
Theoretical Computer Science 255 (2001) 449–481
www.elsevier.com/locate/tcs

A theoretical foundation for program transformations
to reduce cache thrashing due to true data sharing

Guohua Jina, Zhiyuan Lib ; ∗, Fujie Chenc

aDepartment of Computer Science, Rice University, 6100 Main Street, Houston, TX 77005-1892, USA
bDepartment of Computer Science, Purdue University, 1398 University Street, West Lafayette,

IN 47907, USA
cDepartment of Computer Science, Changsha Institute of Technology, Changsha, Hunan 410073,

People’s Republic of China

Received January 1999; revised May 1999
Communicated by D.-Z. Du

Abstract

Cache thrashing due to true data sharing can degrade the performance of parallel programs
signi2cantly. Our previous work showed that parallel task alignment via program transforma-
tions can be quite e6ective for the reduction of such cache thrashing. In this paper, we present a
theoretical foundation for such program transformations. Based on linear algebra and the theory
of numbers, our work analyzes the data dependences among the tasks created by a fork-join
parallel program and determines at compile time how these tasks should be assigned to pro-
cessors in order to reduce cache thrashing due to true data sharing. Our analysis and program
transformations can be easily performed by compilers for parallel computers. c© 2001 Elsevier
Science B.V. All rights reserved.

Keywords: Complier algorithms; Linear algebra; Theory of numbers; Multiprocessors; Caches

1. Introduction

Private caches are commonly used in tightly coupled multiprocessors to reduce the
average latency of memory references. Unfortunately, if parallel tasks are not aligned
well, a processor may repeatedly 2nd its data missing in the cache because its cached
copy was invalidated by other processors which overwrote the data. This phenomenon,
called cache thrashing, may be due to either false sharing or true sharing of data
among di6erent processors. For caches whose line size is greater than one word, dif-
ferent processors may write and read di6erent data words which happen to be in the
same cache line, causing false sharing. Several algorithms have been proposed to reduce
false sharing [10, 17, 19, 36].

∗ Corresponding author. Tel.: 001-765-494-7822; fax: 001-765-494-0739.
E-mail address: li@cs.purdue.edu (Z. Li).

0304-3975/01/$ - see front matter c© 2001 Elsevier Science B.V. All rights reserved.
PII: S0304 -3975(99)00313 -8

450 G. Jin et al. / Theoretical Computer Science 255 (2001) 449–481

In contrast, true sharing occurs when di6erent processors modify and read the
same data word. True sharing causes cache thrashing when a DOALL loop is nested
within a sequential loop and di6erent processors modify and read the same data in dif-
ferent instances of the same DOALL loop. If tasks are assigned to processors without
care, true sharing can quite frequently cause cache thrashing, because DOALL loops
are commonly found to be embedded in sequential loops [11].
Recently, we proposed a compiler technique which transforms parallel loop

nests in order to reduce cache thrashing due to true sharing [21]. Our experimental
results showed that this technique can increase the parallel execution speed of certain
Linpack benchmark programs by as high as 105% on a Silicon Graphics Challenge
multiprocessor, compared with the best task assignment scheme provided by the ma-
chine vendor. Our technique is based on an analysis of data dependences between the
tasks created in the di6erent instances of a given DOALL loop. In this paper, we
present a number of theorems and their proofs which form the theoretical foundation
for the data dependence analysis used in our technique.
Next, in Section 2, we 2rst describe the category of parallel program constructs

which are handled by this paper and we make a few assumptions about the target
tightly coupled multiprocessors. In Section 3, after a brief presentation of the main
concepts and the main algorithms of our program transformation, we prove a number of
theorems based on which our algorithms are designed. The related works are discussed
in Section 4. We conclude in Section 5.

2. Programming model and machine model

In this paper, we consider fork-join parallel programs whose parallelism is expressed
as DOALL loops. No data dependences may exist between di6erent iterations of a
DOALL loop [6, 27, 4, 28]. In particular, we consider a program construct which consists
of a sequential loop which contains one or several single-level DOALL loops. If there
exist multilevel DOALL loops, only one level is parallelized, as on most commercial
shared-memory multiprocessor systems. Hence, as shown below, a loop nest in our
model has three levels: a parallel loop, its immediately embedded sequential loop, and
its immediately enclosing sequential loop. The loops are not necessarily perfectly nested:

DO I =1; N1
.....
DOALL J =1; N2
......
DO K =1; N3
LOOP BODY {(Aq(̃h
(I; J; K)); Aq(̃h

′

(I; J; K))) | 16q6n}

ENDDO
......

ENDDOALL
......

ENDDO

G. Jin et al. / Theoretical Computer Science 255 (2001) 449–481 451

where Aq (q=1; 2; : : : ; n) is an array name appearing in the loop body, h̃
; h̃
′

 (16
6m)

are linear mappings from the iteration space to the domain space of Aq, (Aq(̃h
(I; J; K));
Aq(̃h

′

(I; J; K))) (16q6n) are potentially dependent reference pairs, and n is the num-

ber of such pairs. Multiple array variables and multiple linear subscript functions may
exist in the nested loop. Note that we set the lower loop limits to 1 only to simplify the
notations throughout the rest of the paper. It is a trivial matter to adjust the theorems
for non-unitary lower limits, using more complex notations.
Fang and Lu [11] reported that arrays involved in nested loops are usually two-

dimensional or three-dimensional with a small-sized third dimension. The latter can be
treated as a small number of two-dimensional arrays. Nested loops with the parallel
loop at the innermost level are degenerate cases of the above loop nest. Therefore,
our loop nest model seems quite general. Our method can also be applied to a loop
nest which contains several separate parallel loops at the middle level. Each of these
parallel loops may be restructured according to its own reference patterns, such that
the tasks in di6erent instances of the same parallel loop are aligned. We currently do
not align the tasks created by di6erent parallel inner loops. For programs with more
complicated loop nests, pattern-matching techniques can be used to identify a loop
subnest that matches the nest shown above. Other outer- or inner- loops that are not a
part of the subnest can be ignored, as long as their loop indices do not appear in the
array subscripts.
Our compiler analysis uses a simple multiprocessor model in which each processor

has a private cache with copy-back snoopy coherence hardware.

3. Program transformations and a supporting theory

In this section, we 2rst give an example to illustrate our program transformations
and to motivate several key de2nitions. We then present the main theoretical results
which serve as the foundation of the proposed transformations.

3.1. Loop staggering and aligned processor folding

We use the following example to explain the main concepts and to show how our
techniques can be applied to align the tasks to avoid true data sharing.

Example 1.

DO I =1; N1
......
DOALL J =1; N2
.....
DO K =1; N3
......

A(J + K; I + J)=A(J + K; I + J) + : : :

452 G. Jin et al. / Theoretical Computer Science 255 (2001) 449–481

B(J + 2 ∗ K; I + J)=B(J + 2 ∗ K; I + J) + : : :
......

ENDDO
......

ENDDOALL
......

ENDDO

In the example above, three loops are imperfectly nested, of which the two outer
loops form an iteration subspace N1 × N2. Loop I is a sequential loop because of the
loop-carried data dependences involving two linear subscript functions:

A(f1; g1) : f1(i; j; k)= j + k; g1(i; j; k)= i + j;

B(f2; g2) : f2(i; j; k)= j + 2k; g2(i; j; k)= i + j:

Each time the DOALL loop J is executed, it generates N2 parallel iterations, or tasks.
Since loop J will be executed N1 times, it generates N1 × N2 tasks overall. We let
Ti; j denote the task corresponding to loop index values I = i and J = j. Each task
accesses N3 elements of each array. Many array elements are shared by multiple tasks
which are created in di6erent I iterations. One can partition the tasks into subsets,
called equivalence classes in this paper, such that the tasks in the same equivalence
class may modify and reuse certain common array elements but tasks in di6erent
equivalence classes do not. (T1;2, T2;1), (T1;3, T2;2 T3;1), (T1;4, T2;3, T3;2, T4;1); : : : ; are
some of the equivalence classes in our example. If the tasks in the same equivalence
class are not executed by the same processor, array data being shared will unnecessarily
move back and force between di6erent caches in the system, causing a cache thrashing
problem due to true data sharing [12]. Unfortunately, the run-time systems on most
commercial multiprocessors will assign the tasks which have the same J index to the
same processor regardless of the I index. This will distribute the tasks in the same
equivalence class to di6erent processors.
To avoid true date sharing, we transform the loop nest in Example 1 such that the

tasks in the same equivalence class are guaranteed to be assigned to the same processor.
The desired transformation in this case is a linear transform JJ = I + J , which results
in the following new loop nest:

DO I =1; N1
......
DOALL JJ =2; N1 + N2
if (16JJ − I6N2) then
......
DO K =1; N3
......

G. Jin et al. / Theoretical Computer Science 255 (2001) 449–481 453

A(JJ − I + K; JJ)=A(JJ − I + K; JJ) + : : :
......
B(JJ − I + 2 ∗ K; JJ)=B(JJ − I + 2 ∗ K; JJ) + : : :
......

ENDDO
......

endif
......

ENDDOALL
......

ENDDO

After the program transformation, di6erent processors will no longer access common
array elements, provided that the run-time system follows the common practice and as-
signs the tasks which have the same DOALL loop index, JJ , to the same processor. In
certain cases, true data sharing may not be eliminated by applying the linear transform
to the individual tasks, as in the above example. Instead, as shown in the follow-
ing subsection, such a transform must be applied to sets of tasks. We use the term
loop staggering to refer to this variant of linear transforms. A straightforward linear
transform is a special case of loop staggering. In the next subsection, we will prove
a condition under which true sharing can be eliminated by loop staggering alone. In
more complex cases, true data sharing may not be eliminated even by loop staggering.
For example, if we change the subscripts in Example 1 to (J + 3 ∗ K; J − 2 ∗ I) and
(J + 3 ∗ K + 1; I + J), respectively, then staggering alone cannot align the tasks and
eliminate true sharing. However, the degree of true sharing, and hence cache thrashing,
will be reduced even in such cases. Moreover, we will prove that, in such cases, true
sharing can be eliminated by aligned processor folding, or aligned folding in short, in
addition to loop staggering.
The idea of aligned folding and linear transforms can be illustrated by an example

derived by changing the subscripts in Example 1 to (J + 3 ∗ K; J − 2 ∗ I) and (J +
3 ∗K +1; I + J), respectively. Using the theorems in the next subsection, we will 2nd
that there exist nine disjoint equivalence classes of tasks. Hence, we create a DOALL
loop, indexed by JJ , which has nine iterations (to be executed by nine processors).
We say that this example has a folding factor 1 of 9. We then embed the original
DOALL loop J (now serialized and strip-mined with a factor of 9) within loop JJ .
The nine equivalence classes are mapped to the 9 JJ loop iterations by dynamically
left-shifting the lower loop limit of J by three iterations after every three I -iterations.
We say that the loop nest is staggered by a pair of staggering parameters (3;−3). The
transformed program is as follows, in which a pair of local variable, PSI and PSJ are
used to implement the dynamic left-shifting on the lower limit of the J loop, namely

1 We used the term compacting factor in our previous work [21].

454 G. Jin et al. / Theoretical Computer Science 255 (2001) 449–481

OFFSET + 1, where OFFSET is also a local variable.

DO I =1; N1
......
DOALL JJ =1; 9
if I − PSI =3 then

PSI = I
PSJ =(PSJ − 3) mod 9

endif
OFFSET =PSJ − 1
if OFFSET ¡ 0 then

OFFSET =OFFSET + 9
endif
DO J =OFFSET + 1; N2; 9
......
DO K =1; N3
......
A(J + 3 ∗ K; J − 2 ∗ I)=A(J + 3 ∗ K; J − 2 ∗ I) + : : :
B(J + 3 ∗ K + 1; I + J)=B(J + 3 ∗ K + 1; I + J) + : : :
......

ENDDO
......

ENDDO
......

ENDDOALL
......

ENDDO

Note that aligned folding may potentially generate a new loop nest which does not
utilize all available processors. However, it is quite well known in practice that utilizing
all available processors does not always lead to the shortest parallel execution time,
due to synchronization overhead, among other factors. Cache thrashing due to true data
sharing is yet another factor that must be considered.
The main body of this paper is a theory about how to determine the staggering pa-

rameters and the folding factor. For clarity of presentation, we decompose our problem
into two parts. In Section 3.2, we 2rst reduce the problem to a basic model and, in
Section 3.3, we generalize the model by applying simple aNne transformations to the
basic model.

3.2. Theorems and proofs for the basic model

In our basic model, for each pair of dependent references, the same subscript func-
tion is used in both references. (However, di6erent dependent pairs can use di6erent

G. Jin et al. / Theoretical Computer Science 255 (2001) 449–481 455

subscript functions.) The examples in Section 3.1 conform to this basic model. If we
extract the subscript function h̃
(I; J; K) from each pair of dependent references, then
the considered loop nest which has m pairs of dependent references can be illustrated
by the following code segment.

DO I =1; N1
.....
DOALL J =1; N2
......
DO K =1; N3
LOOP BODY {̃h
(I; J; K) | 16
6m}

ENDDO
......

ENDDOALL
......

ENDDO

Without loss of generality, suppose that all m linear subscript functions above are
di6erent. We assume that each function h̃
, 16
6m, is of rank 2 and is in the form
of h̃
(i; j; k)= (f
(i; j; k), g
(i; j; k)), where

[
f
(i; j; k)
g
(i; j; k)

]
=
[
a
;1 b
;1 c
;1 d
;1

a
;2 b
;2 c
;2 d
;2

]
i
j
k
1

 :

We denote[
a
;1 b
;1 c
;1
a
;2 b
;2 c
;2

]

as H
 and[
x
;1 y
;1

x
;2 y
;2

]

as Hx;y

 , with x; y∈{a; b; c}.

The iteration subspace N1×N2, shown in Fig. 1, is called the reduced iteration space,
because it omits the K loop. In order to 2nd the iterations in the reduced iteration space
which may access common memory locations within the corresponding tasks, we de2ne
a set of elements of array A
 which are accessed within task Ti0 ;j0 by using subscript
function h̃
.

De�nition 1. Given iteration (i0; j0) in the reduced iteration space, the elements
A
(f
(i0; j0; k), g
(i0; j0; k)) of array A
, where 16k6N3, 16
6m, are accessed within
task Ti0 ; j0 . They are denoted byA

i0 ; j0

 ≡ {A
(f
(i0; j0; k); g
(i0; j0; k)) |where 16k6N3}.

456 G. Jin et al. / Theoretical Computer Science 255 (2001) 449–481

Fig. 1. Reduced iteration space.

De�nition 2. If we suppose that Ti; j and Ti′ ; j′ are two tasks corresponding to (I; J)
= (i; j) and (I; J)= (i′; j′) in the reduced iteration space of the given loop nest such
that Ai;j

 ∩ A
i′ ; j′

= ∅ (16
6m); we say Ti; j and Ti′ ; j′ has a dependence because of

h̃
, denoted by Ti; j"
Ti′ ; j′ .

Since our objective is to eliminate true data sharing by assigning dependent tasks
to the same processor, we make the dependence (between tasks due to data sharing)
transitive, which leads to the following de2nition.

De�nition 3. If there exists
, 16
6m, such that Ti; j "
 Ti′ ; j′ , then we write Ti; j"Ti′ ; j′ .
If Ti; j"Ti′ ; j′ and Ti′ ; j′"Ti′′ ; j′′ , then we also have Ti; j"Ti′′ ; j′′ .

The following lemma and two theorems establish the relationship between the loop
indexes corresponding to two inter-dependent tasks. We will use this index relationship
to stagger the loop iteration space such that inter-dependent tasks can be assigned to
the same processors.

Lemma 1. Suppose Ti; j; Ti′ ; j′ are two tasks, i
= i′. Ti; j"
Ti′ ; j′ i> there exist k, k ′,
16k; k ′6N3; such that H
[i j k]T =H
[i′ j′ k ′]T.

Theorem 1. Suppose det Hb; a

= 0. Ti; j"
Ti′ ; j′ i> there exist k; k ′ (16k; k ′6N3) such

that

i′ − i=
det Hb; c

det Hb; a

(k − k ′); j′ − j=

det Hc; a

det Hb; a

(k − k ′):

Both Lemma 1 and Theorem 1 are obvious, because both f
 and g
 are linear in
terms of i; j and k.

G. Jin et al. / Theoretical Computer Science 255 (2001) 449–481 457

Table 1
All patterns of subscript coeNcients when detHb; a

 = detHc; b

 = detHc; a

 =0
a
; 1 �=0; b
; 2 �=0 c
; 1 = c
; 2 = 0 1

⇒ a
; 2 �=0; b
; 1 �=0 c
; 1 �=0; c
; 2 �=0 ∗ 2
c
; 1 = c
; 2 = 0 3

a
; 2 = 0; b
; 1 �=0 c
; 1 �=0; c
; 2 �=0 ∗ 4
a
; 2 �=0; b
; 1 = 0 c
; 2 = 0 5

a
; 1 = 0; b
; 2 �=0 ⇒ c
; 1 = 0 c
; 2 �=0 ? 6
a
; 2 = b
; 1 = 0 c
; 2 = 0 7

⇒ c
; 1 = 0 c
; 2 �=0 ? 8
a
; 2 = 0; b
; 1 �=0 c
; 1 = 0 9

detHb; a

 = ⇒ c
; 2 = 0 c
; 1 �=0 ∗ 10

detHc; b

 = c
; 1 = c
; 2 = 0 × 11

detHc; a

 =0 a
; 1 �=0; b
; 2 = 0 a
; 2 �=0; b
; 1 = 0 c
; 1 �=0; c
; 2 �=0 × 12

a
; 2 = b
; 1 = 0 c
; 1 = 0 × 13
⇒ c
; 2 = 0 c
; 1 �=0 × 14

a
; 2 = 0; b
; 1 �=0 c
; 1 = 0 15
⇒ c
; 2 = 0 c
; 1 �=0 ∗ 16

a
; 2 �=0; b
; 1 = 0 c
; 2 = 0 × 17
⇒ c
; 1 = 0 c
; 2 �=0 × 18

a
; 1 = b
; 2 = 0 c
; 1 = 0; c
; 2 �=0 × 19
c
; 1 �=0; c
; 2 = 0 × 20

a
; 2 = b
; 1 = 0 c
; 1 = c
; 2 = 0 × 21
c
; 1 �=0; c
; 2 �=0 × 22

We now consider the case of det Hb; a

 =0, assuming that the loop bounds, N2 and

N3, are large enough to satisfy the following:

N2 ¿ max
(∣∣∣∣ c
;1
GCD(b
;1; c
;1)

∣∣∣∣ ;
∣∣∣∣ c
;2
GCD(b
;2; c
;2)

∣∣∣∣
)

;

N3 ¿ max
(∣∣∣∣ b
;1

GCD(b
;1; c
;1)

∣∣∣∣ ;
∣∣∣∣ b
;2

GCD(b
;2; c
;2)

∣∣∣∣
)

:

These assumptions are almost always true in practice [34]. When they are not true, the
parallel loops will be too small to be important. With these assumptions, we have the
following theorem.

Theorem 2. Suppose det Hb;a

 =0. The fact that the J loop at the middle level is a

DOALL loop guarantees that Ti; j"
Ti′ ; j′ i> we have
(1) a
;1(i′ − i) + b
;1(j′ − j)= 0; for a
;1
= 0;
(2) a
;2(i′ − i) + b
;2(j′ − j)= 0; for a
;2
= 0; and
(3) j′ − j=0; for a
;1 = a
;2 = 0.

Proof. The case of detHb;a

 =0 can be divided into two subcases: (1) detHc;b

 =
detHc;a

 =0; and (2) one of detHc;b

 and detHc;a

 is non-zero.
In the 2rst subcase, detHb;a

 = detHc;b

 = detHc;a

 =0, there are 22 di6erent patterns
of coeNcients as shown in Table 1. Within these, 10 patterns labeled as “×” (11–14

458 G. Jin et al. / Theoretical Computer Science 255 (2001) 449–481

Table 2
All patterns of subscript coeNcients when detHb; a

 =0 and at least one of detHc; b

 and detHc; a

 being
non-zero

a
; 1 = a
; 2 = b
; 1 = 0; b
; 2 �=0⇒ c
; 1 �=0 1
a
; 1 = a
; 2 = b
; 2 = 0; b
; 1 �=0⇒ c
; 2 �=0 2
a
; 1 = a
; 2 = 0; b
; 1 �=0; b
; 2 �=0⇒ detHc; b

 �=0 3
(detHb; a

 =0)∧ a
; 1 = b
; 1 = b
; 2 = 0; a
; 2 �=0⇒ c
; 1 �=0 × 4
((detHc; b

 �=0)∨ a
; 1 = b
; 1 = 0; a
; 2 �=0; b
; 2 �=0⇒ c
; 1 �=0 5
(detHc; a

 �=0)) a
; 1 �=0; a
; 2 = b
; 1 = b
; 2 = 0⇒ c
; 2 �=0 × 6
a
; 1 �=0; a
; 2 = b
; 2 = 0; b
; 1 �=0⇒ c
; 2 �=0 7
a
; 1 �=0; a
; 2 �=0; b
; 1 = b
; 2 = 0⇒ detHc; a

 �=0 × 8
a
; 1 �=0; a
; 2 �=0; b
; 1 �=0; b
; 2 �=0 9

and 17–22) are impossible because, in one instance of the execution of the DOALL
loop J in the given loop nest, no two iterations are not allowed to write to the same
array elements. The other six patterns labeled as “∗” and “?” (2, 4, 6, 8, 10, and 16)
are impossible because of the assumptions of

N2¿max
(∣∣∣∣ c
;1
GCD(b
;1; c
;1)

∣∣∣∣ ;
∣∣∣∣ c
;2
GCD(b
;2; c
;2)

∣∣∣∣
)

;

N3¿max
(∣∣∣∣ b
;1

GCD(b
;1; c
;1)

∣∣∣∣ ;
∣∣∣∣ b
;2

GCD(b
;2; c
;2)

∣∣∣∣
)

:

So we only need to consider the remaining six possible patterns of coeNcients (1, 3,
5, 7, 9, and 15).
Similarly, when detHb;a

 =0 and at least one of detHc;b

 and detHc;a

 is non-zero,
all patterns of coeNcients are listed in Table 2. The three patterns labeled as “×” (4,
6, and 8) are impossible because of the DOALL loop J in our model. The rest to be
considered are the other six patterns (1–3, 5, 7, and 9).
SuBciency: For the six remaining patterns of coeNcients in Table 1, we have

c
;1 = c
;2 = 0, and at least one of b
;1 and b
;2 being non-zero. If there are itera-
tions (i; j) and (i′; j′) in the reduced iteration space, which satisfy Ti; j " Ti′ ; j′ , then
according to Lemma 2, we have

H

i′ − i

j′ − j

k ′ − k

= 0:

Therefore,

Ha;b

[
i′ − i

j′ − j

]
= 0;

because c
;1 = c
;2 = 0. On the other hand, if a
;1 = a
;2 = 0, then from the above equa-
tions we have j′ − j=0.

G. Jin et al. / Theoretical Computer Science 255 (2001) 449–481 459

For the remaining six possible patterns of coeNcients in Table 2, we have at least
one of b
;1 and b
;2 being non-zero. It is clear that k ′ − k =0. So, we have

Ha;b

[
i′ − i
j′ − j

]
= 0:

Again, we have j′ − j=0 if a
;1 = a
;2 = 0.
Necessity: If a
;1
=0, then the possible patterns of coeNcients are 1 and 9 in Table 1

and 7 and 9 in Table 2. For Pattern 1 in Table 1 and Pattern 9 in Table 2, we have
a
;2(i′− i)+b
;2(j′−j)= 0 because a
;1(i′− i)+b
;1(j′−j)= 0 and detHb;a

 =0. Also,
for Pattern 9 in Table 1 and Pattern 7 in Table 2, we have a
;2(i′− i)+b
;2(j′− j)= 0
because a
;2 = b
;2 = 0. So, there exist k = k ′, such that

H

i′ − i

j′ − j

k ′ − k

= 0:

So, we have Ti; j " Ti′ ; j′ .
Similarly, we can prove the other two cases, one for a
;2
=0 and the other for

a
;1 = a
;2 = 0.

We now de2ne staggering parameters whose linear combinations de2ne a set of (i; j)
iterations, i.e. tasks.

De�nition 4. Given iteration (i; j) in the reduced iteration space, we let Si; j denote the
following set of iterations in the space:

Si; j =

{(
i+

m∑

=1

r
L
;1; j+
m∑

=1
r
L
;2

)∣∣∣∣∣ r
 ∈Z; 16
6m

}
;

where L
;1(L
;1
=0) and L
;2(16
6m) are de2ned as:
(1) L
;1 = detHb; c

 =GCD
 and L
;2 = detHc;a

 =GCD
, if detHb;a

=0, with GCD
 equal
to GCD (detHb; c

 ; detHc;a

 ; detHb;a

) or equal to −GCD (detHb; c

 ; detHc;a

 ; detHb;a

)

to guarantee L
;1¿0;
(2) L
;1 = b
;1=GCD
 and L
;2 =−a
;1=GCD
, if detHb;a

 =0 and a
;1
=0, with GCD

equal to GCD (a
;1; b
;1) or equal to −GCD (a
;1; b
;1) to guarantee L
;1¿0;
(3) L
;1 = b
;2=GCD
 and L
;2 =−a
;2=GCD
, if detHb;a

 =0 and a
;2
=0,
with GCD
 equal to GCD (a
;2; b
;2) or equal to −GCD (a
;2; b
;2) to guarantee
L
;1¿0;

(4) L
;1 = 1 and L
;2 = 0, if a
;1 = a
;2 = 0.
We call (L
;1; L
;2) the pair of staggering parameters corresponding to linear function
h̃
. If there exist no data dependences between the given pair of references, we de2ne
(L
;1; L
;2) as (0; 0).

460 G. Jin et al. / Theoretical Computer Science 255 (2001) 449–481

The following theorem, derived from Theorems 1 and 2 and De2nition 4, states that
we can use the staggering parameters to uniquely partition the tasks into independent
sets.

Theorem 3. Si; j as deCned above satisCes:
(1) if (i; j)∈ Si′ ; j′ and (i; j)∈ Si′′ ; j′′ then Si′ ; j′ = Si′′ ; j′′ ;
(2) if (i′; j′)∈ Si; j then Si; j = Si′ ; j′ ; and
(3) if (i′; j′)∈ Si; j and Ti′ ; j′ " Ti′′ ; j′′ then (i

′′
; j

′′
)∈ Si; j.

The theorem above indicates that Si; j includes all the iterations whose corresponding
tasks have a data dependence relation with Ti; j. We call Si; j an equivalence class of
the reduced iteration space. In order to eliminate true data sharing, tasks in the same
equivalence class should be assigned to the same processor. We want to restructure the
reduced iteration space such that tasks in the same equivalence class will appear in the
same column. Each staggering parameter (L1; L2) computed for a dependent reference
pair ensures that if we stagger the (i+L1)th row in the reduced iteration space by |L2|
columns to the right if L2¡0, or to the left if L2¿0, relative to the ith row, then the
tasks involved in the dependence pair will be aligned in the same column. Di6erent
staggering parameters computed for di6erent reference pairs may require di6erent ways
to stagger the iteration space. However, if these staggering parameters are in propor-
tion, then staggering by the uniCed staggering parameter de2ned below will satisfy all
the requirements simultaneously.

De�nition 5. Given pairs of staggering parameters (L1;1; L1;2); (L2;1; L2;2); : : : ; (Lm;1;
Lm;2) and g=GCD (L1;1; L2;1; : : : ; Lm;1), if we have Lk;1=Lk;2 =Lj;1=Lj;2 for all (j; k)
such that 16j; k6m, then we call (g; L1;2=L1;1g) the uniCed staggering parameter.

Lemma 2. If the condition Lk;1=Lk;2 =Lj;1=Lj;2 (16j; k6m) in DeCnition 5 is true;
then (a) the iterations (i; j) and (i; k); where j
= k; belong to two di>erent equivalence
classes; and (b) the iterations (i; j) and (i′; k); where 0¡i′ − i¡g; belong to two
di>erent equivalence classes.

Proof. (a) If (i; j) and (i; k) belong to the same equivalence class, then we have
(i; k)∈ Si; j because (i; j)∈ Si; j. We then have

i= i+
m∑

=1
r
L
;1;

k = j+
m∑

=1
r
L
;2

and hence
m∑

=1
r
L
;1 = 0:

G. Jin et al. / Theoretical Computer Science 255 (2001) 449–481 461

Since we assume

Lk;1

Lk;2
=

Lj;1

Lj;2

for any j and k (16j; k6m), we have

L1;1
L1;2

m∑

=1

r
L
;2 =
m∑

=1

L
;1

L
;2
r
L
;2 =

m∑

=1

r
L
;1 = 0

and hence
m∑

=1
r
L
;2 = 0;

which leads to k = j, contradicting the assumption.
(b) If (i; j) and (i′; k) belong to the same equivalence class then we have (i; j) and

(i′; k) both belonging to Si; j, and thus

i′= i+
m∑

=1
r
L
;1:

Since g=GCD (L1;1; L2;1; : : : ; Lm;1), g must divide i′ − i, contradicting the premise
that i′ − i¡g. The iterations (i; j) and (i′; k), where 0¡i′ − i¡g, belong to di6erent
equivalence classes.

Theorem 4. If the condition Lk;1=Lk;2 =Lj;1=Lj;2 (16j; k6m) in DeCnition 5 is true;
then the reduced iteration space must be staggered according to the uniCed staggering
parameter (g; (L1;2=L1;1)g) in order to reduce or eliminate data sharing among the
tasks; i.e. the (i + g)th row in the reduced iteration space must be staggered by
|(L1;2=L1;1)g| columns to the right if L1;2¡0; or to the left if L1;2¿0; relative to the
ith row.

Proof. Suppose g=GCD (L1;1; L2;1; : : : ; Lm;1). According to Lemma 2, we only need
to stagger the (i+ g)th row related to the ith row in the reduced iteration space. There
exists a linear combination of L1;1; L2;1; : : : ; Lm;1 such that

g=
m∑

=1
k
L
;1:

According to De2nition 4, iteration (i + g; j +Qj) belongs to Si; j, where

Qj=
m∑

=1
k
L
;2 =

m∑

=1

k

L
;2

L
;1
L
;1;

provided that 1¡i + g6N1; 1¡j +Qj6N2. Since for any j and k (16j; k6m)

Lk;1

Lk;2
=

Lj;1

Lj;2
;

462 G. Jin et al. / Theoretical Computer Science 255 (2001) 449–481

we have

Qj=
L1;2
L1;1

m∑

=1

k
L
;1 =
L1;2
L1;1

g;

which means that iteration (i; j) and (i+g; j+(L1;2=L1;1)g) are in the same equivalence
class. By Lemma 2(a), if there exists any (i + g; j′) that belongs to Si; j then j′=Qj.
Hence, the (i + g)th row must be staggered by |Qj| columns to the right if L1;2¡0,
or to the left if L1;2¿0, relative to the ith row, to guarantee that there will be no data
sharing between di6erent columns.

If a given loop nest satis2es the condition Lk;1=Lk;2 =Lj;1=Lj;2 (16j; k6m) in
De2nition 5, then, according to Theorem 4 above, the reduced iteration space can be
transformed into a staggered and reduced iteration space (SRIS) by leaving the 2rst g
rows unchanged, g=GCD (L1;1; L2;1; : : : ; Lm;1), and by staggering each of the remain-
ing rows using the uni2ed staggering parameter. There will be no data dependences
between di6erent columns in the SRIS.
However, if the staggering parameters are not in proportion, i.e, if there exist (j; k)

such that 16j; k6m and Lk;1=Lk;2
=Lj;1=Lj;2, then we can no longer obtain a unique
uni2ed staggering parameter. Moreover, staggering alone is no longer suNcient for
eliminating data dependences between the di6erent columns in the restructured iteration
space. This is because some tasks in the same equivalence class are still in di6erent
columns. We perform a procedure called aligned processor folding, or aligned folding
in short, which stacks these columns onto each other. We will discuss staggering 2rst.

De�nition 6. Given pairs of staggering parameters (L1;1; L1;2); (L2;1; L2;2); : : : ; (Lm;1;
Lm;2) and g=GCD (L1;1; L2;1; : : : ; Lm;1), suppose there exists (j; k) such that 16j;
k6m and Lk;1=Lk;2
=Lj;1=Lj;2. According to the theory of numbers [30], there exist
integers a1; a2; : : : ; am that satisfy

g=
m∑

=1
a
L
;1:

Let g′=
∑m

=1 a
L
;2. We call (g; g′) a pair of uniCed staggering parameters.

Note that since the m-tuple (a1; a2; : : : ; am) is not necessarily unique, the (g; g′) pair
may not be unique either.
In the introduction, we showed an example of using aligned folding to eliminate true

data sharing. The following two algorithms compute the folding factor, d.

Algorithm 1 (Jin et al. [21]):
Input: Pairs of staggering parameters (L1;1; L1;2); (L2;1; L2;2); : : : ; (Lm;1; Lm;2).

Output: The folding factor d.
Step 1: For each 2-element subset, {Li;1; Lj;1}, of {L1;1; L2;1; : : : ; Lm;1}, compute

d2〈Li;1; Lj;1〉= Lj;1Li;2 − Li;1Lj;2

GCD (Li;1; Lj;1)
:

G. Jin et al. / Theoretical Computer Science 255 (2001) 449–481 463

Let d2 =GCD of all such d2〈Li;1; Lj;1〉.
Step 2: For each j-element subset, {Li1 ;1; Li2 ;1; : : : ; Lij ;1}, where 36j6m, pick any

element, say Li1 ;1, and compute

r1 =
LCD(GCD (Li2 ;1; : : : ; Lij ;1); Li1 ;1)

Li1 ;1
:

Using the Euclidean Algorithm, compute integers b2; b3; : : : ; bj such that

GCD (Li2 ;1; : : : ; Lij ;1)=
j∑

=2
b
Li
;1:

Apply Algorithm 2 below to 2nd nonzero integers r2; : : : ; rj such that

r1Li1 ;1 =
j∑

=2
r
Li
;1:

Let

dj〈Li1 ;1; Li2 ;1; : : : ; Lij ;1〉= r1Li1 ;2−
j∑

=2
r
Li
;2:

Step 3: For j from 3 to m, compute

dj =GCD (dj〈Li1 ;1; Li2 ;1; : : : ; Lij ;1〉 | for all distinct 〈Li1 ;1; Li2 ;1; : : : ; Lij ;1〉):

Step 4: d=GCD (d2; d3; : : : ; dm).

As will be established later, d is unique regardless of the choice of Li1 ;1 in Step 2.
To calculate the folding factor d, non-zero integers r2; : : : ; rj need to be found

in Algorithm 1 from the integer coeNcients b2; b3; : : : ; bj computed by the
Euclidean Algorithm. Algorithm 2 is therefore invoked to derive a group of non-
zero integer coeNcients from a group of any integer coeNcients of a linear
expression.

Algorithm 2 (Jin et al. [21]):
Input: Non-zero positive integers p; L1; L2; : : : ; Lp, integer x¿0, and integers a1; a2;

: : : ; ap such that x=
∑p

i=1 aiLi.
Output: non-zero integers b1; b2; : : : ; bp such that x=

∑p
i=1 biLi.

Step 1: If there are an even number of zero coeNcients ai1 ; ai2 ; : : : ; ai2k (062k6p)
among a1; a2; : : : ; ap, then let

bj = aj (aj
=0);

bi2l−1 =Li2l (16l6k);

bi2l =−Li2l−1 (16l6k):

464 G. Jin et al. / Theoretical Computer Science 255 (2001) 449–481

Step 2: If there are an odd number of zero coeNcients ai1 ; ai2 ; : : : ; ai2k+1 (062k +
16p) among a1; a2; : : : ; ap, then let

bj = aj (aj
=0);
bi2l−1 =Li2l (16l6k − 1);
bi2l =−Li2l−1 (16l6k − 1);
bi2k−1 =Li2k ;

bi2k =−(Li2k−1 + Li2k+1);

bi2k+1 =Li2k :

Obviously, the non-zero integers b1; b2; : : : ; bp computed by Algorithm 2 satisfy
x=
∑p

i=1 biLi.
After d is computed, we partition the SRIS into n chunks, where

n=
⌈
N2 + (�N1=g� − 1)g′

d

⌉
;

which is the total number of columns in the SRIS divided by the folding factor d.
These d-wide chunks are stacked onto each other to form a folded iteration space of
width d. As we will explain later, the tasks in di6erent columns after aligned folding
the SRIS with d are independent. Moreover, the product of d and g equals the number
of equivalence classes.
We need to establish two important facts. First, after folding with d, the tasks in dif-

ferent columns are independent. Second, the folding factor d computed by
Algorithm 1 is the largest number of independent columns possible as the result of
folding the SRIS with a constant value. The 2rst fact is established by a number of
theorems which are based on the following de2nition.

De�nition 7. Given an iteration (i; j) in the reduced iteration space, pairs of staggering
parameters (L1;1; L1;2); (L2;1; L2;2); : : : ; (Lm;1; Lm;2); and the pair of uni2ed staggering
parameters (g; g′), and suppose a1; a2; : : : ; am are integers that satisfy

g=
m∑

=1
a
L
;1;

a set of iterations S ′
i; j is constructed as follows:

(1) For any integer r, iteration (i + rg; j + rg′) in the space belongs to S ′
i; j, where

g′=
∑m

=1 a
L
;2;
(2) If there exist integers r1; r2; : : : ; rm, not all zero, integer r, and iterations (i′; j′); (i′; k ′)

(k ′
= j′) in the space, such that

k ′= j′ +
m∑

=1
r
L
;2;

m∑

=1

r
L
;1 = 0

G. Jin et al. / Theoretical Computer Science 255 (2001) 449–481 465

and

i= i′ + rg; j= j′ + rg′
(
g′=

m∑

=1

a
L
;2

)
;

then S ′
i; j = S ′

i; j ∪ S ′
i′ ; k′ .

The following three lemmas and Theorem 5 show that S ′
i; j is the same as the equiv-

alence class Si; j. From the process of constructing S ′
i; j, we immediately have the fol-

lowing lemma.

Lemma 3. Given iterations (i; j) and (i′; j′) in the reduced iteration space; and a pair
of uniCed staggering parameters (g; g′); if there exists integer r such that

i= i′ + rg;

j= j′ + rg′;

then S ′
i; j = S ′

i′ ; j′ .

Lemma 4. Given iterations (i′; j′) and (i′; k ′) (j′
= k ′) in the reduced iteration space;
if there exist integers r1; r2; : : : ; rm; not all zero; such that

k ′= j′ +
m∑

=1
r
L
;2;

m∑

=1

r
L
;1 = 0;

then S ′
i′ ; j′ = S ′

i′ ; k′ .

Proof. Since there exist integers r1; r2; : : : ; rm, not all zero, such that

k ′= j′ +
m∑

=1
r
L
;2;

m∑

=1

r
L
;1 = 0

and

i′= i′ + 0× g; j′= j′ + 0× g′;

we have S ′
i′ ; j′ = S ′

i′ ; j′ ∪ S ′
i′ ; k′ according to De2nition 7. Hence, we have S ′

i′ ; j′ ⊇ S ′
i′ ; k′ .

Similarly, we can derive S ′
i′ ; k′ ⊇ S ′

i′ ; j′ because

j′= k ′ −
m∑

=1
r
L
;2 = k ′ +

m∑

=1
(−r
)L
;2;

m∑

=1
(−r
)L
;1 =−

m∑

=1

r
L
;1 = 0

and

i′= i′ + 0× g; k ′= k ′ + 0× g′:

Therefore S ′
i′ ; j′ = S ′

i′ ; k′ .

466 G. Jin et al. / Theoretical Computer Science 255 (2001) 449–481

Lemma 5. Given iterations (i; j) and (i′; j′) in the reduced iteration space; if (i′; j′)
∈ S ′

i; j then S ′
i; j = S ′

i′ ; j′ .

Proof. According to the constructing process of S ′
i; j in De2nition 7, there exists an

integer n60 such that S ′
i; j is the union of the following n+ 1 sets of iterations in the

reduced iteration space:
(1) {(i + rg; j + rg′) | r ∈Z},
(2) {(i1 + r′2g; k1 + r′2g

′) | i1 = i + r′1g; j1 = j + r′1g
′;
∑m

=1 r1;
L
;1 = 0; k1 = j1 +∑m

=1 r1;
L
;2; r′1; r

′
2 ; r1;1; : : : ; r1; m ∈Z},

: : :
(n) {(in + r′n+1g; kn + r′n+1g

′)|i1 = i + r′1g; j1 = j + r′1g
′;
∑m

=1 r1;
L
;1 = 0; k1 = j1 +∑m

=1 r1;
L
;2; i2 = i1+r′2g; j2 = k1+r′2g

′;
∑m

=1 r2;
L
;1 = 0; k2 = j2 +
∑m

=1 r2;
L
;2,
: : :
in= in−1 + r′ng; jn= kn−1 + r′ng

′;
∑m

=1 rn;
L
;1 = 0; kn= jn +
∑m

=1 rn;
L
;2,
r′1; r

′
2 ; : : : ; r

′
n+1; r1;1; r1;2; : : : ; r1; m; : : : ; rn;1; rn;2; : : : ; rn;m ∈Z}.

If there exists r′ ∈Z such that

i′= i + r′g;

j′= j + r′g′;

then S ′
i; j = S ′

i′ ; j′ according to Lemma 3. Otherwise, if there exist integers r′′1 ; : : : ; r
′′
p+1,

r′1;1; : : : ; r
′
1; m; : : : ; r

′
p;1; : : : ; r

′
p;m (16p6n) such that

i1 = i + r′′1 g; j1 = j + r′′1 g
′;

m∑

=1

r′1;
L
;1 = 0; k1 = j1 +
m∑

=1
r′1;
L
;2;

: : :

ip= ip−1 + r′′p g; jp= kp−1 + r′′p g′;
m∑

=1
r′p;
L
;1 = 0; kp= jp +

m∑

=1

r′p;
L
;2;

i′= ip + r′′p+1g;

j′= kp + r′′p+1g
′;

we have

S ′
i;j = S ′

i;j ∪ S ′
i1 ; k1 ;

: : :

S ′
ip−1 ; kp−1

= S ′
ip−1 ; kp−1

∪ S ′
ip; kp ;

according to De2nition 7. Therefore, we have

S ′
i; j ⊇ S ′

i1 ; k1 ⊇ · · · ⊇ S ′
ip−1 ; kp−1

⊇ S ′
ip; kp

G. Jin et al. / Theoretical Computer Science 255 (2001) 449–481 467

and similarly,

S ′
i′ ; j′ = S ′

i′ ; j′ ∪ S ′
ip; jp ;

: : :

S ′
i2 ; j2 = S ′

i2 ; j2 ∪ S ′
i1 ; j1 :

Thus,

S ′
i1 ; j1 ⊆ S ′

i2 ; j2 ⊆ · · · ⊆ S ′
ip; jp ⊆ S ′

i′ ; j′ :

Since S ′
i; j = S ′

i1 ; j1 and S ′
i′ ; j′ = S ′

ip; kp , according to Lemma 3, we have S ′
i; j ⊆ S ′

i′ ; j′ and
S ′
i; j ⊇ S ′

i′ ; j′ . Therefore, we have S ′
i; j = S ′

i′ ; j′ .

Theorem 5. Given pairs of staggering parameters (L1;1; L1;2); (L2;1; L2;2); : : : ; (Lm;1;
Lm;2); we have

Si; j = S ′
i; j

for any iteration (i; j) in the reduced iteration space.

Proof. We 2rst prove that Si; j ⊆ S ′
i; j.

Since for any iteration (i′; j′)∈ Si; j, there exist integers r1; r2; : : : ; rm such that

i′= i +
m∑

=1
r
L
;1;

j′= j +
m∑

=1
r
L
;2;

according to De2nition 4, we only need to prove

(
i +

m∑

=1

r
L
;1; j +
m∑

=1
r
L
;2

)
∈ S ′

i; j :

Given (i′′; j′′)∈ S ′
i; j, let us prove

(i′′ + r
′L
′ ;1; j′′ + r
′L
′ ;2)∈ S ′
i; j(16
′6m):

If r
′ =0, then we have

(i′′ + r
′L
′ ;1; j′′ + r
′L
′ ;2)= (i′′; j′′)∈ S ′
i; j :

468 G. Jin et al. / Theoretical Computer Science 255 (2001) 449–481

Otherwise we have r
′
=0 and

i′′ + r
′L
′ ;1 = i′′ + r
′
L
′ ;1

g
g+

(
r
′L
′ ;1 − r
′

L
′ ;1

g

m∑

=1

a
L
;1

)
;

j′′ + r
′L
′ ;2 = j′′ + r
′
L
′ ;1

g
g+

(
r
′L
′ ;2 − r
′

L
′ ;1

g

m∑

=1

a
L
;2

)
:

We have (i′′ + (r
′L
′ ;1=g)g, j′′ + (r
′L
′ ;1=g)g′)∈ S ′
i′′ ; j′′ according to De2nition 7 and

have S ′
i; j = S ′

i′′ ;j′′ according to the assumption (i
′′; j′′)∈ S ′

i; j and Lemma 5. Hence, we
have (

i′′ + r
′
L
′ ;1

g
g; j′′ + r
′

L
′ ;1

g
g′
)
∈ S ′

i; j :

Furthermore, according to Lemmas 4 and 5, we have(
i′′ +

(
r
′

L
′ ;1

g

)
g; j′′ +

(
r
′

L
′ ;1

g

)
g′ −

(
r
′

L
′ ;1

g
a1

)
L1;2 −

(
r
′

L
′ ;1

g
a2

)
L2;2

− · · · −
(
r
′

L
′ ;1

g
a
′−1

)
L
′−1;2 +

(
r
′ − r
′

L
′ ;1

g
a
′

)
L
′ ;2

−
(
r
′

L
′ ;1

g
a
′+1

)
L
′+1;2 − · · · −

(
r
′

L
′ ;1

g
am

)
Lm;2

)
∈ S ′

i; j ;

because

−
(
r
′

L
′ ;1

g
a1

)
L1;1 −

(
r
′

L
′ ;1

g
a2

)
L2;1 − · · · −

(
r
′

L
′ ;1

g
a
′−1

)
L
′−1;1

+
(
r
′ − r
′

L
′ ;1

g
a
′

)
L
′ ;1

(
r
′

L
′ ;1

g
a
′+1

)
L
′+1;1 − · · · −

(
r
′

L
′ ;1

g
am

)
Lm;1

= r
′L
′ ;1 − r
′
L
′ ;1

g

m∑

=1

a
L
;1 = 0;

that is,(
i′′ +

(
r
′

L
′ ;1

g

)
g; j′′ +

(
r
′

L
′ ;1

g

)
g′ −

(
r
′

L
′ ;1

g

)
m∑

=1
a
L
;2 + r
′L
′ ;2

)
∈ S ′

i; j :

Thus,

(i′′ + r
′L
′ ;1; j′′ + r
′L
′ ;2)∈ S ′
i; j :

Therefore, we have proved: if (i′′; j′′)∈ S ′
i; j then (i′′ + r
′L
′ ;1; j′′ + r
′L
′ ;2)∈ S ′

i; j

(16
′6m).

G. Jin et al. / Theoretical Computer Science 255 (2001) 449–481 469

Because (i; j)∈ S ′
i; j (according to the de2nition of S

′
i; j), we have

(i + r1L1;1; j + r1L1;2)∈ S ′
i; j ;

(i + r1L1;1 + r2L2;1; j + r1L1;2 + r2L2;2)∈ S ′
i; j ;

: : :(
i +

m∑

=1

r
L
;1; j +
m∑

=1
r
L
;2

)
∈ S ′

i; j :

Thus, we have (i′; j′)∈ S ′
i; j and consequently Si; j ⊆ S ′

i; j.
On the other hand, for any iteration (i′; j′)∈ S ′

i; j, following the Proof of Lemma 5,
either there exists r′ ∈Z such that

i′= i + r′g;

j′= j + r′g′

or there exist integers r1; : : : ; rp+1; r1;1; : : : ; r1; m; : : : ; rp;1; : : : ; rp;m (16p6n) such that

i1 = i + r1g; j1 = j + r1g′;
m∑

=1
r1
L
;1 = 0; k1 = j1 +

m∑

=1

r1
L
;2;

: : :

ip= ip−1 + rpg; jp= kp−1 + rpg′;
m∑

=1
rp;
L
;1 = 0; kp= jp +

m∑

=1

rp;
L
;2;

i′= ip + rp+1g;

j′= kp + rp+1g′:

Hence, we have

i′= i +
m∑

=1
(r′a
)L
;1;

j′= j +
m∑

=1
(r′a
)L
;2

or

i′ = ip + rp+1g= ip−1 + rpg+ rp+1g= · · · = i + (r1 + · · ·+ rp+1)g

= i + (r1 + · · ·+ rp+1)g+
m∑

=1
r1;
L
;1 + · · ·+

m∑

=1

rp;
L
;1

= i +
m∑

=1
((r1 + · · ·+ rp+1)a
 + r1;
 + · · ·+ rp;
)L
;1;

470 G. Jin et al. / Theoretical Computer Science 255 (2001) 449–481

j′ = kp + rp+1g′= jp +
m∑

=1
rp;
L
;2 + rp+1g′= kp−1 +

m∑

=1

rp;
L
;2 + (rp + rp+1)g′

= jp−1 +
m∑

=1
rp−1;
L
;2 +

m∑

=1

rp;
L
;2 + (rp + rp+1)g′= · · ·

= j +
m∑

=1
r1;
L
;2 + · · ·+

m∑

=1

rp;
L
;2 + (r1 + · · ·+ rp+1)g′

= j +
m∑

=1
((r1 + · · ·+ rp+1)a
 + r1;
 + · · ·+ rp;
)L
;2:

Therefore we have (i′; j′)∈ Si; j according to De2nition 4. Hence S ′
i; j ⊆ Si; j and 2nally

Si; j = S ′
i; j.

Next, we establish that S ′
i; j is the result of staggering with (g; g

′) followed by folding
with d. This is stated by Corollary 1 below.

Lemma 6. Given pairs of staggering parameters (Li1 ;1; Li1 ;2); (Li2 ;1; Li2 ;2); : : : ; (Lij ;1;
Lij ;2); suppose that r1; r2; : : : ; rj are integers that satisfy
(1)

∑j

=1 r
Li
;1 = 0 (r1¿0); and

(2) if there exist integers r′1; r
′
2 ; : : : ; r

′
j satisfying

∑j

=1 r

′

Li
;1 = 0 (r

′
1¿0); then r16r′1.

For any integers r′′1 ; r
′′
2 ; : : : ; r

′′
j satisfying

j∑

=1

r′′
 Li
;1 = 0 (r′′1¿0);

there exists an integer k¿1 such that r′′1 = k r1.

Proof. If there exist integers r′′1 ; r
′′
2 ; : : : ; r

′′
j satisfying

j∑

=1

r′′
 Li
;1 = 0 (r′′1¿0)

and there is no integer k61 such that r′′1 = k r1, then there exists integer k1 such that

r′′1 = k1r1 + q1 (0¡q1¡r1):

Because

j∑

=1

r
Li
;1 =
j∑

=1
r′′
 Li
;1 = 0 (r1¿0; r′′1¿0);

we have

j∑

=1
(r′′
 − k1r
)Li
;1 =

j∑

=1

r′′
 Li
;1 − k1
j∑

=1
r
Li
;1 = 0;

G. Jin et al. / Theoretical Computer Science 255 (2001) 449–481 471

that is,

q1Li1 ;1 +
j∑

=2
(r′′
 − k1r
)Li
;1 = 0

contrary to the fact that r1 is the smallest integer satisfying
∑j

=1 r
Li
;1 = 0 (r1¿0).

Theorem 6. If d is the folding factor determined by Algorithm 1; and d′=∑m

=1 r
L
;2; where r1; r2; : : : ; rm are integers; not all zero; which satisfy

m∑

=1

r
L
;1 = 0

then there exists an integer k such that d′= kd.

Proof. We proceed by induction on q, the number of non-zero integers in r1; r2; : : : ; rm.
Since L
;1¿0 (
=1; 2; : : : ; m), we only need to consider the case: q62.
(1) If q=2, then we have

d′= ri1Li1 ;2 + ri2Li2 ;2;

where integers ri1 and ri2 satisfy

ri1Li1 ;1 + ri2Li2 ;1 = 0 where ri1
=0 and ri2
=0:

According to Lemma 6, there exists an integer k161 such that

ri1 = k1
Li2 ;1

GCD(Li1 ;1; Li2 ;1)
;

ri2 =−k1
Li1 ;1

GCD(Li1 ;1; Li2 ;1)
:

So, we have

d′ = ri1Li1 ;2 + ri2Li2 ;2 = k1
Li2 ;1

GCD(Li1 ;1; Li2 ;1)
Li1 ;2 − k1

Li1 ;1

GCD(Li1 ;1; Li2 ;1)
Li2 ;2

= k1(d2〈Li1 ;1; Li2 ;1〉):

According to Algorithm 1, one further derives that there must exist integers k2 and k3
such that

d′= k1(d2〈Li1 ;1; Li2 ;1〉)= k1k2d2 = k1k2k3d:

Let k = k1k2k3. We have d′= kd. Hence, our assertion is true for q=2.

472 G. Jin et al. / Theoretical Computer Science 255 (2001) 449–481

(2) Suppose that the assertion is true for all q (26q¡n; 2¡n6m), that is, if
d′=

∑q

=1 ri
 Li
;2 and non-zero coeNcients ri1 ; ri2 ; : : : ; riq satisfy

q∑

=1

ri
 Li
;1 = 0;

then there exists an integer k such that d′= kd.
(3) Consider the case of q= n. We assume that non-zero integers r′i1 ; r

′
i2 ; : : : ; r

′
in satisfy

n∑

=1

r′i
 Li
;1 = 0 (r′i1¿0)

and if there exist non-zero integers r′′i1 ; r
′′
i2 ; : : : ; r

′′
in such that

n∑

=1

r′′i
 Li
;1 = 0 (r′′i1¿0);

then r′i
6r′′i
 . According to Lemma 7, if d′=
∑n

=1 ri
 Li
;2 and non-zero coeNcients
ri1 ; ri2 ; : : : ; rin satisfy

n∑

=1

ri
 Li
;1 = 0;

then there exists an integer k4 (if ri1¿0 then k4¿1, else k46−1) such that
ri1 = k4r′i1 :

So, we have

ri1Li1 ;1 = k4r′i1Li1 ;1 =−
n∑

=2
ri
 Li
;1 =−k4

n∑

=2

r′i
 Li
;1 −
n∑

=2
(ri
 − k4r′i
)Li
;1;

where
n∑

=2
(ri
 − k4r′i
)Li
;1 = 0;

because
n∑

=1
r′i
 Li
;1 = 0:

Correspondingly, d′ can be expressed as

d′=
n∑

=1
ri
 Li
;2 = k4r′i1Li1 ;2 +

n∑

=2

ri
 Li
;2 = k4
n∑

=1
r′i
 Li
;2 +

n∑

=2
(ri
 − k4r′i
)Li
;2:

If all the coeNcients (ri
 − k4r′i
) are equal to zero in

n∑

=2
(ri
 − k4r′i
)Li
;2;

G. Jin et al. / Theoretical Computer Science 255 (2001) 449–481 473

then

d′= k4
n∑

=1
r′i
 Li
;2 = k4dn〈Li1 ;1; Li2 ;1; : : : ; Lin;1〉:

Hence, there exist integers k5; k6 such that d′= k4k5dn= k4k5k6d. Let k = k4k5k6, we
have d′= kd. If the coeNcients (ri
−k4r′i
) are not all equal to zero, then the number of
the non-zero coeNcients is less than n but no less than 2. By our inductive hypothesis,
there exists an integer k ′ such that

n∑

=2
(ri
 − k4r′i
)Li
;2 = k ′d:

Let k = k4k5k6 + k ′, we have d′= k4k5k6d+ k ′d=(k4 k5 k6 + k ′)d= kd.

Corollary 1. The set S ′
i; j in DeCnition 7 satisCes

S ′
i; j = {(i′; j′) | i′= i + rg; j′= j + rg′ + kd}

where k and r are integers; (g; g′) is the uniCed staggering parameter in DeCnition 6;
and d is the folding factor computed by Algorithm 1.

From the above result, the tasks in di6erent columns after folding the SRIS with d
are independent. Next, we establish with Theorem 7 that d computed by Algorithm 1
is the largest possible number of independent columns, as the result of aligned folding
the SRIS with a constant number.

Theorem 7. Given (i; j); we have (i; j + d)∈ S ′
i; j.

Proof. According to how d is computed in Algorithm 1, there exist integers r1; r2;
: : : ; rm such that

∑m
i=1 riLi;2 =d and

∑m
i=1 riLi;1 = 0. By the de2nition of S ′

i; j,
(i; j + d)∈ S ′

i; j.

To further simplify the process of the staggering and the folding of the reduced iter-
ation space, the following theorem can be used to replace multiple pairs of staggering
parameters, which are in proportion, with a single pair of staggering parameters.

Theorem 8. Given pairs of staggering parameters (L1;1; L1;2); (L2;1; L2;2); : : : ; (Lm;1;
Lm;2); where (Li1 ;1; Li1 ;2); (Li2 ;1; Li2 ;2); : : : ; (Lip;1; Lip;2) (26p¡m) are the pairs of stag-
gering parameters satisfying

Li1 ;1

Li1 ;2
=

Li2 ;1

Li2 ;2
= · · · = Lip;1

Lip;2
;

474 G. Jin et al. / Theoretical Computer Science 255 (2001) 449–481

there exists an integer r satisfying

p∑

=1

ri
 Li
;1 = rl;

p∑

=1

ri
 Li
;2 = rl
Li1 ;2

Li1 ;1
;

where l=GCD(Li1 ;1; Li2 ;1; : : : ; Lip;1).

Proof. Since l=GCD(Li1 ;1; Li2 ;1; : : : ; Lip;1) and

Li1 ;1

Li1 ;2
=

Li2 ;1

Li2 ;2
= · · · = Lip;1

Lip;2
;

we have

p∑

=1

ri
Li
;1 =

(
p∑

=1
ri

Li
;1

l

)
l;

p∑

=1

ri
Li
;2 =
p∑

=1
ri
Li
;1

Li
;2

Li
;1
=

Li1 ;2

Li1 ;1

p∑

=1

ri
Li
;1 =

(
p∑

=1
ri

Li
;1

l

)
l
Li1 ;2

Li1 ;1
:

Therefore, there exists an integer r=
∑p

=1 ri
Li
;1=l satisfying
∑p

=1 ri
Li
;1 = rl and∑p

=1 ri
Li
;2 = rlLi1 ;2=Li1 ;1.

We now estimate the time needed by the compiler to compute the pairs of staggering
parameters, a pair of uni2ed staggering parameters, and the folding factor. Suppose
there are m reference pairs. The complexity of determining all the pairs of staggering
parameters is O(m). A pair of uni2ed staggering parameters (g; g′) of these pairs of
staggering parameters can be determined in O(m) with the Euclidean Algorithm. Let
m′ be the number of groups of staggering parameter pairs such that all pairs in the
same group are in proportion (m′ is very small in practice). According to Theorem 8,
we only need to consider one representative from each group. The complexity of
Algorithms 1 and 2 for computing the folding factor is C2m′O(2) + C3m′O(3) + · · · +
Cm′

m′O(m′)=O(m′2m
′−1).

3.3. Theorems and proofs for an extended model

The theory we developed in the previous subsection can be extended to more general
cases in which the subscript functions in two dependent references are not necessary
the same. Suppose the following two linear functions

h̃1(i; j; k)= (f1(i; j; k); g1(i; j; k))

and

h̃2(i; j; k)= (f2(i; j; k); g2(i; j; k))

G. Jin et al. / Theoretical Computer Science 255 (2001) 449–481 475

belong to the a pair of dependent references, where

[
ft(i; j; k)
gt(i; j; k)

]
=
[
at;1 bt;1 ct;1 dt;1

at;2 bt;2 ct;2 dt;2

]
i
j
k
1

 (t=1; 2):

Same as in Section 3.2, we denote[
at;1 bt;1 ct;1
at;2 bt;2 ct;2

]
as Ht and

[
xt;1 yt;1

xt;2 yt;2

]
as Hx;y

t ;

with x; y ∈ {a; b; c}. In order to determine which iterations in the reduced iteration
space are dependent due to this reference pair, we consider an aNne transformation

 i
j
k

 =

 /1 0 0
0 /2 0
0 0 /3

 i′

j′

k ′

+

 01
02
03

 ;

such that the linear function h̃2 can be expressed as h̃2(i; j; k)= (f2(i; j; k); g2(i; j; k)),
where[

f2(i; j; k)
g2(i; j; k)

]
=
[
a2;1 b2;1 c2;1 d2;1
a2;2 b2;2 c2;2 d2;2

]

×

 /1 0 0
0 /2 0
0 0 /3

 i′

j′

k ′

+

 01
02
03

T

1

T

=H2

 /1 0 0
0 /2 0
0 0 /3

 i′

j′

k ′

+

 01
02
03

+ [d2;1

d2;2

]

=H2

 /1 0 0
0 /2 0
0 0 /3

 i′

j′

k ′

+ H2

 01
02
03

+ [d2;1

d2;2

]
:

We denote the last expression in the above equations as h̃′2(i
′; j′; k ′). In order to use

the previous results from Section 3.2, we let h̃′2(i
′; j′; k ′) be identical to h̃1(i′; j′; k ′),

which implies

H2

 /1 0 0
0 /2 0
0 0 /3

 =H1

and

H2

 01
02
03

+ [d2;1

d2;2

]
=
[
d1;1
d1;2

]
: (1)

476 G. Jin et al. / Theoretical Computer Science 255 (2001) 449–481

We can now apply the algorithms in Section 3.2 to h̃′2 and h̃1, which yield a pair of
staggering parameters, say (L1; L2). For a given iteration (i′; j′), let (i′′; j′′)= (L1; L2)+
(i′; j′). The iteration (i; j) must have a dependence with (i′′; j′′) before the aNne trans-
formation if and only if the iteration (i′; j′) has a dependence with (i′′; j′′) after the
transformation. We denote the distance between (i; j) and (i′′; j′′) as (L′

1; L
′
2), which

can be calculated as

L′
1 = i′′ − i=(1− /1)i′ + i′′ − i′ − 01 = (1− /1)i′ + L1 − 01;

L′
2 = j′′ − j=(1− /2)j′ + j′′ − j′ − 02 = (1− /2)j′ + L2 − 02

or

L′
1 = i − i′′=(/1 − 1)i′ + i′ − i′′ + 01 = (/1 − 1)i′ + 01 − L1;

L′
2 = j − j′′=(/2 − 1)j′ + j′ − j′′ + 02 = (/2 − 1)j′ + 02 − L2:

such that L′
1 ¿ 0.

If /1
= 1 or /2
= 1, then (L′
1; L

′
2) will not be constant, meaning that the iterations

cannot be aligned with a pair of constant staggering parameters. In common practice,
since loop J is DOALL in our loop nest model, the two linear functions h̃1 and h̃2
will have the same coeNcients for loop index variables I and J , which implies that
/1 = /2 = 1. In this paper, we will consider the case of /1 = /2 = 1 only. We now have

L′
1

/1=1= L1 − 01;

L′
2

/2=1= L2 − 02

or

L′
1

/1=1= 01 − L1;

L′
2

/2=1= 02 − L2:

Given (01; 02) 2xed, L′
1 and L′

2 are two constants. We de2ne (L
′
1; L

′
2) as a pair of

staggering parameters in this case.
If Eq. (1) has a unique solution for (01; 02), then we have a unique pair of staggering

parameters (L′
1; L

′
2). On the other hand, if there exist multiple solutions for (01; 02),

then the following theorem shows that under certain conditions, (L′
1; L

′
2) determined by

di6erent (01; 02) should be in proportion.

Theorem 9. Assume /1 = /2 = 1. If the pair of staggering parameters (L1; L2) of the
subscript function h̃1 after the aBne transformation is a solution for (01; 02) in
Eq. (1); then (L′

1; L
′
2); which is equal to (01 − L1; 02 − L2) if 01 − L1 ¿ 0; or to

(L1 − 01; L2 − 02) if L1 − 01 ¿ 0; is in proportion with (L1; L2); for any solution
(01; 02; 03) of Eq. (1).

G. Jin et al. / Theoretical Computer Science 255 (2001) 449–481 477

Proof. Since (L1−01; L2−02) is in proportion with (01−L1; 02−L2), we only prove
that (01 − L1; 02 − L2) is in proportion to (L1; L2), supposing that 01 − L1 ¿ 0. Every
solution to Eq. (1) can be written as

 01
02
03

 =

 11
12
13

+

 L1

L2
Qk

 ;

where (11; 12; 13) is a solution of the homogeneous system associated with Eq. (1),
that is

H2

 11
12
13

 = 0:

So, if det Hb; a
1
=0, we have

11 =
det Hc; b

2

det Hb; a
2

13 =
1
/3

det Hc; b
1

det Hb; a
1

13;

12 =
det Ha; c

2

det Hb; a
2

13 =
1
/3

det Ha; c
1

det Hb; a
1

13:

Suppose L2 =L1 = 0. We have det Ha; c
1 = 0 and det Hc; b

1 = 0. Therefore 02−L2 = 12 = 0
and 01 − L1 = 11 = 0. If L2 = 0 and L1
=0, then we have det Ha; c

1 = 0, and hence
02 − L2 = 12 = 0. If L2
=0, according to De2nition 4, we have

01 − L1
02 − L2

=
11
12
=

det Hc; b
1

det Ha; c
1
=

L1
L2

:

For the case of det Hb; a
1 = 0, as in Theorem 2, we have: (1) a1;111 + b1;112 = 0 for

a1;1
=0; (2) a1;211 + b1;212 = 0 for a1;2
=0; (3) 12 = 0 for a1;1 = a1;2 = 0. Therefore,
according to De2nition 4, we also have (11; 12) in proportion with (L1; L2). So (01 −
L1; 02 − L2) and (L1 − 01; L2 − 02) are in proportion with (L1; L2). Therefore (L′

1; L
′
2)

is in proportion with (L1; L2).

If the condition in Theorem 9 is met, we choose (L′
1; L

′
2)= (L1=GCD(L1; L2); L2=

GCD(L1; L2)) as the pair of staggering parameters for the reference pair h̃1 and h̃2.
Table 3 shows examples of staggering parameters for di6erent subscript functions

appearing in the dependent reference pair, where the loop index variables are listed
in the order from the outermost loop level to the innermost. If we simultaneously
consider two reference pairs: A(I; J) with A(I − 3; J − 1), and B(I; J) with B(I −
1; J − 3), then the task Ti; j will share the same array element A(i; j) with task Ti+3; j+1

and the same array element B(i; j) with task Ti+1; j+3. Using Theorem 9, the pairs of
staggering parameters (L′

1; L
′
2) for these two pairs of array references are (3,1) and

(1,3), respectively. A uni2ed pair of staggering parameters and the folding factor are
calculated as (g; g′)= (1; 3) and d=8.

478 G. Jin et al. / Theoretical Computer Science 255 (2001) 449–481

Table 3
Examples of di6erent functions in the same dependent reference pair

Loop nest Dependent reference pair (̃h1; h̃2) (01; 02) (L1; L2) (L′1; L
′
2)

(I; J; K) A(I; J); A(I − 3; J − 1) (3,1) (0,0) (3,1)
(I; J; K) B(I; J); B(I − 1; J − 3) (1,3) (0,0) (1,3)
(I; J; K) A(J + K; I + J); A(J + K + c; I + J) (d;−d); d∈ I (1;−1) (1;−1)

4. Related work

The work by Peir and Cytron [31], Shang and Fortes [33], and by D’Hollander [9]
share the common goal of partitioning an index set into independent execution subsets
such that the corresponding loop iterations can execute on di6erent processors without
interprocessor communication. Their methods apply to a speci2c type of loop nest called
a uniform recurrence or a uniform dependence algorithm, in which the loops are per-
fectly nested, the loop bounds are constant, the loop-carried dependences have constant
distances, and the array subscripts are of the form i+ c, where i is a loop index and c
an integer constant. Hudak and Abraham [1, 18] develop a static partitioning approach
called adaptive data partitioning (ADP) to reduce interprocessor communication for
iterative data-parallel loops. They also assume perfectly nested loops. The loop body is
restricted to update a single data point A(i; j) within a two-dimensional global matrix
A. The subscript expressions of right-hand side array references are restricted to be
the sum of a parallel loop index and a small constant, while the subscript expressions
of left-hand array references are restricted to contain the parallel loop indices only.
Tomko and Abraham [35] develop iteration partitioning techniques for data-parallel
application programs. They assume that there is only one pair of data access functions
and that each loop index variable can appear in only one dimension of each array
subscript expression. Agarwal et al. [3] propose a framework for automatically par-
titioning parallel loops to minimize cache coherence traNc on shared-memory multi-
processors. They restrict their discussion to perfectly nested doall loops. They assume
rectangular iteration spaces. Unlike these previous works, our work considers nested
loops which are not necessarily perfectly nested. Loop bounds can be any variables,
and array subscript expressions are much more general. Many researchers have studied
the cache false sharing problem in which cache thrashing occurs when di6erent pro-
cessors share the same cache line of multiple words, although the processors do not
share the same word [10, 17, 19, 36]. Many algorithms have been proposed to reduce
false sharing by better memory allocation, better task scheduling, or by program trans-
formations. Our work considers cache thrashing which is due to the true sharing of
data words.
Kelly and Pugh presented a framework for unifying iteration reordering transforma-

tions [25]. Within their framework, transformations are represented as mappings from
the original iteration space to a new iteration space. Based on data dependences in
a loop nest, a search tree of legal mappings is de2ned [26]. Guided by performance

G. Jin et al. / Theoretical Computer Science 255 (2001) 449–481 479

estimators, a mapping with minimum cost is then selected for each statement to achieve
better performance [24]. Locality is quanti2ed by the number of cache misses based on
self reuse. However, in this framework, they do not consider data reuses between con-
secutive executions of the same parallel loop and hence they do not consider alignment
of parallel tasks created by nested loops. In contrast, our work focuses on data reuses
between consecutive executions of the same parallel loop and we align parallel tasks to
reduce cache thrashing due to true data sharing. Therefore, our work is complementary
to their work.
Our work is most closely related to the research done by Fang and Lu [11, 12, 29, 13].

In their work, the iteration space is partitioned into a set of equivalence classes, and
each processor uses a formula to determine which iterations belong to the same equiva-
lence class at execution time. Each processor then executes the corresponding iterations
so as to reduce or eliminate cache thrashing. These iterations are the solution vectors
of a linear integer system. In Fang and Lu’s work, these vectors may either be com-
puted at run time or may be precomputed and later retrieved at run time when loop
bounds are known before execution. Both approaches require additional execution time
when a processor fetches the next iteration. Unlike Fang and Lu’s approaches, we solve
the thrashing problem at compile time to reduce run-time overhead, while we achieve
the same e6ect of reducing cache thrashing. Our new method restructures the loops
at compile time and it is based on a thorough analysis of the relationship between
the array element accesses and the loop indices in the nested loop. Previous experi-
mental results conducted on a commercial multiprocessor, namely a Silicon Graphics
Challenge Cluster, showed that our technique is quite e6ective for the reduction and
elimination of cache thrashing due to true sharing.

5. Conclusions

This paper presents a method with which the reduced iteration space is rearranged by
loop staggering and aligned processor folding. The nested loop (either perfectly nested
or imperfectly nested) is restructured to reduce or even eliminate cache thrashing due to
true data sharing. This method can be eNciently implemented in any parallel compiler.
Although the analysis per se is based on a simple machine model, the resulting code
executes correctly on more complex models. Our previous experimental results show
that the transformed code can perform quite well on a real machine [21]. How to extend
the techniques proposed in this paper to incorporate additional machine parameters is
interesting future work.

References

[1] S. Abraham, D. Hudak, Compile-time partitioning of iterative parallel loops to reduce cache coherence
traNc, IEEE Trans. on Parallel Distributed Systems 2 (3) (1991) 318–328.

[2] W. Abu-Sufah, D. Kuck, D. Lawrie, On the performance enhancement of paging systems through
program analysis and transformations, IEEE Trans. Comput. C-30 (5) (1981) 341–356.

480 G. Jin et al. / Theoretical Computer Science 255 (2001) 449–481

[3] A. Agarwal, D. Kranz, V. Natarajan, Automatic partitioning of parallel loops and data arrays for
distributed shared-memory multiprocessors, IEEE Trans. Parallel Distributed Systems 6 (9) (1995) 943–
962.

[4] J.R. Allen, K. Kennedy, Automatic loop interchange, Proc. SIGPLAN’84 Symp. on Compiler
Construction, Montreal, Canada, June 1984.

[5] J. Baer, W. Wang, Multilevel cache hierarchies: organizations, protocols, and performance, J. Parallel
Distributed Comput. 6 (1989) 451–476.

[6] U. Banerjee, Dependence Analysis for Supercomputing, Kluwer, Dordrecht, 1988.
[7] D. Callahan, S. Carr, K. Kennedy, Improving register allocation for subscripted variables, in Proc. ACM

SIGPLAN’90 Conf. on Programming Languages Design and Implementation, June 1990.
[8] S. Carr, K. Kennedy, Compiling scienti2c code for complex memory hierarchies, Proc. Hawaii Internat.

Conf. on System Sciences, 1991, pp. 536–544.
[9] E. D’Hollander, Partitioning and labeling of loops by unimodular transformations, IEEE Trans. Parallel

Distributed Systems 3(4) (1992) 465–476.
[10] S.J. Eggers, T.E. Jeremiassen, Eliminating false sharing, Proc. 1991 Internat. Conf. on Parallel

Processing, August 1991.
[11] J. Fang, M. Lu, A solution of cache ping-pong problem in RISC based parallel processing systems,

Proc. 1991 Internat. Conf. on Parallel Processing, August 1991.
[12] Z. Fang, Cache or local memory thrashing and compiler strategy in parallel processing systems, Proc.

1990 Internat. Conf. on Parallel Processing, August 1990, pp. 271–275.
[13] J. Fang, M. Lu, An iteration partition approach for cache or local memory thrashing on parallel

processing, IEEE Trans. Comput. C-42 (1993) 529–546.
[14] M. Galles, E. Williams, Performance optimizations, implementation, and veri2cation of the SGI

Challenge multiprocessor, Proc. 27th Ann. Hawaii Internat. Conf. on System Sciences, 1994.
[15] K. Gallivan, W. Jalby, D. Gannon, On the problem of optimizing data transfers for complex memory

systems, Proc. Supercomputing ’88, 1988, pp. 238–253.
[16] D. Gannon, W. Jalby, K. Gallivan, Strategies for cache and local memory management by global

program transformation, J. Parallel Distributed Comput. 5 (1988) 587–616.
[17] M. Gupta, D. Padua, E6ects of program parallelization and stripmining transformation on cache

performance in a multiprocessor, Proc. 1991 Internat. Conf. on Parallel Processing, August 1991.
[18] D. Hudak, S. Abraham, Compiler techniques for data partitioning of sequentially iterated parallel loops,

Proc. ACM Internat. Conf. on Supercomputing, 1990, pp. 187–200.
[19] T.E. Jeremiassen, S.J. Eggers, Reducing false sharing on shared memory multiprocessors through

compile-time data transformations, Proc. 5th ACM SIGPLAN Symp. on Principals and Practice of
Parallel Programming, 1995, pp. 179–188.

[20] G. Jin, F. Chen, The design and the implementation of a knowledge-based parallelizing tool, Proc. 2nd
IES Inform. Technol. Conf., July 1991, Singapore.

[21] G. Jin, Z. Li, F. Chen, An eNcient solution to the cache thrashing problem caused by true data sharing,
IEEE Trans. Comput. 47 (5) (1998) 527–543.

[22] G. Jin, F. Chen. Loop restructuring techniques for the thrashing problem, Proc. 1992 Internat. Conf. on
Parallel Architectures and Languages Europe, 1992.

[23] G. Jin, X. Yang, F. Chen, Loop staggering, loop staggering and loop compacting: restructuring
techniques for the thrashing problem, Proc. 1991 Internat. Conf. on Parallel Processing, August 1991.

[24] W. Kelly, W. Pugh, Determining schedules based on performance estimation, Technical Report
CS-TR-3108, University of Maryland, April 1993.

[25] W. Kelly, W. Pugh, A framework for unifying reordering transformations. Technical Report
CS-TR-3193, University of Maryland, April 1993.

[26] W. Kelly, W. Pugh, Finding legal reordering transformations using mapping. Technical Report
CS-TR-3297, University of Maryland, June 1994.

[27] D. Kuck. The Structure of Computers and Computations, vol. 1, Wiley, New York, 1978.
[28] D. Kuck, R. Kuhn, D. Padua, B. Leasure, M. Wolfe, Dependence graphs and compiler optimizations,

Proc. 8th ACM Symp. on Principle of Programming Languages (POPL), 1981.
[29] M. Lu, J. Fang, A solution of the cache ping-pong problem in multiprocessor systems, J. Parallel

Distributed Comput. 16 (1992) 158–171.
[30] I. Nivan et al. An Introduction to the Theory of Numbers, 4th ed., Wiley, New York, 1980.

G. Jin et al. / Theoretical Computer Science 255 (2001) 449–481 481

[31] J. Peir, R. Cytron, Minimum distance: a method for partitioning recurrences for multiprocessors, IEEE
Trans. Comput. C-38 (1989) 1203–1211.

[32] C.D. Polychronopoulos, D. Kuck, Guided self-scheduling: a practical scheduling scheme for parallel
supercomputers, IEEE Trans. Comput. C-36 (1987) 1425–1439.

[33] W. Shang, J. Fortes, Time optimal linear schedules for algorithms with uniform dependencies, IEEE
Trans. Comput. C-40 (1991) 723–742.

[34] Z. Shen, Z. Li, P.-C. Yew, An empirical study of Fortran programs for parallelizing compilers, IEEE
Trans. Parallel Distributed Systems 1 (3) (1990) 356–364.

[35] K. Tomko, S. Abraham, Iteration partitioning for resolving stride conUicts on cache-coherent
multiprocessors, Proc. 1993 Internat. Conf. on Parallel Processing, August 1993.

[36] J. Torrellas, M.S. Lam, J.L. Hennessy, False sharing and spatial locality in multiprocessor caches, IEEE
Trans. Comput. C-43 (1994) 651–663.

[37] M. Wolf, M. Lam, A data locality optimizing algorithm, Proc. ACM SIGPLAN’91 Conf. on Program
Language Design and Implementation, June 1991.

[38] M. Wolfe, More iteration space tiling, Proc. Supercomputing’89, 1989.

