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ABSTRACT OF THESIS

Learning Conditional Preference Networks from Optimal Choices

Conditional preference networks (CP-nets) model user preferences over objects de-
scribed in terms of values assigned to discrete features, where the preference for one
feature may depend on the values of other features. Most existing algorithms for
learning CP-nets from the user’s choices assume that the user chooses between pairs
of objects. However, many real-world applications involve the the user choosing from
all combinatorial possibilities or a very large subset. We introduce a CP-net learn-
ing algorithm for the latter type of choice, and study its properties formally and
empirically.
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Chapter 1 Introduction

Modern computer applications that deliver content to users — search engines, media
and gaming platforms, social networking sites, and virtual assistants, to name a few
— increasingly incorporate recommender systems that personalize the content to
each individual user. Recommender systems tend to base their recommendations on
one (or both) of two general sources of information: Collaborative recommendation
predicts what content will be most relevant to the user by observing the selections of
similar users, while content-based recommendation explicitly incorporates knowledge
about properties of the content itself and predicts relevant content based on the user’s
apparent preferences over those properties [10].

The focus of this thesis, conditional preference networks (CP-nets) [8], is a for-
mal preference representation for modeling the user in content-based recommender
systems and other decision-making applications. While CP-nets have been widely
studied academically, we are not aware of their use in commercial applications — yet
we argue that there are some compelling reasons they should be considered.

One is the ease of preserving privacy in a CP-net-based recommender system:
Whereas collaborative recommendation requires the service provider to collect potentially-
sensitive data from many users, content-based recommendation can be done in isola-
tion for each user, and the compactness of CP-nets in particular makes it feasible to
store the user model locally on the user’s own machine.

Another is explainability : While content-based recommendation systems often
determine content’s relevance to the user with sophisticated classifiers that obscure
the reasons that the system chose particular content, CP-nets encode preferences
with intuitive qualitative rules; inferences are made by generating formal proofs from
these rules.

In the rest of this chapter, we review the CP-net formalism and existing methods
for learning a CP-net from user choices. We also propose a set of learning assumptions
that differs from what previous works have explored. In Chapter 2, we present an
algorithm for learning a CP-net under these assumptions and prove its correctness.
In Chapter 3, we test the algorithm on simulated user choices to study its effective-
ness at predicting unseen preferences. In Chapter 4, we interpret the results of our
experiments and discuss future directions for CP-net learning.

1.1 CP-nets

Consider a situation where we have a set of features,1 each of which has a set of
discrete values it can take; this gives rise to exponentially many outcomes,2 each
defined by a complete assignment of features to their values. For instance, a pizza
might be defined in terms of the inclusion or exclusion of each available topping;

1Some works in the literature use different terminology: attributes, variables, etc.
2Also known as alternatives, items, etc.
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for n topping choices, there are 2n possible pizzas. Like many related works in the
literature, we will make the simplifying assumption that the features are binary and
treat them as Boolean variables,3 though the methods we introduce are compatible
with multivalued features.

To model a user’s preferences over a potentially-huge set of outcomes, it is im-
portant for the sake of computational efficiency to have a compact representation. A
popularly-studied formalism for this, and the focus of this work, is conditional pref-
erence networks, or CP-nets [8]. As the name suggests, CP-nets are based on the
idea of conditionality of preferences: The user may have a general preference for one
value of a feature over the other (e.g., “I always prefer pepperoni on my pizza”), or
the preferred value of one feature may depend on the chosen values for others (e.g.,
“I prefer peppers on my pizza if and only if there is pepperoni”).

A CP-net consists of a directed graph where the nodes correspond to features and
an edge from one node to another indicates that the user’s preference for the second
feature depends on the value assigned to the first; we say that the first feature is a
parent of the second. Each node is annotated with a CP-table, which contains a set
of statements specifying what those feature-value preferences are. Let V be a feature
with values {v,¬v}, and let Par be V ’s (potentially empty) set of parent features;
each CP-table statement takes the form ParAssn : v � ¬v or ParAssn : ¬v � v,
where ParAssn is an assignment to the features in Par.

Figure 1.1 illustrates a CP-net with the above pizza scenario: The user’s prefer-
ences for pepperoni are independent of the other features, so the node has no parents
and a CP-table with a single unconditional preference statement; the preference for
peppers depends on the presence or absence of pepperoni, so the node for peppers has
the node for pepperoni as a parent, and its CP-table contains statements conditioned
on the assignment to the pepperoni feature.

The maximum number of statements in a CP-table is equal to the number of
possible assignments to the feature’s parent set, which is exponential in the number
of parents. To keep the size of the CP-net polynomial in the number of features, many
works including ours assume a bound on maximum in-degree as a model parameter.
We also allow for incompleteness in the CP-tables: A feature’s CP-table is incomplete
if not all possible parent assignments have a corresponding preference statement. This
is illustrated with the mushrooms feature in Figure 1.1 — there is no known preference
for mushrooms given ¬pepperoni, peppers.

The preference orderings encoded by CP-nets are defined according to ceteris
paribus semantics, where ceteris paribus is Latin for “all else being the same”; a
CP-table statement shows which of two outcomes is preferred when the values for
one feature differ and the values for all others are identical. That is, let o and o′

be outcomes where each feature is assigned to the same value in o and o′, except
V = v in o and V = ¬v in o′ for some feature V . Let CP-net N contain the
statement ParAssn : v � ¬v, where ParAssn is an assignment to V ’s parent features
such that the parent assignment is instantiated in o and o′, i.e., ParAssn ⊂ o and

3We will sometimes treat outcome assignments as sets with the assigned values as elements; a
subset of an outcome denotes a partial assignment.
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Pepperoni? Peppers?

Mushrooms?

pepperoni � ¬pepperoni
pepperoni : peppers � ¬peppers
¬pepperoni : ¬peppers � peppers

pepperoni, peppers : ¬mushrooms � mushrooms
pepperoni,¬peppers : ¬mushrooms � mushrooms
¬pepperoni,¬peppers : mushrooms � ¬mushrooms

Figure 1.1: A CP-net

ParAssn ⊂ o′. Then we say that o � o′, i.e., o is preferred to or dominates o′.
Furthermore, the dominance relation is transitive; even if o differs from o′ by

several feature values, o � o′ if there exists a series of single-feature changes from
less-preferred to more-preferred according to the CP-table statements — an improving
flipping sequence — that transforms o′ into o.

For instance, in the Figure 1.1 CP-net, we could ask: Is a pepperoni-only pizza
preferred to a mushroom-only pizza? Starting with the mushroom-only outcome
¬pepperoni,¬peppers,mushrooms, we can use the fact that pepperoni is always pre-
ferred to ¬pepperoni and flip the assignment to pepperoni,¬peppers,mushrooms.
Now, the parent assignment for the mushroom feature has changed, and so has its
preferred value; we can use the statement pepperoni,¬peppers : ¬mushrooms �
mushrooms to flip the assignment to pepperoni,¬peppers,¬mushrooms. This
gives us an improving flipping sequence from the mushroom-only pizza to the pepperoni-
only pizza:

¬pepperoni,¬peppers,mushrooms ≺
pepperoni,¬peppers,mushrooms ≺
pepperoni,¬peppers,¬mushrooms.

This proves that pepperoni,¬peppers,¬mushrooms � pepperoni,¬peppers,mushrooms
according to the CP-net.

The dominance relation creates a strict partial order over the outcomes; for two
outcomes o and o′, the CP-net entails either o � o′, o′ � o, or neither. In the last case,
we say that o and o′ are incomparable. (This may represent the fact that the user

3



pepperoni,
peppers,

mushrooms

pepperoni,
peppers,

¬mushrooms

pepperoni,
¬peppers,
mushrooms

pepperoni,
¬peppers,
¬mushrooms

¬pepperoni,
peppers,

mushrooms

¬pepperoni,
peppers,

¬mushrooms

¬pepperoni,
¬peppers,
mushrooms

¬pepperoni,
¬peppers,
¬mushrooms

Figure 1.2: Induced preference graph of the CP-net from Figure 1.1

lacks a preference between o and o′ or that the preference is unknown [1], or simply
that the CP-net model is too restrictive to represent the user’s complete preference
ordering [21] — a necessary tradeoff of expressivity for compactness.) The dominance
relation can be expressed in graph form with the outcomes as nodes, improving
flips as directed edges, and the existence of a path between nodes indicating that
the descendant outcome dominates the ancestor; this is called the CP-net’s induced
preference graph. Figure 1.2 illustrates an example, showing the dominance relation
of the Figure 1.1 CP-net.

1.2 Learning from Optimal Choices

CP-nets were designed to be an intuitive model that allows direct elicitation — i.e.,
the user themself providing a CP-net to describe their preferences. However, recent
studies suggest that nonexpert users often struggle to provide a CP-net that matches
even their claimed preferences, let alone their actual choices [3, 15]; we expect that
learning a CP-net, either by asking the user simple questions (active learning) or
avoiding direct querying at all and inferring from the user’s natural behavior (passive
learning), will be a more reliable way of acquiring the model in a human-centric
application. The algorithm we introduce in this work specifically learns passively,
allowing minimal disruptiveness to the user while sacrificing the ability to control
what information is received.

Most existing algorithms for passively learning CP-nets learn from sets of what we
will refer to as paired-choice examples. Each of these consists of a single comparison
o � o′; the implication is that the user has been observed to choose o over o′ when
presented with both, and that the learned CP-net should entail the preference.

However, it is common to encounter situations where users choose from an entire
space of combinatorial possibilities rather than just a pair of outcomes. Revisiting
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the pizza example from earlier — while a user at a friend’s party may make choices
between two types of pizza, a user ordering from a restaurant is free to select any
combination of toppings that are currently in stock. Just as a system could treat a
paired choice as evidence that the user prefers the chosen outcome to the non-chosen
one, it should be able to treat this second type of choice as evidence that the chosen
outcome is the user’s most-preferred available option.

This work focuses on learning from sets of this latter type of example, which we will
refer to as an optimal-choice example. Formally, we define an optimal-choice example
as a pair (cond, opt), where the condition cond is an assignment to a (possibly-empty)
subset of the feature set and the optimum opt is an outcome such that cond ⊆
opt. This is interpreted as meaning that opt is the most-preferred outcome among
those containing the assignments in cond (i.e., opt is not dominated by any other
outcome containing cond); when this holds in a CP-net, we will say that the CP-net
is consistent with the example.

For instance, since the pepperoni-and-pepper pizza is the most-preferred in Figure
1.1, the CP-net is consistent with the optimal-choice example having cond = ∅ and
opt = pepperoni, peppers,¬mushrooms. However, if the restaurant is out of pepper-
oni, a mushroom pizza becomes the best available option, hence the CP-net is also
consistent with cond = ¬pepperoni, opt = ¬pepperoni,¬peppers,mushrooms.

While we are the first (to our knowledge) to discuss learning from this type of
information, the inverse operation — starting with a CP-net and determining an
optimal outcome given some set of preassigmnents — is discussed in a paper by
Boutilier et al. [8]; they give a linear-time algorithm for finding the optimum. (Their
later work [9] explores outcome optimization allowing for a more general class of
constraints on the feature assignments.)

In theory, assuming there is only one optimal outcome per condition,4 we could ex-
pand an optimal-choice example (cond, opt) into a set of paired-choice examples, opt �
o for every outcome o where cond ⊂ o and o 6= opt. For instance, from the optimal-
choice example with cond = ¬pepperoni, opt = ¬pepperoni,¬peppers,mushrooms,
we could derive all of the following:

• ¬pepperoni,¬peppers,mushrooms � ¬pepperoni, peppers,mushrooms,

• ¬pepperoni,¬peppers,mushrooms � ¬pepperoni,¬peppers,¬mushrooms, and

• ¬pepperoni,¬peppers,mushrooms � ¬pepperoni, peppers,¬mushrooms.

However, the number of paired-choice examples we would need to derive to be equiv-
alent to an optimal-choice example is exponential in the number of nonconditioned
features, so learning from optimal-choice examples by first converting them into
paired-choice examples would be intractable (or require sampling, and thus loss of
information); to make practical use of the full information provided by optimal-choice

4This is the case with acyclic CP-nets, which we focus on in this work. Cyclic CP-nets may
have multiple optima for a given condition, or even none at all. If the latter happens, it is because
the CP-net’s preference ordering is inconsistent, having cycles in the dominance relation and thus
outcomes that dominate themselves by transitivity.
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examples, we need learning algorithms designed to work with them directly. We will
present such an algorithm in Chapter 2.

1.3 Related Work

We survey several existing works related to CP-net learning here, starting with passive
learning (i.e., noninteractive learning that relies on preexisting data).

Lang and Mengin [21] investigate the passive learning of separable CP-nets, i.e.,
CP-nets with no edges, representing preference relations where the preferences for all
features are unconditional. They consider decision problems asking whether such a
CP-net exists (i.e., determining representability of the user’s preferences by a sepa-
rable CP-net) given a set of paired-choice examples. They show that deciding the
existence of a separable CP-net that entails every paired-choice example is in P. They
also discuss weaker notions of learning that increase the complexity: If, for each ex-
ample o � o′ the CP-net is allowed to merely entail o′ � o rather than o � o′ itself,
deciding the existence of the CP-net is NP-complete.

Dimopoulos et al. [13] give a passive learning algorithm for paired-choice examples
that is polynomial-time given a fixed maximum in-degree. Successful learning is
guaranteed only for example sets that are entailed by CP-nets with a specific type
of entailment (transparent entailment). The authors prove PAC-learning guarantees
about how closely the learned CP-net is likely to replicate the user’s true preference
ordering, assuming the true preferences are also CP-net-structured and the example
distribution meets certain assumptions. Chevaleyre et al. [11] also study the PAC-
learning complexity of CP-nets.

Liu et al. [22] consider “noisy” paired-choice examples: An observation o � o′ has
some probability of being the user’s true preference, and otherwise it is incorrect and
the user actually has the preference o′ � o. Their learning approach uses statistical
hypothesis testing to determine whether a dependency holds between a feature and
a candidate parent set (the null hypothesis being that the members of the set are
not the feature’s parents, and the alternative hypothesis being that they are). In
another work [23], they consider sets of possibly-inconsistent paired-choice examples
with associated weights; their goal is to maximize the total weight of comparisons
entailed by the CP-net. They present an algorithm that uses branch-and-bound
search to find a consistent preference graph (dominance relation) over the outcome
from the examples such that the total weight of examples entailed by the relation
is maximized; it then constructs a CP-net whose induced preference graph has the
computed preference graph as a subgraph.

Allen et al. [5] explore the use of local search to optimize a CP-net’s adherence to
a set of noisy/inconsistent paired-choice examples (focusing on tree-structured CP-
nets, for which dominance-based optimization metrics can be evaluated in polynomial
time). Another metaheuristic approach to CP-net learning is that of Haqqani and Li
[18], who use evolutionary algorithms. Michael and Papageorgiou [24] also propose
optimization-based learning, namely, modifying the algorithm of Dimopoulos et al.
[13] to formulate CP-table selection as a maximum satisfiability problem.
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We now turn our attention to active learning of CP-nets (i.e., building CP-nets
through interactive user querying). Guerin et al. [17] give active CP-net learning
algorithm that runs in two phases: The first initializes a separable CP-net by asking
the user the “default” preferences for each feature, and the second asks paired-choice
queries to determine parent sets. Koriche and Zanuttini [19] and Labernia et al. [20]
each present active learning algorithms based on “equivalence queries”. An equiv-
alence query asks whether the current learned CP-net is equivalent to the “true”
CP-net. If not, it gets a paired-choice counterexample — specifically, a “swap” where
the compared outcomes differ on only one feature — that is missing or violated in
the current CP-net, which must be repaired.

Related to the notion of learning a CP-net from scratch is that of completing a
partial CP-net. In recommender systems research, this has been explored in terms
of collaborative filtering, i.e., guessing the rest of a user’s CP-net by the preferences
of similar users. Wang et al. [25] consider incompleteness in CP-tables, assuming a
shared graph structure between agents’ CP-nets. Their approach computes similarity
between agents’ CP-nets using a measure of distance between induced preference
graphs; the shared structure of the CP-nets allows this measure to be computed
without enumerating the induced preference graphs themselves. Missing CP-table
statements are filled in using a “vote” among similar CP-nets. The El Fidha and Amor
[14] use an alternative similarity measure based directly on the CP-nets rather than
the induced preference graphs, allowing comparison between CP-nets with differing
structure; they iterate through sufficiently similar (as determined by clustering) users’
CP-nets, copying over child nodes as well as CP-table statements when able.

Note that in all but the last works, the learning relies on choices between pairs
of outcomes. To our knowledge, the only prior work based on learning from optimal
choices is that of Bigot et al. [7], whose algorithms take as input a set of unconditional
optimal-choice examples with probabilities that they are optimal. The algorithms
infer a PCP-net, i.e., probabilistic CP-net [6, 12], a model that encodes a probability
distribution over CP-nets by associating with each CP-table statement a probability
that the statement holds.

7



Chapter 2 Algorithm

In this chapter, we introduce the focal algorithm of this thesis. Given a set of optimal-
choice examples, it learns a CP-net consistent with all examples — i.e., for each
example (cond, opt), the outcome opt will be optimal given the condition cond in the
learned CP-net. Successful learning of a CP-net is subject to a few restrictions: A
CP-net consistent with all examples must exist, it must be acyclic, and no node’s
in-degree may exceed a prespecified bound. In this chapter, we will first outline
the algorithm itself. Then we will prove the its completeness (the algorithm always
returns a CP-net if able), soundness (the returned CP-net is consistent with the
examples), and efficiency (the runtime is polynomial in the number of features and
examples given a fixed maximum in-degree) in Section 2.2.

2.1 Overview

The main routine of the algorithm, shown in Figure 2.1, is very similar to Dimopoulos
et al.’s algorithm [13] for learning from paired examples. The algorithm iteratively
builds a CP-net by attempting to add a feature (with its associated CP-table) at a
time, choosing its parent set from among the features that have already been added
to the CP-net. (Restricting candidate parents to the features already in the CP-net
forces the graph to be acyclic; choosing parents from among all features would permit
cycles but also potentially result in models whose underlying preference orderings
are inconsistent — i.e., having an outcome that dominates itself by transitivity.)
Candidate parent sets are considered in increasing order of size (starting with the
empty set), which prevents superfluous parents (i.e., those that do not actually affect
the preferred value of the feature) from being introduced.1 If a CP-table cannot be
added with the available parent sets, the feature can be revisited later, after more
possible parents are introduced. The algorithm terminates when all features have
been added, completing the learning process. It will also terminate if none of the
remaining features can be added, indicating that a CP-net could not be learned from
the example set.

The key difference between this algorithm and Dimopoulos et al.’s, owing to the
fact that they process different types of examples, is how the CP-tables are con-
structed. The subroutine our algorithm uses to try to create a given feature’s CP-
table is outlined in Figure 2.2. For each assignment ParAssn to the prospective
parents of a feature V with values {v,¬v}, we must choose at most one of the state-
ments ParAssn : v � ¬v or ParAssn : ¬v � v to insert into the CP-table. If the
first statement holds, it must be the case that any outcomes containing ParAssn
must also assign V = v in order to be optimal unless the condition forces V = ¬v;
similarly, if the second holds, optima with ParAssn must assign V = ¬v if able. For

1Allen et al. [2] refer to CP-nets containing superfluous parents as degenerate, as the CP-tables
map to degenerate Boolean functions when the features are binary.
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Input: binary feature set AllFeatures; in-degree bound k; set Examples of
examples of the form (cond, opt)

Output: if possible, an acyclic CP-net with maximum in-degree ≤ k for which
each example’s opt is optimal given its cond

cpnet← an empty CP-net
RemainingFeatures← AllFeatures
AddedFeatures← ∅
repeat

forall feat ∈ RemainingFeatures do
for i← 0 to k do

forall size-i subsets CandidateParents ⊆ AddedFeatures do
CPT← CreateCPT(feat, CandidateParents, Examples)
if CPT 6= null then

add feat to cpnet with CandidateParents as parents and CPT
as the CP-table
RemainingFeatures← RemainingFeatures \ {feat}
AddedFeatures← AddedFeatures ∪ {feat}

end

end

end

end

until no new features are added to cpnet
if RemainingFeatures = ∅ then

return cpnet
else

return null
end

Figure 2.1: Passive learning algorithm from optimal examples

each parent assignment, the algorithm checks whether the examples agree on a single
preferred value of the feature given the assignment. If they do, the corresponding
statement is added to the CP-table; if the examples conflict, the candidate parent set
cannot be the feature’s true parent set; and if there are no relevant examples (where
the parent assignment appears and the feature value is unrestricted), no statement is
added but the CP-table construction continues.

The last possibility results in the algorithm allowing incompleteness in the CP-
tables; some parent assignments may not have corresponding preferred values. This
provides some flexibility in an online environment for adding to the CP-net later if
new examples come in, but if a complete CP-net is required immediately (e.g., for
guarantees about the computational complexity of dominance testing [8]), the missing
entries can be filled in arbitrarily (e.g., randomly, or according to some heuristic).
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Input: feature feat; candidate parent set CandidateParents; example set
Examples

Output: if possible, returns a CP-table such that feat has its preferred value
in all examples where it is not preassigned

CPT← an empty CP-table
forall examples (cond, opt) ∈ Examples for which cond does not assign a value
to feat do

Val← the value of feat in opt
Assn← the assignment to CandidateParents in opt
if CPT does not already contain a statement conditioned on Assn then

insert the statement Assn : ChosenVal � ¬ChosenVal into CPT
else if CPT contains the statement Assn : ¬ChosenVal � ChosenVal then

return null
end

end
return CPT

Figure 2.2: CreateCPT subroutine

2.2 Properties

We will start by proving our algorithm’s completeness. Note that unlike the paired-
choice-example version by Dimopoulos et al. [13], which is only complete for special
cases, our optimal-choice-example version is complete for all cases where a CP-net
fitting the examples and the model constraints exists.

Theorem 1. The learning algorithm in Figure 2.1 always returns an acyclic CP-net
obeying the given in-degree bound if there exists one consistent with the examples.

Proof. We will prove this by contradiction. Suppose the example set has at least one
CP-net Ntrue fitting the requirements but the algorithm returns null. Let Nlearned be
the CP-net constructed so far by the algorithm when it terminates, let Added be the
set of features that have been added to Nlearned, and let Remaining be the set of
features not in Added. Because the algorithm returns null, no features in Remaining
could be added to the Nlearned with a parent set chosen from Added; the only valid
parent sets for each feature in Remaining would require a parent from Remaining.
This means that any group of parent sets for all elements of Remaining would produce
cycles. But this contradicts the fact that since Ntrue is acyclic, it contains a valid
group of parent sets for the elements of Remaining with no cycles among them.
Therefore, it cannot be the case that a CP-net fulfilling the requirements exists but
none is returned.

Now we will prove soundness. This has two components. The first is that the
example outcomes will be optimal (undominated) given their conditions. However,
learning a CP-net satisfying only this component would be trivial; we could simply

10



return a CP-net with empty CP-tables, making all outcomes incomparable and there-
fore undominated. The second component ensures that our learned CP-net is more
informative: No other outcome will be optimal given an example’s condition.

Theorem 2. If the algorithm in Figure 2.1 returns a CP-net, then the CP-net will be
consistent with all examples. (That is, for every example (cond, opt) in the example
set, opt will be the only optimal outcome given cond — that is, for every outcome o
such that o 6= opt and cond ⊂ o, the CP-net will entail opt � o.)

Proof. Let Nlearned be the learned CP-net. First, we will prove that Nlearned must be
consistent with all examples.

Suppose an opt is not optimal given its cond in Nlearned. This means that Boutilier
et al.’s “forward sweep” optimization procedure [8] — visiting all non-cond features’
nodes in a topological order and assigning them to a most-preferred value given their
parents’ assignments — could not yield opt when performed on Nlearned. This implies
that there is a feature in opt \ cond that is assigned to its less-preferred value given
its parents’ assignments. Let V be the feature, let v be its assigned value in opt, let
P be the parent set of V in Nlearned, and let ParAssn ⊂ opt be the assignment to
P . There must be an entry ParAssn : ¬v � v in the feature’s CP-table, constructed
by CreateCPT in the algorithm. However, the example (cond, opt) would have caused
the algorithm to try to insert the opposite, ParAssn : v � ¬v, and trying to insert
both would have caused CreateCPT to fail, contradicting the fact that P is V ’s parent
set. Therefore, each opt must be optimal given its cond in Nlearned.

Next, we will prove that no other outcomes are optimal in Nlearned given the same
conditions as the examples.

If multiple outcomes are optimal given a condition, they must by definition of
optimality be incomparable to each other (rather than one dominating another).
Because Nlearned is acyclic, incomparability can happen for a pair of optimal outcomes
only when they differ on feature for which the relevant preference statement is missing.
Suppose we have an example (cond, opt) consistent with Nlearned and an incomparable
outcome opt′ that is also optimal given cond. Let V be the first feature in a topological
sorting of the CP-net nodes for which the outcomes differ; the outcomes have the same
assignment ParAssn to the parent set P of V . But when CreateCPT created V ’s
CP-table, one of the following must have been the case:

• CreateCPT set the value in opt as the preferred value given ParAssn. But
this would contradict the assumption that there is no preference statement for
ParAssn.

• CreateCPT saw another example with the opposite assignment and concluded
that P was not in fact V ’s parent set. But this would contradict the assumption
that P is indeed the parent set.

Therefore, each opt in the example set must be the sole optimum in Nlearned given its
cond.

11



Lastly, we will analyze the algorithm’s computational complexity. Its tractability
relies on a small bound on the learned CP-net’s maximum in-degree. (Such a bound
is a common assumption in works dealing with CP-nets, since unlimited in-degree
would allow for exponential-sized CP-tables.)

Theorem 3. Let the in-degree bound k be a fixed constant; then the algorithm in
Figure 2.1 runs in time polynomial in the number of examples and features.

Proof. Let n be the number of features, and let m be the number of examples. The
outer loop of the algorithm iterates through the set of up to n remaining feature
no more than n times, since it reduces the set size each time. For each of these
remaining features, the algorithm considers a

∑k
i=0

(
n
i

)
= O(nk) number of candidate

parent sets, making a CreateCPT call for each; CreateCPT is called O(nk+2) times
in a run of the algorithm. CreateCPT iterates through each of the m examples with
n features, each time operating on a subset of those features, for O(m ∗ n) per run.
This gives the algorithm an overall O(m ∗ nk+3) runtime.
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Chapter 3 Experiments

We have demonstrated an algorithm that reliably finds a CP-net in which all provided
outcomes are optimal given their conditions, if one exists. However, in learning a CP-
net we are not merely storing the optima but rather are building a whole preference
model for the user; we are interested in the model’s ability not only to reflect known
information about the user’s preferences but also to predict unknown information,
assuming that the user’s underlying preferences have a CP-net structure.1

In particular, we are interested in studying the relationship between the optimal-
examples learning paradigm and the traditional paired-examples learning paradigm;
we will learn CP-nets from sets of the former and measure how well they can predict
the latter.

3.1 Setup

To create example sets on which to test our learning algorithm, we used Allen et al.’s
approach [4] to generate 100 random binary-valued acyclic CP-nets over 10 features
with in-degree at most 2. These CP-nets represent the true preferences of simulated
“users” that we hope to model as closely as possible. Next, we simulated series of
“choices” by the users that the system might encounter: For each CP-net, we gener-
ated optimal-choice example sets by sampling (with replacement, allowing redundant
examples) from each of two different example distributions.

For the first distribution, we chose the examples uniformly at random by sampling
conditions from the set of all 310 possible conditions — that is, for each of the 10
features, we randomly chose between assigning it to true in the condition, assigning it
to false from the condition, or excluding it from the condition. We then found the CP-
net’s optimal outcome under the condition (the acyclicity of the CP-net guarantees
that there is only one optimal assignment for a given condition).

Since there are
(
10
k

)
∗ 2k possible examples conditioned on exactly k features, uni-

formly random example generation favored somewhat strict conditions; for instance,
there were 13440 possible examples conditioned on 7 features (about 26% of all exam-
ples), compared to only one example not conditioned on any feature (less than .002%
of all examples). See Figure 3.1 for a visualization of the proportion of examples per
number of features in the condition.

For the second distribution, we were interested in the performance of the learn-
ing algorithm in scenarios where the observed choices tend to have fewer constraints
(e.g., the choice of pizzas from a menu where toppings are only subject to sporadic
unavailability). As such, our generation method was biased toward less-strict condi-
tions: For each feature, we preassigned it in a given example’s condition with only

1This is a common assumption in CP-net learning experiments, although the question of how
well CP-nets can model real human preferences has only recently started to be examined empirically
[3, 15].
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Figure 3.1: Probability of generating an optimal-choice example with k features preset
in the condition, uniform distribution

Figure 3.2: Probability of generating an optimal-choice example with k features preset
in the condition, biased distribution

10% probability. Figure 3.2 shows the probability of generating an example for each
feature count in the condition.

We generated an example set once per example set size (5, 10, 20, 40, and 80),
per example distribution, per generated CP-net. After generating an example set,
we then ran the learning algorithm from Figure 2.1 to learn an acyclic, in-degree-
bounded-to-2, possibly-incomplete CP-net consistent with all examples.
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3.2 Results

To measure the quality of the learned CP-net in terms of reproducing the preference
ordering of the original CP-net used for example generation, we computed all the
comparisons o � o′ that made up the two CP-nets’ preference orderings by traversing
the induced preference graph (an intractable task with large numbers of features, but
feasible with only 10). As one metric, we computed the proportion of the original
CP-net’s comparisons that were entailed by the learned CP-net. That is, let Ptrue be
the set of comparisons entailed by the simulated user’s true CP-net, and let Plearned

be the CP-net learned from the examples; we used the metric:

|Plearned ∩ Ptrue|
|Ptrue|

. (3.1)

Additionally, as a metric that incorporates lack of irrelevant entailments along
with inclusion of relevant entailments, we computed the Jaccard similarity of the
learned and true CP-nets (a measure previously used to compare CP-nets by Wang
et al. [25]):

|Plearned ∩ Ptrue|
|Plearned ∪ Ptrue|

. (3.2)

In addition to the incomplete learned CP-net, we also derived a complete learned
CP-net by randomly filling in the missing (i.e., no preferred value for some parent
assignment) statements of the incomplete CP-net’s CP-tables. We computed the
aforementioned quality metrics for the completed CP-net with respect to the simu-
lated user’s true CP-net.

Finally, as a baseline for performance, for each simulated user’s CP-net we gen-
erated a second random CP-net; we computed the quality metrics for the random
CP-net.

Figures 3.3 and 3.4 show the average proportion of entailments learned using
the uniformly random and biased-toward-fewer-conditions example sets respectively.
Likewise, Figures 3.5 and 3.6 show the average similarity scores for the CP-nets
learned from those example sets.

Performance on small example sets was poor in our experiments, with the learning
algorithm averaging worse-than-random CP-net quality on the smallest sets (except
by the similarity metric with the biased examples). Randomly completing the learned
CP-nets improved the performance only marginally.

As the number of examples increased, we saw the learning process converge toward
the true CP-net faster with the uniformly random examples than with the biased
examples. We can explain this trend by the fact that the biased examples, since
they tend to have fewer conditions, are more informative individually — a general
example entails several more-specific examples — but as we add more examples, the
uniformly random ones continue to be informative while the biased ones are often
redundant (either by direct duplication, or by entailment of a more-specific example
by a more-general one).
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Figure 3.3: Average performance on uniformly random examples, Equation 3.1 metric

Figure 3.4: Average performance on biased example distribution, Equation 3.1 metric
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Figure 3.5: Average performance on uniformly random examples, Equation 3.2 metric

Figure 3.6: Average performance on biased example distribution, Equation 3.2 metric

17



Chapter 4 Conclusions

In this thesis, we have introduced an algorithm that builds a CP-net fitting an ob-
served set of user choices, where the outcomes were selected from a combinatorial set
of options. Because of the large amount of user customization allowed in many ap-
plications where we might want to model user preferences, we argue that this type of
example is common and should be a greater focus of CP-net learning algorithms. Our
experiments test how well the algorithm’s constructed models generalize to unseen
preferences; as we elaborate below, these experiments shed light on future research
directions that could help make learning from optimal-choice examples robust enough
for real-world applications.

Our experimental results have negative implications for the plausibility of learning
CP-nets from user choices in scenarios like our motivating examples — where we have
a fairly sparse set of examples chosen from a very open set of options. On the other
hand, our algorithm did come close to learning an ideal CP-net when provided with a
larger set of more-constrained examples. However, in large example sets taken from
real human users, we are likely to encounter inconsistencies (e.g., due to the user
opting for variety and selecting something contrary to their usual preferences) that
would cause our exact-learning algorithm to fail.

Thus, to be useful in realistic applications, an algorithm for learning from optimal-
choice example would need to be robust to noisy and inconsistent example sets. The
other existing work in learning from optima, that of Bigot et al. [7], handles this
by learning a probability distribution over CP-nets from an example set that is also
treated as a probability distribution. However, their algorithm assumes only uncon-
ditional optima, not making use of the additional information that may be avail-
able when the some of the feature values are predetermined. Learning algorithms
from conditionally optimal choices could make use of techniques that have already
been suggested for learning from paired choices. For instance, heuristic search has
been proposed for learning from paired-choice examples [5], but its general applica-
tion is hindered by the fact that dominance testing (and hence evaluating a CP-net
with respect to those examples) is computationally hard1 [8, 16]; it would be even
better-suited to learning from optimal-choice examples, as checking consistency of an
optimal-choice examples with an acyclic CP-net can be done in linear time [8].

Additionally, if we expect to encounter almost exclusively choices conditioned on
few or no features, we should design algorithms that model the overall preference
ordering more accurately by acquiring additional information. This suggests the use
of active learning to supplement the passive learning described here — i.e., the system
asks the user about optima under specific conditions chosen to most effectively fill
in knowledge gaps about the user’s preferences. Active learning can also be used to

1The computational complexity depends on assumptions such as the graph structure of the CP-
net and whether the features can be multivalued. The precise complexity of dominance testing for
binary-valued, complete, acyclic CP-nets is an open question; Allen et al. [4] conjecture based on
empirical evidence that the problem is in NP.
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deal with apparent inconsistencies: When the system observes the user make two
different choices under the same apparent conditions, it could query the user about
which choice should be treated as the “default” and under what circumstances the
other choice is preferable.
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