100 research outputs found

    Beyond Reuse Distance Analysis: Dynamic Analysis for Characterization of Data Locality Potential

    Get PDF
    Emerging computer architectures will feature drastically decreased flops/byte (ratio of peak processing rate to memory bandwidth) as highlighted by recent studies on Exascale architectural trends. Further, flops are getting cheaper while the energy cost of data movement is increasingly dominant. The understanding and characterization of data locality properties of computations is critical in order to guide efforts to enhance data locality. Reuse distance analysis of memory address traces is a valuable tool to perform data locality characterization of programs. A single reuse distance analysis can be used to estimate the number of cache misses in a fully associative LRU cache of any size, thereby providing estimates on the minimum bandwidth requirements at different levels of the memory hierarchy to avoid being bandwidth bound. However, such an analysis only holds for the particular execution order that produced the trace. It cannot estimate potential improvement in data locality through dependence preserving transformations that change the execution schedule of the operations in the computation. In this article, we develop a novel dynamic analysis approach to characterize the inherent locality properties of a computation and thereby assess the potential for data locality enhancement via dependence preserving transformations. The execution trace of a code is analyzed to extract a computational directed acyclic graph (CDAG) of the data dependences. The CDAG is then partitioned into convex subsets, and the convex partitioning is used to reorder the operations in the execution trace to enhance data locality. The approach enables us to go beyond reuse distance analysis of a single specific order of execution of the operations of a computation in characterization of its data locality properties. It can serve a valuable role in identifying promising code regions for manual transformation, as well as assessing the effectiveness of compiler transformations for data locality enhancement. We demonstrate the effectiveness of the approach using a number of benchmarks, including case studies where the potential shown by the analysis is exploited to achieve lower data movement costs and better performance.Comment: Transaction on Architecture and Code Optimization (2014

    Optimization Techniques for Stencil Data Parallel Programs: Methodologies and Applications

    Get PDF
    The optimization of data parallel programs is a challenging open problem. We analyzed in detail the optimization techniques for stencil computations, which are a subset of data parallel computations. Drawing from previous research, we developed a structured model to describe the program transformations. We used this model to compare the different optimizations presented in literature and study the interaction between them

    Automatic creation of tile size selection models using neural networks

    Get PDF
    2010 Spring.Includes bibliographic references (pages 54-59).Covers not scanned.Print version deaccessioned 2022.Tiling is a widely used loop transformation for exposing/exploiting parallelism and data locality. Effective use of tiling requires selection and tuning of the tile sizes. This is usually achieved by hand-crafting tile size selection (TSS) models that characterize the performance of the tiled program as a function of tile sizes. The best tile sizes are selected by either directly using the TSS model or by using the TSS model together with an empirical search. Hand-crafting accurate TSS models is hard, and adapting them to different architecture/compiler, or even keeping them up-to-date with respect to the evolution of a single compiler is often just as hard. Instead of hand-crafting TSS models, can we automatically learn or create them? In this paper, we show that for a specific class of programs fairly accurate TSS models can be automatically created by using a combination of simple program features, synthetic kernels, and standard machine learning techniques. The automatic TSS model generation scheme can also be directly used for adapting the model and/or keeping it up-to-date. We evaluate our scheme on six different architecture-compiler combinations (chosen from three different architectures and four different compilers). The models learned by our method have consistently shown near-optimal performance (within 5% of the optimal on average) across the tested architecture-compiler combinations

    Analytical cost metrics: days of future past

    Get PDF
    2019 Summer.Includes bibliographical references.Future exascale high-performance computing (HPC) systems are expected to be increasingly heterogeneous, consisting of several multi-core CPUs and a large number of accelerators, special-purpose hardware that will increase the computing power of the system in a very energy-efficient way. Specialized, energy-efficient accelerators are also an important component in many diverse systems beyond HPC: gaming machines, general purpose workstations, tablets, phones and other media devices. With Moore's law driving the evolution of hardware platforms towards exascale, the dominant performance metric (time efficiency) has now expanded to also incorporate power/energy efficiency. This work builds analytical cost models for cost metrics such as time, energy, memory access, and silicon area. These models are used to predict the performance of applications, for performance tuning, and chip design. The idea is to work with domain specific accelerators where analytical cost models can be accurately used for performance optimization. The performance optimization problems are formulated as mathematical optimization problems. This work explores the analytical cost modeling and mathematical optimization approach in a few ways. For stencil applications and GPU architectures, the analytical cost models are developed for execution time as well as energy. The models are used for performance tuning over existing architectures, and are coupled with silicon area models of GPU architectures to generate highly efficient architecture configurations. For matrix chain products, analytical closed form solutions for off-chip data movement are built and used to minimize the total data movement cost of a minimum op count tree

    Beyond 16GB: Out-of-Core Stencil Computations

    Get PDF
    Stencil computations are a key class of applications, widely used in the scientific computing community, and a class that has particularly benefited from performance improvements on architectures with high memory bandwidth. Unfortunately, such architectures come with a limited amount of fast memory, which is limiting the size of the problems that can be efficiently solved. In this paper, we address this challenge by applying the well-known cache-blocking tiling technique to large scale stencil codes implemented using the OPS domain specific language, such as CloverLeaf 2D, CloverLeaf 3D, and OpenSBLI. We introduce a number of techniques and optimisations to help manage data resident in fast memory, and minimise data movement. Evaluating our work on Intel's Knights Landing Platform as well as NVIDIA P100 GPUs, we demonstrate that it is possible to solve 3 times larger problems than the on-chip memory size with at most 15\% loss in efficienc

    Exploiting Locality and Parallelism with Hierarchically Tiled Arrays

    Get PDF
    The importance of tiles or blocks in mathematics and thus computer science cannot be overstated. From a high level point of view, they are the natural way to express many algorithms, both in iterative and recursive forms. Tiles or sub-tiles are used as basic units in the algorithm description. From a low level point of view, tiling, either as the unit maintained by the algorithm, or as a class of data layouts, is one of the most effective ways to exploit locality, which is a must to achieve good performance in current computers given the growing gap between memory and processor speed. Finally, tiles and operations on them are also basic to express data distribution and parallelism. Despite the importance of this concept, which makes inevitable its widespread usage, most languages do not support it directly. Programmers have to understand and manage the low-level details along with the introduction of tiling. This gives place to bloated potentially error-prone programs in which opportunities for performance are lost. On the other hand, the disparity between the algorithm and the actual implementation enlarges. This thesis illustrates the power of Hierarchically Tiled Arrays (HTAs), a data type which enables the easy manipulation of tiles in object-oriented languages. The objective is to evolve this data type in order to make the representation of all classes for algorithms with a high degree of parallelism and/or locality as natural as possible. We show in the thesis a set of tile operations which leads to a natural and easy implementation of different algorithms in parallel and in sequential with higher clarity and smaller size. In particular, two new language constructs dynamic partitioning and overlapped tiling are discussed in detail. They are extensions of the HTA data type to improve its capabilities to express algorithms with a high abstraction and free programmers from programming tedious low-level tasks. To prove the claims, two popular languages, C++ and MATLAB are extended with our HTA data type. In addition, several important dense linear algebra kernels, stencil computation kernels, as well as some benchmarks in NAS benchmark suite were implemented. We show that the HTA codes needs less programming effort with a negligible effect on performance

    Cache based optimization of stencil computations : an algorithmic approach

    Get PDF
    We are witnessing a fundamental paradigm shift in computer design. Memory has been and is becoming more hierarchical. Clock frequency is no longer crucial for performance. The on-chip core count is doubling rapidly. The quest for performance is growing. These facts have lead to complex computer systems which bestow high demands on scientific computing problems to achieve high performance. Stencil computation is a frequent and important kernel that is affected by this complexity. Its importance stems from the wide variety of scientific and engineering applications that use it. The stencil kernel is a nearest-neighbor computation with low arithmetic intensity, thus it usually achieves only a tiny fraction of the peak performance when executed on modern computer systems. Fast on-chip memory modules were introduced as the hardware approach to alleviate the problem. There are mainly three approaches to address the problem, cache aware, cache oblivious, and automatic loop transformation approaches. In this thesis, comprehensive cache aware and cache oblivious algorithms to optimize stencil computations on structured rectangular 2D and 3D grids are presented. Our algorithms observe the challenges for high performance in the previous approaches, devise solutions for them, and carefully balance the solution building blocks against each other. The many-core systems put the scalability of memory access at stake which has lead to hierarchical main memory systems. This adds another locality challenge for performance. We tailor our frameworks to meet the new performance challenge on these architectures. Experiments are performed to evaluate the performance of our frameworks on synthetic as well as real world problems.Wir erleben gerade einen fundamentalen Paradigmenwechsel im Computer Design. Speicher wird immer mehr hierarchisch gegliedert. Die CPU Frequenz ist nicht mehr allein entscheidend für die Rechenleistung. Die Zahl der Kerne auf einem Chip verdoppelt sich in kurzen Zeitabständen. Das Verlangen nach mehr Leistung wächst dabei ungebremst. Dies hat komplexe Computersysteme zur Folge, die mit schwierigen Problemen aus dem Bereich des wissenschaftlichen Rechnens einhergehen um eine hohe Leistung zu erreichen. Stencil Computation ist ein häufig eingesetzer und wichtiger Kernel, der durch diese Komplexität beeinflusst ist. Seine Bedeutung rührt von dessen zahlreichen wissenschaftlichen und ingenieurstechnischen Anwendungen. Der Stencil Kernel ist eine Nächster-Nachbar-Berechnung von niedriger arithmetischer Intensität. Deswegen erreicht es nur einen Bruchteil der möglichen Höchstleistung, wenn es auf modernen Computersystemen ausgeführt wird. Es gibt im Wesentlichen drei Möglichkeiten dieses Problem anzugehen, und zwar durch cache-bewusste, cache-unbewusste und automatische Schleifentransformationsansätze. In dieser Doktorarbeit stellen wir vollständige cache-bewusste sowie cache-unbewusste Algorithmen zur Optimierung von Stencilberechnungen auf einem strukturierten rechteckigen 2D und 3D Gitter. Unsere Algorithmen erfüllen die Erfordernisse für eine hohe Leistung und wiegen diese sorgfältig gegeneinander ab. Das Problem der Skalierbarkeit von Speicherzugriffen führte zu hierarchischen Speichersystemen. Dies stellt eine weitere Herausforderung an die Leistung dar. Wir passen unser Framework dahingehend an, um mit dieser Herausforderung auf solchen Architekturen fertig zu werden. Wir führen Experimente durch, um die Leistung unseres Algorithmen auf synthetischen wie auch realen Problemen zu evaluieren
    • …
    corecore