23 research outputs found

    Imaging photoplethysmography: towards effective physiological measurements

    Get PDF
    Since its conception decades ago, Photoplethysmography (PPG) the non-invasive opto-electronic technique that measures arterial pulsations in-vivo has proven its worth by achieving and maintaining its rank as a compulsory standard of patient monitoring. However successful, conventional contact monitoring mode is not suitable in certain clinical and biomedical situations, e.g., in the case of skin damage, or when unconstrained movement is required. With the advance of computer and photonics technologies, there has been a resurgence of interest in PPG and one potential route to overcome the abovementioned issues has been increasingly explored, i.e., imaging photoplethysmography (iPPG). The emerging field of iPPG offers some nascent opportunities in effective and comprehensive interpretation of the physiological phenomena, indicating a promising alternative to conventional PPG. Heart and respiration rate, perfusion mapping, and pulse rate variability have been accessed using iPPG. To effectively and remotely access physiological information through this emerging technique, a number of key issues are still to be addressed. The engineering issues of iPPG, particularly the influence of motion artefacts on signal quality, are addressed in this thesis, where an engineering model based on the revised Beer-Lambert law was developed and used to describe opto-physiological phenomena relevant to iPPG. An iPPG setup consisting of both hardware and software elements was developed to investigate its reliability and reproducibility in the context of effective remote physiological assessment. Specifically, a first study was conducted for the acquisition of vital physiological signs under various exercise conditions, i.e. resting, light and heavy cardiovascular exercise, in ten healthy subjects. The physiological parameters derived from the images captured by the iPPG system exhibited functional characteristics comparable to conventional contact PPG, i.e., maximum heart rate difference was <3 bpm and a significant (p < 0.05) correlation between both measurements were also revealed. Using a method for attenuation of motion artefacts, the heart rate and respiration rate information was successfully assessed from different anatomical locations even in high-intensity physical exercise situations. This study thereby leads to a new avenue for noncontact sensing of vital signs and remote physiological assessment, showing clear and promising applications in clinical triage and sports training. A second study was conducted to remotely assess pulse rate variability (PRV), which has been considered a valuable indicator of autonomic nervous system (ANS) status. The PRV information was obtained using the iPPG setup to appraise the ANS in ten normal subjects. The performance of the iPPG system in accessing PRV was evaluated via comparison with the readings from a contact PPG sensor. Strong correlation and good agreement between these two techniques verify the effectiveness of iPPG in the remote monitoring of PRV, thereby promoting iPPG as a potential alternative to the interpretation of physiological dynamics related to the ANS. The outcomes revealed in the thesis could present the trend of a robust non-contact technique for cardiovascular monitoring and evaluation

    Video-based sympathetic arousal assessment via peripheral blood flow estimation

    Full text link
    Electrodermal activity (EDA) is considered a standard marker of sympathetic activity. However, traditional EDA measurement requires electrodes in steady contact with the skin. Can sympathetic arousal be measured using only an optical sensor, such as an RGB camera? This paper presents a novel approach to infer sympathetic arousal by measuring the peripheral blood flow on the face or hand optically. We contribute a self-recorded dataset of 21 participants, comprising synchronized videos of participants' faces and palms and gold-standard EDA and photoplethysmography (PPG) signals. Our results show that we can measure peripheral sympathetic responses that closely correlate with the ground truth EDA. We obtain median correlations of 0.57 to 0.63 between our inferred signals and the ground truth EDA using only videos of the participants' palms or foreheads or PPG signals from the foreheads or fingers. We also show that sympathetic arousal is best inferred from the forehead, finger, or palm.Comment: Accepted and to be published at Biomedical Optics Expres

    Non-contact imaging of peripheral hemodynamics during cognitive and psychological stressors

    Get PDF
    Peripheral hemodynamics, measured via the blood volume pulse and vasomotion, provide a valuable way of monitoring physiological state. Camera imaging-based systems can be used to measure these peripheral signals without contact with the body, at distances of multiple meters. While researchers have paid attention to non-contact imaging photoplethysmography, the study of peripheral hemodynamics and the effect of autonomic nervous system activity on these signals has received less attention. Using a method, based on a tissue-like model of the skin, we extract melanin Cm and hemoglobin CHbO concentrations from videos of the hand and face and show that significant decreases in peripheral pulse signal power (by 36% +/- 29%) and vasomotion signal power (by 50% +/- 26%) occur during periods of cognitive and psychological stress. Via three experiments we show that similar results are achieved across different stimuli and regions of skin (face and hand). While changes in peripheral pulse and vasomotion power were significant the changes in pulse rate variability were less consistent across subjects and tasks

    Remote Assessment of the Cardiovascular Function Using Camera-Based Photoplethysmography

    Get PDF
    Camera-based photoplethysmography (cbPPG) is a novel measurement technique that allows the continuous monitoring of vital signs by using common video cameras. In the last decade, the technology has attracted a lot of attention as it is easy to set up, operates remotely, and offers new diagnostic opportunities. Despite the growing interest, cbPPG is not completely established yet and is still primarily the object of research. There are a variety of reasons for this lack of development including that reliable and autonomous hardware setups are missing, that robust processing algorithms are needed, that application fields are still limited, and that it is not completely understood which physiological factors impact the captured signal. In this thesis, these issues will be addressed. A new and innovative measuring system for cbPPG was developed. In the course of three large studies conducted in clinical and non-clinical environments, the system’s great flexibility, autonomy, user-friendliness, and integrability could be successfully proven. Furthermore, it was investigated what value optical polarization filtration adds to cbPPG. The results show that a perpendicular filter setting can significantly enhance the signal quality. In addition, the performed analyses were used to draw conclusions about the origin of cbPPG signals: Blood volume changes are most likely the defining element for the signal's modulation. Besides the hardware-related topics, the software topic was addressed. A new method for the selection of regions of interest (ROIs) in cbPPG videos was developed. Choosing valid ROIs is one of the most important steps in the processing chain of cbPPG software. The new method has the advantage of being fully automated, more independent, and universally applicable. Moreover, it suppresses ballistocardiographic artifacts by utilizing a level-set-based approach. The suitability of the ROI selection method was demonstrated on a large and challenging data set. In the last part of the work, a potentially new application field for cbPPG was explored. It was investigated how cbPPG can be used to assess autonomic reactions of the nervous system at the cutaneous vasculature. The results show that changes in the vasomotor tone, i.e. vasodilation and vasoconstriction, reflect in the pulsation strength of cbPPG signals. These characteristics also shed more light on the origin problem. Similar to the polarization analyses, they support the classic blood volume theory. In conclusion, this thesis tackles relevant issues regarding the application of cbPPG. The proposed solutions pave the way for cbPPG to become an established and widely accepted technology

    Quantitative Multidimensional Stress Assessment from Facial Videos

    Get PDF
    Stress has a significant impact on the physical and mental health of an individual and is a growing concern for society, especially during the COVID-19 pandemic. Facial video-based stress evaluation from non-invasive cameras has proven to be a significantly more efficient method to evaluate stress in comparison to approaches that use questionnaires or wearable sensors. Plenty of classification models have been built for stress detection. However, most do not consider individual differences. Also, the results for such models are limited by a uni-dimensional definition of stress levels lacking a comprehensive quantitative definition of stress. The dissertation focuses on building a framework that utilizes the multilevel video frame representations from deep learning and the remote photoplethysmography signals extracted from the facial videos for stress assessment. The fusion model takes the inputs of a baseline video and a target video of the subject. The physiological features such as heart rate and heart rate variability are used with the initial stress scores generated from deep learning are used to predict the stress scores in cognitive anxiety, somatic anxiety, and self-confidence. To generate stress scores with better accuracy, the signal extraction method is improved by introducing the CWT-SNR method that uses the signal-to-noise ratio to assist the adaptive bandpass filtering in the post-processing of the signals. A study on phase space reconstruction features is performed and the results show the potential for additional accuracy improvement for the heart rate variability detection. To select the best deep learning architecture, multiple deep learning architectures are tested to build the deep learning model. Support Vector Regression is used to generate the output stress score results. Testing with the data from the UBFC-Phys dataset, the fusion model shows a strong correlation between ground truth and the predicted results

    Signal Processing Approaches for Cardio-Respiratory Biosignals with an Emphasis on Mobile Health Applications

    Get PDF
    We humans are constantly preoccupied with our health and physiological status. From precise measurements such as the 12-lead electrocardiograms recorded in hospitals, we have moved on to mobile acquisition devices, now as versatile as smart-watches and smart-phones. Established signal processing techniques do not cater to the particularities of mobile biomedical health monitoring applications. Moreover, although our capabilities to acquire data are growing, many underlying physiological phenomena remain poorly understood. This thesis focuses on two aspects of biomedical signal processing. First, we investigate the physiological basis of the relationship between cardiac and breathing biosignals. Second, we propose a methodology to understand and use this relationship in health monitoring applications. Part I of this dissertation examines the physiological background of the cardio-respiratory relationship and indexes based on this relationship. We propose a methodology to extract the respiratory sinus arrhythmia (RSA), which is an important aspect of this relationship. Furthermore, we propose novel indexes incorporating dynamics of the cardio-respiratory relationship, using the RSA and the phase lag between RSA and breathing. We then evaluate, systematically, existing and novel indexes under known autonomic stimuli. We demonstrate our indexes to be viable additions to the existing ones, thanks to their performance and physiological merits. Part II focuses on real-time and instantaneous methods for the estimation of the breathing parameters from cardiac activity, which is an important application of the cardio-respiratory relationship. The breathing rate is estimated from electrocardiogram and imaging photoplethysmogram recordings, using two dedicated filtering schemes, one of which is novel. Our algorithm measures this important vital rhythm in a truly real-time manner, with significantly shorter delays than existing methods. Furthermore, we identify situations, in which an important assumption regarding the estimation of breathing parameters from cardiac activity does not hold, and draw a road-map to overcome this problem. In Part III, we use indexes and methodology developed in Parts I and II in two applications for mobile health monitoring, namely, emotion recognition and sleep apnea detection from cardiac and breathing biosignals. Results on challenging datasets show that the cardio-respiratory indexes introduced in the present thesis, especially those related to the phase lag between RSA and breathing, are successful for emotion recognition and sleep apnea detection. The novel indexes reveal to be complementary to previous ones, and bring additional insight into the physiological basis of emotions and apnea episodes. To summarize, the techniques proposed in this thesis help to bypass shortcomings of previous approaches in the understanding and the estimation of cardio-respiratory coupling in real-life mobile health monitoring

    On the automated analysis of preterm infant sleep states from electrocardiography

    Get PDF

    On the automated analysis of preterm infant sleep states from electrocardiography

    Get PDF
    corecore