]. The ReaxFF force field used 

in this work has been developed and used extensively for GO systems[49, 55-59, 63, 64, 96-98]. 

 

3.2.2 RxMD Simulation Setup          

 Similar to our previous study[58], the temperature-programmed protocol has been adopted 

for RxMD simulations in this work. A pristine zigzag graphene of size 8.8 nm ́  8.9 nm is randomly 

functionalized by a mixture of hydroxyl and epoxy groups. We generate a serial of GO structures 

by tuning three key parameters: the initial functionalization density, that is, the fraction of 

functionalized carbon atoms over the total number of carbon atoms of the pristine graphene; the 

ratio of hydroxyl/epoxy groups; the annealing trigger temperature (Ttri). We note that those RxMD 

simulations are not designed to mimic experimental synthesis conditions. Instead, we try to 

combine and tune the aforementioned three parameters, until the produced GO structures share the 

same characteristics as those from experiments. Here, the comparison is focused on the overall 

carbon/oxygen ratio, the carbon hybridization, and the vacancy defects. With regard to previous 

calculations[58], in this work, we use higher Ttri, 1500 K (cf. 1000 K), a larger initial 

functionalization density, 70 % (cf. 30%), and three different ratios of hydroxyl and epoxy, namely, 
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1:1, 1:10, 10:1 (cf. 1:1).  Those changes are justified based on our iterative calculations, as 

illustrated in Figure 1. The resulted GO structures have C/O ratios closer to the experimental values. 

The higher Ttri and the variation of hydroxyl/epoxy ratios will significantly affect vacancy defects, 

pores and channels of GO models. More specific, a higher concentration of epoxy groups will 

result in a GO structure with more defects. This is because epoxy groups are more reactive than 

hydroxyl, therefore interacting much easily with basal carbon atoms to produce vacancies.  

 The calculations are carried out by the LAMMPS software package with the ReaxFF 

implemented as an external library[99]. For each RxMD simulation, we start with the isothermal–

isobaric ensemble for 100 ps at low temperature and 5 ns for annealing process at 1 atm and Ttri, 

where the number of atoms (N), the pressure (P) and the temperature(T) are fixed. This is to relax 

the initial structure to an appropriate volume and reduce stresses from the basal plane. After this 

annealing process, another 5 ns of RxMD simulation at room temperature (300K) with canonical 

(NVT) ensemble is carried out for post-analyses. A timestep of 0.25 fs is used throughout the 

calculations. The Berendsen method with the damping constant 100 fs is applied to maintain the 

temperature of the system. Initial velocity is generated by the Boltzmann distribution. Similar to 

our previous work[58], a temperature-programmed protocol is applied to overcome reaction 

energy barriers. For the annealing parts, 5 ns is enough to allow the energy of the system and the 

productions of side products reach equilibrium. All generated GO structures are further relaxed at 

room temperature (300 K) for 5ns with the same criteria to reach stable structures. We then perform 

post-analyses and compare with experimental results if applicable. A detailed description of the 

simulation protocol and a set of calculation files are provided in the supplementary material, 

including the ReaxFF force field file, the data and control files for the RxMD simulation via 

LAMMPS.  
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3.2.3 Computational FTIR, XPS Characterizations          

 In experiments, nuclear magnetic resonance spectroscopy (NMR), FTIR, Raman 

spectroscopy and XPS are commonly used for GO characterization. FTIR provides a fast and easy 

way to gain the bonding information via characteristic vibration spectra. For the computational 

FTIR analysis, one has to be careful with noise peaks. This is due to a rich number of functional 

groups of GO. In the trajectory of RxMD simulation, functional groups are flexible and can interact 

with each other or with the basal plane, producing ambiguous peaks and overlaps in the FTIR 

fingerprint region. 

 The principles of FTIR are based on the facts that electromagnetic radiations of the 

wavenumber range from 400-4000 cm-1 can be absorbed by materials. Characteristic peaks are 

distinguishable due to different functional groups and their unique vibrational spectra. In this work, 

the FTIR spectrum calculation is summarized as the following: firstly, the dipole moment of the 

system is collected from the RxMD trajectory. 

�̅� = I𝑞0(�̅�0 − �̅�@)
0

 

 This is performed when those generated GO structures have been fully relaxed at room 

temperature (300K). Also, gas-phase reaction products (CO, CO2, H2O, etc.) have been removed 

prior to the FTIR analysis. Secondly, the autocorrelation function of dipole moment is calculated 

via the equation below[100-104], 

𝑅A(𝜏) = 𝐸[𝑥(𝑡)𝑥(𝑡 + 𝜏)] = lim
B→D
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 Finally, fast Fourier transform is applied to process the calculated autocorrelation function 

and generate the IR spectra. We adopted the python script template provided by Efrem Braun[105], 

and modified it to our cases. Benchmark calculations and FTIR analyses have been performed to 

systems of liquids (bulk water and bulk ethanol) and solids (metal-organic framework, MOF-5). 

Those benchmark FTIR calculations agree well with corresponding FTIR experiments. XPS 

provides quantitative information of element percentage analysis. In this work, we used the 

experimental XPS data from Ganguly[75], Mariana and co-workers[106], and compared with the 

calculated hybridization and distribution of carbon atoms of GO.  

 It is worth noting that the GO size of theoretical models is much smaller than the actual GO 

samples from experiments. However, in the MD simulations, the GO model is described as a 

periodic model along the X and Y directions. Therefore, we can consider the initial GO structure 

is an infinitely large 2-D structure. Therefore, the comparisons between simulation and experiment 

on FTIR and XPS are mainly for the surface chemistry, which is an intensive property of GO 

materials, not depending on the amount or the size of the GO sample. We compare the calculated 

FTIR with the experimental results, because GO has a plenty of surface functional groups, such as 

OH, epoxy, COOH, C-O and C=O groups. All those functional groups can be identified as 

characteristic peaks of FTIR results. For that purpose, we use calculated FTIR to determine 

functional groups of those generated GO models. Regardless GO structure size, micron or sub-

nanometer, the characteristic FTIR peaks shall have same peak positions. Similarly, we performed 

XPS analysis to identify the elements and their oxidation states, and the calculation results are not 

dependent of the GO structure size. 
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3.3 Results and Discussions  

3.3.1 Three Tunable Parameters to GO Model  

 For the initial GO structure, once the density of functional group and the hydroxyl/epoxy 

ratio have been pre-determined, we applied a Monte Carlo algorithm to randomly attach hydroxyl 

and epoxy groups on both sides of the zigzag graphene sheet. Those functional groups are added 

with a 3.0 Å overlap criterion, so that no functional groups are too close to each other[58]. Periodic 

boundary conditions have been applied on all three directions, with the box size of the Z direction 

10 nm. As shown in Figure 5, by tuning the density of initial functionalization, the ratio of 

hydroxyl/epoxy, the Ttri, reactions from hydroxyl, epoxy and carbons of the basal plane shall define 

the final generated GO structure. By comparing the structural information (computational FTIR, 

XPS, pore size, etc.) between the GO model and the experimental GO sample from modified 

Hummers method[37, 38, 74, 75], we then fine tune those parameters and iterate the calculations 

until an agreement has been achieved satisfactorily.  

 

Figure 5. Scheme of the process of generating and comparing GO models with experiments GO 

samples: the density of functionalization, the ratio of hydroxyl/epoxy, and the Ttri are three tunable 

parameters for the GO model development. 
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 To briefly summarize, a total of 27 RxMD simulations has been carried out in this work: 

three initial functionalization densities, 70%, 50% and 30%; three ratios of hydroxyl to epoxy 

groups, namely, 1:1, 10:1, and 1:10; and three Ttri, 700, 1000 and 1500 K. It is worth adding that 

calculations have been performed for other combinations of the three parameters, but the chosen 

27 cases present the trend we have revealed from those calculations. It is also important to note 

that the studied concentrations (30%, 50%, 70%) are the initial density of the functional groups. 

After the RxMD simulation, the final GO structures shall have a different density of functional 

groups, which is listed in Table 1 and discussed in the following session.  

Table 1. Final functionalization density of generated GO structures. 

 Final Functionalization Density 
 70% GO 50% GO 30% GO 
 OH:CO OH:CO OH:CO 

Ttri 1:1 10:1 1:10 1:1 10:1 1:10 1:1 10:1 1:10 
1500K 48.40% 38.65% − a 27.22% 16.86% 34.15% 9.24% 3.67% 10.69% 
1000K 53.60% 42.14% 61.69% 30.08% 19.00% 35.44% 11.17% 4.58% 11.03% 
700K 54.43% 44.12% 63.86% 30.92% 18.98% 35.88% 11.51% 5.30% 11.12% 

a The complete combustion was observed for this system. 

 

3.3.1.1 Annealing Trigger Temperature, Ttri  

 Temperature is an important parameter for RxMD simulations, describing the balance 

between stability and reactivity. It is also a descriptor of the reaction energy barrier. A higher 

temperature indicates that molecules and structures of the system have larger kinetics energies and 

can overcome energy barriers more easily to interact with each other. As long as the reaction 

mechanism and reaction pathway are not altered, elevated temperatures can allow us to sample the 

potential energy surface as much as possible for a typical nanosecond time scale of RxMD 



 

 52 

simulations. We also want to point out that the temperatures used in the simulations do not 

correspond directly to the experimental temperature conditions. For example, GO is reported to be 

thermally stable up to 200 °C[4]. But as shown in this work, in the RxMD simulations, GO models 

could remain stable at 1500 K.  

 

 

Figure 6. Final GO structures from RxMD simulations where the 70% initial functionalization 

density has been applied: the hydroxyl/epoxy ratios of 1:1, 10:1 and 1:10, and the Ttri of 1500, 

1000 and 700 K were combined to investigate the overall effect.  
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 The snapshots in Figure 6 illustrate the temperature effect to GO model development. For 

the 70% functionalization density, the combination of temperature and hydroxyl/epoxy ratio will 

produce different final GO structures. For the 1:1 ratio of hydroxyl/epoxy groups, when the Ttri is 

1500 K, nearly all hydroxyl groups are released from the surface as water molecules. At such high 

temperature, many epoxy groups react with sp2 carbon atoms of the graphene basal plane. Reaction 

products, such as CO and CO2, will be released from the surface. In return, vacancies, pores or 

channels will be generated in the final GO models. As Ttri decreases to 1000 K and 700 K, more 

hydroxyl groups will remain stable on the final GO models, which agrees with the previous study 

that hydroxyl groups are relatively stable at lower temperatures[107]. A lower Ttri will also reduce 

the reactions among other species, therefore the final GO structures have less defects and their 

sizes are smaller. When the ratio of hydroxyl/epoxy changes from 1:1 to 1:10 and 10:1, the 

temperature imposes a similar effect. However, it is interesting to emphasize that more epoxy 

groups can lead to an almost complete combustion of the initial structure, see the case, 70% GO 

(1:10). As demonstrated by those calculations, the size of defects, the remaining functional groups, 

as well as their concentrations, are sensitive to all three studied parameters. In general, when the 

initial functionalization density increases, tuning the Ttri can effectively change the number of 

defects and their sizes.  

 

3.3.1.2 Ratio of Hydroxyl/Epoxy Groups   

 As shown in Figure 6, when hydroxyl groups dominate, such as the three GO structures of 

the (10:1) ratio, the defect size is smaller than the ones from the other two ratios. This indicates 

that -OH groups would interact more strongly among functional groups, rather than interacting 



 

 54 

with carbon atoms of the basal plane. On the contrary, it is much more difficult for GO to hold a 

planar structure when there are more epoxy groups, see the (1:10) cases. At the high Ttri of 1500 

K, the GO (1:10) structure is completely combusted, producing CO, CO2, H2O and small GO 

segments as reaction products. The sizes and shapes of vacancies for the GO (1:10) model at 1000 

K are similar to those from the (1:1) GO model produced at T=1500 K. Those calculation results 

suggest that epoxy groups react with basal carbon atoms, and that the amount of epoxy groups has 

a significant impact on the vacancies of GO.  

 

3.3.1.3 Initial Functionalization Density, 𝝆𝒕𝒐𝒕  

 In literature, experimental results[37] revealed a lower C/O ratio 2.44 in GO generated of 

modified Hummers method than what we observed in previous calculations[58] (~ 4.17). Here for 

the 70% (1:1) GO model at 1500 K, during the annealing process, nearly all hydroxyl groups are 

released from the surface as H2O molecules. Most epoxy groups react with basal carbon atoms, 

being released as CO and CO2 from the surface. Thus, among the three GO models, 70% (1:1), 

50% (1:1) and 30% (1:1), the Ttri 1500 K assists the reactions between epoxy and basal carbon 

atoms. Therefore, the final 70% (1:1) GO structure has a smaller C/O ration than those of the 50% 

(1:1) and 30% (1:1) GO structures, which is accepted as a better model to the GO of modified 

Hummers method experiments[37]. For the other two Ttri (1000 K, and 700 K), regardless the 

initial hydroxyl/epoxy ratios, most functional groups interact with each other, eventually being 

released from the surface. Therefore, the final C/O ratios are larger than those from experiments.  

Similarly, having more epoxy groups is likely to remove more basal carbon atoms during the 



 

 55 

annealing process. Thus, the final C/O ratio is lower than the GO structures from the (1:1) and 

(10:1) group.   

 

3.3.2 Representative Localized Morphologies    

 Several representative localized morphologies that generated by the reactions of carbon, 

hydroxyl and epoxy groups are shown in Figure 7 in the final GO models : (a) and (b) are sp3 

carbon atoms with hydroxyl groups and isolated epoxy groups, respectively. The two structural 

patents are identified from all 70%, 50% and 30% GO models. Although carboxyl groups are 

usually located at the edges of GO structures, in our calculations, we observe carboxylic acids at 

vacancy sites, as shown in Figure 7 (c). Due to the nature of the thermal annealing protocol, there 

is no liquid phase in those studied cases. Therefore, most carboxyl groups are in the deprotonated 

form, as shown in Figure 7 (d). Figure 7 (e) and (f) are observed from the 70% and 50% GO 

structures, where esters are around defect edges; hydroxyl groups exist as phenols, and oxygen 

atoms can substitute carbons to form pentagon and hexagon structures. Oxygen substitution has 

been observed from all final GO structures. Figure 7 (g) shows a basal plane with defects of oxygen 

substitutions. This type of localized morphology has been observed in all 70% and 50% GO 

structures, and in the 30% GOs when the Ttri is 1500 K. Figure 7 (h), (i) and (j) demonstrates 

common defects observed in the 50% and70% GOs at Ttri about 1000K and 1500K. Unlike the 70% 

models, defects from the 30% and 50% GOs are generally small vacancies. Ketones, phenols or 

oxygen rings are identified along edges of defects, pores or channels, and carbon hexagonal rings 

distorted to pentagonal and heptagonal rings along the edge of defects in Figure 7 (i) and (j), similar 

as the lattice defects and distortions in graphene sheet[77]. Figure 7 (k) shows a defect of carbon 
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rings rearrangement from hexagonal rings to an octagonal ring with adjacent pairs of pentagonal 

rings, this type of defects could be observed in both 50% and 70% GOs with Ttri of 1000K. Figure 

7 (l) shows a single missing carbon atom with an oxygen substitution and a Jahn-Teller distortion, 

this kind of single defects is observed in all 50% GOs and some 70% GOs with more hydroxyl 

groups in the initial setup. Defects structures shown in Figure 7 (g) ~ (l) are also reported in both 

experiments and DFT calculations in graphene and graphene oxide[4, 77-79]. 

 It is worth noting that for the 30% GOs, similar to our previous study[58], only few defects 

could form, and the defect density is quite low. Phenols and ketones have been observed at the Ttri 

of 1500 K. But in general, no large pores or channels could form at this low initial functionalization 

density.  

 

Figure 7. Representative morphologies of final GO models with the (1:1) hydroxyl/epoxy ratio. 

(a) sp3 carbon with hydroxyl groups; (b) Isolated epoxy group and hydroxyl groups; (c) Carboxylic 

acid group; (d) Deprotonated carboxylic acid group; (e) Phenol and ester on the edges of GO; (f) 
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Phenol, oxygen substituted pentagon and hexagon structures; (g) Oxygen substitution structure; 

(h) Defects with multiple oxidized groups in 50% GO; (i) Defects with multiple oxidized groups 

and carbon rings distortion in 50% GO; (j) Large multiple vacancy defects on 70% GO surface; 

(k) Carbon rings distortion on GO surface; (l) Similar single defects with carbon rings distortion. 

 
3.3.3 Thermal Annealing vs. Hydrothermal Protocols 

GO structures and their stability depend closely on the environment. Dimiev and co-

workers proposed to treat GO by dynamic models[4, 108]. They argued that even for a specific 

GO model, it exhibits different structures when in a solid state or in aqueous solutions. In addition, 

they suggested that there shall be enols in dynamic GO models, which leads to the acidity of GO 

solutions. On the other hand, when GO is in the solid state, those enols will be transformed and 

remain as ketones. Despite the difference between the thermal annealing protocol applied in our 

calculations and the experimental hydrothermal conditions,  our GO models have same structural 

features as what Dimiev[108] and Gao[37] observed in their experiments. For example, Figure 8 

(a) shows enol and conjugation of vinylogous carboxylic acids with graphene domain, indicated 

by the black arrow. The rectangle box in Figure 8 (b) illustrates the 1,3-dihydroxyxanthone 

structure reported from hydrothermal experiments[37]. As Kumar et al. reported[109], oxygen 

functional groups have the potential to aggregate and form oxygen and non-oxygen zones. This 

asymmetric nature has been also observed in our calculated GO structures, as shown in Figure 6. 
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Figure 8. Characteristic structural patents observed both in hydrothermal experiments and thermal 

annealing process of this work: (a) Enols and the conjugation of vinylogous acids; (b) the 1,3-

dihydroxyxanthone structure; (c) the phthalic anhydride structure. 

 
3.3.4 Chemical Details of GO Models 

3.3.4.1 C/O Ratio 

XPS experiments are widely used to characterize the C/O ratio of synthesized GO materials. 

The ratio is sensitive to the synthesis methods and adopted oxidants. For instance, GO is reported 

to be highly oxidized via the modified Hummers method[37]: the C/O ratio could be as low as 

2.44. The C/O ratios to GO models of this work are listed in Table 2. 

From the table, the 70% (1:1) GOs have C/O ratios very similar to experimental values of 

modified Hummers method[37], from 2.26 to 2.93. For the 70% (10:1) GOs, initially having more 

hydroxyl groups, the C/O ratios are also closer to the experiments for the 700 K and 1000 K cases. 

At 1500 K, more functional groups are released from the surface, in the form of CO, CO2 and H2O, 

which results in the increase of C/O ratio, up to 3.36. On the other hand, if there are more initial 

epoxy groups, they interact strongly with the basal plane, leading to the decrease of C/O ratio. This 

is witnessed by the GO (1:10) structures in Figure 6: more defects, vacancies, pores and drastic 
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changes to the basal planes are evidenced. Initially having more epoxy groups is equivalent to use 

stronger oxidants in the GO synthesis experiments. 

Table 2. The C/O ratios to GO models in this work. 

 Initial Functionalization Density 
 70% GO 50% GO 30% GO 
 OH:CO OH:CO OH:CO 

Ttri 1:1 10:1 1:10 1:1 10:1 1:10 1:1 10:1 1:10 
1500K 2.93 3.36 − a 5.55 9.59 4.34 18.05 49.18 15.25 
1000K 2.36 2.77 1.99 4.47 6.67 3.61 12.67 28.67 12.84 
700K 2.26 2.47 1.86 4.01 6.09 3.33 11.47 24.76 10.92 

a The complete combustion was observed for this system. 
 
 
Table 3. Relative atomic percentages of carbon-based functional groups presented in the XPS high 

resolution C1s spectra[75, 106] 

  Percentage of carbon-based functional groups, % 
GO 

Sample 
Oxidation 
Method 

C/O C-O C=O COOH Graphitic 
Structure π-π* 

1 Pure G 30.1 5.8 5.4 1.9 71.4 15.5 

2a Modified 
Hummers 2.1 25.0 20.0 15.0 40.0 0.0 

3 HNO3 21.2 4.4 4.4 2.6 79.8 8.8 
4b O3_disp  9.8 6.4 5.3 0.5 76.4 11.4 
5c O3_gas 9.8 13.8 6.6 1.1 67.6 10.8 
6 KMnO4 4.9 19.2 10.0 1.5 64.9 4.5 
7d m-CPBA 7.8 6.3 4.9 0.4 76.8 11.6 
8e m-CPBA 13.0 6.6 5.25 0.4 75.2 12.6 

a Sample 2 was prepared by modified Hummers method, data from Ref. 75.  
b Sample 4 was prepared by bubbling O3 gas passing through graphene dispersions, Ref. 106. 
c Sample 5 was prepared by bubbling O3 gas passing through graphene solid phase, Ref. 106. 
d Sample 7 was prepared by 0.1M 3-chloroperbenzoic acid (m-CPBA) solution, Ref. 106. 
e Sample 8 was prepared by 0.01M m-CPBA solution, Ref. 106. 
 

Similarly, the C/O ratio of 50% GO (1:10) is smaller than that from 50% GO (1:1) and 50% 

GO (10:1). As for the 30% GOs, the initial functionalization density is lower, and the final C/O 

ratio, depending on the Ttri, varies from 10 to 49. Such a high C/O ratio was not observed in 
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experiments of the modified Hummers method[37, 38, 75, 76]. But it is possible if one uses weak 

oxidants to synthesize GO[106]. For example, in Table 3 graphene flakes oxidized by KMnO4 will 

produce GO with the C/O ratio of 4.9, which is similar to the 50% GO (1:1) in our calculation. GO 

produced by 0.01M m-CPBA has a similar C/O ratio to the 30% (1:1) and 30% (1:10) GOs. The 

pure graphene flakes with a C/O ratio of 30.1 is close to the 30% GO (10:1) with Ttri = 1500 K.  

 

3.3.4.2 Carbon Hybridization 

By calculating the bond orders of final GO structures, we are able to get carbon 

hybridization information and compare it with XPS experiments. As shown in Figure 9, each 

column represents the carbon hybridization analysis of one GO model. Figure 9 (a) summarizes 

GO samples from different syntheses, while Figure 9 (b) to (d) present GO models from the three 

studied hydroxyl/epoxy ratios. For the (1:1) hydroxyl/epoxy ratio in Figure 9 (b), about 7~15% of 

carbon atoms exist as C-O bonds. Those C-O bonds are from hydroxyls, phenols and epoxy groups. 

For the 70% (1:1) GOs from 1500 K and 1000 K, most C-O bonds are phenols at the edge of 

vacancy defects. At lower Ttri and lower initial functionalization density, there are C-O bonds from 

sp3 carbons bonded with OH groups, which is observed from the 70% (1:1) GO from 700 K, and 

the 50% (1:1) GO from both 700 and 1000 K. For the 70% (1:1) GOs, there are about 5% O-C=O 

bonds, which is attributed to carboxylic acids, carboxylic anhydrides and esters. For all (1:1) GO 

models, less than 4% carbons exist as C=O groups. This implies that those GO models have a low 

concentration of ketones, aldehydes or quinones. In addition, there are π–π* and sp2 hybridized 

carbons. Generally speaking, high Ttri or high initial functionalization density will lead to a larger 
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degree of oxidation. Therefore, the final structures will have more vacancy defects, and more 

oxygen substitutions, such as five or seven oxygen-containing ring structures.  

 

 

Figure 9. Hybridization of carbon atoms and its distribution analysis: (a) XPS results for 

experimental GOs[75, 106] by different oxidation treatments; (b) GO models, hydroxyl/epoxy 

ratio is 1:1; (c) GO models, hydroxyl/epoxy ratio is 10:1; (d) GO models, hydroxyl/epoxy ratio is 

1:10. 

For the (10:1) GOs, as shown in Figure 9 (c), most OH groups will be released from the 

surface for the three studied temperatures. While there are not many epoxy groups interacting with 

basal carbon atoms, a small percentage of π-π* carbon atoms are observed for this group. For the 
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50% and 30% initial functionalization densities, those GO models have a higher concentration of 

sp2 carbons. For the (1:10) GOs in Figure 9 (d), because there are more reactive epoxy groups, 

more reactions will occur during the annealing process. Higher percentages of C-O, O-C=O and 

C=O have been identified in those GO models. For the 70% (1:10) GO from 1500 K, the structure 

is completely combusted.   

Compared with experimental XPS results, the 70% (1:1) GOs from three studied 

temperature and the 70% (10:1) GOs from 700 and 1000 K share a similar carbon hybridization, 

and they are very similar to GO samples synthesized by the modified Hummers method[75] shown 

in Figure 9 (a), which is characterized by a low C/O ratio and a high degree of oxidation.  

 

3.3.4.3 Computational FTIR Analysis   

Considering the C/O ratio and the carbon hybridization, we conclude that the 70% (1:1) 

and 70% (1:10) GO models can better represent experimental GO samples of modified Hummers 

method[37, 75]. In Figure 10, we compared the absorption bands between the 70% (1:1), 70% 

(1:10) final GO models and the GO sample synthesized by the modified Hummers method[37, 75]. 

For the 70% (1:1) 1500 K GO model and the experimental GO, the band at around 3600-2400 cm-

1 corresponds to the O-H stretching modes. Other characteristic adsorption bands have been also 

observed. For example, the bands at 1734-1719 cm-1 (yellow region) is from the stretching of C=O 

of carboxylic groups. The peak around 1850 cm-1 is due to multiple acid anhydrides, which has 

been identified in our calculations, as shown in Figure 8 (c).  It is interesting to note that the band 

around 1626-1615 cm-1 (blue region), which has been observed from the experimental GO sample. 
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Most literatures assign the band to the stretching of C=C bonds. However, Dimiev argued[4] this 

band is from the bending modes of water molecules in the GO systems. By using deuterated water 

in the GO experiments, Dimiev reported that this peak will disappear[33, 108, 110]. For our FTIR 

analysis, all gas-phase reaction produces, including CO, CO2, and H2O, have been removed prior 

to the analysis. This is why we did not observe this peak from our calculated GO models. It is 

worth noting that in the 70% (1:10) from T=1000K, we could observe this peak around 1626-1615 

cm-1 (blue region). This is attributed to intermediate structures where distorted epoxy groups are 

interacting with the basal plane. 

 

Figure 10. FTIR calculation and the comparison between experiment and simulation: FTIR of GO 

sample by the modified Hummers method[37]. The models from simulation are the 70% (1:1) GO 

from1500 K, 70% (1:1) GO from 1000 K and 70% (1:10) GO from 1000 K, respectively. 
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The peak around 1420-1368 cm-1 (purple region) is assigned to the bending of C-OH 

groups, which is also observed in the 70% (1:1) GO from 1500 K. Another intense peak is around 

1040-1060 cm-1 (green region), which is characteristic of epoxy groups. However, some 

literature[4] argued that the epoxy group spectra are around 1250 cm-1. For the 70% (1:1) GO from 

1500 K, despite the total amount of 10% C-O bonds, as discussed in Figure 9, only 0.3% are epoxy 

groups. Therefore, we argue that the weak peak around 1040-1060 cm-1 in the 70% (1:1) GO from 

1500 K model might due to the small amount of epoxy groups. In summary, the IR calculation of 

70% (1:1) GO from 1500 K model agrees well with the experimental FTIR result. Considering the 

C/O ratio analysis in Figure 9, we conclude the 70% (1:1) GO from 1500 K is the best model to 

represent experimental GO samples from modified Hummers method[37, 38, 74-76].  

 

3.3.4.4 Vacancy Properties of GO Models 

Since the 70% GO models better represent experimental samples from modified Hummers 

method[37, 38, 74-76], the vacancy analysis is only carried out for them. The defect is 

characterized by two parameters, namely, the pore size and the vacancy density. Here, the vacancy 

density is defined as the percentage of carbon atoms that have been removed from the basal plane 

during the process. Generally speaking, more removed carbon atoms correspond to more (or larger) 

defects. Figure 11 shows a schematic illustration of how the pore size was determined. A Monte 

Carlo algorithm was adopted to determine the maximum inscribed sphere, whose diameter is 

considered as the pore size of the defect. It is worth noting that the GO models do not have regular 

defects, but the probe using inscribed sphere can provide a reasonable estimation of the defect size. 

Table 4 lists the pore size and vacancy density of the 70% GO models. For the 70% (1:1) GO from 
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1500 K, pores are connected to form channels, therefore the diffusion of molecules is easier in this 

model. In addition, for this GO model, the averaged pore size is around 1nm, which agrees with 

experiments HRSTEM values[3, 4, 37, 79] of vacancies with diameters about 1nm and usually 

under 5 nm2 from modified Hummers method. It also has the highest vacancy density of the three 

70% GO models. 

Table 4. Pore size and vacancy density of 70% GO models. 

 
  Initial Functionalization Density 
  70% GO 
  OH:CO 

Ttri  1:1 10:1 1:10 

1500K Vacancy Density 17.94% 7.94% − a 
Pore Size 0.7-1.7 nm 0.3-1.1 nm − a 

1000K Vacancy Density 5.66% 3.77% 9.80% 
Pore Size 0.4-0.9 nm 0.4-0.6 nm 0.6-1.5 nm 

700K Vacancy Density 3.59% 1.00% 4.82% 
Pore Size 0.2-0.4 nm 0.2-0.4 nm 0.5-0.7 nm 

a The complete combustion was observed for this system. 
 

 
Figure 11. A schematic illustration of pore size calculation: A Monte Carlo algorithm is adopted 

to determine the maximum inscribed sphere, whose diameter is considered as the pore size of the 

defect. 
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Even with a larger initial density of functional groups, the pore size of the 70% (10:1) GO 

from different Ttri is still much smaller than that of the 70% (1:1) GOs. This is probably because 

of the high concentration of hydroxyl groups, which do not interact actively with the basal carbon 

atoms. On the other hand, the 70% (1:10) GOs, which have higher concentrations of epoxy groups, 

have more and larger defects, due to the interactions between epoxy and basal carbons. Figure 12 

shows the curvature analysis of the 70% (1:1) GOs from different Ttri. Interestingly, a higher Ttri 

does not necessarily result in a drastic curvature. As shown in Figure 12 (b), the 70% (1:1) GO 

from 1500 K has a fitted curvature of 0.9427 nm compared to AFM values of 0.8-1.2nm for GO 

samples from modified Hummers method[3, 4, 37]. It is 1.0471 nm and 0.9420 nm respectively 

for the 70% (1:1) GOs from 1000 K and 700 K. The 50% GOs also show a similar trend: both pore 

size and vacancy density will decrease when Ttri decreases from 1500 K to 700 K. Because of the 

high initial concentration of epoxy, the 50% (1:10) GOs have larger pores, and their vacancy 

densities are also larger than those of 50% (1:1) GOs. Due to the low initial density of functional 

groups, all 30% GOs have fewer and smaller defects.  
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Figure 12. Curvature analysis of 70% (1:1) GO models: (a) snapshots of the structures; (b) the 

fitted curvature of the GO models. 

 
3.4 Conclusion 

Temperature-programmed RxMD simulations have been carried out to study structural and 

chemistry properties of GO models. Three critical controlling parameters, namely, the initial 

functionalization density, the ratio of hydroxyl/epoxy groups, the trigger annealing temperature 

Ttri, are investigated systematically. FTIR, XPS, vacancy defects and curvature properties have 

been computed and compared with available experimental results. GO models proposed this work 

have an overall C/O ratio in the range of 1.86 to 18.05, and vacancy defects as large as 1.7 nm. By 

comparing with GO sample from the modified Hummers method, the 70% GO (1:1) model from 
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T=1500K is considered to be the best GO model, final model has a final functionalization density 

of 48.40%, C/O value about 2.93, curvature for 0.9427 nm and vacancy sizes around 0.7-1.7 nm 

with a good agreement for both FTIR and XPS characteristics. A structure file of 70% GO (1:1) 

with Ttri = 1500K model is provided in the supplementary material. While GO structures are very 

sensitive to experimental synthesis conditions, the studies in this work could provide a general 

protocol to generate atomic GO structures representative of experimental samples. The theoretical 

FTIR and XPS calculations are useful tools for GO model characterization, and can be adopted for 

computational studies of other two-dimensional materials and their composites.    
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Chapter 4: Atomistic Computational Studies of Cellulose: Structure, 

Property and Process* 

4.1 Introduction 

Cellulose is the basic building block of algae, bacteria, plants and many other natural 

biomaterials. It is the most abundant and widespread natural resource to civilization, with an 

annual production of about 700 billion tons. Owing to properties such as renewability, 

sustainability, low cost, tunable mechanical strength, high biodegradability and excellent 

biocompatibility, cellulose has been widely used in biofuel productions,[1, 2] energy related 

applications,[3-6] biomedical engineering,[7-15] paper and construction industry.[16-20] To 

convert raw cellulose into fine chemicals and materials, various treatments have been proposed, 

which are classified into categories such as mechanical treatments including milling,[21, 22] 

grinding/refining,[23-25] high-pressure homogenizers,[26-29] cryocrushing,[27, 30, 31] and high 

intensity ultrasonic process;[32-34] chemical treatments[32, 35-43] through oxidizing agents, 

alkali, acid, and organic solvents; hydrolysis treatments[35, 44-64] via the utilization of dilute acid, 

concentrated acid, enzyme, and autohydrolysis; pyrolysis treatments[65-69] with steam, 

hydrothermolysis, or wet oxidation, and other electrical and biological treatments.[70-79]  

Significant efforts and remarkable progresses have been achieved and summarized 

regarding fundamental understanding of cellulose structures,[4, 47, 80-85] the physical and 

chemical properties[3, 4, 47, 83, 84, 86-88] and corresponding characterization methods.[89-92] 

Reviews are also available for experimental studies of cellulose dissolution/interactions,[93, 94] 

cellulose degradation/conversion via enzymes,[95, 96], catalysis,[97-102] hydrolysis[99, 103-105] 

and pyrolysis processes,[104, 106] as well as numerous cellulose applications.[3, 4, 15, 82, 85, 87, 
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88, 91, 107-112] From the theoretical point of view, reports are available regarding model 

developments of cellulose microfibril and plant cell wall,[113] mathematical models for cellulose 

plant growth,[114] computational studies of the decomposition of lignocellulosic materials 

(cellulose, hemicellulose and lignin) via catalyzes, enzyme, pyrolysis and dissolution 

methods,[115, 116] and computational NMR predictions of carbohydrate materials.[117] Despite 

the knowledge, a molecular level understanding of how cellulose structure transforms under 

different treatments and how its property could be fine-tuned accordingly, is still incomplete.  

It is also worth noting that producing cellulose-based advanced materials via subtle 

treatment strategies, instead of breaking cellulose bond and structure harshly, has been brought to 

a new horizon in the past decade. The effective manipulation of inherent structure and hydrogen 

bonding (HB) networks can significantly facilitate cellulose utilization. For example, Song and 

co-workers demonstrated a subtle two-step treatment to obtain advanced materials from cellulose 

resources. They processed natural wood to firstly remove lignin and hemicellulose, followed by a 

mechanical compressing to fine-tune properties of the remaining cellulose. The transformed wood, 

mostly the structurally manipulated cellulose, is mechanically more than 10 times stronger than 

steel.[36] Similar strategies have been also adopted to produce compressible carbon sponges and 

activated carbon with a high surface area.[37, 118-121]  

 While cellulose utilization depends critically on the effective and selective modification 

of characteristic structures, this comprehensive review examines existing atomistic computational 

studies of cellulose, revealing the structural-lead property evolution and constructing the 

relationship of cellulose martials, treatment conditions and atomistic modeling techniques. In 

particular, we outline the state-of-the-art understanding of cellulose structures, and discuss in 

details cellulose interactions, dissolutions and decompositions via computational methods of 
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quantum mechanics (QM), ab initio density functional theory (DFT) calculation, ab initio 

molecular dynamics (AIMD), molecular dynamics (MD) and reactive molecular dynamics (RxMD) 

simulations. In addition, cellulose characterizations, beneficial to validate and support 

computational results, are also briefly summarized. We anticipate this overview provides a clear 

theoretical insight to complex structures and competing interactions of cellulose, which could shed 

a light on fundamental understandings of similar systems of biomolecules, polymers and 

surfactants. 

 

4.2 Structure and Computational Model of Cellulose 

Cellulose is a linear polysaccharide of repeating D-glucose units, (C6H10O5)n. Depending 

on cellulose resources, the degree of polymerization (DP), which is the number of  anhydroglucose 

units, varies from 10,000 to 15,000.[84] Natural cellulose has a complex structure, with coexisting 

crystalline and amorphous regions. Different cellulose polymorphs have been also reported under 

different conditions. Over the past decades, unit cell parameters and crystallinity of cellulose 

polymorphs have been investigated by X-ray (XRD), electron and neutron diffraction 

techniques.[122] In general, cellulose crystalline allomorphs are classified into the following 

categories[123]: cellulose I, also known as native cellulose, including cellulose Iα and Iβ; cellulose 

II; cellulose III, which includes cellulose IIII and IIIII; cellulose IV, including IVI and IVII. Table 

5 summarizes unit cell parameter of cellulose polymorphs from available experimental and 

computational studies. It is worth noting that cellulose IVI is slightly distorted from cellulose I, not 

a genuine allomorph.[124, 125] Despite the lattice and conformation difference, as shown in 

Figure 13 (a), all cellulose polymorphs are composed of  glucose units that are bonded with β-1,4-

glycosidic linkages. The hydroxyl groups interact with each other and form intra- and inter HBs, 
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stabilizing the parallel chain conformation and maintaining cellulose structures and properties. 

Figure 13 (b) illustrates a characteristic HB network of cellulose Iβ, and Figure 13 (c) demonstrates 

the interconversions between different cellulose polymorphs. 

 

 
Figure 13. (a) A representative structure of cellulose with intra- and intra-hydrogen bonds, with 

the typical structural angles, φ= O5-C1-O4-C4， and ψ=C1-O4-C4-C5; (b) The proposed 

cooperative hydrogen bonds network in cellulose Iβ from Nishiyama[126] (thick dotted lines) and 

the O6-H···O3 linkage (thin dotted lines); (c) Interconversions between cellulose polymorphs; (d) 

cellulose Iα[127] and (e) Iβ microfibril[128] with different exposed surfaces. Reproduced with 

permission from refs 126, 127 and 128. Copyright 2008 American Chemical Society, 2003 

National Academy of Sciences and 2019 Elsevier, respectively. 

 

As the native form of cellulose, cellulose I has two crystal phases, namely, cellulose Iα and 

Iβ. The two phases coexist in cellulose fiber and their ratio varies according to different cellulose 

resources. It is reported that cellulose Iα is predominant in bacteria and algae, while cellulose Iβ 
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dominates in plants such as wood and cotton.[129, 130] Nishiyama et al. reported XRD and 

neutron fiber diffraction results of lattice parameter, atomic coordinates and HB patterns of 

cellulose Iα[131] and Iβ.[132] Cellulose Iα is a triclinic structure while cellulose Iβ is monoclinic. 

Details of unit cell parameters are available in Table 5 and Table 6, which are widely referenced 

to construct computational cellulose models. Langan and co-workers studied cellulose II lattice 

parameters via XRD and neutron fiber diffractions.[133, 134] Compared with cellulose I, cellulose 

II has antiparallel chains and the HB patterns are significantly different. When cellulose I is treated 

by NaOH solutions, it could be converted into cellulose II.[135],[136] 

 Cellulose III can be obtained by liquid ammonia treatment[137, 138]: IIII and IIIII are 

resulted from cellulose I and cellulose II, respectively. The reversible interconversion is dominated 

by thermal or hydrothermal treatments.[139] Two sets of lattice parameters of cellulose IIII are 

available: the two-chain model from Sarko[140] and the one-chain monoclinic unit by Wada.[141] 

According to molecular simulation results of Ford and co-workers,[142] Wada’s model is 

energetically more favorable. As for cellulose IIIII,  the structural detail is still under debate.[143] 

For example,  Sarko et al.[140] suggested that cellulose IIII and IIIII share the same lattice 

parameter, but Wada and co-workers[144] argued that cellulose IIIII is a disordered phase of 

cellulose IIII or other cellulose crystals. Cellulose IV was firstly identified by Hutino and 

Sakurada[145] in their XRD study of heat treated cellulose I with glycerol at 260 ℃. A detailed 

summary of the preparation and products of cellulose IV is available from Kulshreshtha.[146] 

Recent studies from Wada et al.[124] argued that cellulose IVI is more of a distorted form of 

cellulose I rather than a genuine allomorph. Later, Newman[125] performed XRD simulations of 

cellulose IVI and IVII and confirmed that: (a) cellulose IVI is a distorted form of cellulose Iβ; (b) 

little is previously known about cellulose IVII but it is distinctly different from cellulose Iβ. More 
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details and discussions on cellulose allomorphs and their structural difference are available in the 

reference.[122, 123, 147-149] 

It is worth noting that cellulose microfibrils are also widely used as cellulose models. In 

nature, cellulose chains form crystalline microfibrils with either a triclinic (cellulose Iα) or a 

monoclinic (cellulose Iβ) geometry.[128, 150] The surface of cellulose microfibrils could be 

elucidated from experiments. For example, the triclinic (1 0 0)/monoclinic (1 1 0) surface, the 

monoclinic (1 1N 0) surface, and the triclinic (1 1 0)/monoclinic (2 0 0) surface have been identified 

from native cellulose forms.[127, 151, 152] Example of cellulose Iα and Iβ microfibrils are 

illustrated in Figure 13 (d) and (e), respectively. 

 

Table 5. Calculated unit cell parameters of cellulose polymorphs from published computational 

studies. 
 Method a (Å) b (Å) c (Å) α (°) β (°) γ (°) T(K) Ref. 

Iα LDA 5.71 6.48 10.24 118.6 115.1 81 0 Li et 
al.[153] 

Iα PBE 6.38 7.03 10.54 115.4 113.2 76 0 Li et 
al.[153] 

Iα DFT (PBE-D2) 5.97 6.63 10.47 116.9 114.3 80.7 0 Li et 
al.[153] 

Iα MD (CHARMM) 6.57 5.87 10.42 115 113 91 EMa 

Reiling[154] 
and 

Marhofer et 
al.[155] 

Iα MD (CHARMM) 7.09 6.31 10.42 115 113 91 300 

Reiling[154] 
and 

Marhofer et 
al.[155] 

Iα MM 
(COMPASS) 5.51 7.02 10.27 119 112 82 EMa Eichhorn et 

al.[156] 

Iα MM 
(COMPASS) 6.78 5.66 10.42 119 113 81 EMa Eichhorn et 

al.[156] 

Iα MM 
(COMPASS)b 5.76 7.1 10.44 118 118 82 EMa Eichhorn et 

al.[156] 

Iα MM 
(COMPASS)b 7.11 5.69 10.45 118 117 82 EMa Eichhorn et 

al.[156] 

Iα MD 
(GLYCAM06) 6.89 5.83 10.75 120.4 110.6 81.7 300 Maurer et 

al.[157] 

Iα MD (GROMOS) 6.661 6.241 10.47 114.9 113.3 78.66 300 Chen et 
al.[158] 

Iα MD (Opt. 
GROMOS) 6.481 5.954 10.48 116.3 114 81.43 300 Chen et 

al.[158] 

Iα Packing 6.3 6.9 10.36 113 121 76 EMa Viëtor et 
al.[159] 
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Iβ LDA 7.41 7.94 10.24 90 90 96.2 0 Li et 
al.[153] 

Iβ DFT (PBE) -c 8.27 10.54 90 90 94.7 0 Li et 
al.[153] 

Iβ DFT (PBE-D2) 7.85 8.18 10.47 90 90 96.6 0 Li et 
al.[153] 

Iβ DFT (PBE) 8.7 8.23 10.46 90 90 95.5 0 Bučko et 
al.[160] 

Iβ DFT (PBE-D2) 7.65 8.14 10.39 90 90 96.8 0 Bučko et 
al.[160] 

Iβ DFT-D2 7.78 8.2 10.38 90 90 96.5 0 Lee et 
al.[161] 

Iβ DFT (PBE-D2) 7.54 8.14 10.39 90 90 96.4 0 Lee et 
al.[162] 

Iβ DFT (PBE-D2) 7.53 8.4 10.35 90 90 100 0 Lee et 
al.[162] 

Iβ DFT (PBE-D2) 7.56 8.13 10.39 90 90 96.7 0 Dri et 
al.[163] 

Iβ MM 
(COMPASS) 7.56 8.05 10.43 90 90 98 EMa Eichhorn et 

al.[156] 

Iβ MM 
(COMPASS) 8.14 8.03 10.44 91 76 89 EMa Eichhorn et 

al.[156] 

Iβ MM 
(COMPASS)b 7.43 8.53 10.48 94 92 99 EMa Eichhorn et 

al.[156] 

Iβ MM 
(COMPASS)b 7.44 8.5 10.49 91 91 99 EMa Eichhorn et 

al.[156] 

Iβ MD (GROMOS) 7.6 8.1 10.4 90 90 84 300 
Kroon-

Batenburg et 
al.[164] 

Iβ MD (GROMOS) 7.6 8.1 10.4 90 90 96 300 
Kroon-

Batenburg et 
al.[164] 

Iβ MD (GROMOS)  
8.37 ± 
0.002 

8.168± 
0.002 

10.523± 
0.002 

89.97± 
0.02 

89.97± 
0.03 

90.92± 
0.03 300 Bergenstråhl

e et al.[165] 

Iβ MD (GROMOS) 9.005± 
0.0055 

8.659± 
0.0069 

10.470± 
0.0002 

77.62± 
0.36/103.1

7± 1.17 

78.30± 
1.11/101.4

1± 0.45 

88.30 ± 
3.04 500 Bergenstråhl

e et al.[165] 

Iβ MD (GROMOS) 8.34 8.17 10.5 90 90 90 300 Chen et 
al.[166] 

Iβ MM (GROMOS) 7.681 8.027 10.387 90 90 92.8 0 Molnar et 
al.[167] 

Iβ MD (GROMOS) 8.42 8.14 10.43 90 90 92.9 300 Chen et 
al.[158] 

Iβ MD (Opt. 
GROMOS) 7.799 8.089 10.44 89.99 90 94.17 300 Chen et 

al.[158] 

Iβ MD (CHARMM) 8.02 8.12 10.39 90 90 97.5 EMa 

Reiling[154] 
and 

Marhofer et 
al.[155] 

Iβ MD (CHARMM) 8.13 8.03 10.39 90 90 97.5 300 

Reiling[154] 
and 

Marhofer et 
al.[155] 

Iβ MD (CHARMM) 8.47 8.11 10.51 90 90 90 300 Matthews et 
al.[168] 

Iβ MD (CHARMM) 7.96 8.35 10.44 90 90 98.3 300 Matthews et 
al.[169] 

Iβ MD 
(GLYCAM06) 7.74 8.24 10.8 90 90 97.6 300 Djahedi et 

al.[170] 

Iβ MM (CVFF1) 7.652 8.136 10.615 90 90 96.8 EMa Yao et 
al.[171] 
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Iβ MM (CVFF2) 7.787 8.201 10.388 90 90 96.2 EMa Yao et 
al.[171] 

Iβ MM (CVFF3) 8.188 7.898 10.607 90 90 95.1 EMa Yao et 
al.[171] 

Iβ MD (ReaxFF)d 8.549 8.922 10.814 89.99 90.03 99.77 300 Dri et 
al.[172] 

Iβ MD (ReaxFF)d 8.731 8.989 10.736 90.02 90 106.24 300 Dri et 
al.[172] 

Iβ MD (ReaxFF)d 8.214 8.85 10.76 90.07 90.19 103.94 300 Dri et 
al.[172] 

Iβ MD (ReaxFF)d 8.394 8.33 10.536 103.8 86.26 88.12 300 Dri et 
al.[172] 

Iβ MD (ReaxFF)d 7.802 8.552 10.615 89.7 90.14 100.09 300 Dri et 
al.[172] 

Iβ MD (ReaxFF)d 8.101 7.997 10.466 83.26 87.36 92.06 300 Dri et 
al.[172] 

Iβ MD (ReaxFF)d 7.377 7.718 10.557 90.03 90.02 88.61 300 Dri et 
al.[172] 

Iβ MD (ReaxFF)d 7.32 7.816 10.552 89.09 90.06 91.31 300 Dri et 
al.[172] 

Iβ MD (ReaxFF)d 7.32 7.816 10.552 89.09 90.06 91.31 300 Dri et 
al.[172] 

Iβ MD 
(GLYCAM06) 8.026 7.869 10.617 90.01 90.01 94.48 300 Dri et 

al.[172] 

Iβ MD 
(COMPASS) 7.8 8.2 10.3 88.3 88.7 92.1 300 Dri et 

al.[172] 

Iβ MD (ReaxFF) 7.786±0.
016 

8.203±0.
017 

10.382±0
.062 90±0.01 90±0.01 90.88±0.

74 300 Qiao et 
al.[173] 

Iβ MD (ReaxFF) 7.861±0.
038 

8.282±0.
04 

10.482±0
.152 90±0.69 90±0.76 89.28±0.

72 500 Qiao et 
al.[173] 

Iβ MD (ReaxFF) 7.876±0.
029 

8.298±0.
031 

10.503±0
.116 90±19.64 90±18.34 86.02±0.

54 800 Qiao et 
al.[173] 

Iβ MD (ReaxFF) 7.908±0.
021 

8.332±0.
022 

10.54±0.
084 90±13.60 90±6.98 83.82±2.

17 
100
0 

Qiao et 
al.[173] 

Iβ MD (ReaxFF) 7.996±0.
042 

8.425±0.
444 

10.663±0
.167 90±4.88 90±5.20 70.04±3.

84 
110
0 

Qiao et 
al.[173] 

Iβ MD 
(GLYCAM06) 7.9 8.4 10.75 85.1 90.2 102.2 300 Maurer et 

al.[157] 

Iβ MD 
(GLYCAM06) 7.63 8.23 10.8 89.99 89.99 97.17 298 Zhang et 

al.[174] 

Iβ MD 
(GLYCAM06) 8.11 8.28 10.78 90 89.96 98.33 500 Zhang et 

al.[174] 

Iβ MD 
(GLYCAM06) 7.62 8.23 10.8 89.69 90.2 97.32 298 Zhang et 

al.[174] 

Iβ MD 
(GLYCAM06) 7.61 8.2 10.76 90.27 90.45 94.2 298 Zhang et 

al.[174] 

Iβ MD (PCFF) 7.6 8.74 10.46 90.4 92.3 103.5 300 Mazeau et 
al.[175] 

Iβ MD (PCFF) 8.11 8.56 10.72 90 89.99 95.32 300 Mazeau[176
] 

Iβ MD (PCFF) 7.81 8.51 10.78 90 90 92.08 300 Mazeau[176
] 

Iβ MD (PCFF) 7.7 8.5 10.69 89.86 89.97 89.31 300 Mazeau[176
] 

Iβ MD (PCFF) 7.91 8.53 10.74 89.67 89.9 93.73 300 Mazeau[176
] 

Iβ MD (PCFF) 7.71 8.7 10.67 90 90 102.13 300 Mazeau[176
] 

Iβ MD (PCFF) 8.11 8.56 10.72 90 90 95.31 300 Mazeau[176
] 

Iβ MD (PCFF) 7.98 8.25 10.79 90.23 89.91 87.19 300 Mazeau[176
] 
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Iβ MD (PCFF) 7.95 8.77 10.57 90 90 100.67 300 Mazeau[176
] 

Iβ MD (PCFF) 7.67 8.51 10.6 89.78 90.26 94.33 300 Mazeau[176
] 

Iβ MD (PCFF) 6.82 9.48 10.48 90.03 90.6 91.74 300 Mazeau[176
] 

Iβ MD (Custom) 8.06 8.51 10.4 90.1 90.6 96.6 300 Neyertz et 
al.[177] 

Iβ Packing (MM3) 7.5 8.7 10.36 90 90 94.1 EMa Viëtor et 
al.[159] 

II CPMD 7.8 9.31 10.74 90 90 116.6 298 Ganster et 
al.[178] 

II MD (GROMOS) 8.058 9.38 10.41 90.1 90.05 112.7 300 Chen et 
al.[158] 

II MD (Opt. 
GROMOS) 8.146 8.628 10.39 90.02 90.01 114 300 Chen et 

al.[158] 

II MD 
(GLYCAM06) 8.4 8.92 10.75 90 90 109.8 300 Djahedi et 

al.[170] 

II MD 
(GLYCAM06) 8.02 9.32 10.77 90.2 91.6 121.5 300 Zhang et 

al.[174] 

II MD 
(GLYCAM06) 8.3 8.77 10.73 89.7 91.2 117.1 300 Zhang et 

al.[174] 

II MM 
(COMPASS) 6.93 10.22 10.38 90 90 120 EMa Eichhorn et 

al.[156] 

II MM 
(COMPASS)b 7.44 10.86 10.41 90 90 127 EMa Eichhorn et 

al.[156] 

II MD (CHARMM) 8.14 9.06 10.34 90 90 114 EMa Marhofer et 
al.[155] 

II MD (CHARMM) 8.25 8.92 10.34 90 90 114 300 Marhofer et 
al.[155] 

II MD (CHARMM) 8.02 9.03 10.34 90 90 115.3 EMa Marhofer et 
al.[155] 

II MD (CHARMM) 7.92 9.01 10.34 90 90 115.3 300 Marhofer et 
al.[155] 

II MD (GROMOS) 8.1 9 10.3 90 90 120 300 
Kroon-

Batenburg et 
al.[164] 

II MD (GROMOS) 8.1 8.9 10.3 90 90 119 300 
Kroon-

Batenburg et 
al.[164] 

IIII MD 
(GLYCAM06) 4.42 8.09 10.76 90 90 93.3 300 Djahedi et 

al.[170] 

III MD (GROMOS) 5.008 8.192 10.06 89.99 89.99 111.9 300 Chen et 
al.[158] 

III MD (Opt. 
GROMOS) 4.715 8.203 10 90 89.97 111.9 300 Chen et 

al.[158] 
a Energy minimization. 
b Without the hydrogen bonds in the simulations 
c Not binding 
d Different versions of ReaxFF force field were tested. 

 

Table 6. Measured unit cell parameters of cellulose polymorphs from published studies. 

 Method a (Å) b (Å) c (Å) α (°) β (°) γ (°) T (K) Ref. 

I XRD 8.17 7.86 10.38 90 90 97 - Gardner et 
al.[179] 

Iα Electron 
diffraction 6.74 5.93 10.36 117 113 81 293 Sugiyama et 

al.[180] 
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Iα XRD & NFD 6.71
7 5.962 10.4 118.0

8 114.8 80.37 293 Nishiyama et 
al.[131] 

Iβ XRD & NFD 7.78
4 8.201 10.38 90 90 96.5 293 Nishiyama et 

al.[132] 
Iβ XRD SM 7.85 8.27 10.38 90 90 96.3 - Finkenstadt et 

al.[181] Iβ XRD GB 7.82 8.16 10.32 90 90 97.5 - 

Iβ XRD 7.78 8.19 10.34 90 90 96.5 - Woodcock et 
al.[182] 

Iβ XRD 7.88 8.32 10.39 90 90 95.9 - Okano et al.[183] 
Iβ XRD 7.85 8.14 10.34 90 90 96.6 - Sarko et al.[184] 
Iβ Electron 

diffraction 7.94 8.39 10.58 90 90 98 173.15~233.1
5 Honjo et al.[185] 

Iβ Electron 
diffraction 8.01 8.17 10.36 90 90 97.3 293 Sugiyama et 

al.[180] 

Iβ XRD 7.71 8.34 10.37 90 90 97.6 - Takahashi et 
al.[186] 

Iβ XRD 7.9 8.35 10.3 90 90 96 - Meyer et al.[187] 

Iβ XRD 7.76 8.19 10.38 90 90 96.51 100 Langan et al.[188] 

Iβ XRD 7.83 8.19 10.38 90 90 96.55 298 Langan et al.[188] 

Iβ XRD & NFD 7.64 8.18 10.37 90 90 96.54 15 Nishiyama et 
al.[126] Iβ XRD & NFD 7.76 8.2 10.37 90 90 96.62 295 

Iβa XRD 8.1 8 10.3 90 90 95 - Thomas et al.[189] 

Iβb XRD 7.88 8.3 10.36 90 90 94.5 - Lee et al.[161] 

II NFD 8.01 9.04 10.36 90 90 117.1 - Langan et al.[133] 

II XRD 8.01 9.03 10.31 90 90 117.1 - Langan et al.[134] 

II XRD 8.01 9.04 10.36 90 90 117.1 - Kolpak et al.[190] 

II XRD 8.02 8.99 10.36 90 90 116.6 - Kolpak et al.[191] 

II Synchrotron X-
ray 8.01 9.02 10.34 90 90 117.11 100 

Langan et al.[188] 
II Synchrotron X-

ray 8.03 9.04 10.35 90 90 117.11 298 

II XRD 7.96 9.09 10.31 90 90 117.3 - Stipanovic et 
al.[192] 

II XRD 7.92 9.08 10.34 90 90 117.3 - Wellard[193] 

IIII XRD and NFD 4.45 7.85 10.31 90 90 105.1 - Wada et al.[141] 
a Annealed Celery collenchyma (Cellulose Iβ) 
b Celery collenchyma (Cellulose Iβ) 

 

4.3 Molecular Mechanics Studies of Cellulose 

Considering the relative complex structure of cellulose and the expensive computational 

cost of QM methods, Molecular dynamics (MD) has become the method of choice to study 

cellulose at the atomic scale. MD simulations provide the dynamics of atoms through Newton’s 
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equations of motion. The equations are discretized in time and integrated to obtain trajectories, 

that is, the positions and velocities of atoms as functions of time. The trajectory records the system 

evolution at specific temperature and pressure conditions, and can be analyzed to obtain structural, 

dynamical, thermal, and mechanical properties of the system. In recent years, MD simulations of 

cellulose systems have been performed with reliable interatomic interactions. The results have 

been validated through detailed comparison with experimental measurements and QM calculations. 

The emergence of supercomputers and highly efficient parallel algorithms also significant boost 

atomistic aspects of cellulose systems. In the past decade, massively parallel computers delivering 

petaflop (1015 floating point operations per second) performance have become available. When 

combined with highly efficient, linearly scaling parallel algorithms, MD simulations can handle 

systems of 109 atoms and archive timescales on the order of milliseconds. Figure 14 shows the 

distribution of about 330 MD studies of cellulose systems, from the twist and chirality 

configurational changes of cellulose crystals, the structural conversions between cellulose 

polymorphs, the HB network patterns to the thermal stability of cellulose in gaseous and aqueous 

solutions. A great deal of research interest (~ 34% of the total 330 papers) is about the behavior of 

cellulose in water, alkaline and organic solutions and environment friendly ILs. This is due to the 

fact that cellulose is normally processed in solutions. A fundamental understanding of structural 

and property change of cellulose in solutions could promote cellulose conversion and optimize the 

industry process. For the same reason, it has been a hot research topic on the interaction, adsorption, 

and interfacial properties of cellulose when mixed with other molecules or solvents. In the native 

form, cellulose is surrounded by hemicellulose, lignin and water. Thus, the interfaces between 

water and cellulose microfibrils, and the exposure of hydrophilic/hydrophobic surface will 

certainly matter. Understanding cellulose/enzyme interaction is also critical. This is because the 



 

 86 

cellulose degradation via enzymic hydrolysis is still one of the most widely adopted treatment in 

industry. Due to the complex structure of enzyme and protein, MD becomes the affordable 

atomistic computational method for this purpose. In this section, we also summarize computational 

studies to improve cellulose properties via nanocomposites. It is also known that interatomic 

potential, also known as force field, is the essential input to MD simulations. The degree to which 

the results of MD simulation represent the properties of real materials is determined by how 

reliable the force field is. Over the years, a number of force fields have been adopted and reported 

to provide accurate descriptions to certain cellulose properties. Yet, developing and parameterizing 

better force fields require more future efforts.  

 

 
Figure 14 .The analysis and topic distribution of 330 MD studies of cellulose. 

 
4.3.1 Force Fields for Cellulose Systems 

        The accuracy of force fields is critical to the quality of cellulose MD simulations, from the 

calculation of unit cell parameters,[158, 194] see also Table 5, to the energy and conformation 

analysis of cellulose.[195] Despite different force fields predict slightly different unit cell 
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parameters to a same cellulose polymorph, most MD calculations produce satisfactory results, 

which are comparable to experimental XRD measurements. For cellulose MD studies, it is critical 

to benchmark the adopted force field and make sure the calculations generate correct results. 

Figure 15 shows the analysis regarding the choice of force fields for 330 cellulose MD studies. As 

the distribution shows, the CHARMM force field is most recommended for cellulose/enzyme 

systems. For the study of structure, interaction and adsorption of cellulose, GROMOS, CHARMM 

and GLYCAM06 are popular. AMMBER is widely adopted for the behavior of cellulose in 

aqueous and ionic liquid solutions, while GLYCAM06 and OPLS-AA force fields are popular for 

the study of cellulose dissolution in ILs. Other force fields such as  CSFF[195-198], CVFF,[171, 

199] MM2,[200-203] MM3,[142, 204] CLAYFF,[205] CFF91[206], as well as specially 

customized force fields[177, 207-211] are also reported for cellulose composites and various 

calculations of cellulose properties. For example, Yong et al.[171] tested COMPASS, Deriding, 

UFF, CVFF and PCFF force fields for cellulose unit cell, and concluded that CVFF force field has 

the best prediction compared with experiments. On the other hand,  Bazooyar et al.[212] reported 

that, compared with Deriding and UFF, COMPASS force field is more suitable for the study of 

cellulose dissolution: it could successfully predict the preferred syn conformation of cellobiose in 

water. The MD simulations also agree with ab initio DFT method. Interestingly, Wang et al.[213] 

also reported that COMPASS force field is the most proper force field for mechanical properties 

and solubility studies of amorphous cellulose (DP ≥ 10). Similarly, the simulation of cellulose Iβ 

microfibrils at high temperatures has been benchmarked with three force fields, namely 

CHARMM, GLYCAM06 and GROMOS.[169, 174, 214-217] Those studies show that CHARMM 

and GLYCAM06 provide consistent results with experimental data.  
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Figure 15. The analysis of 330 cellulose MD studies and the choice of force fields. 

 

4.3.2 Cellulose Model and System Size 

The choice of cellulose model and the system size are important to MD simulations. 

Subject to available computational resources, it is wise to always run test calculations and maintain 

a balance between the system size and the accessible trajectory. For cellulose systems involving 

macromolecules and complex structures such as enzymes and proteins, a trajectory time of 

milliseconds is required to capture the dynamics of the system.[218] Recent progresses in GPU-

based calculations bring positive perspectives of calculating cellulose systems at larger spatial and 
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temporal scales. To most current MD studies, cellulose crystalline models with 18, 24 and 36 

chains are commonly adopted for cellulose microfibrils. It has been justified that models with 18 

and 24 cellulose chains could reproduce structural characteristics of native cellulose from wide-

angle X-ray scattering (WAXS), small-angle neutron scattering (SANS) and solid-state nuclear 

magnetic resonance (ssNMR).[189, 219] Therefore, it is popular to use 18~24 chains to represent 

cellulose microfibrils with different shapes of cross-sections, such as square, hexagonal and 

others[113, 220-223] Cellulose models with 36 chains and large DP values were adopted to study 

the recalcitrant crystalline core of plant cell wall microfibrils,[224] as well as other cellulose 

microfibrils.[165, 168, 169, 174, 217, 225-231] 

Figure 16 shows a summary of typical number of chains and DP values for cellulose MD 

studies reviewed in this section. A large cellulose model is consisted of 144 chains and a DP value 

of 400, but such system is computationally very expensive. Most models use 2~36 chains and 2~40 

DP, which are appropriate for small cellulose crystals and microfibrils. It is worth pointing out that 

cellulose with small DP values is soluble in water. Therefore, the study of cellulose in aqueous 

solutions usually use 1~2 for the DP of cellulose models. As for the study of cellulose allomorphs 

interconversion, longer cellulose chains are preferable. When it comes to complex systems (ILs, 

enzymes and proteins), usually a simple cellulose model, one chain with 1~20 DP, will be 

appropriate. For cellulose property calculations, such as elastic modulus, XRD, IR and NMR, 

various cellulose models have been adopted, with a range of 1~40 in chains and DP values.  
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Figure 16. A summary of typical number of chains and DP values for cellulose models via MD 

simulations. The size of the dots represents the frequency, while the colors are just to better 

distinguish the six cellulose properties of interest. 

 

4.3.3 Structural Properties of Cellulose 

Using the experimental input of cellulose structural information, for instance, the lattice 

parameter and atomic coordinates from XRD and neutron fiber diffraction experiments[122-125, 

131-134, 140, 141, 144-149], MD simulations have been designed to capture the 

crystalline/amorphous structural changes[175, 232-235], the allomorphs interconversions[216, 
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236], the HBs network[176, 230, 237], and the thermal properties of cellulose systems.[165, 166, 

174, 207, 217, 238-241] 

Heiner et al.[242] adopted GROMOS87 force field and performed MD simulations to study 

cellulose Iα and Iβ. They found that cellulose Iβ is structurally more stable than Iα, which agrees 

with experimental results,[243] with more interchain HBs observed in cellulose Iβ. Their 

calculated 13C NMR shift is due to the dihedral angle of C-6, and the OH-stretching region from 

the calculated IR plots can be used to estimate the number of different HBs in the cellulose system. 

Kroon-Batenburg et al.[164] studies the crystalline cellulose Iβ and II via GROMOS force field. 

They reported that the cellulose Iβ structure agrees with the previous parallel-down model.[179] 

Cellulose layers are parallel and hydrophobic, with all the OH groups in tg conformation. Two 

intramolecular HBs that paralleled to the 1-4-β bond and two intralayer HBs were identified in the 

cellulose Iβ units, forming the HB networking.  

The HB network is critical to maintain cellulose crystal structures. Therefore, the 

fundamental understanding of HBs could help to design better processes to stabilize or breakdown 

cellulose materials. Mazeau et al.[176] performed MD simulations to study the HB network of 

cellulose Iβ crystal. Similarly, Agarwal et al.[244] calculated the infrared radiation (IR) of 

cellulose Iβ HB network. The results agreed with experimental measurements,[132] revealing a 

predominant intrachain HBs at 300-400 K and a weaker interchain HB network at 450-500 K. 

Those MD simulations conclude that it is easier to form a 3-D HB network at high temperatures, 

which in return promotes the structural stability of cellulose Iβ, as previously discussed by other 

studies,[165, 173, 217, 245, 246] Chen et al.[247] studied the HB patterns of cellulose II and IIII, 

and also calculated the fiber diffraction patterns of both cellulose models, which are consistent 

with experiments.[133, 141] Djahedi et al.[248] demonstrated how the HBs and covalent bonds 
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affect the stiffness of cellulose Iβ. Their MD simulation results revealed that the HBs contribute 

only about 12% to cellulose stiffness, but the HB network could significantly influence the 

modulus. For example, the HB network helps to stabilize cellulose Iβ structure during the 

deformation process, which eventually leads to a higher axial modulus. 

Besides the study of pristine cellulose structures, MD simulations have been also applied 

in the study of cellulose polymorph interconversions. Hardy et al.[236] studied the interconversion 

between cellulose Iα and Iβ via CHARMM force field. The transition from metastable Iα to stable 

Iβ was reported to start from the chain torsional rotation and the breakdown of HB network. Based 

on the MD simulation results, they also proposed a break-slip model to describe the transition 

process. Bregado et al.[216] performed MD simulations with CHARMM force field to study the 

amorphization of cellulose Iα and Iβ under various temperatures. By the of analysis of HBs, 

calculated IR, lateral order index, radial distribution functions (g(r)), XRD and distribution of 

dihedral angle, they found that paracrystalline structures were similar in the temperature range of 

380 to 700 K. Figure 17 (a) showed an example of calculated g(r) for crystalline, paracrystalline 

and amorphous cellulose. Their results also revealed that both cellulose Iα and Iβ became 

completely amorphous with lower DP, while paracrystalline core were observed in the structures 

with the increasing of degree of polymerization. Kulasinski et al.[249] investigated the conversions 

between crystalline, paracrystalline and amorphous cellulose. They proposed that paracrystalline 

cellulose is the intermediate from crystal to amorphous phase. The structure obtained from their 

quenching simulation protocol exhibits similar isotropic amorphous properties of experimental 

reports. Also, the crystal to amorphous phase transition was identified to occur at 450~550 K.  

The thermal stability of cellulose has been also investigated via MD simulations. 

Bergenstråhle et al.[165] estimated lattice parameter changes of cellulose Iβ at high temperatures 



 

 93 

via GROMOS 45a4 force field. A structural transition was observed at 450 K when the origin 

chains rotated around the helix axis and hydroxymethyl groups were transferred to a different 

conformation, as also discussed by Matthews.[217] Similarly, Zhang et al.[174] studied the 

thermal response of cellulose Iβ crystal via GROMOS 45a4 and GLYCAM06 force fields. They 

observed similar structural transition[165] in the temperature range of 475-500 K. They also 

reported that GLYCAM06 force field provides more consistent results with experiments at high 

temperatures. Tang et al.[238, 240, 241] improved the thermal stability of insulation paper 

cellulose by grafting polysiloxane. They found that a mass fraction of 6.5% polysiloxane can 

improve the thermal stability by 50 K[238, 240] in gaseous conditions and 60 K in micro-water 

environment.[241] They also reported a better thermal stability of the 5% nano-SiO2-doped 

insulation paper cellulose.[239] As illustrated in Figure 17 (b), Diaz et al. [250] performed 

experiments and MD simulations to understand the thermal conductivity of cellulose Iβ 

nanocrystals (CNCs). They reported a thermal conductivity range of ∼0.72-5.7 W m−1 K−1 for a 

single CNCs and ∼0.22−0.53 W m−1 K−1 for CNCs films. The film thermal conductivity was 

reported to depend both on the DP of CNCs and the directions between heat flow and cellulose 

chain axis.  
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Figure 17. (a) An illustration of g(r) of C4-C4 pair for crystalline cellulose Iβ (DP=10) at 298 K. 

The d1 and d2 distances indicated the positions of the two first peaks along the r-axis. Inside this 

figure two cellulose chains are represented, in which an arbitrary C4 atom (in dark gray color) 

connects by sticks with other nearest C4 atoms. The sticks of d1 and d2 represent the symbolize 

distances rather than bonds between C4 atoms. The green stick connects C4 atoms where their 

distances contribute to the first peak of g(r) that located at d1, whereas the blue stick those 

contributing to the second peak of g(r) that located at d2. Profiles of this function for paracrystalline 

(green dotted line) and amorphous cellulose (wine dashed line) were extracted from Kulasinski 

and co-workers.[249] Isp and rsp stand for the intensity and distance of the second peak maximum 

in g(r), respectively;[216] (b) The Ashby plot of thermal response of cellulose Iβ (simulation 

results) and bulk CNC (experimental measurement) compared with other materials.[250] 

Reproduced with permission from refs 216 and 250. Copyright 2019 Elsevier B.V. and 2014 

American Chemical Society. 

 
4.4 RxMD Simulations of Cellulose 

ReaxFF force field was initially developed by van Duin in 2001[251] to describe complex 

and large-scale reactive systems that contain many hundreds to several thousands of atoms. Due 

to the advantages that electronic/reaction details and large time/space scale computations can be 

achieved simultaneously, RxMD based on reactive force field (ReaxFF) has gained more and more 

attention for computational studies of complex systems, such as protein/DNA,[252, 253] 
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membrane fuel cell systems,[254] and very complicated coal structure and properties.[255, 256] 

In order to describe a continuous interaction pathway and allow bond formation or breaking of the 

system, ReaxFF adopts the concept of bond order to monitor structural evolution and identify 

adsorption and chemical reactions. This is different from classical force fields where the structural 

topology is consisted of bonds, angles, dihedrals and improper angles. It is worth pointing out that 

ReaxFF based RxMD simulations are generally one order slower than MD simulations with 

classical force fields, which is partly due to the expensive charge calculation at each step via the 

electronegativity equalization method (EEM) to determine the bond order of each atom of the 

system.[257-259] Yet, with parallel supercomputers, trajectories of up to microseconds  could be 

archived for complex systems such as cellulose. In literature, ReaxFF based RxMD simulations 

are specialized in predicting structural evolution, tracing intermediates, and analyzing final 

products,[173, 260, 261]and are priority choices for reactive adsorption, dissociation and complex 

reactions.[262-264] More details of ReaxFF are available from recent reviews.[265-267] 

During the past decade, ReaxFF force field parameters have been developed for cellulose, 

hemicellulose, lignin systems,[255, 267-271] and successfully described similar systems, such as 

complex long-chain polymers[272-274], coal and biomass materials.[255, 256] Despite the 

capability of handling large and complex systems, for most reported RxMD simulations of 

cellulose systems, the size of simulation box is usually on the order of 10 nm, which is still much 

smaller than the experimental sample of 50~500 nm.[84] In addition, we note that the quality of 

RxMD simulations defends exclusively on whether or not the ReaxFF force field has been 

parameterized for the system and investigated properties. For instance, Dri and co-workers[172] 

evaluated three sets of ReaxFF parameters[267, 270, 271] and compared with two classical force 

fields (COMPASS[275] and GLYCAM[276]) in the prediction of lattice parameters, elastic-
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thermal behavior, and the anisotropy of cellulose Iβ. They concluded that the predictability of 

ReaxFF varies: the one developed by Chenoweth[267] is the best for reproducing lattice 

parameters of cellulose Iβ; the ReaxFF parameters from Rahaman[271] have the most accuracy 

for Young’s Modulus along the chain direction. However, all three ReaxFF sets failed to predict 

the Young’s Modulus in the transverse direction. When performing RxMD simulations with 

ReaxFF force field, one should benchmark the choice of system size and morphology, screen 

adsorption and reaction conditions, and carefully validate RxMD results with experimental 

findings and QM calculations if possible.  

 
4.4.1 Structural and Mechanical Properties of Cellulose 

Diaz and co-workers[277] adopted ReaxFF force field to study the coefficient of thermal 

expansion of self-organized and shear oriented cellulose Iβ nanocrystals. Instead of using one or 

two cellulose chains in QM calculations, RxMD can easily handle systems with tens of cellulose 

chains. Starting from experimental XRD results and reported unit cell parameters,[132] the elastic 

modulus of crystalline cellulose Iβ was reported to be 7.0 ± 1.7, 28.8 ± 2.9 and 139.5 ± 3.5 GPa 

along x, y and z directions.[278] RxMD simulations also predicted the transverse elastic modulus 

to be 5.1 ± 0.7 GPa, which agrees well with experiments.[279] It is also encouraging that ReaxFF 

force field can capture elastic differences at three directions, which is due to the directional strain 

and the inhomogeneous HB network of cellulose structures. RxMD simulations of frictional 

sliding on cellulose Iβ (110), (11N0) and (200) surfaces are also reported.[280] The model was 

consisted of two cellulose surfaces, with the bottom cellulose substrate fixed and the top cellulose 

surface mobile. The results reveal that the sliding velocity of the top cellulose surface has a 

negligible effect on friction, whereas the orientation of the contacting cellulose surfaces, the 

magnitude of normal load and the number of hydrogen bonds (NHB) impact significant on the 
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friction between two cellulose surfaces. Other RxMD simulation was also reported for crystalline 

cellulose Iβ by the reactive empirical bond-order (REBO) potential.[281] The results showed that 

chain breakdown occurred in cellulose Iβ crystal, with an increasing number of free molecules of 

carbon, oxygen and hydrogen elements.[282] The damage of the cellulose structures results in the 

breakdown of glucose units and free molecules in the system, while the cross-linking and chain 

scission are less common.[283] 

Other mechanical properties have been also reported by RxMD simulations. Our group 

recently reported the evolution of structure and mechanical properties of crystalline cellulose Iβ 

via isolated pyrolysis treatments from 300-1300 K.[173] The system was composed of 8 cellulose 

chains, each with 12 glucose monomers. Periodic boundary conditions were applied at all 

directions to mimic the bulk behavior of cellulose Iβ. Simulation results reveal that cellulose Iβ 

generally maintains the crystalline structure at temperatures below 1000 K, with noticeable 

corrugation and twist of the chains and the evolution of the HB network. The predicted Young’s 

modulus is comparable to experiments and other computational studies. RxMD simulations also 

well captured the trend that Young’s modulus decreases at temperature increase. It is also 

important to note that mechanical properties are sensitive to the adopted strain rate in those RxMD 

simulations. Wu and co-workers performed similar RxMD simulations for mechanical properties 

of crystal cellulose Iβ.[284] The simulation results reveal the highly anisotropic nature of cellulose 

Iβ, including elastic modulus, the Poisson’s ratio, the yield and ultimate stress and strain.  

 
4.4.2 Cellulose Decomposition 

The pyrolysis of amorphous cellulose was investigated via RxMD for temperatures from 

500 to 1400 K.[285] The cellulose was modelled by six long-chains that contained 60 units of 1,4-

β-D-glucopyranoses (C2160H3612O1800), in a cubic simulation box of 30.45 Å. GPU-enabled ReaxFF 
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MD (GMD-Reax) simulations were performed to investigate initial reactions of the pyrolysis 

process. The pyrolysis products identified from simulation trajectories are mainly glycolaldehyde, 

levoglucosan and water, agreeing well with experiments from temperatures of 673-1073K. The 

decomposition of amorphous cellulose was also reported as a function of the degrees of 

polymerization, DP = 8, 16, 32 and 64.[286] At the high temperature range of 1400 to 2000 K, the 

simulation revealed the breaking of 1−4-β bonds, which eventually leads to the decomposition of 

amorphous cellulose, producing products of glycolaldehyde, water, formaldehyde and formic acid. 

Similarly, Atmani et al. [287] performed RxMD simulations to investigate the decomposition of 

cellulose into kerogen. When cellulose Iβ was heated from 423 to 3502 K, the formation of kerogen 

and maturation were observed. Similar structural features were identified between formed kerogen 

and experimental mature type III kerogen. Those studies suggest that ReaxFF satisfactorily 

captures the nature of cellulose pyrolysis process.  

Besides the dry pyrolysis where cellulose is the only initial species, the decomposition of 

cellulose/water mixtures have been also reported.[288] The simulation system was composed of 

water and 8 amorphous cellulose chains, each with 10 glucose units. Both water content (33 wt% 

and 66wt%) and temperature (1250 to 2000 K) were controllable parameters. The results 

demonstrated that water could enhance the decomposition of cellulose chains and increase the 

oxygenation of products. Also, higher temperatures seem to result in lower oxygenating effects of 

water. The co-pyrolysis process of seaweed polysaccharides and cellulose was also 

investigated.[289] By increasing the temperature from 300 K to 1273 K, main products of furans 

were reported of Enteromorpha clathrata (EN) polysaccharides pyrolysis, while acid esters were 

predominant in the pyrolysis of Sargassum fusiforme (SA). The calculations also revealed 
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synergetic effect of cellulose and seaweed polysaccharides, a significantly increase of conversion 

and production rates. 

 

4.4.3 Cellulose Composite 

Cellulose is widely used in biohybrid materials because of its sustainability, 

biocompatibility and easy operating features. The hydroxyl groups make cellulose easy to form 

intra- and intermolecular HBs with other materials. For example, Hu et al.[290] investigated the 

synergistic effect between graphene oxide (GO) and NFC fibers. The strength, toughness and 

Young’s modulus could be significantly improved via interactions in the hybrid GO-NFC 

microfibril. NFCs enhance the binding between GO sheets by weaving and wrapping GO sheets 

together. Meanwhile, GO sheets also bridge NFCs together to improve the mechanical properties. 

In addition, Ca+ cations at the interface of NFC and GO can further enhance the binding of the 

composite. Mao et al.[291] constructed a sandwich model with monolayer GO between CNC 

crystals to evaluate the suppression of hydrophobic facet of the cellulose-GO nanocomposite. It 

was discussed that the HBs between OH groups of cellulose and functional groups of GO result in 

the suppression of hydrophobic (2 0 0) facet of CNCs, while the hydrophilic (1 1 0)/(1 1N 0) surfaces 

remain intact. Such finding could lead to new strategies to modify cellulose-based composites for 

surface and interface applications. Zhu and co-workers[292] carried out a complex RxMD study, 

with (2,2,6,6-tetramethylpiperidine-1-oxylradical)-mediated oxidized cellulose nanofibrils 

(TOCNFs) and graphene oxide. Their simulation system was composed of 16 crystalline cellulose 

Iβ chains, each with 16 D-glucose units, several GO sheets, water, Cu2+ and SO42-. Such hybrid 

TOCNFs-GO membrane demonstrated excellent mechanical properties, great adsorption 

capability, metal capture ability and recyclability. The self-assembly process, the metal capture 
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and cluster formation of the TOCNFs-GO membrane were captured and satisfactorily described 

by ReaxFF force field, see Figure 18 for the spatial distribution functions of copper and sulfur 

atoms surrounding the TOCNF+GO model surface at high concentration. 

Other complex cellulose composites have been reported by RxMD studies. For example, 

Beste[293, 294] reported RxMD simulations of lignin conversions in the softwood, with 

temperatures up to 4000 K. The 5-5 linkage was identified as the weakest linker during the 

cyclization and dehydrogenation process. Chen et al.[295] assessed four different versions of 

ReaxFF[267-270] in the study of pyrolysis and combustion of cellulose, hemicellulose and lignin 

mixtures.  

 
Figure 18. Spatial distribution functions of copper (orange) and sulfur (yellow) atoms surrounding 

the TOCNF+GO model at high concentration. The orange and yellow regions represent density 

contours 2 times larger than the average solvent density. TOCNF (solvent-accessible surface where 

the oxygens are light pink) and GO molecules (cyan sticks with red oxygens) are average 

conformations (reconstructed).[292] Reproduced with permission from ref. 292. Copyright 2018 

American Chemical Society. 
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4.5 Mechanical Properties of Cellulose 

The elastic modulus is one of the mostly studied mechanical properties of cellulose based 

materials and composites due to their excellent mechanical strength.[84] In general, the elastic 

modulus is calculated by the equation: 

𝐸 =
𝑆𝑡𝑟𝑒𝑠𝑠
𝑆𝑡𝑟𝑎𝑖𝑛 

where stress is the force divided by the area and strain is the ratio of change caused by the stress. 

Young’s modulus, shear modulus and bulk modulus based on different measurements of stress, 

strain and directions. As one of the commonly measured one, Young’s modulus is used to describe 

mechanical properties about the resistance to deform along one direction where opposing force are 

applied. Materials with good stiffness commonly have a large Young’s modulus. Experimentally, 

Young’s modulus could be measured by XRD[296] or Raman spectroscopy[297]. From the 

computational point of view, several methods have been proposed to calculate Young’s modulus: 

(1) The calculation can be carried out to elongated (or decreased) the simulation box (z0) 

by a small increment ∆𝑧 (maximum 5% of the chain length)[206] along the axis of the applied 

stress, then the whole simulation box is re-optimized. The stress (σ) can be obtained by derivative 

of the function between the minimum potential energy and the axial length from the system[154, 

156, 298], and the EA is then the slope of the stress vs. strain (ε=∆𝑧/z0) curve.[172, 299, 300] A 

similar energy density method calculated EA via twice the slope of energy density and the square 

of strain.[206] 

(2) The stress can be defined as native value of pressure along the corresponding direction, 

the elastic modulus is then calculated by EA = σ/ε. Instead of elongating simulation box by small 

increment,[165] the stress can also be changed directly with a constant pressure rate (e.g. 200bar/ps) 

with NPT ensemble[177].  
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(3) A alternative way is to allow the continuous elongation of simulation box along the 

direction where the stress is applied, with a defined strain rate in NPT system.[173, 301-306] The 

system is re-optimized in NPT ensemble in order to allow the dimensional changes due to 

Passion’s effect.[173, 284] 

(4) The elastic modulus also can be calculated by full elastic constant matrices based on 

the continuum concept of elasticity.[156, 178, 210, 307-309] The calculations can be performed 

via simulations tools in Materials Studio package.[156, 307-309] The energy minimization allows 

the changes of both atomic coordinates and unit cell parameters, which leads to no constant-area 

assumption. 

A summary of the predicted Young’s modulus (EA) of cellulose polymorphs from 

simulation studies are listed in Table 7. Table 8 has the EA values measured from experiments for 

the comparison, where EA is the elastic modulus in the axial direction. The value of calculated EA 

varies significantly in Table 7. The difference in the prediction of Young’s modulus is mainly due 

to (1) the aforementioned elastic modulus calculation methods; (2) force fields;[171, 172, 206] (3) 

the HBs in cellulose model;[156, 204, 211, 248, 278, 300] (4) the number of cellulose chains and 

chain length of cellulose model;[206, 300] (5) with or without periodic boundary conditions for 

cellulose model;[206, 284] (6) any defects included in cellulose model.[167] Therefore, it is 

important to construct cellulose model in order to obtain accurate elastic modulus. Generally 

speaking, there are several approaches to construct cellulose model for the calculation of elastic 

modulus. First one is one-unit cell model with periodic boundary conditions, which is perfect for 

simulating infinite crystalline structures[297, 298], however, the accuracy of this method is highly 

dependent on the measurements of the original unit cell. The second method is super cell model 

with finite dimensions, which is appropriate for paracrystalline materials, while it might suffer 



 

 103 

from the drawback of finite-size effects.[206] Cellulose system that consisting of super cell model 

with periodic boundary conditions is the third method that widely used. Although this approach 

precludes the surface properties, it can overcome the size limitation to study the bulk properties of 

cellulose, and avoid unreasonable response of the surface chains to the strain and interactions with 

neighboring atoms.[173, 284] In the literature, computational studies of cellulose mechanical 

properties have been reported by quantum mechanics, molecular mechanics and molecular 

dynamics simulations using both classic and reactive force fields.  

Quantum mechanics. Quantum mechanics methods have been used to determine elastic 

modulus of cellulose and provide useful information for experiment. For example, Santiago 

Cintrón et al.[204] investigated the Young’s modulus of 1,4’-O-dimethyl-β-cellobioside (DMCB), 

and an analogue, 2,3,6,20’,3’,6’-hexadeoxy-1,4’-O- dimethyl-b-cellobioside (DODMCB). The 

results indicated that HBs play an important role in the prediction of elastic modulus. The 

comparison between system with multiple chains and a single chain showed no difference in the 

elastic modulus value, which indicated that the interchain HBs have little effect on the mechanical 

property, while intrachain HBs significantly affect the stiffness of cellulose chains. Also, cellulose 

model with higher DP (20~40) showed an increased value of Young’s modulus. Dri et al.[163] 

performed DFT calculations to evaluate the anisotropy of the elastic properties of crystalline 

cellulose Iβ. The 3D color contour plots in Figure 13 (c) indicated the anisotropy of the Young’s 

modulus, with reported Young’s modulus of surface (2 0 0), (0 0 1) and (0 1 0) is 206, 98 and 19 

GPa, respectively.  

Molecular mechanics. Molecular mechanics requires less time and has a high accuracy in 

the deformation calculations,[156, 171, 211, 310-313] Unlike the quasi-harmonic 

approximation[314], AIMD[178, 315] and MD[155, 316, 317], it calculated the elastic modulus 
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via minimum energy structure at very low temperature (~0 K), and the accuracy is highly 

dependent on the initial orientation of the structure.[156, 206] The elastic modulus of cellulose I, 

II, IIII, IIIII, and IV has been reported as 138, 88, 87, 58, 75 GPa respectively,[318] which 

suggested the significant difference of these cellulose allomorphs. Eichhorn et al.[156, 297] 

investigated how the elastic modulus calculation method, HBs and cellulose structures affect the 

prediction of mechanical properties. They proposed that there is no difference for the modulus 

calculation methods between using COMPASS force field and full elastic constant matrices. While 

the removal of HBs in the system affects the stiffness calculations. Their results also showed that 

cellulose Iα and Iβ has similar stiffness and cellulose I is stable than cellulose II based the stiffness 

values. The calculated elastic modulus of cellulose Iβ via super cell model is reported by Tanaka 

and co-workers.[206] The best system size is 4×4×10 unit-cell size from their study. They also 

found that the second-generation force fields are more suitable for the cellulose optimization 

compared with first-generation ones. The deformation of amorphous cellulose was also 

studied,[313] and HBs formed between amorphous cellulose was reported to cause the yield of 7-

8% strain and poor recovery of amorphous cellulose. Petridis et al.[319] found that an increasing 

hydration in cellulose materials can significantly change the mechanical and dynamical properties 

of cellulose. Cellulose model with 20% hydration is more rigid than dry one because of the smaller 

distance between cellulose chains and HBs formed between cellulose and water molecules. The 

shear resistance of CNCs is investigated by Molnar and co-workers.[167] It is found that the shear 

behavior is sensitive to noncovalent interactions and local structural changes such as deformation, 

translations and rotations. Furthermore, compared with perfect CNCs, the yield strength and 

dilatancy greatly decreased in the CNC models with defects (e.g. dislocations) on the cellulose 

chains. 



 

 105 

Molecular dynamics.  MD simulation provides a possible way to estimate the mechanical 

behavior of cellulose in a continuous way for non-zero temperatures.[177, 249, 320-322]  

Brickmann et al.[155] found that cellulose I and II with parallel chains showed comparable 

Young’s modulus with experiments, which indicated that cellulose II model with parallel chains 

is more reasonable than that with antiparallel chains. Wohlert and co-workers[317] reported that 

the temperature dependence between Young’s modulus and temperature is -0.05 GPa/K at room 

temperature for cellulose. In addition, a dependence was observed between Young’s modulus and 

the number of chains in the system via CHARMM force field, whereas no dependence was found 

with GROMOS force field. Djahedi et al.[170] found that HBs affect the calculations of 

mechanical properties for cellulose via the synergies between different energy contributions such 

as covalent bonds, angles, dihedrals, electrostatic forces, dispersion and steric forces. The shear 

behavior of cellulose is also studied via MD simulations. Zhang and co-workers[323] studied the 

effect of shear loading on plant cell model with sandwich structures of cellulose on both sides and 

hemicellulose in the middle. They proposed that the shear strength can be controlled by optimizing 

the HBs formed between cellulose and hemicellulose interfaces. Moreover, the shear behavior 

between cellulose Iβ interfaces is affected by both surface energy and the energy along the shear 

direction.[316] The interfaces with weaker interactions present a stuck-slip deformation behavior 

due to the large energy barrier between cellulose chains, while interfaces with stronger interactions 

showed a continuous sliding process. Meanwhile, the study of mechanical properties of modified 

cellulose materials has also attracted great interest due to the large numbers of application in paper 

and energy related fields.[238, 308, 309, 324, 325] Wang et al.[307] found that the chain length of 

cellulose Iβ significantly influence the mechanical properties of insulation paper. The Young’s 

modulus decreased with shorter chains and chains with higher fracture degree (FD). The number 
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of HBs in the system decreases with the increasing of FD, which reduces the mechanical strength 

of the insulation paper. The incorporation of insulation paper with melamine, SiO2 and water 

showed strong mechanical strength, breakdown strength, high DP and low water content compared 

with original ones.[326]  

Reactive molecular dynamics. Allowing the bond formation and breaking in ReaxFF 

makes it a potential simulation tool to study the tensile deformation of cellulose. The accuracy and 

predictability of ReaxFF in describing the mechanical properties of cellulose have been reported 

recently.[172] Wu et al.[278, 284] performed RxMD method to evaluate the elastic modulus of 

cellulose with different strain rates. They reported that the elastic behavior of cellulose is 

anisotropic. The increased strain rate results in a higher value of yield and ultimate stress. For the 

optimal strain rate of 10-3/ps, the calculated Young’s modulus, yield stress and ultimate stress 

along the stress direction are 113.5, 5.4 and 6.0 GPa, respectively, agreeing well with experiments 

in Table 8. Our group[173] used ReaxFF to investigate the Young’s modulus of cellulose at 

different temperature with a constant strain rate of 10-4/fs. The Young’s modulus decreased with 

the temperature increase. The values of Young’s modulus are 113.24, 99.03, 95.67 and 94.34 GPa 

for 300, 500, 800 and 1000 K, respectively. 

 

Table 7. Calculated Young’s modulus from published computational studies for cellulose and its 

derivatives. 

 
 Method EA (GPa) Ref. 
I MM (Custom)d 57 Treloar et al.[327] 

I[180] MM (Custom) 167.5 Tashiro et al.[210] 
I[180] MD (CHARMM) 162a Marhofer et al.[155] 
I[180] MD (CHARMM) 128 Marhofer et al.[155] 
I[180] MM (Custom) 172.9 Tashiro et al.[211] 
I[180] MM (Custom)d 70.8 Tashiro et al.[211] 

Iα[180] MD (Custom) 128.7 Neyertz et al.[177] 
Iα[131] MM (COMPASS) 155b Eichhorn et al.[156] 
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Iα[131] MM (COMPASS) 152c Eichhorn et al.[156] 
Iα[131] MM (COMPASS)d 114b Eichhorn et al.[156] 
Iα[131] MM (COMPASS)d 118c Eichhorn et al.[156] 
Iα[131] CG 138.3 Poma et al.[328] 
Iα[329] MM (COMPASS) 136b Eichhorn et al.[156] 
Iα[329] MM (COMPASS) 66 c Eichhorn et al.[156] 
Iα[329] MM (COMPASS)d 117 b Eichhorn et al.[156] 
Iα[329] MM (COMPASS)d 52 c Eichhorn et al.[156] 
Iβ[181] MM (COMPASS) 116 b Eichhorn et al.[156] 
Iβ[181] MM (COMPASS) 104c Eichhorn et al.[156] 
Iβ[181] MM (COMPASS)d 124b Eichhorn et al.[156] 
Iβ[181] MM (COMPASS)d 125c Eichhorn et al.[156] 
Iβ[181] MM (COMPASS) 124~125 Tanaka et al.[206] 
Iβ[180] MM (COMPASS) 172.9 Tashiro et al.[211] 
Iβ[180] MM & MD (CHARMM) 148 Reiling et al.[154] 

Iβ[180] MM & MD (GROMOS) 136 ± 6 Kroon-Batenburg et 
al.[164] 

Iβ[132] MM (COMPASS) 149b Eichhorn et al.[156] 
Iβ[132] MM (COMPASS) 150c Eichhorn et al.[156] 
Iβ[132] MM (COMPASS)d 127b Eichhorn et al.[156] 
Iβ[132] MM (COMPASS)d 125c Eichhorn et al.[156] 
Iβ[132] MD (GROMOS) 156 Bergenstrahle et al.[165] 
Iβ[132] QM (B3LYP/6- 311G**+) 99.7 Santiago Cintrón et al.[204] 
Iβ[132] QM (B3LYP/6- 311G**+)d 33 Santiago Cintrón et al.[204] 
Iβ[132] MM (MM3) 85.2 (DP=2) Santiago Cintrón et al.[204] 

Iβ[132] MM (MM3) 142.7~147.5 
(DP=20~40) Santiago Cintrón et al.[204] 

Iβ[132] MM (MM3)d 37.6 Santiago Cintrón et al.[204] 
Iβ[132] QMe 206 Dri et al.[163] 
Iβ[132] MD (GROMOS) & FEM 100.5 Chen et al.[320] 
Iβ[132] MD (GLYCAM) 138 Djahedi et al.[170] 
Iβ[132] MD (ReaxFF) 139.5 Wu et al.[278] 
Iβ[132] MD (ReaxFF)d 120.3 Wu et al.[278] 
Iβ[132] MD (ReaxFF) 107.8~113.5 Wu et al. [284] 
Iβ[132] MD (ReaxFF, Mattsson) 124.5 Dri et al.[172] 
Iβ[132] MD (ReaxFF, Chenoweth) 117.2 Dri et al.[172] 
Iβ[132] MD (ReaxFF, Rahaman) 192.2 Dri et al.[172] 
Iβ[132] MD (COMPASS) 209.6 Dri et al.[172] 
Iβ[132] MD (GLYCAM) 129.4 Dri et al.[172] 
Iβ[132] MD (ReaxFF) 113.24 Qiao et al.[173] 
Iβ[132] MD (ReaxFF) 99.03 (500 K) Qiao et al.[173] 
Iβ[132] MD (ReaxFF) 95.67 (800 K) Qiao et al.[173] 
Iβ[132] MD (ReaxFF) 94.34 (1000 K) Qiao et al.[173] 
Iβ[132] MM (CVFF1) 186 Yao et al.[171] 
Iβ[132] MM (CVFF2) 201.5 Yao et al.[171] 
Iβ[132] MM (CVFF3) 179.6 Yao et al.[171] 
Iβ[132] MD (AMBER) 161 Gupta et al.[299] 
Iβ[132] MM (COMPASS) 113 (single chain) Wu et al. [300] 
Iβ[132] MM (COMPASS) 155 Wu et al. [300] 

Iβ[132] MM (GROMOS) 0.4~1.65 (shear 
stress) Molnar et al.[167] 
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Iβ[132] CG 135.4 Poma et al.[328] 
Iβ[132] CG 140~200 Shishehbor et al.[330] 

Iβ[132] CG/FEM 115~135 for 
(CNCs) Shishehbor et al. [331] 

Iβ[132] CG/FEM 100~250 Shishehbor et al. [331] 
Iβ[132] MD (CHARMM) 20.1τ Sinko et al.[316] 
Iβ[132] MD (PCFF) 37.63~104.34 c Wang et al. [307] 
Iβ[132] MD (PCFF) 11.23~12.23 c Wang et al. [308] 
Iβ[132] MD (PCFF) 12.74~14 c Zhu et al. [309] 

Iβ MD (Custom) 115.2 Neyertz et al.[177] 
II[190] MM (Custom) 162.1 Tashiro et al.[210] 

II MM (COMPASS) 98 Eichhorn et al.[297] 

II[190] MM & MD (GROMOS) 89 ± 4 Kroon-Batenburg et 
al.[164] 

II[190] CPMD 155 Gansteret al.[178] 
II[190] MD (CHARMM) 168a, f Marhofer et al.[155] 
II[190] MD (CHARMM) 83f Marhofer et al.[155] 
II[190] MD (CHARMM) 71a, g Marhofer et al.[155] 
II[190] MD (CHARMM) 59g Marhofer et al.[155] 
II[133] MM (COMPASS) 109b Eichhorn et al.[156] 
II[133] MM (COMPASS)d 110c Eichhorn et al.[156] 
II[133] MM (COMPASS) 101b Eichhorn et al.[156] 
II[133] MM (COMPASS)d 92c Eichhorn et al.[156] 
II[332] MM (COMPASS) 166b Eichhorn et al.[156] 
II[332] MM (COMPASS)d 168c Eichhorn et al.[156] 
II[332] MM (COMPASS) 106b Eichhorn et al.[156] 
II[332] MM (COMPASS)d 107c Eichhorn et al.[156] 
II[134] MD (GLYCAM) 112 Djahedi et al. [170] 

IIII[141] MD (GLYCAM) 101 Djahedi et al. [170] 
C-Whiskersk, [333] MM (COMPASS) 145 Sturcova et al.[298] 

Amor-Cq MM (PCFF) 10.42 ± 1.08 (8.45) Chen et al.[313] 
MCC-H2O MD (ReaxFF) 13.45 Sahputra et al. [334] 

Iβ[132] MD (GROMOS) 33.5 Kulasinski et al.[249] 
Amor-C-Airh MD (PCFF) 19.8156 (450 K) Wang et al. [324] 
Amor-C-Airh MD (PCFF) 21.0423 (460 K) Wang et al. [324] 
Amor-C-Airh MD (PCFF) 17.8751 (470 K) Wang et al. [324] 
Amor-C-Airh MD (PCFF) 18.2154 (480 K) Wang et al. [324] 
Amor-C-Airh MD (PCFF) 17.0215 (490 K) Wang et al. [324] 
Amor-C-Airh MD (PCFF) 16.8213 (500 K) Wang et al. [324] 
Amor-C-Airh MD (PCFF) 15.8203 (510 K) Wang et al. [324] 
Amor-C-N2

o MD (PCFF) 20.9467 (450 K) Wang et al. [324] 
Amor-C-N2

o MD (PCFF) 21.6596 (460 K) Wang et al. [324] 
Amor-C-N2

o MD (PCFF) 18.3133 (470 K) Wang et al. [324] 
Amor-C-N2

o MD (PCFF) 19.9756 (480 K) Wang et al. [324] 
Amor-C-N2

o MD (PCFF) 18.0819 (490 K) Wang et al. [324] 
Amor-C-N2

o MD (PCFF) 19.0911 (500 K) Wang et al. [324] 
Amor-C-N2

o MD (PCFF) 17.4743 (510 K) Wang et al. [324] 
C-H2O I MD (UFF) 15.8 Tang et al. [326] 

CN-H2Om MD (UFF) 18.2 Tang et al. [326] 
CAN-H2On MD (UFF) 19.4 Tang et al. [326] 

CA FEM/FEA 0.1233 Stylianopoulos et al.[335] 
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BC FEM/FEA 53.7~64.9 Gao et al. [336] 
CNCs FEM/FEA 29.78 Srinivasa et al.[337] 

CFRELl FEM/FEA 641.57×10-3 Ahmad et al.[338] 

C-GOp FEM/FEA 355.2×10-3 
(CA/GO=3%) Naddeo et al.[339] 

C-GOp FEM/FEA 583.45×10-3 
(CA/GO=90%) Naddeo et al.[339] 

a Energy minimization 
b Stiffness 
c Elastic constant 
d Without the hydrogen bonds in the simulations 
e Semi-empirical correction for van der Waals interactions 
f Cellulose model with parallel chains 
g Cellulose model with antiparallel chains 
h Amorphous cellulose with air 
I Cellulose modified by H2O 
J Commercial mechanical testing system 
k Cellulose whiskers 
l Cellulose fiber reinforced epoxy laminates 
m Cellulose modified by SiO2 and H2O 
n Cellulose modified by melamine, SiO2 and water 
o Amorphous cellulose with N2 
p Cellulose/GO composite 
q Amorphous cellulose 
τ Transverse modulus 
 

Table 8. Measured Young’s modulus from published studies for cellulose and its derivatives. 

 
 Method EA (GPa) Ref. 
I XRD 134 Sakuradaet al.[340] 
I XRD 120~135 Matsuo et al.[296] 
I XRD 138 Nishino et al.[318] 

Iβ Inelastic X-ray scattering 220±50 Diddens et al.[341] 
Iβ Raman Spectroscopy 105 Rusli et al.[342] 
Iβ AFM 151 Iwamoto et al.[343] 
Iβ XRD 130 Nishino et al.[318] 
Iβ XRD 130~137 Sakuradaet al.[340] 
Iβ XRD 114 Ishikawa et al.[344] 
II XRD 88 Nishino et al.[318] 
II XRD 106~112 Matsuo et al.[296] 
II XRD 78 Langan et al.[133] 
II XRD 90 Marhofer et al.[155] 
II XRD 89 Ishikawa et al.[344] 
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II XRD 70~90 Mann et al.[345] 
IIII XRD 87 Nishino et al.[318] 
IIII XRD 115~122 Ishikawat et al.[346] 
IIII XRD 115 Ishikawa et al.[344] 
IIIII XRD 58 Nishino et al.[318] 
IV XRD 75 Nishino et al.[318] 

C-Whiskersb Raman Spectroscopy 143 Sturcova et al.[298] 
Amor-Ca Exp. 8.45 Mark et al.[347] 

MCC-H2O Exp. 9.2~11.1 Hancock et al.[348] 
BC Raman Spectroscopy 114 Hsieh et al.[349] 
BC Raman Spectroscopy 79~88 Tanpichai et al.[350] 
CA Exp. 3.5~12.4 ×10-3 Stylianopoulos et 

al.[335] 
NFCFc Compression testing 1.2 ~8.65 Sehaqui et al.[351] 
NFCFc Compression testing 1.2 ~8.65 Ali et al. [352] 
NFCFc Compression testing 1.2 ~8.65 Gordeyeva et al. [353] 

a Amorphous cellulose 
b Cellulose whiskers 
c Nanofibrillar cellulose foams 
 

4.6 Conclusion 

Due to the severe worldwide energy and environmental problems, cellulose and its 

derivatives have become one of the widespread and valuable natural resource and will be 

continuously dominated in the biomass applications in the future. Previous research efforts have 

been mainly focused on traditional treatments of cellulose, such as conversion, degradation, 

dissolution and pyrolysis. With an increasing interest in manipulating subtle properties of native 

cellulose, using computational techniques to classify and construct the structure-property-process 

relationship of cellulose martials has been a hot topic for both academia and industry. Smarter and 

green treatment strategies would critically require effective and selective modifications of 

characteristic chemistry and structures, to achieve desirable properties.  

Computational simulations at atomistic level, including quantum mechanics, molecular 

mechanics, molecular dynamics and reactive molecular dynamics, have provide powerful methods 
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and useful information in understanding the fundamental mechanism of cellulose conversion and 

utilization. In particular, those computational methods offer insights into the electrostatic and van 

der Waals interactions to the hydrogen bonding network, which plays an important role in 

structural and mechanical properties of cellulose. By modifying HBs between chains or at interface, 

cellulose exhibits enhanced mechanical strength and thermal stability. The HB network also affects 

the dissolution of cellulose in ionic liquids and other solvents. Moreover, the investigation of 

interactions, adsorptions and interfacial properties between cellulose and other molecules helps to 

understand cellulose structure, chemistry and property under various conditions. Like discussed in 

this review, QM calculations provide accurate reaction mechanism of cellulose decomposition, 

while QM/MM hybrid method and RxMD are able to proceed structural evolution of large and 

complex cellulose based system, which can further help in optimizing cellulose pyrolysis processes 

conditions. In this review, we outline the state-of-the-art understanding of cellulose structures, and 

discuss in details cellulose interactions, dissolutions and decompositions via computational 

methods of molecular dynamics (MD) and reactive molecular dynamics (RxMD) simulations. In 

addition, cellulose characterizations, beneficial to validate and support computational results, are 

also briefly summarized. The combination of simulation and experiment could facilitate the 

construction of the structure-property-process relationship and provide better guidelines to 

cellulose treatments at industrial level. 
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Chapter 5: Crystalline Cellulose: The Structure-Property Evolution 

under Pyrolysis Conditions* 

5.1 Introduction 

Cellulose exists in algae, bacteria and other natural biomaterials as a basic building block. 

It is also a primary component of cell walls of green plants, along with hemicellulose and lignin. 

Cellulose-based materials have been widely used in many  applications, for example, biofuel 

productions[1, 2], paper manufactory[3, 4], construction industry[5-7], energy related fields[8-11], 

drug delivery[12-17], biomedical therapy[18-20], to just name a few. The unique properties of 

nontoxicity, good biocompatibility, high biodegradability, high water adsorption and great 

mechanical properties make cellulose one of the most promising candidates to address the 

increasing challenges in environmental, ecological and energy fields.  

 Chemically, cellulose is a polysaccharide that consists of a linear chain of thousands of 

repeating D-glucose units, which are interlinked with b-1,4-linkages. Hydroxyl groups of cellulose 

chains and the inter/intra hydrogen bonding (HB) networks are dominating structural factors to 

cellulose properties. The utilization of cellulose-based materials largely depends on the effective 

manipulation of cellulose HB networks. Accordingly, various treatments have been proposed to 

process raw cellulose materials, which could be classified as the following categories: (1) 

mechanical treatments such as milling[21, 22], grinding/refining[23-25], high-pressure 

homogenizers[26-29], cryocrushing[27, 30, 31], and high intensity ultrasonic treatments[32-34]; 

(2) hydrolysis treatments[35-56] via the application of dilute acid, concentrated acid, enzyme or 

autohydrolysis; (3) pyrolysis treatments[57-61] through the steam, hydrothermolysis or wet 
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oxidation; (4) chemical treatments[32, 42, 62-69] from oxidizing agents, alkali, acid and organic 

solvents; (5) electrical, biological and other treatments[70-79].  

 Most recently, producing cellulose based advanced materials via subtle treatment strategies 

has been brought to a new horizon. Exciting progresses include the milestone work of Hu[62] and 

co-workers where they processed natural wood chemically to remove lignin, followed by a 

mechanical compressing to fine tune the remaining cellulose structures into crumple and interlock. 

The transformed wood, mostly composed of structurally manipulated cellulose, is mechanically 

more than 10 times stronger than steel[62].  Selectively removing hemicellulose and lignin has 

witnessed other promising progresses, including compressible carbon sponges and high surface 

area activated carbon for chemical and biosensor development, and water/oil separations[63, 80-

83]. Making use of the inherent structural and chemical properties is key to producing cellulose 

based advanced materials and maximizing their performance. It is worth noting that available 

results seem to suggest that having a proper amount of lignin is beneficial. The hypothesis is that 

the leftover lignin helps to bind cellulose fibers when further processed. 

 On the other hand, despite the importance and recent promising progress of the field, the 

theoretical understanding of cellulose based materials and their fundamental structure-property 

relationship are still far from complete. There is a pressing need to develop molecule level 

understandings of cellulose based materials and how their structure and property evolve under 

various treatments. To date, the majority theoretical research efforts are from ab initio density 

functional theory (DFT) and classical force field based molecular dynamics (MD) simulations of 

crystalline cellulose structures and corresponding electronic properties[84-89]. The breakdown of 

cellulose under solution (such as water, acid or ionic liquid environments) or pyrolysis conditions 

has been also studied computationally. For example, classical MD simulations were used to 
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simulate the surface of cellulose Ib and its interactions with water.[90]. Matthews and co-workers 

used molecular mechanics (MM) simulations to study the crystalline cellulose configuration 

changes with water surrounding around[91]. They found that cellulose unit was expanded and 

twisted, and that the formation of adjacent water layer on the cellulose surface might delay the 

transitions of enzymes and further result in a slower hydrolysis rate in enzymes-catalyzed 

hydrolysis approach[91]. They also found[92] that the twisting between cellulose chains results in 

the formation of a 3D hydrogen bond network inside hydrate cellulose Ib microfibrils under high 

temperature (~500 K). Ab initio and MD simulations have been also used to understand the 

dissolution mechanism of cellulose in aqueous solutions. Janesko et al.[93] applied DTF 

calculations to study the interaction between cellulose and charged ions in ionic liquids (ILs). 

Singh and co-workers[94] carried out ab initio molecular dynamics (AIMD) simulations to study 

the dissolution of cellulose Ib monomers in ILs. They found that the breaking of hydrogen bond 

network was the key factor for cellulose dissolution. Similarly, Liu et al.[95] found in their MD 

simulations that the strong hydrogen bonding between anion and cellobiose could significantly 

impact cellulose dissolution. Moreover, other researchers[96-98] have also reported that the 

changes of interchain and intrachain hydrogen bond network lead to cellulose dissolution in ILs.  

 When it comes to pyrolysis treatments, BergenstråhleLars et al.[99] reported via classical 

MD simulations that cellulose Iβ crystal changed its structure when the temperature was above 

450 K . Assary et al.[100] and Mayes et al.[101] performed DFT calculations to study the fast 

pyrolysis of cellulose. They both observed cellobiose depolymerization, epoxide formation and 

the production of Levoglucosan (LGA). Agarwal et al.[102] performed both AIMD and Car-

Parrinello molecular dynamics (CPMD) simulations to study cellulose decomposition pathways. 

They found that the cellulose decomposition to liquid intermediates started around 260 ºC and 
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LGA was produced from the fast pyrolysis between 400 to 600 ºC, agreeing well with the results 

of Assary and Mayes. The authors also used classical MD to simulate the IR of cellulose Iβ crystal 

at 300~500 K.[103] The IR agreed with that of experiments and high temperatures can weaken 

cellulose intrachain hydrogen bonds, eventually leading to the formation of a 3-D hydrogen 

bonding network.  

In recent years, reactive force field (ReaxFF) based MD simulation (RxMD) has gained 

more and more attention from the cellulose research community. It is mainly due to the advantages 

that electronic/reaction details and large time/space scale computations can be achieved 

simultaneously in RxMD simulations. A number of RxMD simulations have been reported for 

cellulose, hemicellulose, lignin and their mixtures. For example, Beste and co-workers[104] 

reported a RxMD study of the conversion of lignin at various temperatures, and they found that 

the 5-5 linkage was the weakest linker during the cyclization and dehydrogenation. Zheng and co-

workers[105] studied the pyrolysis process of amorphous cellulose at temperatures from 500 to 

1400 K. The reported pyrolysis products agree well with available experiments, which also 

confirms that the applied ReaxFF force field provides an accurate description of cellulose pyrolysis 

processes. Meanwhile, Paajanen et al.[106] studied the amorphous cellulose decomposition from 

1400 to 2000 K. They observed that the breaking of 1-4-β bonds eventually leads to the cellulose 

decomposition, and that the decomposition products are mainly glycolaldehyde, water, 

formaldehyde and formic acid, which agreed with experimental results.  

 In this work, a series of RxMD simulations have been performed to reveal the structural 

evolution of crystalline cellulose Ib via pyrolysis treatments under an isolated condition. By 

varying the pyrolysis temperature, the change of cellulose crystallinity, the variation of inter/intra 

HB networks, the reaction and distribution of C, O and H elements have been recorded and 
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analyzed. In addition, the pyrolysis treated cellulose and its mechanical properties were also 

discussed in terms of Young’s modulus and the yield tensile stress. Despite the pyrolysis process 

was modeled under an isolated condition, that is, no contribution was considered from oxygen and 

water of the air, this work demonstrates a general computational protocol to study cellulose 

systems under reactive conditions. Furthermore, the constructed structure-property relationship 

could shed light on how to select pyrolysis conditions and achieve desirable structural, chemical 

and mechanical properties of engineered cellulose-based materials. The article is organized as 

following: Section 5.2 presents a brief introduction to the ReaxFF reactive force field, a simulation 

protocol and a list of computational characterizations. Section 5.3 contains the calculation results 

and discussions of structural evolution of crystalline cellulose Ib as a function of time, the 

characterizations of inter/intra HB networks, and the mechanical properties of processed cellulose. 

Conclusions are finally provided in Section 5.4.     

 

5.2 Crystalline Cellulose Model and Simulation Details 

5.2.1 Crystalline Cellulose 

The initial cellulose Ib crystal was generated by the cellulose builder from Gomes and co-

workers[107, 108], with the lattice parameters[108] of 7.784 Å, 8.201 Å, 10.380 Å, 90°, 90°, 

96.550° from experimental XRD and neutron fiber diffraction results at 293 K. In our RxMD 

simulations, a 2×2×6 supercell was constructed which produces a triclinic simulation box of 

15.568 ×16.402 × 62.280 Å. In this work, benchmark calculations on larger systems have been 

performed at the initial stage of this research. Quantitively similar results were obtained about 

properties such as the hydrogen bonding network and the Young’s modulus. Also, we followed 

the choice of simulation box size and used a similar total number of atoms in the cellulose 
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model[105, 106, 109, 110]. Figure 19 (a) shows characteristic covalent bonds of crystalline 

cellulose, namely, the bonds of the glucose unit that hold the ring structure, and the 1-4-b bonds 

that connect glucose units. It is expected that at elevated temperatures, either the glucose ring 

structure or the 1-4-b bond would break down. Besides covalent bonds, the HB networking is also 

critical to cellulose properties. As shown in Figure 19 (b), hydrogen bonds (green dashed lines) 

come from both inter and intra cellulose chains. As temperature increases, the crystallinity of 

cellulose structure decreases, consequently producing a change of the inter and intra HB networks, 

which significantly affects mechanical properties of the pyrolysis treated cellulose. 

 

5.2.2. ReaxFF Reactive Force Field and RxMD Simulation 

Proposed by van Duin and co-workers in 2001, ReaxFF reactive force field has been 

actively developed to describe complex and large-scale reactive systems, which could contain 

hundreds to several thousands of atoms[111]. So far, ReaxFF has been applied to describe complex 

systems such as protein/DNA[112, 113], membrane fuel cell system[114] and very complex coal 

structure and properties[115]. ReaxFF has become a choice for multi-scale modeling of systems 

with adsorption, dissociation and complicated reactions[116-118]. Unlike traditional definitions 

of bonds, angles and dihedrals of classical force fields, a concept of bond order[119-123] has been 

developed in ReaxFF to calculate atomic connections and system energies in order to describe the 

continuous bond formation and breaking and mimic the reaction pathway in the systems[111]. 

These advantages make ReaxFF an useful tool in predicting structural evolution, tracing 

intermediates and analyzing final products[124, 125]. Recently, ReaxFF has been successfully 

used for the study of the mechanism of pyrolysis process of cellulose, hemicellulose, lignin and 

their derivatives[104-106, 109, 126, 127]. Generally speaking, ReaxFF is one order slower than 
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the non-reactive force fields, the most expensive calculations part of ReaxFF has been the charge 

calculations that comes from electronegativity equalization method (EEM) by Mortier and co-

workers[128-130]. However, with the help of parallel calculations, a time scale of microseconds 

trajectory could be archived[117]. More details of ReaxFF are available from recent reviews[131-

133]. The ReaxFF parameters used in this work have successfully described cellulose systems[106, 

109].  

All RxMD simulations were performed by the LAMMPS package. The isothermal-isobaric 

(NPT) ensemble was applied where the pressure was maintained at 1 atm. The temperature was 

controlled via the temperature-programmed protocol, changing from 300 K slowly to targeted final 

temperatures (500, 800, 1000, 1100, 1200, 1300 K). The Berendsen method with a temperature 

damping coefficient of 100 fs was applied to maintain the system temperature. Initial velocity was 

assigned according to the Boltzmann distribution. A timestep of 0.25 fs was adopted in all 

calculations. Each of the RxMD simulations in this work has a trajectory of at least 10 ns. For the 

cellulose decomposition distribution analysis, longer simulations have been performed for 60 ns 

for 1200 and 1300 K. For the Young’s modulus analysis, after the 10-ns trajectory, additional 

calculation of 1 ns was carried out to collect the data at a smaller timestep (0.05 fs). Other 

calculations were performed at a timestep of 0.25 fs. It is worth nothing that identifying the true 

equilibrium state is always important and challenging for molecule simulations. Technically, the 

equilibrium state is justified via various analyses such as the total energy of the system, the root-

mean-square deviation of atomic positions, diffusion coefficients, etc. Zheng and co-workers[105] 

have summarized that cellulose is thermally stable in the temperature range of 673-1073 K 

(experimentally) and 500-1400 K (computationally). The wide temperature range is mainly due to 

different cellulose resources and the treatment conditions (isolated, vacuum, with a mixture of 
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gases or liquids). Our work shows that cellulose is generally stable up to 1000 K, which 

qualitatively agrees with other computational studies. In addition, we have tested the calculations 

for different timescales, from 25 ns up to 100 ns. No qualitative difference was observed. However, 

it is worth nothing that the choice of simulation time depends critically on the property of interest, 

for example, to gain cellulose dissociation kinetics, longer calculations are recommended. 

 

 

 

Figure 19. Initial configurations of the Ib crystalline cellulose; (a) two characteristic covalent 

bonds in a single cellulose chain; (b) the hydrogen bonding network from two parallel cellulose 

chains.  

 
5.2.3. Monitored Properties from RxMD Simulation  

 

(a) Hydrogen Bonding Network 

The HB networking has been widely used to describe structural changes of crystalline 

cellulose Ib, and is considered as a packing indictor when linear cellulose chains roll into highly 

ordered structures[108, 134-138]. In this work, the HB criteria proposed by Nishiyama and co-

workers[108] were adopted:  

;   RL
O⋅⋅⋅H < RO⋅⋅⋅H < RH

O⋅⋅⋅H θO⋅⋅⋅HO <θC
O⋅⋅⋅HO



 

 139 

where 𝑅G⋯I is the distance between the HB acceptor (O) and the HB donor (H). The low and high 

thresholds are 1.7 Å and 2.6 Å, respectively. 𝜃G⋯IGrepresents the angle O···O−H for the HB 

formation where the threshold angle is 110°. 

 

(b) Computational X-ray Diffraction 

X-ray diffraction (XRD) patterns are sensitive to spacings between layers or rows of atoms 

and are capable of determining the orientation of a single crystal or grain. XRD has been utilized 

to identify crystal structures, measure the size, shape and internal stress of small crystalline regions. 

It is also a primary tool for determination of nano-crystallite orientation in polymers. In this work, 

XRD plots were calculated to monitor the structural evolution of crystalline cellulose: the peak 

positions are determined by the lattice parameters, while the peak intensities are from the motif. 

XRD calculations were carried out by the Mercury and Diamond software, more information is 

available from the software manual[139, 140]. 

 

(c) Young’s Modulus 

Young’s modulus defines the relationship between stress (force per unit area) and strain 

(proportional deformation) in the linear elasticity regime of a uniaxial deformation[141]. A larger 

Young’s Modulus suggests a better stiffness of a material. Young’s modulus could be 

experimentally determined via X-ray diffraction[142] or Raman spectroscopy[143]. 

Computationally, several methods have been proposed to calculate this elastic modulus[143-146]. 

One method is to enlarge the simulation box length repeatedly by a small amount, along the axis 

where the stress is applied. The simulation system is then reoptimized at each new fixed cell 

unit[110, 146]. Another method is to allow the simulation box to elongate continuously at a defined 
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strain rate for a uniaxial tensile deformation. Several articles have adopted the second method to 

estimate the Young’s modulus for amorphous polymers and metals[147-152].  

 This work also uses the second method to monitor the uniaxial tensile deformation at three 

different strain rates. In those simulations, the tensile stress is the negative value of pressure along 

the corresponding direction. The strain is then calculated by the amount of the length change for 

that direction. Young’s modulus (E) is the ratio of tensile stress (𝜎(𝜀)) and strain 𝜀, 𝐸 = 𝜎(𝜖) 𝜖⁄ . 

From the stress-strain diagram, the point of yielding is estimated by the offset yield method, also 

known as 0.2% offset yield strength. As shown in the following section, the yield strength is 

obtained by drawing through the point of the horizontal axis of ε = 0.2%, a line parallel to the 

initial straight-line portion of the stress-strain diagram. 

 

5.3 Results and Discussions 

5.3.1 Cellulose Configuration under Different Temperatures 

As shown in Figure 20, the temperature effect on cellulose configuration has been 

monitored. Figure 20 (a) displays the final configurations from different temperatures, whereas the 

hydrogen bonding network of cellulose chains is illustrated by green dashed lines. In Figure 20 (b) 

and (c), the cellulose has been treated by 300 K and 1100 K, respectively. The structure gets 

corrugated and twisted due to the pyrolysis process, which in turn could modify the hydrogen 

bonding network. Both traditional and ReaxFF force fields provide similar descriptions to cellulose 

conformation and its hydrogen bonding network. We analyzed and compared cellulose unit cell 

predicted from this work and reported experimental and computational data from the literature. 

Nishiyama and co-worker[108] reported atomistic coordinates of cellulose crystal via XRD and 

neturon fiber diffraction at room temperature (293 K), which is adopted as the starting structure in 
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this work. Matthews and co-workers[91, 92] used CHARMM force field to discuss cellulose 

structures. Bergenstråhle[99] observed similar cellulose structural changes via GROMOS, PCFF, 

MM3 and CHARMM force fields. In Table 1 of the Supporting Information, the equilibrium unit 

cell parameters are listed from experiments and different computational studies, including this 

work. 

Compared with results from traditional force fields[89, 92, 99, 153-155], ReaxFF described 

the cellulose structure similar to that of experimental value at 293 K[108].  It is worth noting that 

the unit cell angle γ is smaller than the experimental result, which is probably due to the 

underestimation of cellulose chain-chain dispersion interactions via the ReaxFF force field. A 

smaller γ value is also reported from calculations with traditional force fields at 300 K[92, 99]. In 

our calculations, when temperature increased to 500 K, larger unit cell parameters were observed, 

also similar to results from traditional force fields[99]. As discussed in the literature[92, 99], the 

change of unit cell shape ( α and β angles)  indicates the inter-chain sliding of cellulose crystal.  

When the temperature increased from 500 K to 1100 K in this work, the unit cell change became 

more significant, suggesting the increasing distance between cellulose chains. Such 

configurational change eventually leads to the structural collapse of cellulose at high temperatures, 

around 1100 K according to RxMD simulations in this work. In RxMD calculations, the cellulose 

structure was stable up to 1000 K. At 1100 K, cellulose was stable for a few nanoseconds but then 

it gradually decomposed. Even though cellulose is not thermally stable at 1100 K, the observed 

stability transition is important. When the temperature was beyond 1200 K, the cellulose structure 

quickly decomposed. Reaction products such as H2, CO, H2O and very little CO2 were observed, 

as shown in the supplementary materials. These pyrolysis products were also reported by previous 

work[105, 109]. 
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Figure 20. Cellulose configuration changes at different temperatures: (a) initial cellulose 

crystalline structure (exp. 293 K)[108]; (b) cellulose structure at 300 K; (c) intermediate cellulose 

structure at 1100 K. When the temperature is higher than 1200 K, the cellulose structure will 

decompose. The hydrogen bonding network is shown in green dashed lines. 

 
5.3.2 XRD of Cellulose Structures 

XRD is a useful method to identify crystalline, semi crystalline and amorphous structures. 

Here we calculated XRD to qualitatively determine the crystalline phase of cellulose under 

pyrolysis conditions. Since the initial cellulose crystal was built up based on experimental XRD 

data[108], we used its XRD here to represent experimental XRD results from Nishiyama and co-

workers. The green region represents the peak ranges of experimental XRD results that reported 

by other authors[156-158]. Cellulose structure at 300 K, 1000 K and 1100K were used to study 
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the structure phase change under different pyrolysis temperatures. As shown in Figure 21, cellulose 

structures at 300 K and 1000 K have similar XRD patterns as that of the experimental results 

(exp.[108]), for both peak position and peak intensity. This suggests that Ib crystalline cellulose 

has a relatively good thermal stability. When the temperature increases to 1100 K, there is a 

noticeable XRD peak shift when we calculated the XRD of cellulose intermediate crystalline 

structure. From 300 K to 1000 K, the calculations revealed cellulose structural changes, such as 

the corrugations and the twists of cellulose chains. But the chains were generally still parallel to 

each other, and the distance between chains did not change too much. Therefore, no significant 

XRD peak shifting was observed between the initial crystalline cellulose and cellulose at 

temperatures from 300 K to 1000 K. When temperature was further increased to 1100 K, an 

obvious increase in cellulose chain-chain distance was happening. In addition, the twist of 

individual cellulose chains was more significant. Both contributed to the shift of XRD peaks from 

this temperature (1100 K) and up. It is also worth noting that the increased chain-chain distance 

reduced the total number of HBs between cellulose chains and eventually led to the collapse of 

cellulose structure. At 1200 K and above, XRD results showed an amorphous cellulose structure, 

suggesting the structural collapse at those higher pyrolysis temperatures.   
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Figure 21. XRD of cellulose structures at different pyrolysis temperatures. 

 
5.3.3 Cellulose Decomposition and Element Distribution Analysis 

Under pyrolysis temperatures of 1200 and 1300 K, the crystalline cellulose structure could 

fully decompose. The categories of pyrolysis products have already been studied and one of the 

classifications[109] was adopted in this work: (a) organic gas composites which contains 1-4 

carbon atoms; (b) light tar which contains 5-13 carbon atoms; (c) heavy tar which contains 14−39 

carbon atoms; (d) char which contains more than 40 carbon atoms. As shown in Figure 22 (a), 

cellulose started to decompose into tar or heavy tar at the beginning of the simulations. After the 

crystalline structure was decomposed, several light tar products were detected, as well as light gas 
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molecules such as CH4 and CO. RxMD simulations with the same ReaxFF force field have been 

performed to understand the pyrolysis decomposition of cellulose, hemicellulose and lignin[105, 

106, 109, 159]. From experimental point of view, pyrolysis temperatures could be divided 

into[160]: (1) 550-950 K (slow pyrolysis); (2) 850-1250 K (fast pyrolysis); (3) 1050-1300 K (flash 

pyrolysis). We adopted the concept and qualitatively treated temperatures from 500 to 800 K as 

slow pyrolysis, 800 to 1000 K as medium pyrolysis, and temperature 1100 K and above as fast 

pyrolysis. It is also worth noting that cellulose pyrolysis at high temperatures have been 

investigated via ReaxFF force field[105, 109] In this work, we mainly focus on cellulose structural 

evolution under low and medium pyrolysis temperatures. Cellulose decomposition products 

depend on the pyrolysis setting, that is, the initial cellulose structure (crystalline vs. amorphous), 

the pyrolysis temperature (medium vs. high), and the pyrolysis atmosphere (isolated vs. ambient 

with CO2, O2 or H2O). For the isolated condition and under a high temperature (> 1200 K), we 

observed that cellulose shall decompose completely into light products of H2, CO, H2O and very 

little CO2 after a sufficient long RxMD calculation (~ 60 ns).  

From the materials perspective, it is desirable that the pyrolysis process only produces 

necessary changes to structural and chemical properties cellulose and maintains the maximum use 

of the elements of cellulose. If a large amount of gas-phase species, such as CO2, CO, CH4, H2, 

H2O, shall be released during the pyrolysis process, the efficiency of converting cheap biomaterials 

to cellulose based advanced materials would be rather low. For the isolated pyrolysis conditions 

in this work, the calculations reveal that the release of CO2 is negligible, see Figure 22 (b), and 

that CO and H2 are the dominating gas-phase species. It is worth noting that gas-phase H2O is 

released during the early stage of the pyrolysis process. At the studied high temperatures, those 

vapor water can further interact with cellulose and produce more CO and H2. 
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Figure 22. The analysis of cellulose decomposition at 1200 K: (a) the redistribution of carbon 

elements; C1, C2 to C7+ denotes decomposition products having 1 carbon atom, 2 carbon atoms, 7 

or more carbon atoms, respectively. (b) light gas-phase molecules during the isolated pyrolysis 

process. 

 
5.3.4 Cellulose Hydrogen Bonding Network 

The cellulose configuration in Figure 20 shows that the corrugation and twist can lead the 

linear cellulose chains to a more complex three-dimensional hydrogen bonding network. To further 

monitor this change, the two types of hydrogen bonds have been distinguished, namely, the intra-

chain HB that are formed between hydroxyl groups of same cellulose chains; the inter-chain HB 

that are formed between hydroxyl groups from different cellulose chains. The percentage of 

hydrogen bond intactness is defined as the number of intra (or inter)-HBs over the total number of 

HBs. Figure 23 (a) shows the numerical analysis of the two hydrogen bonds where more inter-

chain HBs exist in those studied pyrolysis conditions. While for the pristine initial cellulose crystal, 

the majority is the intra-chain HBs. In addition, comparing the initial model and cellulose at 300 

and 1000 K, the total number of HBs is 292, 247±10 and 183±11, respectively. This indicates that 

the studied Ib cellulose is thermally stable from 300 K to 1000 K.  
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Figure 23. (a) The intra-chain HB and inter-chain HB distributions at different pyrolysis 

temperatures; (b) A schematic illustration of the inter- and intra-HB network change due to 

pyrolysis temperature; (c) The HB angular distribution, which is through the analysis of the angle 

formed between the HB bond and the positive Z axis. 

 
 A scheme in Figure 23 (b) illustrates the comparison of hydrogen bonding network between 

the pristine Ib cellulose crystal and the cellulose after the pyrolysis treatment. In the initial crystal 

state, all cellulose chains are linear and highly ordered, with most hydroxyl groups on a cellulose 

chain pointing to the same directions. As a result, it is easier to form intra-chain HBs than inter-

chain HBs due to the structural hindrance. On the contrary, under pyrolysis treatments, the 

corrugation and twist of cellulose chains prevent the formation of intra HBs but promote those 

inter HBs. At finite temperatures, cellulose chains rotate, twist and corrugate to form a 3-

dimentional hydrogen bonding (HB) network. Figure 23 (a) reveals a significant difference 

between experiment (XRD and neutron fiber diffraction data) and RxMD simualtions. This is 

likely due to the fact that in RxMD simualtions, all hydrogen atoms are expressed explicitly. Their 

intections contribute significantly to the HB network. However, XRD and neutron diffraction 

experiments cannot determine exact locations of hydrogen atoms, which might lead to the incorrect 
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description of the HB network. This explains the overestimated intra HB and the preferential HB 

angular distribution in Figure 23 (c): peak postions aound 30º, 70º, 150º. The HB angular 

distribution is through the analysis of the angle formed between the HB bond and the positive Z 

axis. In this wrok, the RxMD results show that inter HB bonds are ciritial to the 3D network. It is 

also the main reason why cellulose is stable even at high temperarures (for example, 1000 K in 

this work). The 3D HB network and its change due to temperature have been investigated also by 

classical force fields, with qualitatively similar results[91, 92, 99, 161]. It is worth mentioning that 

the total number of hydrogen bonds shall decrease under even higher pyrolysis temperatures. This 

is because the distance between cellulose chains was slightly gets enlarged under higher 

temperatures, and eventually those inter-chain HBs would disappear.  

 

5.3.5 The Breakdown of Cellulose Structures 

In order to gain the fundamental insight when and how the cellulose structure breaks down, 

the two characteristic covalent bonds of Figure 20 (a) have been monitored, and the definition of 

bond intactness is defined as following: (1) for 1-4-b bond, the oxygen atom remains connected 

with the exact same two carbon atoms during the pyrolysis process; (2) for the glucose ring 

structure, all bonds from the ring structure are monitored, as well as the C-OH and C-CH2OH 

groups that are connected with the ring structure. Each carbon in the glucose unit shall remain 

bonded with the neighboring atoms during the pyrolysis process; In this work, the bond intactness 

is evaluated as a function of interatomic distance, to monitor the type, the breaking and formation 

of bonds via ReaxFF[162]. With the bond order information, the intactness of a molecule or 

structure is further evaluated to see whether and for how long atoms of the molecule/structure 

remain connected. 
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        For the studied conditions, both 1-4-b and glucose ring bonds remain intact for the 

temperature range of 300 K to 1000 K. When the temperature increased to 1200 K, 1-4-b bonds 

started to break down within 2 ns, and by the end of the 5 ns in the trajectory, all 1-4-b bonds were 

decomposed, as shown in the inset of Figure 24 (a). Meanwhile, the breakdown of glucose ring 

structures was also detected at 1200 K. Compared with the 1-4-b bond, the decompose of glucose 

ring was slightly delayed, and it took until the 7.5 ns in the trajectory to break all glucose rings. 

This suggests that the glucose ring is more thermally stable than the 1-4-b structure. At 1300 K, 

the breakdown was expedited: within 2 ns, all 1-4-b were decomposed; while the complete 

breakdown of glucose rings was achieved within 5 ns. But no temperature range is identified where 

1-4-b bonds are decomposed and the glucose rings remain intact. It is probably due to the dangling 

bonds of broken 1-4-b structures, which can further induce the breakdown of glucose rings. Under 

different conditions, that is, instead of isolated pyrolysis, with liquid or gas mediated pyrolysis 

processes, the 1-4-b bond breakdown does not spontaneously lead to the decomposition of glucose 

rings. Thus, the cellulose structure could be modified selectively, by removing only those 1-4-b 

bonds. It is also interesting to note the collective contributions from the 3-D HB network. At 1200 

or 1300 K, where both 1-4-b bonds and cellulose rings were decomposing, the 3-D hydrogen 

bonding network was still able to hold together partial crystalline cellulose chains. It is worth point 

out that the dissociation energies for characteristic structural changes are: 0.2 ~ 40 kcal/mol for 

the hydrogen bonded (HB) network; 51 ~ 76 kcal/mol for the glycosidic (1-4-ß) bond cleavage; 

78 ~ 191 kcal/mol for the glucose ring dissociation[163-165]. In our calculations, when 

temperature was increasing from 300 K, the first structural change was from the 3-D HB network. 

At 1100 K, the thermo energy was able to further break down 1-4-ß bonds and induce partial 

structural collapse of cellulose. In addition, the total number of HB also decreased at 1100 K, 
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which is another evidence to cellulose structural collapse. The simulation results also revealed that 

it is challenging to identify a temperature region where glucose rings stay intact but H-bonding 

network and 1-4-ß bonds are broken. This is probably due to the fact that 1-4-ß bonds and glucose 

rings alternate to form cellulose structures, see Figure 20. When 1-4-ß bonds start to break down, 

the neighboring glucose rings become unsaturated and could easily interact with molecules or other 

parts of the partially collapsed cellulose. Between the covalent and the HB bonds, is it possible to 

selectively remove the HB network and keep covalent bonds intact? More theoretical and 

experimental efforts are needed to validate the two hypotheses.  

 

 

Figure 24. The intactness analysis of cellulose covalent bonds: (a) the 1-4-b bond; (b) the glucose 

ring. The red and blue regions respectively correspond to the time scales that 1-4-b bonds and 

glucose rings are detectable during the RxMD simulation.  

 
5.3.6 Young’s Modulus Analysis 

The configurational change of cellulose leads to the HB network variation, which 

inevitably affects cellulose mechanical properties. In this work, the uniaxial tensile deformation 

along the z direction has been calculated to evaluate the Young’s modulus of cellulose. The 
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deformation was carried out at 300 K at three different strain rates, namely, 10-3 /s, 10-4 /s and 10-

5 /s. During the calculation, the stress (pressure) was only considered along the z direction, and the 

pressure of x and y directions were kept zero. A timestep of 0.05 fs was applied and a total of 1 ns 

RxMD calculation was performed for each case. A smaller timestep here was employed to avoid 

the error in calculating atoms motions or any unstable structures. The Young’s modulus was 

averaged using the data from the last 10% of the simulation trajectory. At 300 K, the calculated 

Young’s modulus was about 113.24±3.85 GPa (see Figure 25 (a)) at the strain rate of 10-4 /s, which 

agreed well with other calculations[110]. From the literature, the Young’s modulus of cellulose 

has been reported to be 110-220±50 GPa experimentally[142, 166-169], or in the range of 110~173 

GPa by computational studies[99, 110, 143, 144, 146, 153, 155, 170, 171]. The relatively small 

Young’s modulus is probably coming from the adopted ReaxFF force field and the Ib crystalline 

cellulose structure. In Figure 25 (b) we plotted the deformation curves for temperature from 300 

K to 1000 K with a strain rate of 10-4 /s. We observed a Young’s modulus of 99.03±2.16 GPa, 

95.67±3.65 GPa and 94.34±3.08 GPa at 500, 800 and 1000K, respectively. When temperature 

increases, the Young’s modulus would decrease. This is because cellulose can deform easily at 

higher temperatures, leading to the drop of Young’s modulus. 

In addition, as shown in Figure 25 (c), at the strain rate of 10-4 /s, via the aforementioned 

proportional limit method, the yield stress was determined to be about 8.75 GPa, which is in an 

excellent agreement with experimental and other modeling results[110, 172, 173]. 

 



 

 152 

 

Figure 25. (a) The stress-strain diagram of cellulose at 300 K, strain rate of 10-3 /fs is in black, 

strain rate of 10-4 /fs is in red and train rate of 10-5 /fs is in green, respectively; (b) The stress-strain 

diagram of cellulose at 300, 500, 800 and 1000 K. The strain rate is kept at 10-4 /s; (c) The 

determination of cellulose yield stress at the strain rate of 10-4 /s and 300 K.  

 
5.4 Conclusion 

While classical force field has been adopted to study cellulose properties and cellulose 

interaction with other materials, chemical reaction and thermal decomposition of cellulose are 

beyond the reach. In this work, via ReaxFF based reactive molecular dynamics (RxMD) 

simulations, we observed bond breaking and structural change of cellulose at elevated 

temperatures. By changing the pyrolysis temperature from 300 K to 1300 K, we are able to the 

analyze the overall configuration, the covalent bonds of 1-4-b and glucose ring units, the inter- 

and intra-hydrogen bonding networks, and the element distributions systematically. XRD and 

Young’s modulus have been also computed to compare with available experimental and previous 

modeling results. Key results include: (a) cellulose is able to hold the general crystalline structure 

for temperatures up to 1000 K. The good thermal stability is assisted by the interchange of inter- 

and intra-chain HB networks. (b) when the pyrolysis temperature is beyond 1200 K, both 1-4-b 

bonds and glucose ring units will decompose. Light gas-phase molecules, such as CO and H2, are 

detected as major decomposition products. (c) Through the analysis of XRD, Young’s modulus 

and elements distribution, we show that the ReaxFF reactive force field is capable of describing 
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both stable and dissociative properties of cellulose under isolated pyrolysis processes. Ultimately, 

this work provides an atomic level fundamental understanding of cellulose structural evolution via 

pyrolysis treatments. More studies where cellulose under real pyrolysis conditions, that is, instead 

of isolated conditions but via liquid or gas mediated pyrolysis processes, are worth pursuing. 

Moreover, the detailed mechanism of how cellulose, hemicellulose and lignin respond differently 

to pyrolysis treatments could lead to a subtle manipulation and a successful conversion of biomass 

into advanced functional materials.  
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Chapter 6: Cellulose-Graphene Oxide Composite and Model 

Development 

6.1 Introduction 

 Graphene is a “wonder two-dimensional material” with excellent mechanical and physical 

properties [1-4], and attracts growing interest in research since it is first reported in 2004 [5]. The 

superior elastic modulus of graphene is ~1 TPa [3] which makes graphene “stronger than steel” 

and widely used in the application of reinforcement in polymer-based nanocomposites. The 

polymer-functionalized graphene showed great enhancement in the mechanical, thermal, electrical 

and optical properties [6-9].  

 Due to the accessibility of macro-scale production, interfacial modification, and better 

dispersibility, the graphene precursor, graphene oxide (GO) derivatives, has been considered as a 

promising candidate in polymer nanocomposites [10-14]. Because of its unusual electronic 

properties, wet-chemical processability, large-scale availability as monolayers, and low cost, GO 

has become one of the most widely utilized two-dimensional (2D) nanomaterials during the past 

decade [15-19]. The extensive applications of GO include composites [20], separation [21-23], 

catalysis [24, 25], sensing [26, 27], electronics [28, 29], energy storage [30, 31], biological and 

drug delivery [32-35]. The mechanical and fracture studies of GO itself is still ambiguous and 

conflicting since GO structure is highly dependent on the synthesis method, which results in the 

different concentration and distribution of functional groups (mainly hydroxyl, epoxide and 

carboxyl) [18, 36-39], and defects located on GO surface. Both the structural (defect, curvature) 

and chemical (functional groups) properties of GO significantly affect the mechanical behavior of 
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GO. For example, Cao et al. [40] studied mechanical properties of the monolayer GO membranes 

with20% degree of oxidation via the Density functional theory (DFT). It is showed that the brittle 

failure of GO occurred along the connecting oxidized carbon atoms on GO surface. On the contrary, 

Wei and co-workers [41] found that 70% oxidization monolayer GO exhibits ductile behavior via 

density functional-based tight binding (DFTB). They proposed that the mechanical strength can 

be fine-tuned by converting epoxide groups into more stable ether groups. Their reported elastic 

modulus (256.4 ± 28.2 GPa) is lower than the value (384 ± 31 GPa) proposed from Cao et al. [40], 

which indicated that the increasing of oxidation of GO might lead to the decrease of elastic 

modulus. More specifically, the hydroxyl groups are reported to cause brittle behavior, whereas 

the ductile failure occurred when the transformation of epoxide-to-ether groups is dominated on 

GO surface [42, 43]. Meng et al. [44] predicted the critical stress intensity factor of GO via a 

coarse-grain model with the degree of oxidation from 20% to 80%. Using reactive force field 

(ReaxFF), Verma et al. [45] proposed that the spatial distribution and concentration of hydroxyl 

and epoxide groups are critical for the ductile behavior of GO. Experimentally, Gao and co-

workers[46] reported that the grip pressure, length and loading rate highly affect the measurement 

of GO mechanical properties. Sakorikar et al. [47] demonstrated that the thickness of reduced 

graphene oxide (rGO) determines the crack propagation process of rGO films. An increasing 

thickness results in the decrease of the crack density and the increase of crack width. Similarly, 

Cao et al. [48] found that the random distribution of functional groups between GO multiple layers 

prevents the growth of preexisting crack. Although efforts have been made from both experiments 

and simulation on the studies of functionalized GO materials, a better fundamental understanding 

of GO mechanical properties at atomistic level is still required. 
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As the basic building block of algae, bacteria and green plants, cellulose has a production 

of about 700 billion tons per year due to its renewability, sustainability, high biodegradability and 

excellent biocompatibility. Since it is the most abundant and cheapest natural biomaterials, 

cellulose has been widely used in biofuel productions [49, 50], biomedical engineering [51-59], 

energy related applications [60-63] and paper and construction industry [64-68]. Cellulose is a 

linear polysaccharide of repeating D-glucose units with a degree of polymerization (DP) from 

10,000 to 15,000 [69]. The coexistence of both crystalline and amorphous regions, and the 

hydrogen bonds (HBs) network formed in cellulose chains make cellulose excellent mechanical 

properties.  

 Cellulose and its derivatives have been used to functionalize GO for GO/cellulose 

nanocomposites, and the prediction of mechanical properties is one of the important parts for the 

investigation of GO/cellulose composites. Effort has been made experimentally in order to 

evaluate the properties and applications of GO-cellulose composites [70, 71]. Kim et al. [72] 

proposed that a small amount GO in GO/cellulose films can greatly improve the Young’s modulus 

of the composite by 31%, but the presence of GO results in brittle behavior of the GO/cellulose 

films. Luo and co-workers [73] found that the bacterial cellulose (BC)-GO nanocomposites with 

sophisticated three-dimensional (3D) porous structure showed enhanced Young’s modulus (~36 

MPa) compared with pure BC (~10 MPa). Li and co-workers [74] incorporated GO with 

nanofibrillated cellulose (NFC) fibers and reported that this hybrid fibers are stronger than the pure 

GO and NFC due to the synergistic effect of bonds between NFC fibers and GO sheets. A 

cellulose/rGO paper with tunable mechanical properties and high biocompatibility was reported 

by Peng et al. [75], which could be used in biomaterial scaffolds for biomedical and tissue 

engineering. A potential electrochemical film consisting of nanocrystalline cellulose acetate 
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(NCCA) and GO showed not only the enhancement of 61.92% in tensile strength compared with 

pure NCCA, but the electrical properties are greatly improved as well [76]. 

 However, the measurement of mechanical properties from experiments might be inconsistent 

due to physical obstacle such as difficulties in controlling the layer number of GO, monitoring the 

dispersion state of GO composites and modifying the GO/cellulose interface [77-79]. To address 

this issue, computational tools such as molecular dynamics (MD) simulation provides alternative 

way to characterizing target composites without any synthesizing operations. Medhekar et al. and 

Compton et al. [80, 81] both performed RxMD to study the mechanical properties of multilayered 

GO composite paper. They concluded that the HBs network and water molecules influence the 

mechanical behavior of multilayered GO composite. The control of structural and mechanical 

properties of the GO composite can be achieved by adjusting the amounts of functional groups, 

adding extra H-bonding favorable polymers (e.g. polyvinyl alcohol) and changing the 

concentration of water between GO layers. Zhang and Jiang [82] performed MD simulations to 

understanding the mechanical behavior of graphene/GO paper composite. It is found that a large 

number of functional groups between graphene/GO layers increases the overall stiffness by 

increasing the number of HBs in the system. While the elastic modulus of single GO sheet 

decreased with more functional groups in the surface. Rahman et al. [83] reported that the Young’s 

modulus of graphene/cellulose composites with 5% graphene are 100% higher than pure cellulose 

resin system. 

 Despite of the plenty computational studies aforementioned, there is barely no published 

work comparing the mechanical performance of monolayer GO and new cellulose-GO 

nanocomposites after incorporating amorphous cellulose chains on GO surface. In this work, a 

series of RxMD simulations have been carried out to reveal the mechanical properties of pure GO 
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and cellulose-GO nanocomposites. The GO model used in this work will be generated from 

previous work in order to predict both structural and chemical properties of GO with random 

distribution of multiple oxygen-containing functional groups, vacancy defects and curvature.[84] 

Two different cellulose-GO composites are constructed, namely, cellulose (monolayer)-GO model 

and cellulose (multilayer)-GO model. The tensile deformation, Young’s modulus and yield 

strength of GO and cellulose-GO composites have been recorded and calculated under the 

temperature of 300, 500 800 K, with two strain rates of 10-4/fs and 10-5/fs. We hope the GO model 

with the simultaneously description to both structural and chemical properties, will provide a new 

fundamental understanding of the mechanical performance of GO and cellulose-GO composites, 

and could add some advancement to existing knowledge. 

 

6.2 Cellulose-GO Composite Model and Simulation Protocol  

6.2.1 Reactive Force Field  

In 2001, van Duin and co-workers developed a ReaxFF reactive empirical force field with 

the bond-order concept that adopted from Tersoff [85]. Over the development of the last twenty 

years, ReaxFF has been successfully employed to describe the development and optimization of 

material properties as well as some large and multiscale modeling systems such as membrane fuel 

cell system[86], biological studies involving with protein/DNA [87, 88], and very complex coal 

structure and properties [89]. Instead of using the description of bond length, angle and dihedrals 

from classical force fields, the application of bond order allows the simulation of reaction pathway 

in the system due to the continuous bond formation and breaking. These advantages make ReaxFF 

a powerful computational tool in the study of structural evolution and chemical reactions. 

Generally, RaxFF is one order slower than the non-reactive MD simulations due to the expensive 
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charge calculations via electronegativity equalization method (EEM) proposed by Mortier and co-

workers [90-92]. However, the simulation time of a microseconds trajectory can be reduced by the 

utilization of hardware and parallel calculations. Recently, ReaxFF has been reported to use 

extensively for the structural evolution of GO [80, 81, 93-101], biomass system including cellulose, 

hemicellulose, lignin and their derivatives [102-107]. More details of ReaxFF are available from 

recent reviews [108-110] and the website of the developers [111]. The ReaxFF parameters used in 

this work have successfully described cellulose systems [106, 107]. 

 

6.2.2 Cellulose-GO Model and RxMD Simulation 

The pure GO sheet is generated via the RxMD simulations from Chapter 3, with trigger 

temperature of 1000 K, initial functionalization density of 50 % and ratios of hydroxyl and epoxy 

of 1:1 (50%GO, (1:1), Ttri=1000 K), and cellulose chains are adopted from Chapter 5. In Figure 

26 (a) and (b) are the top and side view about the vacancy distribution and curvature of GO sheet. 

A total of 14 cellulose chains were set to parallel to both GO sides and each other in order to 

represent a cellulose-GO monolayer model, as shown in Figure 26 (c) and (d). While in Figure 26 

(e) and (f), each GO side is built up with 20 amorphous cellulose chains to represent a cellulose-

GO multilayer model.  

The RxMD calculations were carried out via the LAMMPS software package with the 

ReaxFF implemented as an external library [112]. The isothermal–isobaric (NPT) ensemble at a 

low initial temperature and 1 atm were applied for each simulation to relax the initial structure to 

an appropriate volume and reduce stresses from the GO basal plane. Then the annealing process 

was performed from the low temperature to the target temperature (300, 500 and 800 K). The 

Berendsen method with the damping constant 100 fs was applied to maintain the temperature of 
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the system and the initial velocity is generated by the Boltzmann distribution. A timestep of 0.25 

fs is used throughout the calculations. All the calculations have at least a 10-ns trajectory to reach 

the equilibrium. For the calculation of Young’s modulus, additional 1 ns was employed after 10 

ns equilibrium calculations, with a smaller timestep of 0.05 fs for data collection. In this work, the 

equilibrium state is justified via the change of total energy. 

 

 
Figure 26. The (a) top view and (b) side view of GO sheet that generated by the initial pure 

50%GO, (1:1), Ttri=1000 K model; The (c) top view and (d) side view of cellulose(monolayer)-

GO model, with 7 paralleled cellulose chains on each GO side; The (e) top view and (f) side view 

of cellulose(multilayer)-GO model, with 20 amorphous cellulose chains on each GO side. The 

carbon, oxygen and hydrogen atoms in GO and cellulose are in different colors. In GO: grey, red 

and white are carbon, oxygen and hydrogen atoms, respectively. In cellulose: blue, pink and green 

are carbon atoms, carbon, oxygen and hydrogen atoms, respectively. 
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6.2.3. The Simulation of Tensile Deformation 

Several methods have been proposed to perform the tensile deformation process and 

calculate Young’s modulus: 

(1) The calculation can be carried out to elongated (or decreased) the simulation box (z0) 

by a small increment ∆𝑧 (maximum 5% of the chain length) [113] along the axis of the applied 

stress, then the whole simulation box is re-optimized. The stress (σ) can be obtained by derivative 

of the function between the minimum potential energy and the axial length from the system[114-

116], and the EA is then the slope of the stress vs. strain (ε=∆𝑧/z0) curve [117-119]. A similar 

energy density method calculated EA via twice the slope of energy density and the square of 

strain.[113] 

(2) The stress can be defined as native value of pressure along the corresponding direction, 

the elastic modulus is then calculated by EA = σ/ε. Instead of elongating simulation box by small 

increment,[120] the stress can also be changed directly with a constant pressure rate (e.g. 200bar/ps) 

with NPT ensemble[121].  

(3) Alternative way is to allow the continuous elongation of simulation box along the 

direction where the stress is applied, with a defined strain rate in NPT system [112, 122-127] The 

system is re-optimized in NPT ensemble in order to allow the dimensional changes due to 

Passion’s effect [127, 128]. 

(4) The elastic modulus can also be calculated by full elastic constant matrices based on 

the continuum concept of elasticity [116, 129-133]. The calculations can be performed via 

simulations tools in Materials Studio package [116, 131-133]. The energy minimization allows the 

changes of both atomic coordinates and unit cell parameters, which leads to no constant-area 

assumption. 
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In this work we use the (3) method to monitor the uniaxial tensile deformation at two 

different strain rates for three temperatures. It is worth noting that the application of periodic 

boundary conditions [113, 128] also affect the elastic modulus value from computational studies. 

A widely used method is the one-unit cell model with periodic boundary conditions, which is 

perfect for simulating infinite crystalline structures [115, 134], however, the accuracy of this 

method is highly dependent on the measurements of the original unit cell. Another method is super 

cell model with finite dimensions, which is appropriate for paracrystalline materials, while it might 

suffer from the drawback of finite-size effects [113]. Systems that consisting of super cell model 

with periodic boundary conditions are also widely used in the calculations of elastic modulus. 

Although this approach precludes the surface properties, it can overcome the size limitation to 

study the bulk properties of cellulose, and avoid unreasonable response of the surface chains to the 

strain and interactions with neighboring atoms [128, 135]. Here we adopted the third method using 

super cell model with periodic boundary conditions. And similar with previous study [127], the 

0.2% offset yield strength is used to estimate the yielding strength of pure GO and GO-cellulose 

composites. 

 

6.3 Results and Discussions  

6.3.1 Mechanical Properties of Pure GO 

 As aforementioned in the introduction session, the degree of oxidation, different type of 

functional groups, defects and number of layers can significantly affect the mechanical behavior 

of GO. Here in the Table 9 we listed the detailed structural and chemistry information about the 

monolayer GO sheet used in this work. Also, the mechanical behavior of GO and cellulose-GO 

composites with different strain rates and temperatures are summarized in Table 10. The effect 
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of temperature and strain rate on the mechanical performance will be described separately in the 

following sessions. 

 

Table 9. The structural and chemistry properties of GO sheet 

Degree of Oxidation C/O Ratio Pore Range Pore Density 

30.08% 4.47 0.2-0.5nm 4.31% 

 

Table 10. The mechanical behavior of GO and cellulose-GO composites under various conditions. 

  GO 
 10-4 /fs 10-5 /fs 
  Armchaira Zigzagb Armchaira Zigzagb 

100 K Ductile Brittle Ductile Brittle 
300 K Ductile Brittle Ductile Brittle 
500 K Brittle Brittle Ductile Brittle 
800 K Brittle Brittle Ductile Brittle 

a along the X direction, as shown in Figure 26 (a). 
b along the Y direction, as shown in Figure 26 (a). 

 
 

6.3.1.1 Ductile vs. Brittle Behavior of GO 

 The anisotropic mechanical behavior was observed for pure GO along different 

deformation directions at various temperatures (see Table 10). For example, Figure 27 showed that 

with a constant strain rate of 10-5 /fs at 500 K, GO exhibits obviously ductile behavior along the 

armchair direction, whereas when performed tensile deformation along zigzag direction, a brittle 

behavior occurred for the same GO system. While the ultimate strength is almost the same (3.67 

and 3.91 GPa for armchair and zigzag direction) as shown in Figure 27. And the calculated 

Young’s modulus (the slopes) from both directions showed little difference. Similar results were 

also recorded for GO systems at 100 K, 300 K and 800 K.  
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Figure 27. The stress-strain diagram of GO at 500 K, strain rate of 10-5 /fs is employed, the tensile 

deformation along armchair direction is in black and tensile deformation along zigzag direction is 

in red, the slope of deformation curve along armchair direction is in green dashed line and the 

slope of deformation curve along zigzag direction is in blue dotted line, respectively;  

 

6.3.1.2 The Mechanical Behavior of GO: Temperature Dependency 

 With a constant strain rate of 10-5 /fs, GO showed ductile behavior along the armchair 

direction and brittle behavior for zigzag direction for all temperatures, as showed in Figure 28 (a) 

and (b). The ultimate strength is decreasing when temperature increased for both directions. 

Similarly, the calculated Young’s modulus decreased as temperature increased. A summary of the 

calculated Young’s modulus can be found in Table 11. 
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Figure 28. The stress-strain diagrams of GO with a constant strain rate of 10-5 /fs for (a) along 

armchair direction and (b) zigzag direction at various temperatures. The black, red, green and 

orange lines represent the temperature of 100 K, 300 K, 500 K and 800 K, respectively. 

 
Table 11. The calculated Young’s Modulus of GO and cellulose-GO composites under various 

conditions. 

Temperature (K)  GO (GPa) 

100 40.90654 ± 0.04519 

300 37.93096 ± 0.08123 

500 36.63569±0.04464 

800 33.64642 ± 0.11716 
 

6.3.1.3 The Mechanical Behavior of GO: Strain Rate Dependency 

 With a constant temperature at 800 K, we have performed tensile deformations with two 

strain rates, 10-4 /fs and 10-5 /fs. In Figure 29 we provided a strain-stress diagram that compared 

the deformation curves along armchair directions. Within the strain of 0~0.1 (elastic region), the 

snapshots are similar for both strain rates. When the strain is ~0.15 (plastic region), the GO system 
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with a smaller strain rate (10-5 /fs) showed larger pores on the GO surface with wrinkling. When 

the strain is ~0.2, both systems have large pores and channels for the further fracture. 
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Figure 29. The stress-strain diagrams of GO at 800 K (a) with two constant strain rates of 10-4 /fs 

(black) and 10-5 /fs (red); (b-i) showed the snapshots of GO system with two strain rates at strain 

of 0.05, 0.1, 0.15 and 0.2, respectively. 

 

6.3.1.4 The Fracture surface of GO 

 The fracture surface of GO systems with a constant strain rate of 10-4 /fs at 300 K are 

compared, see Figure 30. Along the deformation direction of armchair, GO deformation showed 

ductile behavior, and a coarse fracture surface was observed in Figure 30 (a) and (c), whereas for 

the zigzag direction, brittle behavior leads to a much smoother fracture surface, as shown in Figure 

30 (b) and (c). In Figure 30 (d) we provided a coastline map using the fitting curve to illustrate the 

different configuration of GO surfaces. For the coarse GO surface generated by the ductile 
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behavior, the fitting curve has higher intensity and sharper shape. The fracture coastline of 

armchair can be as high as 20 Å. While for the GO surface obtained from brittle behavior, low 

intensity and wide shape are observed with a fracture coastline ~10 Å. This fracture surface 

difference is also reported by experiments for various materials.[136] 

 

 

Figure 30. The snapshot of fracture surface of GO at 300 K for the deformation along (a) armchair 

and (b) zigzag direction with a constant strain rate of 10-4 /fs; (c) The comparison of fracture 
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surface of GO systems; (d) The coastline map of fracture surfaces of GO systems; The deformation 

along armchair direction is red and along zigzag direction is blue, respectively. 

 

6.3.1.5 The Tensile Deformation process of GO 

The tensile deformation process along armchair direction of GO with a constant strain rate 

of 10-5 /fs at 800 K is represented in Figure 31. GO exhibits ductile behavior during the whole 

deformation process. Under the strain of 0.1, GO surface showed little difference compared with 

initial GO sheet without applied strain (see Figure 26 (a)). For the strain of ~0.5 and above, GO is 

significantly wrinkled and corrugated with some small region of carbon atoms holding the whole 

sheet together. Figure 31 (g) is the side view of GO sheet at strain of 0.7, interestingly, the 2D GO 

sheet transferred to a 3D, tube-like materials with channels inside the materials. And the GO 

structure under this condition has larger Poisson’s ration compared with other systems. 
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Figure 31. (a) The stress-strain diagram and (b-g) The snapshot of GO at 800 K for the deformation 

along armchair direction with a constant strain rate of 10-5 /fs at strain of 0.1, 0.2, 0.4, 0.5 and 0.7, 

respectively. 
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6.3.2 Mechanical behavior of Cellulose-GO composites 

 The comparison of mechanical behavior of GO, cellulose(monolayer)-GO and 

cellulose(multilayer)-GO systems are represented in Figure 32. With a constant strain rate of 10-5 

/fs at 300 K, all three materials showed ductile behavior along both armchair and zigzag directions. 

The cellulose(monolayer)-GO composite has similar ultimate strength and Young’s modulus 

compared with pure GO system. While for cellulose(multilayer)-GO system, the mechanical 

strength is greatly decreased. The Young’s modulus for cellulose(multilayer)-GO composite is 

only 50% of the Young’s modulus of cellulose(monolayer)-GO composite. 

In Figure 33 (a) and (b), cellulose chains are well packed and attached on both side of the 

GO surface after 5 ns equilibrium. The fracture of cellulose(monolayer)-GO composite occurred 

at the defects that did not covered by cellulose chains, as shown in Figure 33 (c) and (e) for both 

armchair and zigzag directions. This is probably due to the interactions between the well packed 

cellulose chains and functional groups on GO surfaces. For the cellulose(multilayer)-GO 

composite, amorphous cellulose chains formed self-aggregation on both the GO surfaces. However, 

the fracture might occur under the amorphous cellulose chains, especially for zigzag directions, 

see Figure 34 (c) and (e). 
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Figure 32. The stress-strain diagrams of GO, cellulose(monolayer)-GO and cellulose(multilayer)-

GO system at 300 K with a constant strain rate of 10-5 /fs along (a) armchair and (b) zigzag 

direction. GO, cellulose(monolayer)-GO and cellulose(multilayer)-GO are in black, red and green, 

respectively.  
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Figure 33. The snapshot of cellulose(monolayer)-GO composite at (a) starting state; (b) side view 

of the starting state; (c-d) deformation along armchair direction; (e-f) deformation along zigzag 

direction; The simulations were carried out with a constant strain rate of 10-5 /fs at 300 K. 
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Figure 34. The snapshot of cellulose(multilayer)-GO composite at (a) starting state; (b) side view 

of the starting state; (c-d) deformation along armchair direction; (e-f) deformation along zigzag 

direction. The simulations were carried out with a constant strain rate of 10-5 /fs at 300 K. 
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6.4 Conclusion 

 With ReaxFF, we have carried out several RxMD simulations to investigate the model 

development of cellulose-GO composites and explore the mechanical behavior of pure GO, 

cellulose(monolayer)-GO and cellulose(multilayer)-GO composites. A temperature range from 

100 K to 800 K and two strain rates of 10-4 /fs and 10-5 /fs were employed in the tensile deformation 

calculations. The main conclusions are: 

(1) GO exhibits anisotropic mechanical behavior along armchair and zigzag directions. With 

a GO sheet of 30% carbon atoms oxidized, pore range of 0.2~0.5 nm and pore density of 

4.31%, GO mostly showed ductile behavior along armchair directions and brittle behavior 

along zigzag directions. A coarse fracture surface of GO was observed while a much 

smoother one was found on GO system with brittle behavior. 

(2) With a constant strain rate of 10-5 /fs, the ductile behavior was observed along the 

deformation direction of armchair for GO, whereas the zigzag direction is brittle. As 

temperature increased, the ultimate strength and Young’s modulus of the GO system 

decreased. 

(3) At temperature of 800 K, GO showed ductile behavior along armchair direction with a 

strain rate of 10-5 /fs. However, when strain rate increased to 10-4 /fs, GO is brittle along 

the armchair direction. The snapshots of two GO system with different strain rates showed 

no obvious difference with a strain rate ~0.1. When strain rate increased to 0.15, larger 

pores and wrinkled GO surface were observed in the GO system with strain rate of 10-5 /fs, 

and ductile behavior occurred in the system. At the strain of 0.7, GO system with strain 

rate of 10-5 /fs transformed from 2D flat structure into a 3D tube-like material with channels 

formed in the system. 
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(4) Compared with pure GO system, cellulose(monolayer)-GO composite presents similar 

mechanical properties whereas cellulose(multilayer)-GO composite has a 50% weaker 

mechanical strength. 

The calculation and analysis of structural and mechanical properties are still on-going. More 

efforts will be needed to fully reveal the mechanism of how the defect and functional groups on 

GO surface affect the transition between ductile and brittle behavior. The mechanism of why the 

mechanical strength of cellulose(multilayer)-GO composites decreased are needed to be 

investigated. Additionally, how the number of cellulose layers influence the mechanical behavior 

is also interesting to study. 
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Chapter 7: Conclusions and Outlook 

7.1 Conclusions 

Numerous studies and applications have been published to investigate carbon-based 

materials due to the environment problem and energy shortage. Although remarkable efforts have 

been made in the utilization of carbon materials, a detailed fundamental understanding of the 

structure and properties of these materials is still remained unknown. To address the issue of 

lacking representative models that contained both structural and chemistry of carbon-based 

materials, and the mechanism of how structure changes affect the properties of these materials at 

atomistic level, is this thesis, we have been applying RxMD simulations and several simulated 

characterization techniques to study the complex structure and model development of GO, 

cellulose and cellulose-GO composites, as shown in Figure 35. 

In Chapter 2, we have summarized a brief introduction of computational methods including 

QM, MM and ReaxFF. The introduction of calculated characterization technique is also introduced 

in this chapter. The model development of GO is discussed in Chapter 3 using RxMD, calculated 

FTIR and XPS. The recent atomistic studies about the structure, properties and process of cellulose 

are reviewed in Chapter 4, as well as the calculation of FTIR, XRD, NMR. According to Chapter 

4, the structural evolution of crystalline cellulose under the isolated pyrolysis process via ReaxFF 

is reported in Chapter 5. The pyrolysis temperature, the change of cellulose crystallinity, the 

variation of inter/intra HB networks, the reaction and distribution of C, O and H elements and 

mechanical properties of cellulose crystal have been analyzed. Based on Chapter 3 (GO) and 

Chapter 5 (cellulose), we proposed a cellulose-GO nanocomposite model. The model development 

and mechanical behavior of pure GO and cellulose-GO nanocomposites are investigated.  
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Figure 35. The tree of thesis outline with the color codes for words: black - the keyword for 

the topic and the chapter number; blue – the calculated characterization techniques; red – the 

computational method, respectively. 

 
Finally, the results we obtained are conclude in this chapter, and future research plans about 

carbon-based material model development and properties studies has been given. The results can 

be summarized as following: 

(1) With three critical controlling parameters, namely, the initial functionalization density, the 

ratio of hydroxyl/epoxy groups, the trigger annealing temperature Ttri, GO models 

proposed in this thesis have an overall C/O ratio in the range of 1.86 to 18.05, and vacancy 

defects as large as 1.7 nm. By comparing with GO sample from the modified Hummers 

method, the 70% GO (1:1) model from T=1500K is considered to be the best GO model, 

final model has a final functionalization density of 48.40%, C/O value about 2.93, 
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curvature for 0.9427 nm and vacancy sizes around 0.7-1.7 nm with a good agreement for 

both FTIR and XPS characteristics. While GO structures are very sensitive to experimental 

synthesis conditions, the studies in this thesis could provide a general protocol to generate 

atomic GO structures representative of experimental samples. The theoretical FTIR and 

XPS calculations are useful tools for GO model characterization, and can be adopted for 

computational studies of other two-dimensional materials and their composites.    

(2) With an increasing interest in manipulating subtle properties of native cellulose, using 

computational techniques to classify and construct the structure-property-process 

relationship of cellulose martials has been a hot topic for both academia and industry. 

Computational simulations at atomistic level, including quantum mechanics, molecular 

mechanics, molecular dynamics and reactive molecular dynamics, have provide powerful 

methods and useful information in understanding the fundamental mechanism of cellulose 

conversion and utilization. For example, QM calculations provide accurate reaction 

mechanism of cellulose decomposition, while QM/MM hybrid method and RxMD are able 

to proceed structural evolution of large and complex cellulose based system, which can 

further help in optimizing cellulose pyrolysis processes conditions. In addition, cellulose 

characterizations, beneficial to validate and support computational results, are also briefly 

summarized. The combination of simulation and experiment could facilitate the 

construction of the structure-property-process relationship and provide better guidelines to 

cellulose treatments at industrial level. 

(3) The structural evolution of crystalline cellulose under the pyrolysis process has been 

investigated via ReaxFF based reactive molecular dynamics (RxMD) simulations. By 

changing the pyrolysis temperature from 300 K to 1300 K, cellulose is able to hold the 
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general crystalline structure for temperatures up to 1000 K. The good thermal stability is 

assisted by the interchange of inter- and intra-chain HB networks. When the 

pyrolysis temperature is beyond 1200 K, both 1-4-b bonds and glucose ring units will 

decompose. Light gas-phase molecules, such as CO and H2, are detected as major 

decomposition products. Through the analysis of XRD, Young’s modulus and elements 

distribution, we show that the ReaxFF reactive force field is capable of describing both 

stable and dissociative properties of cellulose under isolated pyrolysis processes.  

(4) With ReaxFF, we have carried out several RxMD simulations to investigate the model 

development of cellulose-GO composites and explore the mechanical behavior of pure GO, 

cellulose(monolayer)-GO and cellulose(multilayer)-GO composites. A temperature range 

from 100 K to 800 K and two strain rates of 10-4 /fs and 10-5 /fs were employed in the 

tensile deformation calculations. It is found that GO exhibits anisotropic mechanical 

behavior along armchair and zigzag directions. With a constant strain rate of 10-5 /fs, the 

ductile behavior was observed along the deformation direction of armchair for GO, 

whereas the zigzag direction is brittle. A coarse fracture surface of GO was observed while 

a much smoother one was found on GO system with brittle behavior. As temperature 

increased, the ultimate strength and Young’s modulus of the GO system decreased for the 

system with constant strain rates. At temperature of 800 K, GO showed ductile behavior 

along armchair direction with a strain rate of 10-5 /fs. However, when strain rate increased 

to 10-4 /fs, GO is brittle along the armchair direction. The snapshots of these two GO 

systems with different strain rates showed no obvious difference with a strain rate ~0.1. 

When the strain rate increased to 0.15, larger pores and wrinkled GO surface were observed 

in the GO system with strain rate of 10-5 /fs, and ductile behavior occurred in the system. 
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At the strain of 0.7, GO system with strain rate of 10-5 /fs transformed from 2D flat structure 

into a 3D tube-like material with channels formed in the system. Compared with pure GO 

system, cellulose(monolayer)-GO composite presents similar mechanical properties 

whereas cellulose(multilayer)-GO composite has a 50% weaker mechanical strength. 

 

7.2 Outlook 

 In this thesis we studied monolayer GO, its model development and corresponding 

nanocomposites. It would be interesting to further develop the mechanical properties of pure 

monolayer GO model. A better understanding of how the distribution of functional groups and 

defects affect the ductile and brittle mechanical behavior of pure GO could help in controlling the 

properties of GO materials and provide some insight into the manufactories. In addition, other 

simulated characterization technique can be carried out for GO materials. For example, the fatigue 

calculations of GO. The mechanical fatigue occurs with lower stress compared with the ultimate 

fracture strength, which can be used to evaluate the long-term dynamic reliability of materials. 

And besides the mechanical behavior, the functional groups and defects on GO can also be used 

to fine tune the fatigue behavior. Moreover, the investigation of mechanical properties of GO 

materials, such as the fracture behavior, fatigue behavior, and crack propagation, can also shed 

some light on other 2D materials. On the other hand, studies with modified GO materials also 

attract more and more interest from people. For example, Janus GO, with two distinct surfaces 

with different chemical structures and properties, can be used as stabilizers in emulsions, catalysts 

in chemical reactions, water repellent in textile fibers and sensor in biological systems. It would 

be also important to investigate the graphite oxide system, which is system that containing multiple 
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layers GO sheets. Because of the defects on the surface and multilayer structures, graphite oxide 

ca be used as a potential membrane material in water purification and separation processes. 

Meanwhile, more efforts could be made on the study of mechanical behavior of cellulose-

GO composites. In our research, we only consider the cellulose-GO material with amorphous 

cellulose chains on GO surface and the interactions of HBs in the system. More calculations can 

be carried out with (a) temperature-programmed RxMD simulations in order to have covalent 

bonds between cellulose and GO, which might lead to a great increase of the mechanical strength 

for the cellulose-GO composite; (b) using crystalline cellulose chains instead of amorphous ones 

on GO surface to build up a different cellulose-GO model, the mechanical behavior might be 

different compared with current model; (c) the analysis of how defect and functional groups affect 

the fracture behavior should be useful, and the detailed mechanism of deformation should be 

investigated and compared with pure GO cellulose systems.  

Another promoting research topic is the manipulation of natural cellulose based materials. 

In this thesis we studied crystalline cellulose under the isolated pyrolysis process, which is the 

very first step investigation about how pure six-carbon surge (glucose) behave under isolated 

pyrolysis conditions. More studies where cellulose under real pyrolysis conditions, that is, instead 

of isolated conditions but via liquid or gas mediated pyrolysis processes, are worth pursuing. 

Moreover, the detailed mechanism of how cellulose, hemicellulose and lignin respond differently 

to pyrolysis treatments (see Figure 36) could lead to a subtle manipulation and a successful 

conversion of biomass into advanced functional materials. Aditionally, other treatment method, 

such as chemical treatment, could be studied to combine with the pyrolysis process. 
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Figure 36. An illustration of manipulating natural cellulose material with the removal of 

hemicellulose and lignin. 

 

 

 

 

  

 

 

 
 


