8 research outputs found

    Learning Conditional Preference Networks from Optimal Choices

    Get PDF
    Conditional preference networks (CP-nets) model user preferences over objects described in terms of values assigned to discrete features, where the preference for one feature may depend on the values of other features. Most existing algorithms for learning CP-nets from the user\u27s choices assume that the user chooses between pairs of objects. However, many real-world applications involve the the user choosing from all combinatorial possibilities or a very large subset. We introduce a CP-net learning algorithm for the latter type of choice, and study its properties formally and empirically

    CP-nets: A Tool for Representing and Reasoning withConditional Ceteris Paribus Preference Statements

    Full text link
    Information about user preferences plays a key role in automated decision making. In many domains it is desirable to assess such preferences in a qualitative rather than quantitative way. In this paper, we propose a qualitative graphical representation of preferences that reflects conditional dependence and independence of preference statements under a ceteris paribus (all else being equal) interpretation. Such a representation is often compact and arguably quite natural in many circumstances. We provide a formal semantics for this model, and describe how the structure of the network can be exploited in several inference tasks, such as determining whether one outcome dominates (is preferred to) another, ordering a set outcomes according to the preference relation, and constructing the best outcome subject to available evidence

    Conditional preference networks: efficient dominance testing and learning

    Get PDF
    Modelling and reasoning about preference is necessary for applications such as recommendation and decision support systems. Such systems are becoming increasingly prevalent in all aspects of our daily lives as technology advances. Thus, preference representation is a wide area of interest within the Artificial Intelligence community. Conditional preference networks, or CP-nets, are one of the most popular models for representing a person's preference structure. In this thesis, we address two issues with this model that make it difficult to utilise in practice. First, answering dominance queries efficiently. Dominance queries ask for the relative preference between a given pair of outcomes. Such queries are natural and essential for effectively reasoning about a person's preferences. However, they are complex to answer given a CP-net representation of preference. Second, learning a person's CP-net from observational data. In order to utilise a CP-net representation of a person's preferences, we must first determine the correct model. As direct elicitation is not always possible or practical, we must be able to learn CP-nets passively from the data we can observe. We provide two distinct methods of improving dominance testing efficiency for CP-nets. The first utilises a quantitative representation of preference in order to prune the associated search tree. The second reduces the size of a dominance testing problem by preprocessing the CP-net. Both methods are shown experimentally to significantly improve dominance testing efficiency. Furthermore, both are shown to outperform existing methods. These techniques can be combined with one another, and with the existing methods, in order to further improve efficiency. We also introduce a new, score-based learning technique for CP-nets. Most existing work on CP-net learning uses pairwise outcome preferences as data. However, such preferences are often impossible to observe passively from user actions, particularly in online settings, where users typically choose from a variety of options. Contrastingly, our method assumes a history of user choices as data, which is observable in a wide variety of contexts. Experimental evaluation of this method finds that the learned CP-nets show high levels of agreement with the true preference structures and with previously unseen (future) data

    CP-nets: From Theory to Practice

    Get PDF
    Conditional preference networks (CP-nets) exploit the power of ceteris paribus rules to represent preferences over combinatorial decision domains compactly. CP-nets have much appeal. However, their study has not yet advanced sufficiently for their widespread use in real-world applications. Known algorithms for deciding dominance---whether one outcome is better than another with respect to a CP-net---require exponential time. Data for CP-nets are difficult to obtain: human subjects data over combinatorial domains are not readily available, and earlier work on random generation is also problematic. Also, much of the research on CP-nets makes strong, often unrealistic assumptions, such as that decision variables must be binary or that only strict preferences are permitted. In this thesis, I address such limitations to make CP-nets more useful. I show how: to generate CP-nets uniformly randomly; to limit search depth in dominance testing given expectations about sets of CP-nets; and to use local search for learning restricted classes of CP-nets from choice data

    When is it acceptable to break the rules? Knowledge representation of moral judgements based on empirical data

    Get PDF
    This is the final version. Available on open access from Springer via the DOI in this recordData availability: All the data collected are available on https://github.com/aloreggia/SEP-net/dataConstraining the actions of AI systems is one promising way to ensure that these systems behave in a way that is morally acceptable to humans. But constraints alone come with drawbacks as in many AI systems, they are not flexible. If these constraints are too rigid, they can preclude actions that are actually acceptable in certain, contextual situations. Humans, on the other hand, can often decide when a simple and seemingly inflexible rule should actually be overridden based on the context. In this paper, we empirically investigate the way humans make these contextual moral judgements, with the goal of building AI systems that understand when to follow and when to override constraints. We propose a novel and general preference-based graphical model that captures a modification of standard dual process theories of moral judgment. We then detail the design, implementation, and results of a study of human participants who judge whether it is acceptable to break a well-established rule: no cutting in line. We then develop an instance of our model and compare its performance to that of standard machine learning approaches on the task of predicting the behavior of human participants in the study, showing that our preference-based approach more accurately captures the judgments of human decision-makers. It also provides a flexible method to model the relationship between variables for moral decision-making tasks that can be generalized to other settings

    Graphical preference representation under a possibilistic framework

    Get PDF
    La modélisation structurée de préférences, fondée sur les notions d'indépendance préférentielle, a un potentiel énorme pour fournir des approches efficaces pour la représentation et le raisonnement sur les préférences des décideurs dans les applications de la vie réelle. Cette thèse soulève la question de la représentation des préférences par une structure graphique. Nous proposons une nouvelle lecture de réseaux possibilistes, que nous appelons p-pref nets, où les degrés de possibilité représentent des degrés de satisfaction. L'approche utilise des poids de possibilité non instanciés (appelés poids symboliques), pour définir les tables de préférences conditionnelles. Ces tables donnent naissance à des vecteurs de poids symboliques qui codent les préférences qui sont satisfaites et celles qui sont violées dans un contexte donné. Nous nous concentrons ensuite sur les aspects théoriques de la manipulation de ces vecteurs. En effet, la comparaison de ces vecteurs peut s'appuyer sur différentes méthodes: celles induites par la règle de chaînage basée sur le produit ou celle basée sur le minimum que sous-tend le réseau possibiliste, les raffinements du minimum le discrimin, ou leximin, ainsi que l'ordre Pareto, et le Pareto symétrique qui le raffine. Nous prouvons que la comparaison par produit correspond exactement au celle du Pareto symétrique et nous nous concentrons sur les avantages de ce dernier par rapport aux autres méthodes. En outre, nous montrons que l'ordre du produit est consistant avec celui obtenu en comparant des ensembles de préférences satisfaites des tables. L'image est complétée par la proposition des algorithmes d'optimisation et de dominance pour les p-pref nets. Dans ce travail, nous discutons divers outils graphiques pour la représentation des préférences. Nous nous focalisons en particulier sur les CP-nets car ils partagent la même structure graphique que les p-pref nets et sont basés sur la même nature de préférences. Nous prouvons que les ordres induits par les CP-nets ne peuvent pas contredire ceux des p-pref nets et nous avons fixé les contraintes nécessaires pour raffiner les ordres des p-pref nets afin de capturer les contraintes Ceteris Paribus des CP-nets. Cela indique que les CP-nets représentent potentiellement une sous-classe des p-pref nets avec des contraintes. Ensuite, nous fournissons une comparaison approfondie entre les différents modèles graphiques qualitatifs et quantitatifs, et les p-pref nets. Nous en déduisons que ces derniers peuvent être placés à mi- chemin entre les modèles qualitatifs et les modèles quantitatifs puisqu'ils ne nécessitent pas une instanciation complète des poids symboliques alors que des informations supplémentaires sur l'importance des poids peuvent être prises en compte. La dernière partie de ce travail est consacrée à l'extension du modèle proposé pour représenter les préférences de plusieurs agents. Dans un premier temps, nous proposons l'utilisation de réseaux possibilistes où les préférences sont de type tout ou rien et nous définissons le conditionnement dans le cas de distributions booléennes. Nous montrons par ailleurs que ces réseaux multi-agents ont une contrepartie logique utile pour vérifier la cohérence des agents. Nous expliquons les étapes principales pour transformer ces réseaux en format logique. Enfin, nous décrivons une extension pour représenter des préférences nuancées et fournissons des algorithmes pour les requêtes d'optimisation et de dominance.Structured modeling of preference statements, grounded in the notions of preferential independence, has tremendous potential to provide efficient approaches for modeling and reasoning about decision maker preferences in real-life applications. This thesis raises the question of representing preferences through a graphical structure. We propose a new reading of possibilistic networks, that we call p-pref nets, where possibility weights represent satisfaction degrees. The approach uses non-instantiated possibility weights, which we call symbolic weights, to define conditional preference tables. These conditional preference tables give birth to vectors of symbolic weights that reflect the preferences that are satisfied and those that are violated in a considered situation. We then focus on the theoretical aspects of handling of these vectors. Indeed, the comparison of such vectors may rely on different orderings: the ones induced by the product-based, or the minimum based chain rule underlying the possibilistic network, the discrimin, or leximin refinements of the minimum- based ordering, as well as Pareto ordering, and the symmetric Pareto ordering that refines it. We prove that the product-based comparison corresponds exactly to symmetric Pareto and we focus on its assets compared to the other ordering methods. Besides, we show that productbased ordering is consistent with the ordering obtained by comparing sets of satisfied preference tables. The picture is then completed by the proposition of algorithms for handling optimization and dominance queries. In this work we discuss various graphical tools for preference representation. We shed light particularly on CP-nets since they share the same graphical structure as p-pref nets and are based on the same preference statements. We prove that the CP-net orderings cannot contradict those of the p-pref nets and we found suitable additional constraints to refine p-pref net orderings in order to capture Ceteris Paribus constraints of CP-nets. This indicates that CP-nets potentially represent a subclass of p-pref nets with constraints. Finally, we provide an thorough comparison between the different qualitative and quantitative graphical models and p-pref nets. We deduce that the latter can be positioned halfway between qualitative and quantitative models since they do not need a full instantiation of the symbolic weights while additional information about the relative strengths of these weights can be taken into account. The last part of this work is dedicated to extent the proposed model to represent multiple agents preferences. As a first step, we propose the use of possibilistic networks for representing all or nothing multiple agents preferences and define conditioning in the case of Boolean possibilities. These multiple agents networks have a logical counterpart helpful for checking agents consistency. We explain the main steps for transforming multiple agents networks into logical format. Finally, we outline an extension with priority levels of these networks and provide algorithms for handling optimization and dominance queries

    CP-nets with indifference

    No full text
    corecore