448 research outputs found

    Parallelization of a Six Degree of Freedom Entry Vehicle Trajectory Simulation Using OpenMP and OpenACC

    Get PDF
    The art and science of writing parallelized software, using methods such as Open Multi-Processing (OpenMP) and Open Accelerators (OpenACC), is dominated by computer scientists. Engineers and non-computer scientists looking to apply these techniques to their project applications face a steep learning curve, especially when looking to adapt their original single threaded software to run multi-threaded on graphics processing units (GPUs). There are significant changes in mindset that must occur; such as how to manage memory, the organization of instructions, and the use of if statements (also known as branching). The purpose of this work is twofold: 1) to demonstrate the applicability of parallelized coding methodologies, OpenMP and OpenACC, to tasks outside of the typical large scale matrix mathematics; and 2) to discuss, from an engineers perspective, the lessons learned from parallelizing software using these computer science techniques. This work applies OpenMP, on both multi-core central processing units (CPUs) and Intel Xeon Phi 7210, and OpenACC on GPUs. These parallelization techniques are used to tackle the simulation of thousands of entry vehicle trajectories through the integration of six degree of freedom (DoF) equations of motion (EoM). The forces and moments acting on the entry vehicle, and used by the EoM, are estimated using multiple models of varying levels of complexity. Several benchmark comparisons are made on the execution of six DoF trajectory simulation: single thread Intel Xeon E5-2670 CPU, multi-thread CPU using OpenMP, multi-thread Xeon Phi 7210 using OpenMP, and multi-thread NVIDIA Tesla K40 GPU using OpenACC. These benchmarks are run on the Pleiades Supercomputer Cluster at the National Aeronautics and Space Administration (NASA) Ames Research Center (ARC), and a Xeon Phi 7210 node at NASA Langley Research Center (LaRC)

    Virtual Machine Support for Many-Core Architectures: Decoupling Abstract from Concrete Concurrency Models

    Get PDF
    The upcoming many-core architectures require software developers to exploit concurrency to utilize available computational power. Today's high-level language virtual machines (VMs), which are a cornerstone of software development, do not provide sufficient abstraction for concurrency concepts. We analyze concrete and abstract concurrency models and identify the challenges they impose for VMs. To provide sufficient concurrency support in VMs, we propose to integrate concurrency operations into VM instruction sets. Since there will always be VMs optimized for special purposes, our goal is to develop a methodology to design instruction sets with concurrency support. Therefore, we also propose a list of trade-offs that have to be investigated to advise the design of such instruction sets. As a first experiment, we implemented one instruction set extension for shared memory and one for non-shared memory concurrency. From our experimental results, we derived a list of requirements for a full-grown experimental environment for further research

    A theoretical foundation for program transformations to reduce cache thrashing due to true data sharing

    Get PDF
    AbstractCache thrashing due to true data sharing can degrade the performance of parallel programs significantly. Our previous work showed that parallel task alignment via program transformations can be quite effective for the reduction of such cache thrashing. In this paper, we present a theoretical foundation for such program transformations. Based on linear algebra and the theory of numbers, our work analyzes the data dependences among the tasks created by a fork-join parallel program and determines at compile time how these tasks should be assigned to processors in order to reduce cache thrashing due to true data sharing. Our analysis and program transformations can be easily performed by compilers for parallel computers

    Data Resource Management in Throughput Processors

    Full text link
    Graphics Processing Units (GPUs) are becoming common in data centers for tasks like neural network training and image processing due to their high performance and efficiency. GPUs maintain high throughput by running thousands of threads simultaneously, issuing instructions from ready threads to hide latency in others that are stalled. While this is effective for keeping the arithmetic units busy, the challenge in GPU design is moving the data for computation at the same high rate. Any inefficiency in data movement and storage will compromise the throughput and energy efficiency of the system. Since energy consumption and cooling make up a large part of the cost of provisioning and running and a data center, making GPUs more suitable for this environment requires removing the bottlenecks and overheads that limit their efficiency. The performance of GPU workloads is often limited by the throughput of the memory resources inside each GPU core, and though many of the power-hungry structures in CPUs are not found in GPU designs, there is overhead for storing each thread's state. When sharing a GPU between workloads, contention for resources also causes interference and slowdown. This thesis develops techniques to manage and streamline the data movement and storage resources in GPUs in each of these places. The first part of this thesis resolves data movement restrictions inside each GPU core. The GPU memory system is optimized for sequential accesses, but many workloads load data in irregular or transposed patterns that cause a throughput bottleneck even when all loads are cache hits. This work identifies and leverages opportunities to merge requests across threads before sending them to the cache. While requests are waiting for merges, they can be reordered to achieve a higher cache hit rate. These methods yielded a 38% speedup for memory throughput limited workloads. Another opportunity for optimization is found in the register file. Since it must store the registers for thousands of active threads, it is the largest on-chip data storage structure on a GPU. The second work in this thesis replaces the register file with a smaller, more energy-efficient register buffer. Compiler directives allow the GPU to know ahead of time which registers will be accessed, allowing the hardware to store only the registers that will be imminently accessed in the buffer, with the rest moved to main memory. This technique reduced total GPU energy by 11%. Finally, in a data center, many different applications will be launching GPU jobs, and just as multiple processes can share the same CPU to increase its utilization, running multiple workloads on the same GPU can increase its overall throughput. However, co-runners interfere with each other in unpredictable ways, especially when sharing memory resources. The final part of this thesis controls this interference, allowing a GPU to be shared between two tiers of workloads: one tier with a high performance target and another suitable for batch jobs without deadlines. At a 90% performance target, this technique increased GPU throughput by 9.3%. GPUs' high efficiency and performance makes them a valuable accelerator in the data center. The contributions in this thesis further increase their efficiency by removing data movement and storage overheads and unlock additional performance by enabling resources to be shared between workloads while controlling interference.PHDComputer Science & EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/146122/1/jklooste_1.pd
    • …
    corecore