

American Institute of Aeronautics and Astronautics

1

Parallelization of a Six Degree of Freedom Entry Vehicle

Trajectory Simulation Using OpenMP and OpenACC

Justin S. Green* and R. Anthony Williams†

NASA Langley Research Center, Hampton, Virginia, 23681

 Julian Gutierrez‡

Northeastern University, Boston, Massachusetts, 02115

The art and science of writing parallelized software, using methods such as Open Multi-

Processing (OpenMP) and Open Accelerators (OpenACC), is dominated by computer

scientists. Engineers and non-computer scientists looking to apply these techniques to their

project applications face a steep learning curve, especially when looking to adapt their original

single threaded software to run multi-threaded on graphics processing units (GPUs). There

are significant changes in mindset that must occur; such as how to manage memory, the

organization of instructions, and the use of if statements (also known as branching).

The purpose of this work is twofold: 1) to demonstrate the applicability of parallelized

coding methodologies, OpenMP and OpenACC, to tasks outside of the typical large scale

matrix mathematics; and 2) to discuss, from an engineer’s perspective, the lessons learned

from parallelizing software using these computer science techniques. This work applies

OpenMP, on both multi-core central processing units (CPUs) and Intel® Xeon Phi™ 7210, and

OpenACC on GPUs. These parallelization techniques are used to tackle the simulation of

thousands of entry vehicle trajectories through the integration of six degree of freedom (DoF)

equations of motion (EoM). The forces and moments acting on the entry vehicle, and used by

the EoM, are estimated using multiple models of varying levels of complexity.

Several benchmark comparisons are made on the execution of six DoF trajectory

simulation: single thread Intel® Xeon® E5-2670 CPU, multi-thread CPU using OpenMP,

multi-thread Xeon Phi™ 7210 using OpenMP, and multi-thread NVIDIA® Tesla® K40 GPU

using OpenACC. These benchmarks are run on the Pleiades Supercomputer Cluster at the

National Aeronautics and Space Administration (NASA) Ames Research Center (ARC), and

a Xeon Phi™ 7210 node at NASA Langley Research Center (LaRC).

Nomenclature

𝐸𝑃 = Euler Parameters transformation matrix

[𝐹𝑥, 𝐹𝑦, 𝐹𝑧] = vector of total forces acting on the entry vehicle in the body coordinate system

I𝐵 = moments and products of inertia matrix of the entry vehicle about its center of mass

𝑚 = entry vehicle mass

[𝑀𝑥, 𝑀𝑦 , 𝑀𝑧] = vector of total moment acting on the entry vehicle in the body coordinate system

𝑁𝐿𝐶 = number of logical cores on the hardware

* Doctoral Candidate, Dept. of Mechanical and Aerospace Engineering, University of Virginia, Charlottesville, VA,

22903.

Aerospace Engineer, Atmospheric Flight and Entry Systems Branch, NASA Langley Research Center, Hampton, VA,

23681.
† Doctoral Candidate, Dept. of Mathematics and Statistics, Old Dominion University, Norfolk, Va, 23529.

Research Computer Scientist, High Performance Computing Incubator and Atmospheric Flight and Entry Systems

Branch, NASA Langley Research Center, Hampton, VA, 23681.
‡ Pre-Doctoral Candidate, Dept. of Electrical and Computer Engineering, Northeastern University, Boston, MA,

02115.

https://ntrs.nasa.gov/search.jsp?R=20200002503 2020-05-24T04:45:26+00:00Z
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NASA Technical Reports Server

https://core.ac.uk/display/323103948?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

American Institute of Aeronautics and Astronautics

2

𝑁𝑆𝑇 = number of concurrently supported threads per processor

𝑁𝑇 = number of threads
[𝑝, 𝑞, 𝑟] = components of the entry vehicle’s rotation rate vector in the body coordinate system

R = Distance from planet center

T𝐼𝐵 = rotation matrix transforming a vector from body to planet-fixed coordinate system

tp = software data structure that holds vehicle specific data
[𝑢, 𝑣, 𝑤] = entry vehicle velocity vector at entry vehicle center of mass in the body coordinate system
[𝑥, 𝑦, 𝑧] = body coordinate system axes
[𝑋𝑃 , 𝑌𝑃 , 𝑍𝑃] = planet-fixed coordinate system axes
[𝜀0, 𝜀1, 𝜀2, 𝜀3] = quaternions specifying the body coordinate system in the planet-fixed coordinate system.

Ω = rotation rate matrix in the body coordinate system

I. Introduction

ypical applications for graphics processing units (GPUs) require repeated large matrix mathematics. These

applications include, but are not limited to, computer graphics, visual data processing, computational fluid

dynamics, and finite element methods. As general purpose graphics processing units become more common, other

scientific computing applications are looking to take advantage of their processing power. The authors Slegers, Brown,

and Rogers applied GPUs to evaluate a kinematic model of a ram air parafoil system for use by an onboard guidance

system1. As more non-computer scientists look to apply GPUs to their research, they will be faced with a steep learning

curve. Adapting single-threaded software to run on multi-threaded GPUs requires non-trivial changes in mindset, such

as: how to manage memory, the organization of instructions, and the use of if statements (also known as branching).

 The purposes of this work are: 1) to demonstrate the applicability of directive-based parallelization strategies,

Open Multi-Processing (OpenMP) and Open Accelerators (OpenACC), to tasks outside of the typical large scale

matrix mathematics; and 2) to discuss, from an engineer’s perspective, the lessons learned from parallelizing software

using these computer science techniques. This work applies OpenMP on multi-core central processing units (CPUs)

and OpenACC on GPUs. These parallelization techniques are used to accelerate the simulation of thousands of entry

vehicle trajectories through the integration of six degree of freedom (DoF) equations of motion (EoM). The forces and

moments acting on the entry vehicle, and used by the EoM, are estimated using multiple models of varying levels of

complexity.

 The motivation for this work is to determine the applicability of OpenMP and OpenACC for use in the Program

to Optimize Simulated Trajectories – II (POST2). The POST2 software, developed at the NASA Langley Research

Center (LaRC), is a generalized rigid body trajectory simulation program, and has “the capability to target and

optimize point mass trajectories for multiple powered or unpowered vehicles near an arbitrary rotating, oblate planet”2.

POST2 has been utilized for many NASA missions from Shuttle, to the Mars Science Laboratory (MSL) and the Space

Launch System (SLS). During mission studies and operations, POST2 is utilized for Monte Carlo simulation analyses,

which typically simulate 8000 trajectories, although as many as 100,000 trajectories are run. These Monte Carlo

simulations are run and rerun throughout the lifetime of a study or mission. Currently, these Monte Carlo simulations

are implemented through Message Passing Interface (MPI), which sends a copy of the POST2 executable along with

needed simulation data to clusters of CPU nodes. Depending on the sophistication of the trajectory, these Monte Carlo

simulations can take on the order of hours to days to complete. The six DoF trajectory simulation used in this research

serves as a proxy for POST2. The six DoF trajectory simulation is simpler and less capable than POST2, but it does

emulate many of the same software practices and constraints.

 Section II of this paper provides details of the hardware used in this research. Section III discusses the coding

framework and EoM used by the software to describe entry vehicle’s trajectory. Section IV presents the lessons learned

for implementing OpenMP and OpenACC. Section V presents the execution time comparisons between the different

implementations of the software. Section VI wraps up the research by discussing final conclusions and future work.

II. Targeted Hardware

Benchmarking of the six DoF trajectory simulation software is conducted on two compute nodes: The National

Aeronautics and Space Administration (NASA) Ames Research Center (ARC) Pleiades Supercomputer Cluster and a

NASA Langley Research Center (LaRC) node with a Xeon Phi™ 7210 processor (also referred to as Knights Landing

or KNL). At Pleiades, the available GPU-enhanced nodes utilize two Intel® Xeon® E5-2670 (Sandy Bridge) host

processors connected to an NVIDIA® Tesla® K40 GPU. The NASA LaRC node uses an Intel® Xeon Phi™ 7210

processor. Table 1 provides details of the hardware used in the benchmarking.

T

American Institute of Aeronautics and Astronautics

3

Table 1. Hardware specifications3,4,5,6,7.

 NASA Ames Pleiades Supercomputer NASA LaRC Node

Hardware
Intel® Xeon® E5-

2670 (Sandy Bridge)

NVIDIA® Tesla®

K40
Xeon Phi™ 7210

Label Used in Paper CPU GPU KNL

Manufacturer Launch Year 2012 2013 2016

Number of Processor Cores 16 (Two 8-core) 2880 64

Number of Threads

Supported Per Core
2 1 4

Processor Speed [GHz] 2.6 0.745 1.3

Total L2 Cache [MB] 40 (20 per 8 cores) 1.536 32

Memory Size [GB] 64 (32 per 8 cores) 12 128

Memory Bandwidth [GB/s] 51.2 288 102

III. Six DoF Trajectory Simulation Software

B. Software Construction

As discussed earlier, the six DoF trajectory simulation software serves as a proxy for studying the applicability of

OpenMP and OpenACC for use in POST2. Like POST2, the six DoF trajectory simulation is written in C. However,

it is comprised of less than 1500 lines of code, vs the hundreds of thousands to millions of lines of code in POST2.

The six DoF trajectory simulation utilizes a four step Runge-Kutta integration scheme to integrate 13 EoM, which

define the flight of a single rigid entry vehicle operating at Mars8. The software is able to simulate a number of

independent trajectories in succession; the number of which is dictated by the user. The software is built to be modular,

which is another feature of POST2, to allow models to be inserted and removed as needed. Representative pseudocode

is provided in the Appendix to help outline the flow of the simulation software.

The six DoF trajectory software begins by reading a text file of initial states and engine throttle profiles for each

trajectory to be simulated. All vehicle specific variables are saved into the data structure, tp. Then the software enters

the loops that iterate over the number of trajectories and time integration. The Runge-Kutta integration routine calls

the main trajectory function, which contains the models needed to estimate the forces and moments acting on the

vehicle and the equation of motion model. The equation of motion model computes the 13 state variables used to

define the vehicle’s position, orientation, and velocities relative to the planet’s surface (planet coordinate frame).

C. Equations of Motion

The vehicle is defined relative to a flat non-rotating planet. The kinematic EoM are split into three equations

relating the vehicle’s position, and four equations defining the orientation (through quaternions) of the vehicle in the

planet coordinate frame. They are defined as

[

�̇�𝑃

�̇�𝑃

�̇�𝑃

] = [T𝐼𝐵] [
𝑢
𝑣
𝑤

] (1)

[

𝜀0̇

𝜀1̇

𝜀2̇

𝜀3̇

] =
1

2
[𝐸𝑃] [

𝑝
𝑞
𝑟

] (2)

where the rotation matrix, 𝑇IB, transforms vectors from the body coordinate system to the planet fixed coordinate

system and is defined as

[𝑇IB] = [

𝜀0
2 + 𝜀1

2 − 𝜀2
2 − 𝜀3

2 2(𝜀1𝜀2 − 𝜀3𝜀0) 2(𝜀1𝜀3 + 𝜀2𝜀0)

2(𝜀1𝜀2 + 𝜀3𝜀0) 𝜀0
2 − 𝜀1

2 + 𝜀2
2 − 𝜀3

2 2(𝜀2𝜀3 − 𝜀1𝜀0)

2(𝜀1𝜀3 − 𝜀2𝜀0) 2(𝜀2𝜀3 + 𝜀1𝜀0) 𝜀0
2 − 𝜀1

2 − 𝜀2
2 + 𝜀3

2

] (3)

American Institute of Aeronautics and Astronautics

4

The Euler Parameters transformation matrix, 𝐸𝑃, is

[𝐸𝑃] = [

−𝜀1 −𝜀2 −𝜀3

𝜀0 −𝜀3 𝜀2
𝜀3

−𝜀2

𝜀0

𝜀1

−𝜀1

𝜀0

] (4)

Figure 1. Position of the vehicle’s center of mass in the planet coordinate frame. Note 𝒁𝑷 is negative as shown.

Image credit: Juan R. Cruz, NASA LaRC.

Six kinetic EoM, defined by Newton’s 2nd Law and Euler’s equations, express the vehicle’s velocity and rotational

rates in the vehicle body frame. They are defined as

𝑚 ([
�̇�
�̇�
�̇�

] + [Ω] [
𝑢
𝑣
𝑤

]) − [

𝐹𝑥

𝐹𝑦

𝐹𝑧

] = [
0
0
0

] (5)

[I𝐵] [
�̇�
�̇�
�̇�

] + [Ω][I𝐵] [
𝑝
𝑞
𝑟

] − [

𝑀𝑥

𝑀𝑦

𝑀𝑧

] = [
0
0
0

] (6)

where the rotation about the body coordinate system is

[Ω] = [

0 −𝑟 𝑞
𝑟 0 −𝑝

−𝑞 𝑝 0
] (7)

and the moments and products of inertia matrix, I𝐵, is defined as

[I𝐵] = [

𝐼𝑥𝑥 −𝐼𝑥𝑦 −𝐼𝑥𝑧

−𝐼𝑥𝑦 𝐼𝑦𝑦 −𝐼𝑦𝑧

−𝐼𝑥𝑧 −𝐼𝑦𝑧 𝐼𝑧𝑧

] (8)

Figure 2. Definition of the vehicle’s state variables in the vehicle body frame. Image credit: Juan R. Cruz, NASA

LaRC.

American Institute of Aeronautics and Astronautics

5

 The forces and moments feeding into the EoM are estimated through several models, which include: gravitational

and propulsive (which also require an atmospheric model). The gravity model is a simple 1/𝑅2 model. The Mars

atmospheric model is an exponential curve fit of a Mars Global Reference Atmosphere Model (Mars-GRAM) 2010

model9. The propulsive model takes a time varying throttle profile for multiple forward facing descent engines to

estimate the total propulsive forces and moments.

IV. Conversion from Single Threaded to Multi-Threaded

The six DoF trajectory simulation software is designed to simulate multiple independent trajectories per execution,

which marks the loop covering those trajectories as embarrassingly parallel. Parallelizing this section of code makes

each trajectory execute using a separate and unique thread. In parallelizing the software, the most notable changes

made were the organization of memory, mitigation of code branching, and the inclusion of the OpenMP and OpenACC

calls themselves. As the software is discussed in this section, please refer to the Appendix.

Parallelization over GPUs requires significantly more effort than CPUs and KNLs. Additionally, many of the

changes that optimize the operation of the software on GPUs also benefit the CPU and KNL multi-threaded

implementations.

A. Open Multi-Processing

Parallelization over CPUs and KNLs using OpenMP is relatively quick and simple to implement. With each

compute core able to operate independently, they can easily handle code branching that typically occurs through if

statements. In the software, implementing a #pragma omp parallel for directive directly above the trajectory for loop

indicates to the compiler the for loop to be parallelized. After implementing this call, the next consideration is to

ensure that each trajectory thread does not overwrite the data used by another compute core. The data structure tp

contains all of the pertinent data for a given trajectory. Separating the memory for each thread was performed using

the data clause private(tp). These changes along with the compiler flag (-omp for pgcc, –fopenmp for gcc, or –qopenmp

for icc) can be implemented quickly and provide a powerful improvement in computational time.

Lastly, it is important to set the number of threads to be used by the OpenMP enabled software. This setting is

done by setting the environment variable OMP_NUM_THREADS=𝑁𝑇, where 𝑁𝑇 is the number of desired threads.

Depending on the application, this number can be set to equal or more/less than the number of logical cores supported

by the hardware. The number of logical cores, 𝑁𝐿𝐶, is defined here as

𝑁𝐿𝐶 = 𝑁𝑃𝑁𝑆𝑇 (9)

where 𝑁𝑃 is the number of processors, and 𝑁𝑆𝑇 is the number of supported threads per processor. There are never more

than 𝑁𝐿𝐶 cores operating concurrently, and thus only 𝑁𝐿𝐶 threads can be active at any given time. However, depending

on the memory access and level of input/output needed, setting 𝑁𝑇 > 𝑁𝐿𝐶 may yield an improved execution time as

shown by Bienia et al.10,§. Figure 3 investigates the ideal number of threads. The legend is organized as follows:

Architecture – Parallelization Strategy – Compiler. For both the CPU and KNL hardware, it was best to set 𝑁𝑇 = 𝑁𝐿𝐶 .
For the Intel Xeon E5-2670 hardware the optimal number of threads is 32. For the Xeon Phi 7210 the optimal number

of threads is 256.

§ The maximum number of concurrent threads operating is equal to the number of logical cores. If the number of

desired threads is set greater than the number of logical cores, then some threads will be paused as others are executing.

This behavior may be desireable, if latencies due to memory access and input/output require a significant number of

clock cycles.

American Institute of Aeronautics and Astronautics

6

Figure 3: Investigation into the effect the number of threads has on the software execution time. Each mark

represents the average obtained through 5 iterations at each testing point, and shaded regions mark the range

of results.

B. Open Accelerators

As discussed earlier in this paper, implementing software onto GPUs requires significantly more effort than for

CPUs. Adapting the six DoF trajectory simulation software to run on GPU hardware occurred through two main

generations. The first generation focused on the inclusion of the OpenACC #pragma statements and the modification

of the software’s execution. The second generation investigated the software’s usage of the GPU and efforts into

improving memory organization.

1. Initial Implementation onto the Graphics Processing Unit

The implementation of the OpenACC parallelization strategy for GPU operation is similar to OpenMP in its use

of #pragma statements. However, in OpenACC these #pragma statements tell the CPU when and where in the

software to engage the GPU hardware. This engagement necessitates careful handling of data passing to, from, or

generated on, the GPU. Much like with OpenMP, OpenACC utilizes a #pragma acc parallel loop directive directly

above the trajectory for loop, which is parallelized using the GPU hardware. However, unlike OpenMP, OpenACC

utilizes #pragma acc data clauses, which control the flow of data between the GPU and the CPU. Specifically, the

copyin statement is used to pass data from the CPU to the GPU, and the create statement is used to create the tp data

structure on the GPU.

Branching within a software will cause significant penalties to execution time. Running on the Pleiades nodes, the

OpenACC implementation of the six DoF trajectory simulation that included branching ran approximately 10X slower

than the single threaded version. Originally, the atmospheric model was controlled through three nested if statements.

The trajectory simulation is focused on a powered descent vehicle, which places the vehicle lower in the Martian

atmosphere. This placement allowed for the atmospheric model to be simplified and removed the branching.

2. Improving the Usage of the Graphics Processing Unit

After enabling the six DoF trajectory simulation software to run on the GPU and obtaining all the time integrated

data to be returned to the CPU, the software was analyzed using profiler tools. For this work, the NVIDIA Profiler

(NVPROF) and the NVIDIA Visual Profiler (NVVP) were utilized. Through these profilers, two main areas for

improvement were identified using these profilers: utilization and occupancy of the GPU.

Utilization can be analyzed for the compute and/or the memory bandwidth resources, and is a percentage of the

amount of resources used to the total available11. Through NVPROF, the six DoF trajectory simulation was found to

have a compute utilization of 15%, and a memory utilization of 55%. Of the compute resources used by the simulation

American Institute of Aeronautics and Astronautics

7

software, the majority was dedicated to memory operations. This result indicates the six DoF trajectory simulation

software is limited by the performance of the memory architecture in latency and bandwidth. Based on these results,

an attempt was made to improve the memory usage within the software by: decreasing the amount of memory used

by the software and restructuring the data to improve memory access (known as memory coalescing).

To decrease the memory burden, it was necessary to refine how the data was structured. This data restructuring

involved the removal of redundant or constant variables from the tp data structure. Additionally, for the original single

threaded version of the six DoF trajectory simulation it was convenient to keep all pertinent data packaged within two

separate but similar data structures. These two structures were used for the four step Runge-Kutta integration scheme;

the first was used for the outer loop integration, and the second was used for the inner loop integration. Using two

data structures created a larger than needed data transfer overhead for the OpenACC version. The inner loop data

structure was replaced with a small array to store the current state variables. The removal of unneeded variables and

the redundant data structure saved approximately 3.608 KB per trajectory; the current size of the data structure is

3.176 KB. Further data structure improvements involved reorganizing the variables inside. Originally, variables were

ordered alphabetically. Changing the order to be based on spatial data locality (variables used in the same functions

are put closer together) increased the efficiency of memory access. The overhaul of the data structure improved the

execution time by 5%.

To address the local memory overhead concern, significant code redesign was required. Proper memory coalescing

from RAM memory is required for efficient memory bandwidth usage. The GPU exposes efficient coalescing when

the data used per thread is stored contiguously in a structure of arrays (SOA) instead of an array of structures (AOS).

The initial GPU implementation of the software stored data in an AOS, which was stored in local memory. Data stored

in this way caused a 99.5% local memory overhead, meaning most memory operations are local memory related,

which results in a high L1 cache utilization, creating congestion and possibly thrashing of data in the L1 cache**.

Additionally, storing data inside of local memory on the GPU did not allow for the full time history of integrated data

to be sent back to the CPU; only data at the conclusion of the simulation could be returned. To help reduce the local

memory overhead, data was moved into global memory and into a SOA. To do this, one more dimension was added

to each variable in the tp data structure, which is used to index the trajectories. The added dimension is in the first

index of each array to be able to coalesce the reads from global memory efficiently.

The initial GPU implementation of the software called the integration loop inside the parallelized trajectory loop.

Moving the time integration loop outside of the parallelized trajectory loop allows data to be copied from the GPU to

the CPU at every time step using the pragma update clause.

After the above improvements to memory access, compute and memory bandwidth utilization is still an issue for

the software. Figure 4, from NVVP, shows the GPU utilization by the six DoF trajectory simulation software, which

shows memory bandwidth is

still an issue. Table 2

compares the NVIDIA Tesla

K40, used in this study, with

newer GPU hardware. Given

that the six DoF trajectory

simulation software is

memory bound, the increase

in the memory capabilities of

the new hardware should

improve the compute

utilization of the GPU

hardware, thus improving

the execution time.

** When a level of cache memory is exhausted, the cache will evict older data to lower level cache as new data is read

in. If this older data is later required, then it must be read back into the cache memory. Cache thrashing occurs when

data is constantly (and possibly indefinitely) exchanged back and forth between different cache memory levels, which

results in slower performance13.

Figure 4: GPU utilization report from the NVIDIA Visual Profiler.

American Institute of Aeronautics and Astronautics

8

Table 2: GPU hardware comparisons12.

NVIDIA® Tesla®

K40

NVIDIA® Tesla®

P100

NVIDIA® Tesla®

V100

Manufacturer Launch Year 2013 2016 2017

Memory Size [GB] 12 16 16

Memory Bandwidth [GB] 288 732 900

Number of Single Precision Cores 2880 3584 5120

Number of Double Precision Cores 960 1792 2560

Occupancy is the percentage of active warps (groups of 32 threads on the Tesla K40 architecture) to the maximum

number of active warps supported by the GPU11. The number of active warps depends on the available resources the

hardware can provide, and the amount required to run the software. One of these resources being the amount of

registers used within a program. The amount of registers used by a kernel correlates directly to the local variable

allocations and the complexity of the function itself. On the Tesla K40 architecture, the maximum number of registers

is 65536 per streaming multiprocessor (SM) and 255 per thread6. These registers must be divided up amongst all

threads being used by the parallelized program. Increasing the number of registers used per thread decreases the need

for the threads to access L1 and L2 cache memory, which increases the speed of the program. However, this comes at

the cost of decreasing the number of concurrent threads that could be run on the GPU. Therefore, a balance must be

struck between the number of registers used per thread and the complexity of the program. Given the architecture of

the Tesla K40 GPU and six DoF trajectory simulation software, the pgcc compiler chose a default register count of

124 per thread (per trajectory), limiting the occupancy of the GPU to 25%.

To target the occupancy issue, a balance must be made between the maximum number of registers the kernel can

use with the register spills caused by each function within the software. GPUs obtain their high speedups by hiding

the latency of the execution for each thread with overlapping execution. As an example, this happens when a warp is

loading values from memory, the GPU suspends those threads and executes a new warp in the meantime, and hides

the latency from the memory reads with execution of other threads. Increasing the number of trajectories increases the

utilization. Once a thread block is assigned to a SM, all of its warps exist in the SM until they exit the kernel. Thus, a

block is not launched until there are sufficient registers for all warps of the block, and until there is enough free shared

memory for the block. Decreasing the number of registers used per thread, increases the occupancy of the GPU

(number of warps that can be active in an SM). However, given the complexity of the software, this will cause an

increase in register spills to local memory, which can hinder performance. Determining this value is key to striking a

compromise between local memory usage due to spills and increasing the occupancy by reducing the number of

registers per thread. Figure 5 shows the performance achieved from running 10 experiments per register value and

averaging those results. Limiting the maximum register usage to 80 resulted in the best performance.

Table 3 categorizes the modifications made to the six DoF trajectory simulation software and their corresponding

improvements. The memory modifications made for the GPU/OpenACC implementation, to improve its utilization

and occupancy, also provided benefits to the CPU/OpenMP implementations. A final improvement for both the

OpenACC and OpenMP implementation was to include function inlining at compile time. Function inlining reduces

the function call overhead on the GPU by replacing the function calls with the lines of code of the function itself

within the main program. Function inlining provided a significant decrease in the GPU implementation’s execution

time, while providing a modest improvement for the CPU implementations.

American Institute of Aeronautics and Astronautics

9

Figure 5: Investigations into the maximum register specification made at compile time. Each mark represents

the average obtained through 10 iterations at each testing point, and the red bars indicate the range of results.

Table 3: Six DoF trajectory simulation execution time for running 20000 trajectories. Each trajectory is

integrated at 100 Hz, and simulates a 60 s long trajectory.

Hardware/

Parallelization

Scheme/Number

of Logical Cores

Compiler
Adjustments Made To

Software

Max

Execution

Time [s]

Min

Execution

Time [s]

Mean

Execution

Time [s]

GPU/OpenACC/

2880
PGCC

Original Implementation 17.925889 17.91272 17.9195

After Memory Reorganization

& for Loop Switch
14.22608 14.21557 14.2202

Including Function Inlining 8.96356 8.946091 8.95077

CPU/OpenMP/32

GCC

Original Implementation 18.567092 18.3187 18.3867

After Memory Reorganization 17.945576 17.5486 17.7444

Including Function Inlining 11.863747 11.37236 11.6888

ICC

Original Implementation 15.663124 15.16546 15.3323

After Memory Reorganization 15.007072 14.63887 14.8136

Including Function Inlining 9.520547 9.172192 9.29136

PGCC

Original Implementation 25.413 24.04681 24.4751

After Memory Reorganization 23.219827 22.94037 23.0076

Including Function Inlining 15.419285 14.86854 15.0825

V. Comparisons

 Multi-threaded comparisons are made across several computational architecture, and across three compilers: pgcc

(ver. 17.1-0), developed by The Portland Group, Inc.; gcc (ver. 6.2.0), the GNU compiler; and icc (ver. 18.0.0),

developed by Intel®. All comparisons execute the same lines of code with minor changes, which included: the

American Institute of Aeronautics and Astronautics

10

differences in selected hardware, the three compilers, and the compiler flags that activate OpenMP vs OpenACC. The

largest difference between the OpenMP and OpenACC implementation is the order of execution of the trajectory and

time loops, which was discussed in Section IV.B. Although the order of the loops changed, the core functionality of

the software remains the same. Table 4 lists the compiler flags used for each compiler and hardware configuration. At

the time of publication, the gcc compiler on the Pleiades Supercomputer did not support OpenACC, which limits the

OpenACC/GPU study to just the pgcc compiler. Additionally, the version of pgcc on Pleiades was not applied to the

KNL hardware, because it did not have KNL specific hardware targeting and was limited to a maximum of 64 threads

for OpenMP.

Table 4. Compiler flags used in comparison analysis.

 pgcc gcc icc

Optimization Enable

-fast

-Minline

-Mipa=fast,inline

-Ofast

-flto

-ffat-lto-objects

-fast

-ffat-lto-objects

OpenMP

Enable -mp -fopenmp -qopenmp

CPU Hardware Targeting - -march=native -xhost

KNL Hardware Targeting - -march=knl -xmic-avx512

OpenACC

Enable -acc - -

GPU Hardware Targeting

-ta=tesla:fastmath,

cc35,

maxregcount:80

- -

 Figure 6 and Figure 7 provide comparisons across scaling the trajectory simulation. All comparisons simulate 60

seconds of a powered decent vehicle trajectory as it decelerates to land on the Martian surface. In both figures, the

legends are organized as follows: Number of Logical Cores – Architecture – Parallelization Strategy – Compiler. For

the GPU hardware execution, results showing variable definitions as all doubles (double precision) or all floats (single

precision) is also noted.

All concerns regarding memory accesses, occupancy, and local memory usage of the simulation software are

factors that can be mitigated by changing the data type from doubles to floats. The main reasons for this are: access to

more single-precision units per SM compared to double-precision (see Table 2); register usage decreases (increasing

occupancy to almost 40%); global memory transactions reduce by half, thus increasing the memory throughput; and

less register spills, which reduces local memory requests. For all studied trajectories, the accuracy difference between

doubles and floats was < 3.0%, which was a tolerable difference for this application. Additionally, the CPU and KNL

hardware implementations did not show significant performance gains when using all float data types versus all

doubles.

 Figure 6 compares the scaling across the number of simulated trajectories. The linear relationship observed in the

CPU and KNL results is due to the trajectory simulation problem being embarrassingly parallel. The GPU performance

shows an approximate 1.3-1.8X speed of execution improvement of the all float implementation over the all double

implementation. The GPU lines remain flat until the 4000-8000 simulated trajectories range, which is due to the low

number of simulated trajectories not utilizing the full 2880 cores available on the GPU. It is also why the CPU and

KNL results outperform the GPUs in this range. For the higher range of trajectories investigated (> 8000), it’s notable

that the GPU performance is not significantly improved over the OpenMP enabled CPU implementation using the icc

compiler, and is similar to the KNL implementations. Two factors play into this result. One, the KNL hardware is

three years newer than the GPU hardware. Two, the nature of the trajectory simulation problem itself is not well suited

for GPUs. Although branching (due to if statements) has been mitigated, it is not possible to fully remove them. Also,

the scale of trajectories investigated ended at 20000, which does not fully leverage the capability of the GPU (typically

scale to the millions and larger). Typical POST2 Monte Carlo simulations of vehicle trajectories are in the range of

8000 trajectories.

 Trends across the different compilers are noticeable in Figure 6 as well. In looking at the OpenMP results, it is not

surprising that the icc compiler out performs the gcc and pgcc compilers, since Intel hardware is used. It is notable

that the pgcc compiler used 1.35-1.65X more execution time than the icc and gcc compilers. Lastly, the gcc compiled

version executing on 32 threads CPU versus the 256 threads on KNL achieved similar execution times, even though

the KNL uses 8 times the number of threads.

American Institute of Aeronautics and Astronautics

11

Figure 6: Comparisons of compilers and hardware with scaling the number of trajectories. Each mark

represents the average obtained through 10 iterations at each testing point, and shaded regions mark the range

of results.

 Figure 7 compares the integration frequency, which directly relates to the number of integration time steps taken.

When simulating 2000 trajectories, the all double implementation on the GPU requires the most time to execute and

the all float version has a similar execution time as the OpenMP with the pgcc compiler. As in Figure 6, this

demonstrates how the low number of simulated trajectories doesn’t fully utilize the capabilities of the GPU. When the

number of simulated trajectories is higher, such as shown in the bottom of Figure 7 with 20000 trajectories, the GPUs

execution times are more favorable when compared to the OpenMP enabled CPU implementations. In looking at the

20000 simulated trajectories, the OpenACC enabled GPU implementation using all float variable definitions

outperforms the OpenMP enabled KNL implementation with the icc compiler by a range of 0.6 – 47.9 s. However,

the KNL version retains the double precision accuracy.

American Institute of Aeronautics and Astronautics

12

Figure 7: Comparisons of compilers and hardware with scaling the integration frequency. The top plot

simulates 2000 trajectories, and the bottom plot simulates 20000 trajectories. Each mark represents the average

obtained through 10 iterations at each testing point, and shaded regions mark the range of results. The shaded

region are small compared to the scale on the y-axis.

American Institute of Aeronautics and Astronautics

13

VI. Conclusions and Future Work

 The objective of this paper was to apply the OpenMP and OpenACC strategies to a six DoF trajectory simulation

problem and enable it to run in parallel on CPU, KNL, and GPU hardware. It was also to provide a lessons learned

for parallelizing the software, from an engineer’s perspective. Three compilers were investigated in this work in an

effort to broadly study the effects of parallelizing the software. Four conclusions are drawn from this research: 1) The

six DoF trajectory simulation software studied is memory bound, which limits the amount of parallelism it can have

on the GPU hardware. 2) The implementation of the OpenMP and OpenACC #pragma statements to parallelize

software is straight forward, and requires a low level of effort by the programmer. 3) Getting the GPU implemented

software to run well, however, requires a significant effort in managing memory and is non-trivial. 4) The OpenMP

strategy on KNL hardware provides a significant execution time speed up with minimal effort.

 Results from this research found that the GPU hardware typically underperformed compared to the KNL hardware.

It should be noted that the GPU hardware used in this study is approximately three years older than the KNL hardware,

which was due to the resources available at the time of writing. Future work will investigate performance of the six

DoF simulation software on the NVIDIA Tesla P100 and NVIDIA Tesla V100 hardware. The increased memory

capabilities of these hardware will play a large roll in decreasing the memory bounded nature of the software, thus

increasing its speed of execution. Other areas of research to explore are implementing other parallelization strategies,

such as Compute Unified Device Architecture (CUDA), optimizing the KNL implementation using its vectorization

capabilities, simulating a larger number of trajectories, and increasing the simulation complexity by adding additional

models, such as aerodynamics.

Appendix

Provided below is a pseudocode example of the six DoF trajectory simulation software.

Main Function - CPU

main{

 struct tp // integration loop data structure

 // read input data from file

 // Start Timer

 // Loop over the number of trajectories

#pragma omp for private(tp) nowait

 for(number of trajectories){

// Initialize data structures

 // Integrate trajectories

 for(number of integration steps){

 runge_kutta(tp); // 4 step Runge-Kutta routine

// Save current time step to datalog structure

}

 }

// End Timer

// Store output to files

}

Main Function - GPU

main{

 struct tp // integration loop data structure

 // read input data from file

American Institute of Aeronautics and Astronautics

14

 // Start Timer

 // Loop over the number of trajectories

#pragma acc data create(tp)

{

 #pragma acc parallel loop independent gang vector

for(number of trajectories){

// Initialize data structures

 }

 // Integrate trajectories

 #pragma acc loop seq

 for(number of integration steps){

 // Loop over the number of trajectories

#pragma acc parallel loop independent gang vector

 for(number of trajectories){

 runge_kutta(tp); // 4 step Runge-Kutta routine

 }

// Save current time step to datalog structure

#pragma acc update host(tp)

 }

}

// End Timer

// Store output to files

}

Runge-Kutta Function

runge_kutta(tp){

 // Save off state

 ysave = tp->y;

 // Obtain outer loop rates

 tp->dydt = trajectory_funct(time,tp->y);

 // Perform inner loop integration

 // Compute first step

 k1 = dt*tp->dydt;

 tp->y = ysave + k1/2;

 // Compute second step

 tp->dydt = trajectory_funct(time+dt/2,tp->y);

 k2 = dt*tp->dydt;

 tp->y = ysave + k2/2;

American Institute of Aeronautics and Astronautics

15

// Compute third step

 tp->dydt = trajectory_funct(time+dt/2,tp->y);

 k3 = dt*tp->dydt;

 tp->y = ysave + k3;

 // Compute fourth step

 tp->dydt = trajectory_funct(time,tp->y);

 k4 = dt*tp->dydt;

 // Perform outer loop integration

 tp->y = ysave + k1/6 + k2/3 + k3/3 + k4/6;

}

Trajectory Simulation Function

trajectory_funct(time,temp){

 // Gravity model

 grav_model(temp->altitude,temp->force_grav);

 // Atmospheric model

 atmo_model(temp->altitude,temp->pres);

 // Throttle and propulsion models

prop_model();

// Sum forces and moments

// Solve EoM to obtain rates

eom_solver(temp);

}

Acknowledgments

The authors would like to thank Dr. Robert Lindberg, University of Virginia; Dr. James Hoffman, Analytic

Mechanics Associates; and Dr. Scott Striepe, NASA LaRC, for their guidance and support. We would also like to

thank Dr. Juan R. Cruz, NASA LaRC, for his white paper on entry vehicle equations of motion. The authors would

like to thank the NASA LaRC High Performance Computing Incubator (HPCI) for the resources and funding it

provided.

Resources supporting this work were provided by the NASA High-End Computing (HEC) Program through the

NASA Advanced Supercomputing (NAS) Division at Ames Research Center. The 2017 ORNL Hackathon at NASA

was a collaboration between and used resources of both the National Aeronautics and Space Administration and the

Oak Ridge Leadership Computing Facility at Oak Ridge National Laboratory. Oak Ridge National Laboratory is

supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC05-00OR22725.

References

1 Slegers, N., Brown, A., Rogers, J., “Experimental investigation of stochastic parafoil guidance using a graphics processing

unit,” Control Engineering Practice, Vol. 36, Mar. 2015, pp.27-38.
2 Striepe, S. A., Powell, R. W., Desai, P. N., Queen, E. M., Way, D. W., Prince, J. L., Cianciolo, A. M., Davis, J. L., Litton, D.

K., Maddock, R. M., Shidner, J. D., Winski, R. G., O’Keefe, S. A., Bowes, A. G., Aguirre, J. T., Garrison, C. A., Hoffman, J. A.,

Olds, A. D., Dutta, S., Zumwalt, C. H., White, J. P., Brauer, G. L., Marsh, S. M., Lugo, R. A., Green, J. S., “Program To Optimize

Simulated Trajectories II (POST2): Utilization Manual,” Vol. 2, Ver. 4.0.0.r1173, July 2017.
3 Dunbar, J., “Pleiades Supercomputer,” High-End Computing Capbility [online],

https://www.nas.nasa.gov/hecc/resources/pleiades.html [retrieved 5 October 2017].
4 “Intel® Xeon Phi™ Processor 7210,” Intel [online], https://www.intel.com/content/www/us/en/products/processors/xeon-

phi/xeon-phi-processors/7210.html [retrieved 5 October 2017].
5 “Intel® Xeon® Processor E5-2670,” Intel [online], https://ark.intel.com/products/64595/Intel-Xeon-Processor-E5-2670-20M-

Cache-2_60-GHz-8_00-GTs-Intel-QPI [retrieved 18 October 2017].

https://www.nas.nasa.gov/hecc/resources/pleiades.html
https://www.intel.com/content/www/us/en/products/processors/xeon-phi/xeon-phi-processors/7210.html
https://www.intel.com/content/www/us/en/products/processors/xeon-phi/xeon-phi-processors/7210.html

American Institute of Aeronautics and Astronautics

16

6 “Tesla K40 GPU Accelerator: Board Specification,” NVIDIA, BD-06902-001_v05, Nov. 2013.
7 “NVIDIA’s Next Generation CUDA™ Computer Architecture: Kepler™ GK110,” NVIDIA, Whitepaper V1.0, 2012.
8 Press, W. H., Teukolsky, S. A., Vellerling, W. T., Flannery, B. P., Numerical Recipies in C The Art of Scientific Computing,

2nd ed., Cambridge University Press, New Deli, 1992, Chap. 16.
9 Justh, H. L., “Mars Global Reference Atmospheric Model 2010 Version: Users Guide,” NASA/TM-2014-217499, 2014.
10 Bienia, C., Kumar, S., Jaswinder, P. S., Kai, L., “The PARSEC Benchmark Suite: Characterization and Architectural

Implicatiolns,” 2008 International Conference on Parallel Architectures and Compilation Techniques (PACT), IEEE, Toronto,

ON, Candada, 2008, pp. 72-81.
11 “Profiler User’s Guide,” NVIDIA, DU-05982-001_v9.1, Mar. 2018.
12 “NVIDIA Tesla V100 GPU Architecture,” NVIDIA, WP-08608-001_v1.1, Aug. 2017.
13 Seshardi, V., Mutlu, O., Kozuch, M. A., Mowry, T. C., “The Evicted-Address Filter: A Unified Mechanism to Address Both

Cache Pollution and Thrashing,” 21st International Conference on Parallel Architectures and Compilation Techniques (PACT),

IEEE, Minneapolis, 2012, pp. 355-366.

http://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf

