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Unité de Recherche :
Institut de Recherche en Informatique de Toulouse (UMR 5505)

Directrice(s) de Thèse :
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Résumé

La modélisation structurée de préférences, fondée sur les notions d’indépendance préférentielle,
a un potentiel énorme pour fournir des approches efficaces pour la représentation et le raisonne-
ment sur les préférences des décideurs dans les applications de la vie réelle. Cette thèse soulève
la question de la représentation des préférences par une structure graphique. Nous proposons
une nouvelle lecture de réseaux possibilistes, que nous appelons π-pref nets, où les degrés de
possibilité représentent des degrés de satisfaction. L’approche utilise des poids de possibilité non-
instanciés (appelés poids symboliques), pour définir les tables de préférences conditionnelles. Ces
tables donnent naissance à des vecteurs de poids symboliques qui codent les préférences qui sont
satisfaites et celles qui sont violées dans un contexte donné. Nous nous concentrons ensuite sur
les aspects théoriques de la manipulation de ces vecteurs. En effet, la comparaison de ces vecteurs
peut s’appuyer sur différentes méthodes: celles induites par la règle de chaînage basée sur le
produit ou celle basée sur le minimum que sous-tend le réseau possibiliste, les raffinements du
minimum le discrimin, ou leximin, ainsi que l’ordre Pareto, et le Pareto symétrique qui le raffine.
Nous prouvons que la comparaison par produit correspond exactement au celle du Pareto symé-
trique et nous nous concentrons sur les avantages de ce dernier par rapport aux autres méthodes.
En outre, nous montrons que l’ordre du produit est consistant avec celui obtenu en comparant
des ensembles de préférences satisfaites des tables. L’image est complétée par la proposition des
algorithmes d’optimisation et de dominance pour les π-pref nets.

Dans ce travail, nous discutons divers outils graphiques pour la représentation des préférences.
Nous nous focalisons en particulier sur les CP-nets car ils partagent la même structure graphique
que les π-pref nets et sont basés sur la même nature de préférences. Nous prouvons que les ordres
induits par les CP-nets ne peuvent pas contredire ceux des π-pref nets et nous avons fixé les con-
traintes nécessaires pour raffiner les ordres des π-pref nets afin de capturer les contraintes Ceteris
Paribus des CP-nets. Cela indique que les CP-nets représentent potentiellement une sous-classe
des π-pref nets avec des contraintes. Ensuite, nous fournissons une comparaison approfondie entre
les différents modèles graphiques qualitatifs et quantitatifs, et les π-pref nets. Nous en déduisons
que ces derniers peuvent être placés à mi-chemin entre les modèles qualitatifs et les modèles quan-
titatifs puisqu’ils ne nécessitent pas une instanciation complète des poids symboliques alors que
des informations supplémentaires sur l’importance des poids peuvent être prises en compte.

La dernière partie de ce travail est consacrée à l’extension du modèle proposé pour représen-
ter les préférences de plusieurs agents. Dans un premier temps, nous proposons l’utilisation de
réseaux possibilistes où les préférences sont de type tout ou rien et nous définissons le conditi-
onnement dans le cas de distributions booléennes. Nous montrons par ailleurs que ces réseaux
multi-agents ont une contrepartie logique utile pour vérifier la cohérence des agents. Nous expli-
quons les étapes principales pour transformer ces réseaux en format logique. Enfin, nous décrivons
une extension pour représenter des préférences nuancées et fournissons des algorithmes pour les
requêtes d’optimisation et de dominance.

Mots-clés: Théorie de possibilité, réseaux de préférences, poids symboliques, multi-agents



Abstract

Structured modeling of preference statements, grounded in the notions of preferential indepen-
dence, has tremendous potential to provide efficient approaches for modeling and reasoning about
decision maker preferences in real-life applications. This thesis raises the question of representing
preferences through a graphical structure. We propose a new reading of possibilistic networks, that
we call π-pref nets, where possibility weights represent satisfaction degrees. The approach uses
non-instantiated possibility weights, which we call symbolic weights, to define conditional pre-
ference tables. These conditional preference tables give birth to vectors of symbolic weights that
reflect the preferences that are satisfied and those that are violated in a considered situation. We
then focus on the theoretical aspects of handling of these vectors. Indeed, the comparison of such
vectors may rely on different orderings: the ones induced by the product-based, or the minimum-
based chain rule underlying the possibilistic network, the discrimin, or leximin refinements of the
minimum-based ordering, as well as Pareto ordering, and the symmetric Pareto ordering that refi-
nes it. We prove that the product-based comparison corresponds exactly to symmetric Pareto and
we focus on its assets compared to the other ordering methods. Besides, we show that product-
based ordering is consistent with the ordering obtained by comparing sets of satisfied preference
tables. The picture is then completed by the proposition of algorithms for handling optimization
and dominance queries.

In this work we discuss various graphical tools for preference representation. We shed light
particularly on CP-nets since they share the same graphical structure as π-pref nets and are based
on the same preference statements. We prove that the CP-net orderings cannot contradict those of
the π-pref nets and we found suitable additional constraints to refine π-pref net orderings in order
to capture Ceteris Paribus constraints of CP-nets. This indicates that CP-nets potentially represent
a subclass of π-pref nets with constraints. Finally, we provide an thorough comparison between
the different qualitative and quantitative graphical models and π-pref nets. We deduce that the
latter can be positioned halfway between qualitative and quantitative models since they do not
need a full instantiation of the symbolic weights while additional information about the relative
strengths of these weights can be taken into account.

The last part of this work is dedicated to extent the proposed model to represent multiple agents
preferences. As a first step, we propose the use of possibilistic networks for representing all or
nothing multiple agents preferences and define conditioning in the case of Boolean possibilities.
These multiple agents networks have a logical counterpart helpful for checking agents consistency.
We explain the main steps for transforming multiple agents networks into logical format. Finally,
we outline an extension with priority levels of these networks and provide algorithms for handling
optimization and dominance queries.

Keywords: Possibility theory, preference networks, symbolic weights, multiple agent
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INTRODUCTION
General introduction

Preferences have been studied in philosophy, economics, psychology and computer science and
have a wide range of applications, including e-commerce, recommender systems and control.
Modelling preferences is inherent in such applications and is considered as a prerequisite for any
kind of thorough decision analysis. Handling such information needs a clear distinction between
the knowledge about a state of the world and the preferences of an agent about it. Research on
preferences in Artificial Intelligence (AI) has offered various ways of tackling the problem of
representing preferences, from their acquisition to their formal representation and manipulation.
Roughly speaking, two distinct ways to construct such models are possible, each focussing on a
different aspect of acquiring preferences. Preference elicitation methods need the user interaction
for the construction of the preference formalism while preference learning applies machine lear-
ning techniques on available data to predict a model following the specific characteristics of the
chosen model. Once the preference model is available, two queries are usually considered: Op-
timization and dominance queries for finding the optimal solution and for comparing solutions
respectively.

In this thesis, we are interested in preference models that exhibit a graphical structure and are
based on an independence relation. In fact, structural properties of preferences can help to reduce
the dimensionality of the value function, and thus achieve a compact representation of preferences
and, most importantly, a compact representation reduces computation tasks and the elicitation
burden.

In classical decision theory, specifying preferences comes down to determining a value function
that enables to compare all possible situations. Since the late 1990s, Artificial Intelligence is in-
terested in the representation of partially specified and contextually expressed preferences. The
problem, thus, is to reconstruct, if not a value function, at least an order relation between all
possible situations. This is called compact representation of preferences.

Roughly speaking, one may distinguish between qualitative and quantitative settings. In quan-
titative models, such as Generalized Additive Independence networks (GAI nets) [Gonzales and

1
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Perny, 2005] representing preferences comes down to constructing a value function that enables
us to compare all possible situations. However, decision-makers are rarely able to express their
preferences directly in terms of numerical local value functions due to the considerable cognitive
burden of determining accurate numerical values. Instead, qualitative models such as Conditional
Preference networks (CP-nets) [Boutilier et al., 2004a, Boutilier et al., 2004b] allow the represen-
tation of partially specified and contextually expressed preference relations.

Indeed, Conditional preference networks (CP-nets) [Boutilier et al., 2004a, Boutilier et al.,
2004b] are a popular example of qualitative models. They offer a graphical approach and ordi-
nal representation of preferences, and provide a simple and compact way to specify them. But
despite their success, CP-nets may induce debatable priorities between decision variables and lack
a logical counterpart.

Possibility theory offers a natural and simple model to handle uncertain information. It is an
appropriate framework for experts to express their opinion about uncertainty numerically using
possibility degrees (finite scale values) or qualitatively (ordinal) using total preorder on the uni-
verse of discourse. This theory has been used in different areas such as default reasoning [Benfer-
hat et al., 1997], qualitative decision [Dubois and Prade, 1995] and preference representation [Ben-
ferhat et al., 2001b]. Possibilistic logic [Dubois and Prade, 2004] is a possibilistic framework that
can be used for preference representation [Benferhat et al., 2001b]. Beside its capability to express
knowledge efficiently and reason with it, this logic is, as well, very efficient to deal with preferen-
ces. It induces a total pre-order thanks to its semantics in terms of possibility distributions [Dubois
et al., 2006].

This thesis explores the representation of preferences by possibilistic networks, outlined in
[Ben Amor et al., 2014] and establishes formal results about them. In fact, during this thesis
we are particularly interested in the compact representation of preferences. Our main goal is to
conduct thorough study of the possibilistic network based model, define its properties and develop
its potential extensions.

In the first part of this thesis, Chapter 1 and 2 offer necessary background on graphical models
for representing preferences. Moreover, we recall the basic notions of preferences and orderings.

Chapter 3 is dedicated to our proposed preference representation model. Our focus is, at first,
to define the main properties of the model and to highlight its assets. This preference model
relies on non-instantiated symbolic degrees which leads to associating each solution to a vector
of weights. One can rank-order the different solutions in many different ways. Regarding to this
fact, we propose a comparative discussion between the ordering offered by the possible ordering
relations.

In addition to this theoretical contribution, we consider the importance to compare the ex-
pressive power of our model with other existing models. We aim to highlight some possible
transformations between some well-known graphical and logical models for preferences. Chapter
4 is dedicated to this purpose.
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Nowadays, collective preference models form an attractive field that attracts much interest in
AI community In several areas, it is necessary to have a synthetic view of the preferences of groups
of agents. To the best of our knowledge, all the contributions provided in this domain manage the
agents based on their proportions not only in terms of profiles. This raises the problem of the
extension of possibilistic networks model for preference that can represent the preferences of a
group of agents. This model should be able to process these preferences with or without graded
satisfaction degrees. Besides, this intended model should allow indifference and the inconsistency
of some agents.

In this dissertation, we address various theoretical and applicative issues. Our main contribu-
tions are:

• Review all well-known graphical models,

• Set the characteristic of preference possibilistic networks and present their possible queries,

• Compare the different ordering relations that may be induced by the model and choose the
most appropriate one from our point of view

• Compare the expressive power of our model to CP-net and some other graphical and logical
models for preferences,

• Propose a new qualitative multiple agents graphical model corresponding to an extension
of the aforementioned model,

• Extend qualitative multiple agents graphical model to represent gradual preferences,

• Propose a toolbox that permits the reasoning with the proposed graphical models.

Papers representing the results of this thesis are listed at the end of this thesis 1.

This thesis is organized as follows:

• Chapter 1 introduces the basic concepts relative to preferences and reviews all well known
qualitative graphical models,

• Chapter 2 is devoted to some graphical models for representing quantitative preferences,

• Chapter 3 details a new graphical model based on possibilistic networks. In this chapter,
we focus on needed information to construct the models, the use of symbolic weights and
the possible queries that may be performed on the model.

• Chapter 4 aims to position the proposed models with regards other existing qualitative and
quantitative models.

1References are [Ben Amor et al., 2015] [Ben Amor et al., 2016b] [Ben Amor et al., 2016a] [Ben Amor
et al., 2017b] [Ben Amor et al., 2017a]
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• Chapter 5 proposes a new multiple agent graphical model for representing collective and
qualitative preferences. We propose algorithms and a quantitative extension for the latter.

• Chapter 6 proposes a toolbox implemented in Matlab that offers reasoning algorithms for
the proposed graphical models



CHAPTER 1

Graphical Preferential Qualitative Models
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1.1 Introduction

Modeling preferences is essential in any decision analysis task. However, eliciting these preferen-
ces becomes non trivial as soon as configurations are described by a Cartesian product of multiple
features such that a configuration is defined as a complete instantiation of all decision variables.
Indeed, the direct assessment of a preference relation between these alternatives is usually not
feasible due to its combinatorial nature. Thus, the Artificial Intelligence community has carried
out extensive research on this topic and has produced a huge number of preference representation
approaches [Ben Amor et al., 2016a, Kaci et al., 2014, Domshlak et al., 2011], differing either by
their nature (i.e quantitative or qualitative), type (i.e. graphical or logical), or their represented
preferences (eg. Ceteris Paribus). A general description of preferential models from the Artifi-
cial Intelligence standpoint would be to divide such models into three components; the language,
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corresponding to the form of the preference information communicated by the user, the model, de-
fined by the induced preference relations between the solutions, and finally the queries performed
on the model and exploiting its ability of aggregation [Domshlak, 2008].

A Preference model should achieve a good compromise between three conflicting aspects.
First, the need for sufficient flexibility to describe sophisticated decision behaviors. Second, the
practical necessity of keeping the elicitation effort at an admissible level as well as the need for
efficient procedures to solve preference-based optimization problems. In a preference model, two
types of queries are commonly used: namely, optimization queries for finding the optimal confi-
guration(s) (i.e. those which are not dominated by others) and dominance queries for comparing
configurations. The other important task is the elicitation of the model which corresponds to col-
lecting user preferences and building the model.

Fortunately, the decision maker can express contextual preferences that exhibit some indepen-
dence relations between decision variables, which allows us to be represent her/his preferences in a
compact graphical manner. Moreover, graphical representations facilitate preference elicitation, as
well as the construction of an ordering of configurations from these contextual local preferences.
This use of graphical preference representations has been inspired by the success of Bayesian net-
works as a rigorous and computationally tractable uncertainty management device [Pearl, 1988].
Graphical preference models may be classified based on one main criterion. Namely, preferences
can be represented in a qualitative or quantitative manner. Most of practically used preferen-
tial graphical models are qualitative [Santhanam et al., 2016, Ben Amor et al., 2016a] since they
are easy to elicit. In the sequel, we detail some of the most important ones, namely, Conditi-
onal Preference networks (CP-nets) [Boutilier et al., 1999], their extension Tradeoffs-enhanced
CP-nets [Brafman and Domshlak, 2002] and Preference trees (P-tree) [Liu, 2016]. These models
allow to express various kinds of preference relations over variables or/and their domains. We
detail the semantics behind such networks and the induced preference graph that encodes an order
between configurations from a given set of preferences. Chapter 2 is dedicated to graphical models
where preferences are quantitative.

The chapter is organized as follows. Section 1.2 sketches a general scheme for reasoning
about preferences from AI point of view. Section 1.3 offers a reminder of some binary relations
that may exist between two configurations (i.e. two complete instantiation of the decision variables
used for describing alternatives) and reviews some classical orderings on a set of configurations.
In Section 2.4, we present a well-known graphical qualitative model based on Ceteris Paribus
independence, entitled CP-nets. Section 2.5 addresses an extension of CP-nets that admit some
importance relations between variables. Section 2.6 is devoted to P-trees; a new tree-structured
qualitative model that constructs a total ordering between configurations.



CHAPTER 1. GRAPHICAL PREFERENTIAL QUALITATIVE MODELS 7

1.2 Preference models

The literature of preference modelling is very vast. This can be justified by the various discipli-
nes that are interested in the question of modelling preferences. We can cite for instance; eco-
nomics [Debreu, 1959], psychology [Tversky and Kahneman, 1975] and artificial intelligence
(AI) [Kushmerick et al., 1995].

The general approach of AI to reason about a user preferences has 3 major components, and
was proposed in [Domshlak, 2008]:

• The language: In each preference model, choosing the language which is the closest and
the most intuitive to the user is important. For instance, pairwise comparisons are very
appealing for users since no ambiguity in the interpretation of the information is possible.
However, such language turns to be less appealing when the number of configurations is
large. As an example, its clear that a user is unable to directly specify an ordering between
one hundred of vacation house configurations. Therefore, other preference specification
languages should be considered. It was noticed that users are generally willing to provide
so-called generalizing statements of preference (i.e., partially instantiated preference state-
ments applying to a large class of situations). For instance, I prefer to spend my vacations
next to the beach than downtown. This indicates that the user when generalizing refers to
some characteristics of the configurations offered. More precisely, the user here prefers the
configurations of vacation houses that have the characteristic next to the beach to the others.
Various ways on how to interpret generalizing preference statements have been proposed in
philosophy and AI. Whereas, no agreed-upon generalization is suggested to be the best. In
this chapter, we will be concerned by graphical models where generalization (completion)
of the contextual preference statements amounts to comparing configurations. For instance
CP-nets adopt the Ceteris Paribus completion while possibilistic reasoning suggests some
other completion principle based in the Markov property (Chapter 3).

• The preference ordering (called ‘model’ in [Domshlak, 2008]): It consists in the ordering
underlying a preference representation. One should make an assumption on the resulting
ordering of configurations i.e. the ordering can be partial or total, weak or strict. Generally,
in qualitative models, the ordering induced from the model corresponds to the comparisons
constructed after the completion step or by transitivity.

• The algorithms: To reason with preference models various types of query are suggested.
Generally, the graphical structure of the models plays an important role in reasoning about
preferences, even if the user may not be aware of its existence. Most important queries
correspond to finding the best configuration (the set of the best configurations) or finding
the preference between two configurations. Other variants of such queries are sometimes
considered.

Figure 1.1 presents the AI methodology for reasoning about preferences. This general model/
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Model Language Algorithms

Queries

Total order between configurations

Total preorder between configurations

Partial order between configurations

Partial preorder between configurations

A configuration ω1 is preferred to configuration ω2

A configuration ω1 is good
A configuration ω1 has a value 14

Find the optimal configuration

Find the M optimal configurations

Compare two configurations

Rank order some configurations 

Figure 1.1: AI methodology for reasoning about preferences [Domshlak, 2008]

language/algorithms scheme can be instantiated in several ways, and each of these instantiations
does unavoidably face some critiques from one side or another.

Finally, preference models are formal representations of preference relations between solu-
tions. Such models should be established through the use of a formal language capturing the
structure of the described preference and the manipulation of it. Considering formal logic as such
a language is well-founded. However, the need of representing such preferences in a succinct,
user-friendly way has urged the AI community to offer graphical model representations for this
aim. Indeed, graphical models enable the representation of dependence/independence between va-
riables which helps the problem to be decomposable. They permit a local processing of elementary
preferences by exploiting the structural independence, represented by their graphical component,
of the preferential relations. More precisely, the compactness of the language comes from the
exploitation of preferential independence. In fact, thanks to the some observed independences
among variables, a preference relation over a set of variables can be considered as preference
relation pertaining to subsets of these variables, and thus, shown in a more compact way.

Qualitative preferences can correspond either to intra-variable preference relations over the
values of a variable or to relative importance preference relations over variables. More precisely,
relative importance preferences define priorities between variables, for instance satisfying the pre-
ferences of the variable A1 is more important than satisfying the preferences of the variable A2.
While intra-variable preferences with respect to a variable consist on specifying an order relation
between the values that may take this variable.
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Prior to the problem of the preference representation, the problem of the elicitation or learning
of these models arises. Regarding elicitation, building preference models needs an interaction with
the user in order to acquire the necessary information and to offer a satisfactory result. Elicitation
depends on the chosen representation language and exploits the structure of preferences to reduce
the amount of information elicited and the cognitive effort of communication. Therefore, to facili-
tate the elicitation process, it is important that the preferential language is as intuitive as possible.
In contrast, learning preference networks from data clearly differs from elicitation. Indeed, the le-
arning system does not interact with the user by asking some specific requests in order to lead him
to express all his preferences. However, the model is built from some observed past user behaviors

1.3 Ordering relations

Binary relations [Bouyssou and Vincke, 2010] are the central tool of most qualitative models.
In this section we give an overview of mathematical and computational concepts that will be
used throughout the rest of this thesis. First, since preference relations are modelled as binary
relations, we recall the definition of the latter and some of their key properties. Then, based on
these properties, we present several types of preference structures.

1.3.1 Binary preference relations

Let V = {A1, . . . , AN} be a set of N variables. Each variable Ai has a value domain D(Ai).
Elements ai ∈ D(Ai) denote values of Ai. Ω = {ω1, . . . , ωn} denotes the universe of discourse,
which is the Cartesian product of all variable domains in V . Each element ωi ∈ Ω is called a
configuration (or a solution). It corresponds to a complete instantiation of the variables in V . We
call a binary relation on Ω a subset of the Cartesian product R ⊆ Ω × Ω. We write ωiRωj for
(ωi, ωj) ∈ R and ωi¬Rωj for (ωi, ωj) /∈ R.

Let us first remind some properties of binary relations:
A binary relation R is said to be:

• Reflexive⇔ ∀ωi ∈ Ω , ωiRωi

• Irreflexive⇔ ∀ωi ∈ Ω , ωi¬Rωi

• Symmetric⇔ ∀ωi, ωj ∈ Ω, ωiRωj ⇒ ωjRωi

• Anti-symmetric⇔ ∀ωi, ωj ∈ Ω, ωiRωj ∧ ωjRωi⇒ ωi = ωj

• Asymmetric⇔ ωiRωj ⇒ ωj¬Rωi

• Transitive⇔ ∀ωi, ωj , ωz ∈ Ω, ωiRωj ∧ ωjRωz ⇒ ωiRωz
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• Complete⇔ ∀ωi, ωj ∈ Ω , ωiRωj or ωjRωi

• Weakly complete⇔ ∀ωi, ωj ∈ Ω , ωiRωj or ωjRωi or ωi = ωj

• Acyclic ⇔ ∀ k > 2, ∀ ωi ∈ Ω, i = 1, 2, . . . , k, ω1Rω2 and ω2Rω3 and . . . , ωk−1Rωk
⇒ ω1 6= ωk

The above mentioned properties are not always independent [Bouyssou and Vincke, 2010]. In-
deed, we can check that:

• Asymmetric relation⇔ irreflexive and antisymmetric relation.

• Complete relation⇔ reflexive and weakly complete relation.

• Asymmetric relation⇔ irreflexive and antisymmetric relation.

For each pair of configurations (ωi, ωj), we are in one of the following four cases:

• ωiRωj and ωjRωi, denoted by ωi ∼ ωj , is interpreted as ‘ωi is indifferent to ωj’.

• ωi¬Rωj and ωj¬Rωi, denoted by ωi ± ωj , is interpreted as ‘ωi is incomparable to ωj’.

• ωiRωj and ωj¬Rωi, denoted by ωi � ωj , is interpreted as ‘ωi is strictly preferred to ωj’.

• ωi¬Rωj and ωjRωi, denoted by ωi ≺ ωj , is interpreted as ‘ωj is strictly preferred to ωi’.

� is the asymmetric part of� and∼ its symmetrical part. The relation� is said to be a preference
relation in the wide sense, � a strict preference relation and ∼ an indifference relation. We note
the opposite relations ≺ and � preference relation such as:

ωi ≺ ωj ⇔ ωj � ωi and ωi � ωj ⇔ ωj � ωi

If the preference relation of the decision-maker is reflexive and transitive, these preferences
meet the strong assumptions of the decision maker rationality defined as follows:

Definition 1.1. A preference relation respects the strong assumptions of the decision maker ratio-
nality, if and only if:

• The intersection between ∼ and � is empty;

• ∼ is reflexive and symmetric;

• � is asymmetric;

• � is transitive.
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Preference structure Properties
Total order complete

antisymmetric
transitive

Total preorder complete
transitive

Partial order reflexive
antisymmetric

transitive
Preorder reflexive

transitive

Table 1.1: Classical preference structures

1.3.2 Classical preference structures

The total order consists on ranking configurations without the possibility of indifference.

Definition 1.2. A total order is a transitive, antisymmetric and complete binary relation.

In a total order, incomparability relations are forbidden and the indifference is only found
between two identical configurations.

Definition 1.3. A partial order is a reflexive, antisymmetric and transitive binary relation.

In a partial order, two distinct configurations are either strictly preferred or the two configura-
tions are incomparable, such that the strict preference is transitive.

Definition 1.4. A partial preorder is a reflexive and transitive binary relation.

Definition 1.5. A total preorder is a partial preorder that is complete.

A total order is a total preorder which is antisymmetric. Preorders are more general than partial
orders, which are special cases of preorders. Indeed, they allow indifference between distinct
elements, having the indifference relation as transitive. Table 1.1 summarizes the characteristics
of the preference relations presented above.

These notions are illustrated with several examples of Figure 1.2 [Liu, 2016]:

Example 1.1. We assume that the directed edges correspond to strict preferences from a less
preferred configuration to a more preferred one, i.e. ωi → ωj means that ωj is strictly preferred
to ωi. Note that if a node contains more than one configuration then the preference relation
between these configurations is indifference. For Figures 1.2a and 1.2b we consider that we have
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4 configurations ω1, . . . , ω4. It can be checked that Figure 1.2a is a partial order since ω2 and ω4
are non compared, Figure 1.2b is a total order since all the configurations can be compared and
there is no equality between configurations. The preference ordering expressed by Figure 1.2c and
1.2d is over 8 configurations, namely, ω1, . . . , ω8. Figure 1.2c represents a partial preorder since
ω8 and ω7 are equally preferred while ω8 and ω4 are non-compared and Figure 1.2d is a total
preorder.

1.4 Conditional Preference Networks (CP-nets)

The direct specification of a binary preference relation on Ω = {ω1, . . . , ωn} is rather difficult, as
it requires the user to compare up to O(n2) pairs of configurations, which is huge in terms of time
(n is exponentially large) and effort. Therefore, qualitative preference models allow for a local
and concise specification of preferences.

The user is assumed to express preferences under the form of comparisons between values of
each variable, conditioned on some other instantiated variables. CP-nets deal with strict preference
statements. Unconditional statements are of the form: “I prefer a+ to a−”, where a+, a− ∈
{a,¬a} and a− = ¬a+, and we denote them by a+ � a−. When A = a+, we say that the
quality of the choice for A is good, and is bad otherwise. If the preference on A depends on
other variables P(A) called the parents of A, and p(A) is an instantiation of P(A), conditional
preference statements are of the form “in the context p(A), I prefer a+ to a−”, denoted by p(A) :
a+ � a−. To each variable we associate a table representing the local preferences on its domain
values in each parent context (the value of a+, respectively a−, depends on the parents context).

1.4.1 Preference independence: Ceteris Paribus

CP-nets, initially introduced in [Boutilier et al., 2004a], are considered as an efficient model to
manage qualitative preferences. This preference model is based on a preferential independence
property often referred to as a Ceteris Paribus assumption such that a partial configuration is pre-
ferred to another everything else being equal. Formally, it is defined as follows:

Definition 1.6 (Preferential independence). Let V be a set of variables and X be a subset of V . X
is said to be preferentially independent from its complement Y = V \X iff for any instantiations,
y, y′, x, x′,

(y, x) � (y′, x)⇔ (y, x′) � (y′, x′)

Preferential independence is asymmetric. Indeed, it might happen, e.g., for disjoint sets X , Y and
Z of variables that X is preferentially independent (Definition 1) from Y given Z without having
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(a) Partial order
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(b) Total order
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ω5  

(d) Total preorder

Figure 1.2: Illustrations of preference order relations
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Y preferentially independent from X . This independence is at a work in the graphical structure
underlying CP-nets.

1.4.2 Model definition and semantics

Preference networks can be viewed as a qualitative counterpart of Bayesian nets [Pearl, 1988].
More formally:

Definition 1.7 (CP-nets). A CP-net consists of a directed graph G = (V, E) where V denotes the
set of nodes and E denotes the set of edges. A node corresponds to a variable. Edges represent
the preference dependencies between the variables. To each variable Ai we associate a condi-
tional preference table that corresponds to a strict total order between the values of Ai, for all
instantiations p(Ai) of parent variables P(Ai).

ab    : c ≻ ¬c
a ¬ b  : ¬c ≻ c
¬ ab   :¬c ≻ c
¬a ¬ b: c ≻ ¬c    

a ≻ ¬a

BA

C

b ≻ ¬b

Figure 1.3: An example of a CP-net

Here, preferences over values of a variable depend only on the parent(s) context, and are
preferentially independent from the rest of variables. Contrarily to Bayesian nets, CP-nets may be
cyclic (without necessarily encoding inconsistent preferences). Each preference statement in the
CP-net implicitly corresponds to a set of comparisons between pairs configurations. For instance,
consider two independent variables House type= {flat, villa} and size= {large, small}, if the
user says "I prefer flats to villas, we can deduce that large flats are preferred to large villas and
small flats are preferred to small villas. However, we cannot deduce that small flats are preferred
to large villas. In fact, the preference relation is valid provided that the rest of the variables are
instantiated in the same way.

A CP-net is said to be satisfiable if there exists at least one partial order of configurations
that satisfies it. Note that every acyclic CP-net is satisfiable and leads to a unique partial order
[Boutilier et al., 2004a].
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abc

ab ¬c

¬ab ¬c

¬a¬b ¬c

¬a¬bc

¬abc

a¬b ¬c

a¬bc

Figure 1.4: The worsening flips graph of the CP-net of Figure 1.3

Example 1.2. Let us consider the simple CP-net of Figure 1.3, with 3 variables. This CP-net is
acyclic thus it is satisfiable and leads to a unique partial order. The building of the worsening flips
graph (Figure 1.4) leads to the partial ordering: abc �CP ab¬c �CP ¬ab¬c �CP ¬abc �CP
¬a¬bc �CP ¬a¬b¬c, ab¬c �CP a¬b¬c �CP ¬a¬b¬c, abc �CP a¬bc �CP ¬a¬bc which
means that the optimal configuration is abc.

1.4.3 Reasoning with CP-nets

Given a CP-net, two queries can be considered, namely, optimization query for finding the best
configuration and dominance queries defined by finding a preference relation between two confi-
gurations. More precisely:

• As mentioned above, acyclic CP-nets have a unique optimal configuration. Finding it
amounts to looking for a configuration where all the conditional preferences are satisfied. It
can be done by a simple forward sweeping procedure where, for each node, we assign the
most preferred value according to the parents context. For acyclic CP-nets, this procedure
is linear w.r.t. the number of variables [Boutilier et al., 2004a]. In contrast, for cyclic ones
answering this query needs an NP-hard algorithm and may lead to more than one optimal
configuration [Goldsmith et al., 2008].

• Dominance queries are more complex. Using the information in the CP-Tables and applying
the Ceteris Paribus principle, when one flips one variable value in a configuration one may
obtain either an improved configuration, or a worsened one. These swap pairs can be or-
ganized into a collection of worsening (directed) paths with a unique root corresponding to
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the best configuration and where the other extremity is the worst one. Thus, a configuration
is preferred to another if there exists a chain (directed path) of worsening flips between
them [Boutilier et al., 1999]. Note that if for any variable Ai ∈ V , Ai is preferentially
independent from V \ Ai, then the CP-net graph is disconnected and many configurations
cannot be compared. Testing dominance is PSPACE-complete for unrestricted CP-nets,
NP-hard for acyclic ones, and quadratic for tree-structures [Goldsmith et al., 2008]. In a
recent work [Xin and Liu, 2016], authors have proved that there is a connection between
dominance querying and single source shortest path problem [Orlin et al., 2010]. They pro-
posed a new exact dominance algorithm entitled Johnson algorithm for any binary-valued
CP-net which runs in a time complexity equal to O(2n ∗ n2).

In general, the ordering induced by a CP-net is strict and partial, since several configurations
may remain incomparable (i.e. no worsening flips chain exists between them). Clearly, acyclic
CP-nets cannot exhibit any ties.

Randomly generating CP-nets is helpful for learning experiments [Allen et al., 2014]. Indeed,
it enables experimental analysis of CP-net reasoning algorithms, understanding their properties
and simulating some social choice experiments. Some research works gave importance to this
topic such as [Allen et al., 2016, Allen et al., 2014]. In fact, recently, a novel algorithm for
provably generating acyclic CP-nets uniformly at random was proposed in [Allen et al., 2016].
The proposed method allows for multi-valued domains and an arbitrary bounds on the indgree of
the dependency graph.

1.4.4 Expressivity of CP-nets

In CP-nets, a parent preference tends to be more important than a child one [Boutilier et al.,
1999]. In other words, violating a preference associated with a father node is more important than
violating a preference associated with a child one; this priority implicitly given by the application
of Ceteris Paribus may be debatable. For instance, in the previous example, configuration ab¬c is
preferred to configuration ¬abc. Moreover, this kind of priority is not transitive in the sense that
CP-nets cannot always decide whether violating preferences of two children nodes is preferred to
violating preferences associated with one child and one grandson node respectively (which might
have been expected as being less damaging than violating two children preferences) [Dubois et al.,
2013b]. This limitation is problematic since these priorities cannot be questioned and modified.
Generally, there are partial preference orderings that CP-nets cannot express, see [Ben Amor et al.,
2015] for counterexamples.

Only few works discuss the expressivity and succinctness of CP-nets. Investigation on the
expressive power of CP-nets in a quantitative manner are proposed in [Liu and Liao, 2015]. More
precisely, the authors address a new concept called expressive efficiency that quantifies the trade-
off between expressivity (i.e. the possible preference relations that the model can express) and
succinctness (i.e. how much space is needed to store all the preferences) of CP-nets. Moreover, the



CHAPTER 1. GRAPHICAL PREFERENTIAL QUALITATIVE MODELS 17

authors investigate the expressivity of two kinds of binary-valued CP-nets namely, set-structured
and equal difference CP-nets. Indeed, the preference relations expressed by CP-nets are directly
related to the dependency graph. Set-structured CP-nets are specified by a graphical structure
where all the nodes are independent (i.e. there is no edges). It was proved that such networks
can express 3N − 2N preference relations [Liu and Liao, 2015]. Besides, since all nodes are
independent, there is only one preference statement per variable. This means that only N space is
needed to store the preference statements. The other studied kind of CP-net is equal difference CP-
nets. These latter are defined by a structure where each node connects to all its followings i.e., the
root node is directly related to all the rest of the variables which means that the network has only
one root and only one leaf. They proved that from this kind of structure one can construct a total
order between configurations. That is, based on this structure, one can express all the preference
relations between the configurations. Thus, we have 2N−1 ∗ (2N − 1) preference relations and
2N − 1 space is needed to store the conditional preference statements. However, the number of
preference relations expressed by an arbitrary structured CP-net remains an open problem [Liu
and Liao, 2015].

In general, CP-nets are restricted to binary-valued variables. This would restrict the expressi-
vity of CP-nets. Even though the semantics allows for such representations, algorithms for multi-
valued acyclic CP-nets were neglected. Roughly, optimization query is easy even for multi-valued
CP-nets, however, dominance queries are hard. In fact, the number of nodes of the configuration
graph built for finding a worsening path from a configuration to another grows exponentially with
the number of configurations [Yaman and Desjardins, 2008]. A methods for handling such vari-
ables is to reduce their number into group of multiple values. In [Yaman and Desjardins, 2008],
authors have identified a class of multi-valued CP-nets, entitled more-or-less CP-nets, that have the
same computational complexity as binary-valued CP-nets. In fact, more-or-less CP-nets consider
ordinal variables, i.e monotonic variables, and assume the existence of a single critical point per
variable. To reason with such networks, one should aggregate the preferences of a range of values
together. Then, after a slight modification of binary dominance algorithm, one can execute the
task with the same computational complexity (i.e. NP-complete to PSPACE). However, this class
of CP-nets is too restrictive and reasoning with multi-valued CP-nets is still an open question.

The expressivity of CP-net is also restricted by the fact that standard CP-nets cannot express
indifference. In fact, each preference statement must be defined as a total order between the values
of the variable. This can be explained by the fact that a CP-net that bears indifference may be non
satisfiable as illustrated in Example 1.3.

Example 1.3. Let us consider a CP-net over two variables A and B, such that A is the parent of
B. With the following preference tables: a ∼ ¬a, a : b � ¬b, ¬a : ¬b � b. This asserts that
the user is indifferent between the values that A may take. The following preferences is deduced:
ab � a ∼ b � ¬a¬b � ¬ab ∼ ab. These statements are not consistent with any preference
ranking, hence this network is not satisfiable

Some researchers have proposed to extend CP-nets in order to express indifference [Allen,
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2013], since the assumption of a strict preference is too strong from a psychological standpoint
and is often too restrictive even for simple preferential problems. [Allen, 2013] proposed to learn
CP-nets where preference statements may include incomparability and indifference. For instance,
‘big house ∼ small house’ means that the user is indifferent about the size of the house. Authors
consider a more general question for dominance corresponding to weak dominance i.e. whether
ω1 � ω2 or ω1 � ω2. This entails searching for a monotonically worsening flipping sequence such
that a worsening flip either corresponds to strict preference or indifference. If after the transitive
closure and in the absence of a rule such that ω1 � ω2 or ω1 � ω2 then the two configurations
remain non compared ω1 ± ω2.

Constraints on the structure of CP-nets may restrict their expressivity. Indeed, cyclic CP-
nets [Brafman and Dimopoulos, 2004] emerge naturally when there is a set of variables that are
mutually dependent. In certain situations, it may be more natural to express cyclic preferences
even if an acyclic representation could be used, for instance, for preference-based configuration of
web page content [Domshlak et al., 2001]. It was noted that such cyclic networks are sometimes
consistent and the semantics of CP-nets allows for such cycles (i.e. nothing in the semantics of the
CP-net model forces it to be acyclic). It is important to note that cyclic CP-nets do not always lead
to a cyclic order of configurations. Testing consistency of general cyclic CP-nets was proposed
in [Goldsmith et al., 2008] and proved to be PSPACE-complete along with the dominance testing.

Other extensions that may somewhat enhance the expressivity of CP-nets (including Proba-
bilistic CP-nets (PCP-nets) [Bigot et al., 2013] and Multiple agents CP-nets (mCP-nets) [Rossi
et al., 2004] are not covered here since they enlarge the representation to other features, namely
uncertainty or multiple agents).

1.4.5 How to build CP-nets?

CP-nets can be constructed by an expert, elicited from users, or learned from data. Each of these
methods may show some strengths and weaknesses. The first method needs a good expertise and
knowledge. Indeed, for complex domains even if the graphical structure may seem to be intuitive,
finding dependencies and choosing the variables is not always practical.

The second method needs a long process of intake before the model can be employed. [Lang
and Mengin, 2009] were interested in passive learning of separable CP-nets. These are set-
structured CP-nets whose variables have no conditional dependency, that is to say that the graph
has no arc. After that, [Koriche and Zanuttini, 2010] have been interested in eliciting boolean
tree-structured acyclic CP-nets. Then, a heuristic algorithm for learning CP-nets from user query
was proposed in [Guerin et al., 2013, Allen, 2014]. It has two phases. The first corresponds to
constructing a separable CP-net with default CP-tables. Then, iteratively, it refines the model by
adding edges and forming more complex CP-tables. While assuming a bound on the number of
parents, the algorithm succeeds to construct a CP-net in time O(Np) such that N is the number of
nodes and p is the bound on the number of parents of each node. The algorithms guarantees that
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the preferences it outputs are always consistent with the user preferences.

An empirical study was held to argue about the suitability and tractability of elicitation and
validation algorithms with humans [Allen et al., 2015]. In fact, preference information is often
messy, not openly available, thus it needs a huge work to collect. Besides, the reliably of such
preferences is not always ensured because of the difficulty of interpretation. Moreover, users may
express preferences that are not representable by the preferential model. The experimental research
aims to test whether users subjectively represent preferences in a way that is consistent with CP-
nets. Following this line of stepping back and looking at decision-support systems from the user’s
point of view, [Patel, 2016] designed a tool which uses comparative preference statements on the
basis of psychological, linguistic and personal considerations.

The last method requires weeks of observations in order to construct a model satisfying the
preferences of a user. An algorithm for learning the CP-net from outcome comparisons data was
presented in [Dimopoulos et al., 2009]. The algorithm takes as input a set of variables and a set of
comparisons between outcomes and outputs a CP-net that is consistent with preferences afforded.
Indeed, as a first step it initializes an empty CP-net and adds a node per iteration starting by
finding the independent nodes. This learning is proved to be NP-hard even under some simplifying
hypothesis.

Preference elicitation is a serious problem in many preference modeling tasks. Models based
on Ceteris Paribus independence were designed to make this process simpler and more intuitive
which is enhanced by the graphical structure that CP-nets have.

1.5 Tradeoffs-enhanced CP-nets (TCP-nets)

As mentioned above, the expressive power of CP-nets is limited. In particular, we are unable to
specify importance relations between variables, beside those implicitly imposed between parents
and children. Tradeoffs-enhanced CP-nets (TCP-nets) [Brafman and Domshlak, 2002] are an
extension of CP-nets that adds a notion of importance between the variables by enriching the
network with new arcs. These arcs express importance relations for stating the priority of a node
over another (i.e.,“preference about the values of A1 is more important than preference about the
values of A2”). Such priority statements may be conditioned on the values of other variables, e.g.,
“if the variable A3 has value a3, the preference about values of A1 is more important than the
preference about the values of A2.” Formally, TCP-nets are annotated graphs with three types of
edges and are defined as below.

Definition 1.8 (TCP-nets). A TCP-net G′ over a set V of variables is a CP-net G = (V, E) aug-
mented with two types of arcs:

1. A set of directed i-arcs (where i stands for importance). An i-arc〈
−−−→
Ai, Aj〉 belongs to G′ iff

Ai is more important than Aj , which is denoted by Ai . Aj .
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2. A set of undirected ci-arcs (where ci stands for conditional importance). A ci-arc (Ai, Aj)
belongs to G′ iff the relative importance of Ai and Aj is conditioned on Z s.t. Z ⊆
V\{Ai, Aj}. Each ci-arc (Ai, Aj) is associated with a mapping from a subset of DZ to
strict total orders over the set {Ai, Aj}.

Let us turn to the expressive power of TCP-nets. TCP-nets obey the preference statements
induced by Ceteris Paribus, since the ordering obtained is a refinement of the CP-nets ordering. In
fact, the refinement brought by TCP-nets cannot override the implicit priority in favor of parents
nodes. Indeed, in case one would add a i−, or a ci− arc yielding a preference in favor of a
son with respect to a parent (at least in some context), one would face an inconsistency between
a worsening I-flip and a worsening CP-flip that act in opposite directions, thus we would have
inconsistent TCP-nets.

The main issue for TCP-nets is the challenge of performing queries with this representation.
Some first proposals are presented in [Brafman et al., 2006]. For consistent TCP-nets, the optimi-
zation procedure works like CP-nets. Indeed, the relative importance relations do not play a role
in this case. The dominance problem can be also be treated as a search for an improving flipping
sequence, where the notion of flipping sequence is extended. In fact, a flip corresponds either to a
CP-flip like CP-nets or to an I-flip (“importance flip”). We assume that ω[X] denote the restriction
of ω to variables in X . Let ω and ω′ be two configurations, such that ω differs from ω′ in the value
of exactly two variables Aj and Ak, and such that ω[Aj ] � ω′[Aj ] and ω[Ak] ≺ ω′[Ak] (given the
same values of P(Aj) and P(Ak) in ω and ω′). Then, a worsening I-flip from ω to ω′ takes place
when there is a priority of Aj over Ak conditional (or not) on a subset of variables Z such that Z
takes the same values in ω and ω′. However, no general algorithm is known for dominance query
since results in the context of CP-nets do not seem to be immediately adaptable to TCP-nets.

Example 1.4. Let us consider the TCP-net in Figure 1.5. An unconditioned importance a . b is
added. Indeed, a new arc i-arc〈

−−→
A,B〉 is added with respect to the CP-net in Figure 1.3. The orde-

ring given by the worsening flips graph in Figure 1.6 is refined, compared to the CP-net. Indeed,
a¬b¬c �TCP−net ¬ab¬c and a¬bc �TCP−net ¬abc, while these configurations comparable by
I-flips, are not comparable in the CP-net, see Figure 1.3(b). In place of the previous unconditio-
ned importance statement, one may exhibit an example of ci-arc (A,B) by stating that A is more
important than B if C = c, and B is more important than A if C = ¬c. Then, we would have
a¬b¬c ≺TCP−net ¬ab¬c and a¬bc �TCP−net ¬abc.

TCP-nets also yield partial orderings that, from the same CP-net preference statements, are
refinements of the ordering induced by the corresponding CP-nets.

Example 1.5. Let us consider the following preferences over variables A and B with D(A) =
{a,¬a} and D(B) = {b,¬b}: (i) In all cases a is preferred to ¬a; (ii) b is preferred to ¬b. The
CP-net view yields the order: ab �CP a¬b ±CP ¬ab �CP ¬a¬b. No CP-net yields the refined
order ab � a¬b �¬ab �¬a¬b, while it can be represented with a TCP-net, with the additional
information “A is more important than B”.
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ab    : c ≻ ¬c
a ¬ b  : ¬c ≻ c
¬ ab   :¬c ≻ c
¬a ¬ b: c ≻ ¬c    

a ≻ ¬a

BA

C

b ≻ ¬b

Figure 1.5: An example of a TCP-net

Some other related languages such as CI-networks [Bouveret et al., 2009] and CP-theories
[Wilson, 2004] allow the statement of relative importance among sets of variables. Particularly,
CP-theories, allow statements of the form "A1 is more important than {A2, A3}". CI-nets are
dedicated to the comparison of sets of goods rather than configurations. In fact, CI-nets allow
unconditional and monotonic intra-attribute preferences and conditional relative importance pre-
ferences over sets of variables of the form "{A1, A2} is more important that {A3, A4}". Formally,
having V the set of binary variable, S+, S−, S1 and S2 subsets of arbitrary variables, a conditional
importance statement on V is a quadruple γ = (S+, S−, S1, S2) written as S+, S−, S1 . S2. In
other words, this means that ‘if I have all variables in S+ and none of the variables in S−, I prefer
obtaining all variables in S1 rather than obtaining all variables in S1 Ceteris Paribus. CI-nets com-
pare sets of variables of arbitrary sizes while TCP-nets can only express importance statements
between single objects Ceteris Paribus [Bouveret et al., 2009]. Besides, in CP-nets, TCP-nets and
CP-theories each preference statement can be represented in terms of preferences over values of a
single variable, while CI-net expresses preference statements between sets of variables. Note that
CI-networks do not express any conditional intra-variable preferences. This is explained by the
fact that the larger the set of goods the better for the user (monotonicity w.r.t. set inclusion). Be-
sides, CI-nets generalize TCP-nets since they can bear preferences on arbitrary sets of variables,
and not only singletons. Since this chapter is dedicated to graphical models, CP-theories will be
detailed in Chapter 4.

Table 1.2 summarizes the preference relations expressed by the preference models that are
based on the Ceteris paribus independence. A check mark (X) means that the model allows the
corresponding preference relation type.
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abc

ab ¬c

¬ab ¬c

¬a¬b ¬c

¬a¬bc

¬abc

a¬b ¬c

a¬bc

Figure 1.6: The worsening flips graph of Figure 1.5

Preference relation type CP-nets TCP-nets CI-networks CP-theories
Unconditional intra-variable preference X X X
Conditional intra-variable preference X X X

Conditional relative importance X X X
One-many relative importance X X

Many-many relative importance X

Table 1.2: Expessivity of ceteris paribus based models [Santhanam et al., 2016]



CHAPTER 1. GRAPHICAL PREFERENTIAL QUALITATIVE MODELS 23

1.6 Preference trees

Conditionally lexicographic preferences are preferences where both relative importance between
variables and intra-variable preferences are dependent on the values taken by some more important
variables. A graphical representation of these preferences is presented by trees over binary varia-
bles with sometimes conditional preference tables. In this section, we present two tree structured
models to represent lexicographic preferences, namely, LP-trees and their extension P-trees.

1.6.1 Lexicographic preference trees (LP-trees)

Lexicographic preference trees (LP-trees for short) [Liu and Truszczynski, 2013,Lang et al., 2012]
offer a qualitative way to express total orders between configurations. Since, explicitly specifying
a strict preference order on Ω becomes impossible for combinatorial domains with more than 8
configurations. A P-tree over Ω is a binary tree where each node is labelled by a variable. LP-trees
have a depth equal to N with an implicit level N + 1 is implicit (i.e. not always represented in the
graphical structure and in dotted lines in Figure 1.7) and corresponds to non-decision nodes (the
leaves of the tree) representing configurations.

Definition 1.9. A lexicographic preference tree (LP-tree) T over a set of binary variables V is a
labelled binary tree. Each node of T corresponds to a variable and is associated to a total order
(conditioned or not) between the values of the variable. Each variable appears exactly once of
each path from the root to a leaf.

Therefore, a LP-tree is composed of a tree and a collection of conditional preference tables.
Each node has two incident arcs such that the left branch indicates that the preference table at the
node is satisfied and the right one indicates its violation, see Figure 1.7.

Example 1.6. Let us consider a user preferences over three binary variables V = {A,B,C}.
Figure 1.7 illustrates the LP-tree corresponding to the user preferences. It can be checked that the
importance between B and C depends on the instantiation of variable A. More precisely, when A
is instantiated to a, satisfying the preferences of B is more important than those of C. Besides, in
the left subtree its clear that the preference between the values of C is conditionally dependent of
the values of B. For instance, when B is instantiated to b, then c � ¬c.

Intuitively, the variable in the root of the tree has the highest importance. Then, configurations
with the preferred value are preferred to those with the less preferred one. Iteratively, each node
refines the ordering between these configurations such that left sub-trees correspond to the prefer-
red configurations and right sub-trees to the non-preferred ones. (implicit) Leaf nodes correspond
to a total order between the configurations. Note that the roots of each subtree do not need to be
same. Indeed, the relative importance of variables depends on the values of variables on the path
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A

CB

CC B B

a ≻ ¬a

b ≻ ¬b ¬c ≻ c

c≻ ¬c ¬ c ≻ c b ≻ ¬b b ≻ ¬b

abc ab ¬c a ¬b ¬c ¬ab ¬c ¬a ¬b ¬c ¬abc ¬a ¬bca ¬bc

Figure 1.7: An example of a LP-tree

to the root. In other words, the preference of one variable or one value to another depends on the
ancestor nodes.

To find the rank of a configuration, one should traverse the tree from the root to a leaf repre-
senting its order. More precisely, at each nodeAi if the configuration satisfies the preference of the
variable we follow down to the left subtree (left links always correspond to the preferred value).
Otherwise, we follow down to the right subtree. The more to the left is situated the configuration
the more preferred it is. For instance in Figure 1.7, the total order induced is:

abc � ab¬c � a¬b¬c � a¬bc � ¬a¬cb � ¬a¬c¬b � ¬acb � ¬ac¬b

Despite the difficulty of learning the model which is conjectured to be NP-complete in gene-
ral [Liu and Truszczynski, 2015], LP-trees are quite simple to reason with. Since LP-trees induce
total orderings, their consistency is trivial. Furthermore, optimization queries are defined by fol-
lowing each time the left subtree of the model until reaching the optimal configuration. Regarding
dominance, the query can be executed in polynomial time.

Sometimes, LP-trees can be represented in more compact format. In fact, when having two
identical subtrees, we could collapse them to a single subtree with the same importance preference.
The conditional preference table of the collapsed subtree is retained into the remaining one.

Example 1.7. The LP-tree illustrated by Figure 1.7 can be presented in a more concise format as
in Figure 1.8. Subtrees in the second level have their nodes collapsed. The left subtree (with the
rootB) contains two preference statements conditioned onB, thus the retained node in Figure 1.8
is associated to the two conditional preference statements. The right subtree of Figure 1.7 (rooted
by C) contains nodes that are not only identical but also have the same preference information
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A

CB

C B

a ≻ ¬a

b ≻ ¬b ¬c ≻ c

¬b:¬c ≻ c
b: c≻ ¬c b ≻ ¬b

Figure 1.8: A collapsed representation of the LP-tree of Figure 1.8

(i.e. the preference at that level are not conditional). Thus, after the collapsing we can see that
the size of the conditional preference table does not change as presented by Figure 1.8.

Such model do not allow for indifference between values of the same variable. Besides, LP-
tree is able to capture only a small class of preference ordering. Precisely, an LP-tree over N
variables is able to represent

∏N−1
k=0 (N − k)2k × 22k

compared to 2N ! possible preference relation
[Liu and Truszczynski, 2015].

It is important to note that LP-trees use the same preference statements as CP-nets. However,
it is clear that LP-trees may express preference statements that CP-nets cannot represent since
they allow importance relations to be conditioned on the values of the parents (remember that the
leftest configurations are the most preferred ones). Besides, although general LP-trees cannot be
represented by TCP-nets, these latter succeed to catch the unconditional importance relations of
LP-trees.

In general representing preferences by LP-trees is impractical since the size of the representa-
tion in the worst case (i.e. there may not exist any collapsible subtrees to obtain a more concise
structure) is of the same order as an explicit preference ordering. Yet, some structures of LP-trees
containing identical sub-trees may be represented more compactly as presented in the next section.

Finally, LP-trees may be aggregated to represent a social choice scheme, for instance issue-
by-issue voting [Fargier et al., 2012] or sequential majority voting rule [Lang et al., 2012]. Basics
on multiple agents preference are presented in Chapter 5.

1.6.2 A more general representation: Preference trees

Preference trees [Liu and Truszczynski, 2014,Liu, 2016] generalize LP-trees and are more expres-
sive. LP-trees allow to construct total preorder between configurations in terms of the desirable
properties. In fact, nodes in a P-tree correspond to propositional formulas such that each formula
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a

¬cb

 b

Figure 1.9: The P-tree corresponding to the LP-tree of Figure 1.7

defines a total preorder where configurations satisfying it are more preferred than those violating
it. Note that configurations within these groups are considered as equally preferred.

Definition 1.10. A preference tree (P-tree for short) over V is binary tree where all nodes other
than leaves labelled with propositional formulas over V . Each P-tree defines a total preorder on
the set of its leaves as the order of their enumeration from left to right.

Note that some leaves may be empty. This can be explained by the fact that the conjunction
of the formulas corresponding to the same path is unsatisfiable. These leaves and the nodes whose
descendants are empty leaves can be pruned from the P-tree to obtain a more compact representa-
tion. Similarly to LP-trees, P-trees may exhibit some special structure that allow some subtrees to
be collapsed. In many cases, the result is much smaller than the original one.

Each LP-tree is representable by a P-tree where each node corresponds to a literal. Precisely,
a node will be labelled a if a is preferred to ¬a and and ¬a otherwise. Figure 1.9 exemplifies
the transformation of the LP-tree of Figure 1.7 to a simplified P-tree, having φ = (¬b ∧ ¬c) ∨
(b ∧ c). Dominance testing can be solved in time linear to the height of the P-tree. In fact, a
preference relation between two configurations can be determined at the first non-leaf node where
the two configurations evaluate the logic formula differently. If no such formula exist then the two
configuration are equally preferred.

1.7 Conclusion

In this chapter, we outlined the general scheme underlying graphical preference models. We have
shown why it was important to represent preferences compactly. Besides, we outlined the most
known compact qualitative representation models. The tools discussed in this chapter search for
a compromise between the expressivity of the model and the ease of elicitation. However, the
balance between these two conflicting aspects differs from one model to another.
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Roughly, we can say that the advantage of qualitative models is their ease of elicitation which
does not need much effort from the user. However, its important to know that qualitative models
generally lead to partial orderings (apart from P-trees and LP-trees), which is sometimes proble-
matic specifically when applications must be precise. Another obstacle to using these models is
dominance queries which are generally complex in contrast with quantitative models that will be
detailed in next chapter.
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2.1 Introduction

In classical decision theory, utility functions are generally used to represent a decision maker
preferences since they provide a quantitative valuation of the desirable solutions. Despite the fact
that the acquisition of such numerical values is often time consuming and requires too much effort
from the experts as well as from the decision maker, models based on numerical values are of
use in many situations. Specifically, when applications need accurate information such as medical
applications.

It is often convenient to have preferences expressed in numerical terms, since it enables an
easy comparison of possible choices contrarily to the qualitative models presented in Chapter 1.
It is therefore interesting to consider quantitative graphical models for preferences. These latter
are generally based on utility functions corresponding to a mapping from the Cartesian product
of variables domains to numerical values, namely u : Ω 7→ R. These utilities correspond to a
total ordering s.t., for two configurations ω and ω′, ω � ω′ (respectively ω ∼ ω′) if and only if

28



CHAPTER 2. GRAPHICAL PREFERENTIAL QUANTITATIVE MODELS 29

u(ω) > u(ω′) (respectively u(ω) = u(ω′)). In this Chapter, we review the most known graphi-
cal models based on several types of utility independence such as, GAI-networks [Gonzales and
Perny, 2005], UCP-nets [Boutilier et al., 2001] and Marginal Utility networks [Brafman and Engel,
2010]. Besides, we present OCF-networks [Eichhorn et al., 2016] advocated to represent prefe-
rences by the use of ordinal conditional functions (OCF) as valuation functions. OCF frameworks
have been basically used for modeling belief revision. In a Bayesian style like, OCF-networks
independence satisfies the markov properties. Such networks support efficient optimization and
dominance algorithms.

This chapter is organized as follows. Sections 2.2 is dedicated for Generalized Additive In-
dependence Networks (GAI-nets). Section 2.3 presents a numerical extension of CP-nets entitled
UCP-nets. Then, Section 2.4 present another utility-based graphical models called Marginal utility
networks relying on a new independence relation. Section 2.5, explains the use of OCF networks
for representing preferences. We end the chapter by a brief conclusion.

2.2 Generalized Additive Independence Networks (GAI-
nets)

GAI-networks [Gonzales and Perny, 2005] are one of the first graphical quantitative preference
models. They rely on generalized additive independence decomposition (GAI decomposition, for
short) [Fishburn, 1970]. This independence allows to represent the preferences by a utility function
separable into a sum of local functions. Each local function pertains to a subset of variables and
represents a total ordering between their possible instantiations. Moreover, there may be some
interactions between these local utilities since the subsets of variables pertaining to them can be
non disjoint. Thus, these GAI-decompositions can express some general interactions between
attributes while preserving some decomposability of the model. For X ⊂ V , let ω[X] denote the
restriction of ω to variables in X .

Definition 2.1 (GAI decomposition). Let C1, . . . , Ck be subsets of V s.t. V = ⋃k
j=1Cj . A utility

function u(·) representing � over Ω is GAI-decomposable w.r.t. C1, . . . , Ck iff ∀ j ∈ [1, k], there
exists a function uj : DCj 7→ R s.t., ∀ ω ∈ Ω :

u(ω) =
k∑
j=1

uj(ω[Cj ]) (2.1)

These GAI decompositions can be represented by graphical structures called GAI networks.
They are undirected graphs where each clique consists of a subset of variables. Between two
cliques having some variables in common there exists a path linking them. Each edge in the
network is labeled by the intersection between the nodes.

Definition 2.2 (GAI-nets). A GAI network is an undirected graph G = (C, E) where C denotes the
set of cliques and E denotes the set of edges. G has two components:
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Figure 2.1: An example of GAI network

• Graphical component: Each clique Cj ∈ C, is a set of variables such that Cj ⊆ V and⋃k
i=1Ci = V; For each edge (Ci, Cj) ∈ E , Ci ∩Cj 6= ∅. Each edge is labeled by Ci ∩Cj;

• Numerical component: To each clique Cj we associate a local utility function uj that defi-
nes a complete preorder between the configurations in DCj .

From a GAI decomposition, one can directly spot the cliques that should be created such that
the common variables between those cliques correspond to the edges of the network. More preci-
sely, each clique represents the variables of a sub-utility and the separators captures the dependen-
cies between these sets. Note that when the separators are instantiated, one can get independent
parts of the network that make the elicitation process much easier. This graphical structure of GAI-
nets is similar to the notion of junction tree used for Bayesian networks [Jensen et al., 1990,Pearl,
1988]. Indeed, even for a GAI-net with a more general graph structure, we can always con-
struct a tree-structured network based on the triangulation of the Markov network corresponding
to it [Gonzales and Perny, 2004] The complexity of this transformation is NP-complete [Arnborg
et al., 1987]).

Example 2.1. Let V = {A,B,C,D,E} be a set of variables and {A,B}, {ADE} and {AC} be
a utility decomposition. This decomposition can be represented by the GAI network of Figure 2.1
such that: u(ABCDE) = u1(AB) + u2(ADE) + u3(AC).

Optimization queries look for the configurations having the maximal global utility value. A
naive method for finding optimal configurations is to compute the utility of each configuration
then choose the configurations with the highest utility (we can get more than one optimal confi-
guration). This method is not realistic since it is impractical to compute the utility values of 2N
configurations (N is the number of variables). A standard algorithm for finding the optimal con-
figurations has been proposed for tree structured GAI networks but, as mentioned above, this is
not restrictive. It is essentially similar to the one used for Most Probable Explanation (MPE) in
Bayesian networks [Dawid, 1992]. More precisely, optimization for GAI-nets corresponds to an
adaptation of the belief propagation algorithm used in Bayesian networks. Searching for the best
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Figure 2.2: Utility tables in the collection phase

configuration corresponds to solving the problem maxA1 maxA2 . . .maxAN
u(A1, A2, . . . , AN ).

The procedure starts with external nodes by computing each time the maximal utility value such
that only the variables appearing in the external nodes are maximized. Result is then transferred to
the neighbouring nodes until all the cliques are visited. At the end of this collection step, we have
the utility value of the best configuration but not its variables instantiations. Comes, therefore, the
step of instantiation. It consists of propagating in the opposite sense the instantiations found, until
all variables are assigned. This can better be described by the following example:

Example 2.2. Let us reconsider the GAI-net represented by Figure 2.1. To find the best configura-
tion, one should first start with maximizing the external cliques which are {A,B} and {AC} then
the internal clique {A,D,E} such that:

• For the clique {A,B}, we compute u∗1(a) = maxb∈DB
u1(a, b) for all a ∈ DA.

• For the clique {A,C}, we compute u∗3(a) = maxc∈DC
u1(a, c) for all a ∈ DA.

• For {A,D,E}, we should substitute u2(a, b, e) by u2(abe) + u∗1(a) + u∗3(a) for each in-
stantiation a, b, e of A,B,E.

• Then, we compute maxa,d,e u2(a, d, e) corresponding to the maximal utility of the network.

Utilities representing these computations are presented in Figure 2.2. We can check in u2 that
the instantiation having the best utility is ¬a¬de. After the collection phase, we proceed to the
instantiation phase where we assign to each variable each best instantiation with regards to the
optimal utility. Starting from the clique {ADE}, the best utility 7.8 corresponds to the partial
configuration ¬a¬de. Therefore, u∗1(¬a) = 1.8 corresponds to u1(¬ab) = 1.8 therefore B is
instantiated to b and u∗3(¬a) = 1.2 corresponds to u3(¬ac) = 1.2 therefore C is instantiated to
c. Thus, we can deduce that the best configuration is ¬abc¬de.

The complexity of optimization query is equal to the sum of sizes of the cliques in the network
such that the size of a clique corresponds to the product of the variables domain sizes that are in
the clique.
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To compare two configurations ω and ω′ by a GAI-net, we compute their corresponding uti-
lities and compare them. We can say that G |= ω � ω′ (resp. G |= ω ∼ ω′) if and only if
uG(ω) > uG(ω′) (resp. uG(ω) = uG(ω′)). Thus, the dominance test for GAI is linear in the
number of cliques which is considered as an advantage compared to the other models.

Example 2.3. Let ω1 = abcde and ω2 = a¬bc¬d¬e. From the GAI-network G of Fig. 2.1, we can
compute the utilities of the configurations: uG(ω1) = u1(ab)+u3(ac)+u2(ade)= 0.7+1.5+0 =
2.2, uG(ω2) = u1(a¬b) + u3(ac) + u2(a¬d¬e)= 1.2 + 1.5 + 0 = 2.7. Thus uG(ω2) > uG(ω1),
and ω2 �GAI ω1.

Bacchus and Grove [Bacchus and Grove, 1995] were first to develop a quantitative graphical
model based on Conditional Additive Independence (CAI) structure. In particular, they establish
that the CAI condition has a perfect map, a graph with attribute nodes V such that node separation
reflects exactly the set of CAI conditions on V . More specifically, for any two sets of nodes
X,Y ⊆ V , CAI(X,Y, X̄Y ) holds if and only if there is no direct edge between a node in X and
a node in Y . Then, they go on to show that the utility function has a GAI-decomposition over the
set of maximal cliques of the CAI map. Such that a clique is a set of nodes in which each pair is
connected by an edge, and a maximal clique is a clique that is not contained within a larger one.
This result provide an alternative representation (perfect-map) to GAI net, with the significant
advantage that the GAI condition can be detected incrementally based on a set of CAI conditions.
However, it was noted in [Bacchus and Grove, 1995], that sometimes GAI conditions do not
correspond to a collection of CAI conditions. Therefore, we can deduce that every CAI-net can
be represented under the form of a GAI network. However, it is not always possible to construct
a CAI-net from a GAI-decomposition. Note also, that no process to detect or verify the GAI
condition directly has been proposed in the literature. In contrast, CAI conditions are much simpler
to detect where it is sufficient to identify pairs of disjoint subsets that are independent, given
that the rest of the attributes are fixed. Therefore, it is much more conceivable to identify GAI
structures that rise from the graphical model of CAI. Those procedures verifying CAI formally are
in [Keeney and Raiffa, 1993].

GAI-nets rely on a weak form of symmetric independence which make the model flexible
enough to be applied to many situations. GAI-nets are not limited to the expression of Ceteris
Paribus preferences as CP-nets, TCP-nets, or their numerical counterpart, UCP-nets. Still there are
cases of numerical preferences that are not representable by a GAI-net [Engel and Wellman, 2008].
With regard to elicitation, there is no method to construct the GAI decompositions. In practice it
is always assumed that an expert should provide the GAI decomposition and only the utilities
are elicited. One may take advantage of the GAI structure for designing an elicitation method
based on “local” utility queries rather than “global” queries over full configurations [Braziunas
and Boutilier, 2005]. In fact, [Braziunas and Boutilier, 2005] proposed a new elicitation approach
that exploits the graphical structure of GAI-nets to restrict attention to almost exclusively queries
over local outcomes. They extended the key advantage of additive utility models, where each
clique is totally independent from the others, to the generalized additive utility case.
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In a larger scope, these generalized additive utilities where used to assess GAI decomposable
utilities in the context of decision under risk [Gonzales and Perny, 2004]. It consists mainly
on inquiring a sequence of questions to attest the basic features of the decision maker behavior
under risk. In fact, in GAI networks it is possible to compare configurations where to each one
is attached a lottery corresponding to a tuple of pairs utility and probability. Moreover these GAI
utilities where used to endow CP-nets with utility functions both in a certain framework (as we
shall see in the next section) and an uncertain one.

Another graphical model for numerical preferences, called CUI-nets, based on conditional
utility independence (CUI) was proposed in [Engel and Wellman, 2008]. It is motivated by the
use of a weaker asymmetric independence relation. This independence is not additive and may
represent preferences that cannot be factored using strong additive independence conditions [Engel
and Wellman, 2008]. However, this kind of independence does not lead to decompositions that are
as easy to handle as those given under additive independence.

2.3 Utility CP-nets (UCP-nets)

Utility CP-nets (UCP-nets), introduced in [Boutilier et al., 2001], are an extension of CP-nets that
replaces the ordinal preference relations of CP-nets by utility factors. In fact, UCP-nets combine
the aspects of two preference models, namely, CP-nets and GAI-nets. Like GAI-nets, utility is
obtained from the sum of functions associated to groups of variables, defined here by a variable
and its parents. Similarly to CP-nets, arcs in UCP-nets reflect the Ceteris Paribus independence.

Definition 2.3 (UCP-nets). A UCP-net is a directed graph G = (V, E), where the graphical
component is the same as for CP-nets and the conditional preference tables are replaced by a set
of numerical factors fi(ai, p(Ai)), for all ai ∈ DAi and parents instantiation p(Ai), such that the
global utility of a configuration is defined by:

uG(a1, ..., aN ) =
N∑
i=1

fi(ai, p(Ai)) (2.2)

Example 2.4. The UCP-net G presented in Figure 2.3 has 3 variables V = {A,B,C}. For
instance, we can check that the configuration a¬b¬c is preferred to abc since uG(abc) = 5 + 2 +
2 = 9 < uG(a¬b¬c) = 5 + 10 + 6 = 21.

The UCP-net formalism has a number of computational advantages. In particular, dominance
queries can be answered trivially since they amount to computing the global utilities and compare
them, as in the above example. This can be done in linear time in the number of variables (this
contrasts with CP-nets where dominance testing is computationally difficult).

Optimization queries can also be answered directly, taking linear time in the network size,
where each node is instantiated to its maximal value given the instantiation of it parents. This
procedure, inherited from CP-nets, exploits the considerable power of Ceteris Paribus semantics.
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Figure 2.3: An example of a UCP-net

Example 2.5. Let us consider the UCP-net of Figure 2.3, to find the optimal configuration we
should traverse the network from roots to leaves. Thus, we start from A and B. it is easy to check
that A = ¬a and B =¬ a are the preferred values. Then, having ¬a¬b as the parent instatiation,
we find that c is the best instantiation. Therefore, the optimal configuration is ¬a¬bc with a utility
value equal to uG(¬a¬bc) = 8 + 10 + 9 = 27.

In this context, CP-nets are endowed with quantitative utility information, and then the ex-
pressive power is enhanced and dominance queries become computationally efficient. Moreover,
when introducing directionality and the Ceteris Paribus semantics to GAI relations, we allow uti-
lity functions to be expressed more naturally and optimization queries to be answered more easily.

This model is intuitive to assess since, as CP-nets, it captures preference statements that are
naturally expressed by the user. However, in order to remain consistent with CP-nets, utilities
should be subject to constraints expressing the priority of father nodes over child nodes. More
precisely, let A be a variable with parents P(A) and children Y(A) = {Y1, . . . , Yn} and let Zi
be the subset of parents of Yi excluding A and any of its parents in P(A). Let Z = ⋃

Zi and Pi
be the subset of variables in P(A) that are parents of Yi and where pi is an instantiation of Pi.
The fact that the node corresponding to variable A dominates its children given any instantiation
u of P(A) is expressed by the requirement ∀ a1, a2 ∈ DA such that fA(a1, u) ≥ fA(a2, u), we
should have ∀ z an instantiation of Z and ∀yi an instantiation of Y(A), fA(a1, u) − fA(a2, u) ≥∑
i fYi(yi, (a2, pi, zi)) − fYi(yi, (a1, pi, zi)). This expresses that for any variable A, given an

instantiation of its parents, the utility gain in choosing a1 rather than a2 in this context, should
be more important than the maximum value of the sum of the possible utility loss for its children
over all possible instantiations of the other related variables. This means that not every GAI
decomposition can be represented by a UCP-net. Verifying if a quantified network is a UCP-net
needs a case by a case testing of the constraint expressing the priority for each extended family i.e.
the variable, its parents, its children’s parents. This needs a number of tests exponential in the size
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of the extended families. Some stronger sufficient conditions were proposed in [Boutilier et al.,
2001].

Beside the difficulty encountered for learning utilities, added constraints should be taken into
account in order to remain consistent with the Ceteris Paribus principle.

2.4 Marginal Utility Networks

With the aim to define preference networks that resemble Bayesian networks, [Brafman and En-
gel, 2009, Brafman and Engel, 2010] introduced a notion of conditional independence (denoted
CDIr) using an arbitrarily fixed reference instantiation ωr. Indeed utility functions differ from
probability distributions in the fact there is no obvious analogue of marginalization for utility; to
cope with this difficulty, the authors propose to use a reference instantiation for fixing the values
of the independent variables. Variables Ai and Aj are CDIr if any difference in values among in-
stantiations to Ai does not depend on the current instantiation of Aj , for any possible instantiation
of the rest of the variables.

Definition 2.4 (Reference configuration and the reference utility). Let
ωr = ar1, . . . , a

r
N ∈Ω be a predetermined configuration and, X and Y be subsets of V . The

reference utility function ur is defined by ur(x) = u(xx̄r), s.t. X̄ = V\X is fixed on the values of
the reference configuration ωr. Its conditional form is defined by ur(X|Y ) = ur(XY )− ur(Y ).

Definition 2.5 (Difference utility independence). Let Z and W be two subsets of V , s.t. Z ∩W =
∅. Z and W are CDIr given X ⊆ V \ (Z ∪ W ), denoted by CDIr( Z, W |X), if for all
assignments x, z′, z′′, w′, w′′ we have: ur(z′w′)− ur(z′′w′) = ur(z′w′′)− ur(z′′w′′).

Then, the utility function satisfies additive analogues of the Bayes and chain rules of Bayesian
networks. Indeed, when exponentiating both sides of the rules they regain the standard multipli-
cative Bayes and chain rules. These additive definitions are recalled as follows:

Definition 2.6 (Additive analogue of Bayes rule). LetX and Y be two subsets of V , s.t. X∩Z = ∅.
For all assignments x, y:

ur(x|y) = ur(y|x) + ur(x)− ur(y)

Definition 2.7 (The additive chain rule).

u(A1, . . . , AN ) = ur(A1) +
N∑
i=2

ur(Ai|A1, . . . , Ai−1)

This leads to a preference representation by directed graphs. Dn(Ai) denotes its descendants
and Co(Ai) = V \ (Dn(Ai) ∪ Pa(Ai) ∪Ai) denotes the set of non-descendants.
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Definition 2.8 (Marginal utility network). A marginal utility network is a directed graph G =
(V, E) where V is the set of nodes and E is the set of edges. G has two components:

• Graphical component: A node for each variable and edges correspond to conditional
(in)dependencies between variables such that, given a fixed configuration ωr ∈ Ω, for
any Ai ∈ V , CDIr(Ai, Co(Ai) |P(Ai)).

• Numerical component: Each node Ai is associated to a conditional utility table (CUT)
corresponding to the function ur(ai|pi) such that p(Ai) is an instantiation of the parents
P(Ai) of Ai. containing ∀ai ∈ DAi , ∀p(Ai), ur(ai | p(Ai)).

The utility of a configuration is then computed as uG(a1, ..., aN ) = ∑N
i=1 ur(ai|p(Ai) where

p(Ai) is an instantiation of P(Ai). This is now exemplified.

Example 2.6. Let us consider preferences over four binary variables A, B, C and D represented
by the marginal utility network of Figure 2.4. Assume that ωr = abc¬d is the reference configura-
tion. Then, ur(abc)−ur(a¬bc) = ur(ab¬c)−ur(a¬b¬c). In fact, (4+8+3+4)−(4+11+3+4) =
(4 + 8 + 9 + 4) − (4 + 11 + 9 + 4). Thus, CDIr(B,D|A). The utility of a configuration is the
summation of all the local utilities. For instance, uG(abcd) = ur(a) + ur(b|a) + ur(c|a) +
ur(d|c) = 4 + 8 + 3 + 2 = 17 and uG(a¬b¬c¬d) = 4 + 11 + 9 + 2 = 26. Therefore, we have
abcd ≺MU a¬b¬c¬d since uG(abcd) < uG(a¬b¬c¬d).
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Figure 2.4: An example of a marginal utility net

The type of independence (CDIr ), underlain by marginal utility networks, satisfies the pro-
perties of graphoids [Brafman and Engel, 2010]. These properties are as follows:

Definition 2.9 (Graphoid properties). The axiomatic characterization of Markov independence is
as follows:

• Symmetry : CDIr(X,Y |Z)⇒ CDIr(Y,X|Z)
This relation asserts that if X is conditionally independent of Y given Z, then X tells us
nothing about the preferences over Y , then Y tells us nothing about the preferences of Z.
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• Decomposition: CDIr(X,Y |Z)
⇔ ur(X,Y |Z) = ur(X|Z) + ur(Y |Z)
⇔ ur(X,Z|Y ) = ur(X|Z) + ur(Z|Y )
⇔ ur(X,Z, Y ) = ur(X|Z) + ur(Y,Z).

• Union: CDIr(X,Y ∪W |Z)⇒ CDIr(X,Y |W ∪ Z)
This relation asserts that having the preference of W , cannot change the independence of
Y from X .

• Contraction: CDIr(X,Y |Z ∪W ) & CDIr(X,W |Z)⇒ CDIr(X,Y ∪W |Z)
This relation asserts that if Y is irrelevant to X after receiving an independent preference
information Z ∪W , and X is independent from W in the context W ∪ Z, then Y ∪W
should be also independent from X knowing Z. Together, the union and this property state
that independent preference information do not affect the preferences of the variables in
question.

• Intersection: CDIr(X,Y |Z ∪W & CDIr(X,Z|Y ∪W )⇒ CDIr(X,Y ∪ Z|W )
This relation states that if Y is independent from X when W is known and if W is indepen-
dent from X when Y is known, then neither W , nor Y , nor their combination depend on
X .

Knowing all that, it is clear that marginal utility networks model the dependence relations via
the concept of d-separation such that each variable is independent from its non descendants in the
context of its parents as for Bayesian nets.

Thanks to the strong similarity between Bayesian nets and marginal utility nets, adaptations of
algorithms are possible. The authors in [Brafman and Engel, 2010] briefly mention two of them.
First, an optimization query for finding the optimal configuration that corresponds to finding the
most probable explanation which they called utility maximization. Mainly, the algorithm is defined
by the propagation of a message from children to parents until the root is reached. The message
contains information about the node and its children. At the end of the propagation we get the
maximizing configuration (i.e. the configuration that has the maximal utility value) and its utility
value. Let A− denote a shorthand for Dn(A), defined as the set of descendants of A. Prime signs
indicate a specific instantiation, for instance a′ is an instantiation of A.

• Each child Ci computes the message λCi(a′) it sends to A, for each a′ ∈ DA:
λCi(a′) = maxci∈DCi

(ur(ci|a′) + maxc∈D
C−

i

ur(c|ci))

• A computes its own information based on the messages from its children:
maxa−∈DA−

ur(a−|a′) = ∑k
i=1 λCi(a′) such that k is the number of children of A. If A is

a leaf then maxa−∈DA−
ur(a−|a′) = 0.

The proposed adaptation is illustrated by the following example:
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Figure 2.5: An example of utility maximization

Example 2.7. Let us consider a simple marginal utility network over 3 variables V = {A,B,C}
represented by Figure 2.5. Nodes B and C have no children (leaves) i.e., they do not have
any information about children, which is explained by the empty local information. Then, each
node computes the message sent to their parent A. For instance, the node C computes the
messages λC(a) and λC(¬a) such that λC(a) = max(u(c|a), u(¬c|a)) = 9 and λC(¬a) =
max(u(c|¬a), u(¬c|¬a)) = 8. After receiving all information about its children, the node A
computes its local information such that maxa−∈DA−

ur(a−|a) = λC(a) + λB(a) = 11 + 9
and maxa−∈DA−

ur(a−|¬a) = λC(¬a) + λB(¬a) = 10 + 8. At the end, we have the maxi-
mal utility and the maximal configuration that was constructed is the propagation process where
u(¬ab¬c) = 26.

One may consider a variant of optimization query, defined by finding the best configuration
when particular combinations between the variables are impossible. This can be compared to
constraint belief propagation. Regarding marginal utility networks, for any forbidden combination
of values a1 and a2, one should create a dummy node â as their children such that u(â|a1a2) =
−∞. Then, belief propagation is processed normally. No method to answer dominance queries
has been proposed, however the algorithm used in GAI nets seems to be applicable in this case.
Elicitation may be inspired from Bayesian nets [Brafman and Engel, 2009].

Besides, note that UCP-nets can be viewed as particular cases of marginal utility nets where
constraints should be added in order to make them consistent with Ceteris Paribus.
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2.5 Ordinal Conditional Functions networks (OCF-nets)

Ordinal Conditional Functions (OCF) [Spohn, 1988] are an uncertainty representation framework
very close to possibility theory [Dubois and Prade, 2016] that have been recently used for prefe-
rence modeling [Eichhorn et al., 2016].. They are functions κ : Ω → N such that κ(ω) = 0 for
some configuration ω, which means, in the preference setting that ω is not at all rejected, while the
greater κ(ω), the less satisfactory it is. Besides it is assumed that κ(U ∪ V ) = min(κ(U), κ(V )).

Definition 2.10 (Ordinal Conditional Function). Let Ω be the set of configurations ω. An ordinal
conditional function is a mapping κ : Ω→ N0∪{+∞}, where κ(ω) is the degree of implausibility
of state ω, and there exists ω with κ(ω) = 0 (plausible state).

Following also the idea of keeping close to Bayesian nets, it has been recently proposed to
use Ordinal Conditional Function networks (they are like Bayesian nets with infinitesimal pro-
babilities: the value κ(ω) = n of the OCF is like the probability P (ω) = 10−n) for describing
preferences [Eichhorn et al., 2016].

In OCF networks, each variable is annotated with a conditional ranking table. They introduce a
rank onto the possible values in each context, such that higher the rank, less preferable the value is.
Indeed, they have the same structure and carry the same conditional independence namely, each
node is independent from its descendant in the context of its parents. This strong resemblance
raises the question of a possible transformation between OCF-nets and π-pref nets as we shall see
in Chapter 4. Formally,

Definition 2.11. (Ordinal Conditional Functions networks) An OCF-net κG has two components:

• A graphical component, a directed graph G = (V, E) where V denotes the set of nodes and
E denotes the set of edges representing the preferential dependencies;

• A quantitative component: each variableAi ∈ V is associated to a normalized1 conditional
rank, a non-negative integer κ(Ai|p(Ai)), where p(Ai) is an instantiation of the parents
P(Ai) of Ai.

OCF-nets satisfy the local directed independence property of Markov networks. They obey an
additive chain rule. Precisely, the OCF relative to a configuration ω, denoted by κ(ω) is the sum
of the elementary ranks of the conditional rank tables such that:

κ(A1, A2, . . . , AN ) =
N∑
i=1

κ(Ai|p(Ai)) (2.3)

Example 2.8. Let us consider the OCF-net of Figure 2.6 over two variables A and B. The cost
distribution is as follows: κ(¬a¬b) = 0 < κ(¬ab) = 2 < κ(ab) = 3 < κ(a¬b) = 4. We can
check that ¬a¬b is the optimal configuration.

1∀p(Ai) an instantiation of P(Ai), ∃j such that κ(aj |p(Ai)) = 0
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A

B
k (.|.) a ¬a

b 0 2

¬b 1 0

k(a) k (¬a)

3 0

Figure 2.6: An example of a OCF-net

It is clear that the optimization query is linear in the size of the network. Indeed, it consists on
a graph traversal where for each node we choose the value that have a cost value equal to 0. This
means that the optimal configurations have dominance query is also relatively easy as it consists
of computing the cost values of the two configurations then comparing them. From elicitation
standpoint we can say that even if the model is claimed to be semi-qualitative, eliciting the cost is
not always obvious since they are numerical.

[Eichhorn et al., 2016] proved that numerical OCF-nets can refine CP-net orderings. Precisely,
OCF-nets will lead always to total orderings that are compatible with CP-nets. To do so they use
a set of particular constraints to be imposed on their integer weights.

2.6 Conclusion

In this chapter we reviewed the best known graphical quantitative models. Each model relies on
a type of independence that helps the handling of preferences. All these models offer accurate
information about preferences since they lead to total orderings between configurations. However,
one major drawback of such numerical models is the elicitation step which is often intractable and
presents many flaws.

Therefore, the choice of a representation model for preferences is crucial in any process since
some trade-off between the elicitation burden and the simplicity of queries should be made. In
particular, one can adopt either a quantitative model (utility-based or OCF-based models), or a
qualitative model (i.e. Ceteris Paribus based models). We believe that the main advantage of
qualitative models is the fact that they do not need precise numerical values which can considerably
reduce the preference elicitation burden. In contrast, we can see that quantitative model offer a
good basis for computation where queries are generally easily executed.

The next chapter introduces a new graphical preference model based on possibilistic networks.
We believe that this model can take advantage from both qualitative and quantitative models.
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3.1 Introduction

Chapters 1 and 2 reviewed the best known graphical models for preferences. They show that
the choice between qualitative and quantitative models is influenced by the trade-off between the
easiness of elicitation and complexity of handling queries. In this chapter we propose a new
graphical model, based on possibility theory, that can be positioned in between qualitative and
quantitative models. We believe that such a model can take advantage from both classes.

Possibility theory [Dubois and Prade, 1988, Zadeh, 1978] offers a valuable setting for pre-
ference representation [Dubois et al., 2006], and enables us to reason with them. A remarkable
feature of possibility theory is the existence of several representation formats. Precisely, possi-
bilistic bases (weighted propositional formulas), comparative bases (a set of strict comparative
statements) and possibilistic networks [Benferhat et al., 2001a].

41
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Possibilistic logic [Dubois et al., 1994] has been advocated for preference representation. Be-
side its capability to express knowledge efficiently and reason with it, this logic is as well, very
efficient to deal with preferences. It induces a total pre-order thanks to its semantics in terms of
possibility distributions. Symbolic possibilistic bases [Hadjali et al., 2008], a variant of possi-
bilistic logic, consists on attaching to each formula a symbolic (non-instantiated) weight. These
weights define a partial ordering between the alternative choices.

The main idea in this Chapter is to advocate the interest in preference modeling in the same
way as other graphical quantitative preference representations presented in Chapter 2. In this
Chapter, we present another reading of possibilistic networks [Ben Amor et al., 2003, Ben Amor
and Benferhat, 2005]. In fact, these possibilistic counterpart of Bayesian networks were used
to handle knowledge. The proposed symbolic quantitative model uses possibilistic networks to
express preferences in a graphical manner.

This Chapter is organized as follows. Section 3.2 provides a brief background on possibilistic
networks, while Section 3.3 introduces possibilistic networks with symbolic weights as a way of
representing preferences. Section 3.4 defines the different possible orderings we may think of for
comparing vectors with symbolic components, and establishes that the product-based and the sym-
metric Pareto orderings always coincide in the presence of non-zero symbolic weights. Section 3.5
presents a thorough comparison of different possible orderings between symbolic vectors, inclu-
ding the case of additional constraints between the symbolic weights. Then, Section 3.6 presents
the optimization and dominance queries, their algorithms and their respective complexities.

3.2 Background on possibility theory

Before describing π-pref nets in detail, we recall basic notions of possibility theory that will be
useful in the sequel. Possibility theory relies on the use of a possibility distribution π [Zadeh,
1978], which is a mapping from a universe of discourse Ω to the unit interval [0, 1], or to any
bounded totally ordered scale such that π(ω) = 1 for some element of Ω (∃ ωi ∈ Ω s.t. π(ωi) = 1).
Then, the possibility distribution π is said to be normalized. This possibilistic scale can be the unit
interval when possibility values are the result of a clear measurement procedure, or an ordinal
scale when values only reflect a total preorder between the different elements of Ω. When used to
represent uncertainty about some variable x taking values on Ω, the assignment π(ωi) = 0 means
that ωi is fully impossible, while π(ωi) = 1 means that ωi is fully possible, i.e. non-surprising

We can describe the uncertainty about the occurrence of an event F ⊆ Ω via a possibility
measure Π(F ) = supωi∈F π(ωi) measuring plausibility and its dual necessity measure N(F ) =
1−Π(F̄ ) = 1− supωi /∈F π(ωi) expressing certainty. More precisely, the possibility degree Π(F )
evaluates to which extent F is consistent with the knowledge represented by π while the necessity
degree N(F ) evaluates to which level F is certainly implied by π. See [Dubois and Prade, 1988]
for an introduction to possibility theory.
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Conditioning in possibility theory is defined from the Bayesian-like equation

Π(F ∩G) = Π(F |G)⊗Π(G),

where ⊗ is associative, monotonic in the wide sense and 1 represents the identity element such
that 1⊗ α = α. In this paper, ⊗ stands for the product in a quantitative setting (numerical), or for
the minimum in a qualitative setting (ordinal). Namely,

• if ⊗ is the product, we get a straightforward counterpart of conditional probability:

Π(F |G) = Π(F ∩G)
Π(G) provided that Π(G) > 0;

• if ⊗ is the minimum, we get a qualitative version of conditioning, that makes sense on a
finite possibility scale:

Π(F |G) =
{

Π(F ∩G) if Π(G) > Π(F ∩G);
1 if Π(G) = Π(F ∩G) > 0.

The two definitions of possibilistic conditioning lead to two variants of possibilistic networks:
in the numerical context, we can express product-based networks, while in the qualitative context,
we only have min-based networks (also known as qualitative possibilistic networks) [Benferhat
et al., 2002a].

A possibilistic network has a definition similar to the one of a Bayesian network.

Definition 3.1 (Possibilistic networks). [Benferhat et al., 2002a, Ben Amor et al., 2003] A possi-
bilistic network over a set of variables V is characterized by two components:

(i) a graphical component which is a Directed Acyclic Graph (DAG) G= (V, E) where V is
a set of nodes representing variables and E a set of directed edges Ai → Aj encoding
conditional (in)dependencies between variables.

(ii) a valued component associating a local normalized conditional possibility distribution
π(Ai| p(Ai)) to each variable Ai ∈ V in the context of each instantiation p(Ai) of its
parents P(Ai) = {Aj : Aj → Ai ∈ E}.

We assume that π(Ai| p(Ai)) > 0 in order to avoid conditioning on a value of possibility 0. It
also comes down to assuming that all configurations are somewhat possible. This assumption will
be innocuous in the modeling of preferences, if the scale of possibility contains at least 3 values.

Given a possibilistic network, we can compute a joint possibility distribution using the follo-
wing chain rule:

π(A1, . . . , AN ) = ⊗i=1..N Π(Ai | P(Ai)). (3.1)
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When ⊗ is the product, and no configuration is impossible, the conditional tables can be
retrieved from the joint possibility distribution obtained by the chain rule, using the same ordering
of variables as in the original network. However this is no longer the case if ⊗ is the minimum, as
some conditional possibility values may be lost when computing the minimum in the chain rule.

Example 3.1. Let us consider the possibilistic network over 4 binary variables V = {A,B,C,D}
of Figure 3.1.

π(a) π(¬a)
1 0.2

BA

C

D

π(b) π(¬a)
1 0.8

π(.|.) ab a¬b ¬ab ¬a¬b
c 1 1 1 1
¬c 0.7 1 1 0.6

π(.|.) c ¬c
d 1 0.2
¬d 0.3 1

Figure 3.1: Standard possibilistic network of Example 3.1

If we consider the minimum-based conditioning for this networks then the possibility degree
of the configuration ω = ¬ab¬cd is π(¬ab¬cd) = min(π(¬a), π(b), π(c|¬ab), π(d|¬c)) =
min(0.2, 1, 1, 0.2) = 0.2.
Now, if we use the product-based conditioning then the possibility degree would be equal to
π(¬ab¬cd) = (π(¬a) ∗ π(b) ∗ π(c|¬ab) ∗ π(d|¬c)) = 0.04.

3.3 Possibilistic preference networks

Originally, possibilistic networks were meant to model uncertainty and to compute the impact
of observations assigning values to some variables so as to predict the values of other variables
of the network. In this chapter, we advocate their interest in preference modeling rather than
uncertainty management. Thus, let π(ω) define the level of satisfaction of choosing configuration
ω. For a set of configurations F , Π(F ) evaluates to what extent satisfying a constraint modeled
by F is satisfactory and N(F ) evaluates to what extent this constraint is imperative. As we shall
see, beyond their graphical appeal, conditional preference possibilistic networks can be shown to
provide a natural encoding of preferences. In the following, we first define the kind of preference
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information needed to construct π-pref nets. Then, we present the definition of π-pref nets and
their representational power.

3.3.1 Conditional preference statements

In qualitative preference models, users are supposed to express their preferences under the form
of pairwise comparison statements between variable instantiations, conditioned by some other
instantiated variables. For instance, in the particular case of Boolean variables, we deal with
preferences of the form: “I prefer a to ¬a” if the preference is unconditional, and for conditional
statements, of the form “in the context where c is true, I prefer a to ¬a”, where c corresponds to
the instantiation of several other variables. More generally,

Definition 3.2. A preference statement (Ai, p(Ai),�) is a preference relation between values
aik ∈ DAi of a variable Ai, conditioned by the instantiation p(Ai) of a set P(Ai) of other varia-
bles, in the form of a complete preorder �: ∀aik, aim ∈ DAi , we have

i) either p(Ai) : aik � aim, i.e., in the context p(Ai), aik is preferred to aim,

ii) or p(Ai) : aik ∼ aim, i.e., in the context p(Ai), one is indifferent between aim and aik,

where � is the strict part of �, and ∼ is the indifference part of �. If P(Ai) = ∅, then the
preference statement about Ai is unconditional.

Note that we do not allow incomplete preference local specifications of the form aik � aim.
The user must choose between aik � aim, aim � aim and aik ∼ aim. The running Example 3.2,
inspired from [Boutilier et al., 2004a] illustrates such preference statements.

Example 3.2. Consider a preference specification about an evening dress over 3 decision va-
riables V = {J, P, S} standing for jacket, pants and shirt respectively, with values in DJ =
{Red (jr), Black (jb)}, DP = {White (pw), Black (pb)} and DS = {Black (sb), Red (sr),
White (sw)}. The conditional preferences are given in Table 3.1. Preference statements (s1) and
(s2) are unconditional. Note that the user is indifferent between the values of the color of the shirt
if his jacket is black and his pants are white (in the context jbpw) which is not the case if he wears
a red jacket and black pants. Indeed, he prefers red shirt to a black one (in the context jrpb).

3.3.2 Introducing π-pref nets

Representing the preference statements in a graphical way means that each node in the graph
represents a decision variable Ai which is associated to a set of local conditional preference state-
ments, conditional to the values of variables that are its parent nodes in the graph. A (conditional)
preference network can be defined as follows:
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(s1) jb � jr
(s2) pb � pw
(s3) jbpb: sb � sr � sw
(s4) jbpw: sw � sb � sr
(s5) jrpb: sr � sb � sw
(s6) jrpw: sb ∼ sr ∼ sw

Table 3.1: Conditional preference specification of Example 3.2

Definition 3.3. A preference network is a DAG (E ,V) with nodes Ai, Aj ∈ V , s.t. each arc from
Aj toAi ∈ E expresses that the preference about Ai depends on Aj . Each node Ai is associated
with a preference table CPTi that associates preference statements (Ai, p(Ai),�) between the
values of Ai, conditional to each possible instantiation p(Ai) of the parents P(Ai) of Ai (if any).

In a possibilistic preference network, for each particular instantiation p(Ai) of P(Ai), the pre-
ference order between the values of Ai stated by the user will be encoded by a local conditional
possibility distribution expressed by symbolic weights. By a symbolic weight, we mean a sym-
bol representing a strictly positive real number in (0, 1] whose value is unspecified. We rely on
symbolic weights in the absence of available numerical values.

Definition 3.4 (Conditional Preference Possibilistic network (π-pref net)). A possibilistic prefe-
rence network based on operation⊗ (⊗-π-pref net) ΠG over a set V = {A1, . . . , AN} of decision
variables is a preference network where each local preference relation at node Ai is associated
with a symbolic conditional possibility distribution (πi-table for short), encoding the ordering
between the values of Ai such that:

(i) If p(Ai) : ai ≺ a′i then π(ai|p(Ai)) = α, π(a′i|p(Ai)) = β where α and β are symbolic
weights, and 0 < α < β ≤ 1;

(ii) If p(Ai) : ai ∼ a′i then π(ai|p(Ai)) = π(a′i|p(Ai)) = α > 0 where α is a symbolic weight
such that α ≤ 1;

(iii) For each instantiation p(Ai) of P(Ai), ∃ ai ∈ DAi such that π(ai|p(Ai)) = 1.

(iv) A symbolic degree of possibility is assigned to each configuration ω using the chain rule
(3.1) based on ⊗.

Let C0 be the set storing the constraints between the symbolic possibility weights pertaining
to each preference statement (Ai, p(Ai),�), encoding the complete preordering �. In addition
to these preferences encoded by a π-pref net, additional constraints can be taken into account.
Such constraints, forming a set denoted by C1, may express that some weights pertaining to one
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π(jb) 1
π(jr) α

PJ

S

π(pb) 1
π(pw) β

π(.|.) jbpb jbpw jrpb jrpw
sb 1 θ1 λ1 1
sr δ1 θ2 1 1
sw δ2 1 λ2 1

Figure 3.2: Possibilistic preference network of Example 3.3

preference statement is equal or greater than a weight pertaining to another preference statement.
Let C = C0

⋃
C1 be the set of all constraints.

Note that in the case one can neither directly find in C, nor infer by transitivity from C, any
relation between two weights α and β, we consider them as incomparable.

Example 3.3. Consider the preference specification about an evening dress of Example 3.2. Its
corresponding π-pref net and the conditional possibility weights are given by Figure 3.2. The
graph is built based on Definition 3.3. In fact since P(J) = P(P ) = ∅ the two variables J
and P are independent, S depends on J and P since the preference statements associated to S
are conditioned by P(S) = {J, P}. The constraints between symbolic weights inherent from the
preference specification are represented by the set C0 such that C0 = {(δ1 > δ2), (θ1 > θ2), (λ1 >

λ2)}.

A set of conditional preference tables encoded as a π-pref net determines a partial order among
configurations. Indeed, each configuration has a satisfaction level encoded by a possibility degree
computed from the possibilistic chain rule (3.1). This leads to the following definition of the
induced preference ordering on configurations.

Definition 3.5 (Preference ordering). Let ΠG be a symbolic possibilistic preference network and
C be a set of constraints between the symbolic weights. Let ωi and ωj be two configurations in
Ω, and πΠG(ωi) (resp. πΠG(ωj)) be the symbolic possibility degree of ωi (resp. ωj) computed
by (3.1). Then, configuration ωi is preferred to ωi in the wide sense, denoted by ωi �⊗ ωj , iff
πΠG(ωi) ≥ πΠG(ωj).

In the definition, πΠG(ωi) is a combination of symbolic weights using ⊗. So, πΠG(ωi) ≥
πΠG(ωj) (resp. πΠG(ωi) > πΠG(ωj), πΠG(ωi) = πΠG(ωj)) should be understood as follows:
this inequality (resp. strict inequality, equality) holds whatever the numerical instantiations of the
weights involved in the possibility values, in agreement with constraints in C. This is respectively
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Symbolic vectors Products
Configurations J P S

jbpbsb 1 1 1 1
jbpbsr 1 1 δ1 δ1
jbpbsw 1 1 δ2 δ2
jbpwsb 1 β θ1 β × θ1
jbpwsr 1 β θ2 β × θ2
jbpwsw 1 β 1 β
jrpbsb α 1 λ1 α× λ1
jrpbsr α 1 1 α
jrpbsw α 1 λ2 α× λ2
jrpwsb α β 1 α× β
jrpwsr α β 1 α× β
jrpwsw α β 1 α× β

Table 3.2: Symbolic vectors associated to each configuration of Example 3.3

denoted by ωi �⊗ ωj , ωj �⊗ ωi and ωi ∼⊗ ωj . When it is not possible to prove an inequality
between πΠG(ωi) and πΠG(ωj), because it is possible to have strict inequalities in both directions
by substituting distinct numerical values, we interpret this situation in terms of incomparability as
already said, and this is denoted by ωi ±⊗ ωj .

Since we use symbolic weights, a definite preference between all configurations cannot be
established (as long as we do not instantiate all symbolic weights). To each configuration ω =
a1 . . . aN can also be associated with a vector ~ω = (α1, . . . , αN ), where αi = π(ai|p(Ai)) and
p(Ai) = ω[P(Ai)], where ω[P(Ai)] is the instantiation of the parents ofAi in the configuration ω.
For instance, vectors associated to the preference possibilistic network of Example 3.3 are repre-
sented by Table 3.2. Thus, comparing configurations amounts to comparing vectors of symbolic
weights attached to configurations, and the use of the chain rule is just one way of comparing such
vectors, among other ones as discussed in the next section. However, note that symbolic weights
attached to a variable depend on the instantiations of its parents.

3.4 Symbolic weights

In Section 2, we have shown how to encode the preference specifications in a possibilistic network
format. In this section we will present a number of partial order relations with the purpose to use
them to generate a particular ordering over configurations.

Vectors of these weights, ~ω = (α1, . . . , αN ) and ~ω′ = (β1, . . . , βN ) for instance, can be
compared using different ordering procedures namely, Product, symmetric Pareto, Minimum or
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Leximin orderings. These procedures can be defined for partially ordered symbolic weights. De-
fined as follows:

Definition 3.6 (Product). ~ω �prod ~ω′ iff prod(~ω) ≥ prod(~ω′) where prod(~ω) = ∏N
i=1 αi.

Definition 3.7 (Minimum). ~ω �min ~ω′ iff min(~ω) ≥ min(~ω′) where min(~ω) = minNi=1 αi.

Definition 3.8 (Pareto). ~ω �Pareto ~ω′ iff ∀ k, αk ≥ βk.

Definition 3.9 (Symmetric Pareto). ~ω �SP ~ω′ iff there exists a permutation σ of the components
of ~ω = (α1, . . . , αN ), yielding a vector ~ωσ = (ασ(1), . . . , ασ(N)), s.t. ~ωσ �Pareto ~ω′.

Definition 3.10 (Discrimin). First, delete all pairs (αi, βi) from ~ω and ~ω′ such that αi = βi. LetD
be the set of indices of components not deleted. Then, ~ω �discrimin ~ω′ iff mini∈D αi > mini∈D βi.

Definition 3.11 (Leximin). Let ~ωσ be the reordered vector ~ω following permutation σ of its com-
ponents. ~ω �leximin ~ω′ iff ∃ σ, ~ωσ �discrimin ~ω′.

In the standard case of a totally ordered scale, the leximin order is defined by first reordering
the vectors in an increasing way, and then applying the min order to the sub-parts of the reordered
vectors without consideration of identical components. However, here we deal with symbolic
possibility degrees between which the ordering can be unknown. In the extreme case, we may just
know that α < 1 for a weight α. Thus, reordering the vectors increasingly is no longer possible,
and leximin must be defined as proposed above.

In this section we study possible refinement relations between the different ordering procedu-
res. Thus, we need to define the concept of refinement of a strict preference relation.

Definition 3.12 (Refinement). [Dubois et al., 1996]. Let� and� be any two strict order relations
on Ω. Then, we say that �′ refines � iff:

∀ ω, ω′ ∈ Ω, ω � ω′ ⇒ ω �′ ω′.

As shown in [Dubois et al., 1996], in the instantiated case, leximin is a refinement of the
symmetric ordering of Pareto. As well, the discrimin ordering refines the ordering induced by the
minimum as well as the Pareto ordering, and is itself refined by leximin. Leximin refinements of
min-based orderings can be very discriminant, as they would solve cases left pending by minimum
order. Moreover, product-based orderings refine symmetric Pareto orderings of vectors containing
no zero components. As for product-based orderings, they can strongly differ (including prefe-
rence reversal) from the min-based orderings. These refinement relationships are illustrated by
Figure 3.3 (where each arrow a→ b expresses that a refines b).

The orderings do not behave in the same manner in the numerical case and in the symbolic
case, as exemplified in the following.
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Product

Pareto
Symmetric
Pareto

Minimum LeximinDiscrimin

Figure 3.3: Refinements between orderings in numerical setting

Example 3.4. Consider the vectors (α, β) and (γ, δ) where α < β and γ < δ. If α < γ then
(α, β) < (γ, δ) for leximin and min, while according to symmetric Pareto these vectors are still
incomparable. If α = γ < δ < β then min considers (α, β) and (γ, δ) as equal, while we
have (α, β) > (γ, δ) with the product but the Leximin is unable to compare them. However, if
α < γ < δ < β then if we use the min operator we have (α, β) < (γ, δ) while the product
operator still fails to order them.

In the symbolic framework, it has been suggested in [Ben Amor et al., 2015] that, when there
is no constraint between symbolic weights within the vectors, the ordering induced by the product-
based chain rule corresponds exactly to the a symmetric Pareto ordering. This result actually holds
even in the presence of inequality constraints between symbolic weights.

Proposition 3.1. Given any set of constraints C of the form αi ≥ βj or αi > βj between symbolic
weights:
(i) ~ω �SP ~ω′ iff ~ω �prod ~ω′.
(ii) ~ω �SP ~ω′ iff ~ω �prod ~ω′.

Proof. The proof is not straightforward. We proceed in several steps. First notice that the impli-
cations:
~ω �SP ~ω′ implies ~ω �prod ~ω′

and ~ω �SP ~ω′ implies ~ω �prod ~ω′

are obvious since the product is symmetric and monotonically increasing. For the converse, we
must basically show that if ~ω is SP-incomparable1 with ~ω′ then they are also incomparable w.r.t.
the product ordering. We use several lemmas.

Lemma 3.1. If Proposition 3.1 holds for a set of constraints C, it holds a fortiori for any subset of
constraints in C.

1~ω ±SP
~ω′
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Proof. Indeed taking away constraints from C yields more freedom to the choice of values for the
coefficients, which favours the non comparability of the symbolic product expressions associated
to each vector.

As a consequence of this lemma, the result should be established with the maximal amount
of constraints, namely assuming a (non-trivial) complete pre-ordering of the symbolic coefficients
appearing in the two vectors.

Lemma 3.2 ( [Cayrol et al., 2014]). Consider two symbolic vectors ~ω = (α1, . . . αN ) such that C
enforces α1 ≤ · · · ≤ αN and ~ω′ = (β1, . . . βN ). Let σ be a permutation of the components of ~ω′

such that βσ(1) ≤ · · · ≤ βσ(N) and ~ω′σ the corresponding reordered vector. Then ~ω �SP ~ω′ if
and only if ~ω �P ~ω′σ.

In the totally ordered setting it gives a constructive way of expressing the SP ordering by
applying the Pareto ordering to the increasingly reordered vectors.

Without loss of generality, due to Lemma 3.2, we can assume that vectors are increasingly
ordered. Now we can try to prove that if ~ω and ~ω′ are SP-incomparable then they are so for
product. If they are SP-incomparable then there are i 6= j such that αi > βi and αj < βj . The
most constrained case is when there is one constraint of the form αi > βi, while all the other
ones are of the form αj < βj . In that case

∏
j 6=i βj >

∏
j 6=i αj and denoting by ~α−i the vector ~α

deprived of component i, we also have ~ω−i �SP ~ω′−i.

Let us show that this strong prerequisite does not enforce an inequality between
∏N
j=1 βi and∏N

j=1 αj . First, if αi and βj are very close, then
∏N
j=1 βj >

∏N
j=1 αj . Now, for the reversed

inequality, replace αj by α1 for j < i, and by αi for j > i, βj by βi for j < i and by βn
for j > i. The inequality (α1)i−1 · (αi)N−i+1 > (βi)i · (βN )N−i is more demanding than the
inequality

∏N
j=1 αj >

∏N
j=1 βj . Let us show we can satisfy the former because αi > βi, even if

α1 < αi, βi < βN . To see it, we can write α1 = αi/p and βn = qβi with p, q > 1. It is easy to
see that the inequality now writes αi

βi
> p

i−1
N q

N−i
N > 1. It is clear that we can set p, q > 1 and find

αi > βi ∈ [0, 1] that verifies this inequality.

The consequence of this result is that the use of product of symbolic values in the approach
is just one way of implementing the SP-ordering, whose essence is qualitative. In particular the
compensatory effect, usually present in product of numbers (whereby, e.g. 0.5 × 0.5 is the same
as 0.25× 1) is absent from the SP-ordering, which creates cases for incomparability.
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3.5 On various ways of ordering configurations induced
by conditional preference networks

We pursue the comparison of the different orderings defined in the previous section, first in the
absence, and then in the presence of additional constraint on symbolic weights.

3.5.1 Comparison of orderings without additional constraints on sym-
bolic weights

In this section we will study the possible relations between the different orderings in the particular
case where the constraints known between the symbolic weights are only the ones relative to the
expression of conditional preferences, as allowed by Definition 3.4. Thus, a constraint of this kind
focuses only on a unique vector component, and we have C1 = ∅.

Under this assumption, Pareto ordering and symmetric Pareto yield the same ordering. Indeed,
for two vectors ~ω = (α1, . . . , αN ) and ~ω′ = (β1, . . . , βN ) each symbolic weight αi 6= 1 of ~ω
can be only compared to the symbolic weight βi 6= 1 of ~ω′. Thus, there is no need to permute
components as the result would definitely be non comparable with another component weight
since C1 = ∅. This is as well true for leximin and discrimin orderings since they coincide in this
case. In fact, with this hypothesis, the difference between leximin and discrimin is that leximin
deletes some components with value 1 which cannot affect the result of the final application of the
min.

We first compare the different orderings induced by the use of product or minimum, depending
on the chain rule applied to the possibilistic network. We will evaluate how well each option uses
the information given to rank-order alternative solutions. We keep in mind that the product-based
ordering and the symmetric Pareto ordering are the same.

Example 3.5 presents the different orderings induced by min-based and product-based chain
rule for Example 3.3.

Example 3.5. Let us consider the possibilistic preference network of Example 3.3. Using the chain
rule, we obtain the symbolic vectors presented in Table 3.2. The product-based induced ordering
without additional inequality constraint is represented by Figure 3.4.

Now, if we use the min-based chain rule, we will not be able to compare many configurations
as long as no other constraint is added. In fact, the only strict ordering information we can get at
that stage is that jbpbsb > jbpbsr > jbpbsw, jbpbsb > jbpwsw and jbpbsb > jrpbsb. Otherwise,
we only get at best weak inequalities ; for example jbpwsw and jrpwsb, since πmin(jbpwsb) =
min(α, β) ≤ πmin(jrpwsw) = β. Figure 3.5 depicts this min-based ordering.

Symmetric Pareto on symbolic vectors may have a discriminating power greater than the one
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jbpwsr jrpwsb,  jrpwsr,  jrpwsw jrpbsw 

Figure 3.4: Possibilistic product-based order relative to Example 3.3

of the minimum operator, in the sense that α · β < α, while we only have min(α, β) ≤ α.
Clearly, when dealing with instantiated numerical values both product and minimum lead to total
orders that can contradict each other: for instance 0.1 · 0.9 > 0.2 · 0.2, while with the min we get
min(0.1, 0.9) < min(0.2, 0.2).

Proposition 3.2. Let ω and ω′ be two configurations, then ω ∼SP ω′⇔ ω ∼min ω′.

Proof. Trivial as it compares the same sets of weights.

Indeed, if equalities are found between every pair of the same index then the two vectors con-
tain the same symbolic weights. For instance, we have jrpwsb ∼SP jrpwsr (resp . jrpwsb ∼min
jrpwsr) where ~jrpwsb = ~jrpwsr = (α, β, 1).

Proposition 3.3. Let ω and ω′ be two configurations, then ω ±SP ω′⇔ ω ±min ω
′.

Proof. Let us consider two configurations ω and ω′ such that ~ω = (α1, . . . , αN ) and ~ω′ =
(β1, . . . , βN ). If ω ±SP ω′ which means ω ±Pareto ω′, then we are in one of the following cases:
either ∃ i, s.t. αi ± βi or ∃ i, s.t. αi < βi and ∃ j, s.t. αj > βj . Besides, the only case where
minimum is able to compare is when ∀ i, αi ≥ βi. It is not the case here, then ω ±SP ω′ ⇒
ω ±min ω

′. For the converse, if ~ω ±min ~ω then obviously ~ω ±SP ~ω since we would not have ∀ i,
αi ≥ βi.

Many cases can be identified on Example 3.3 and the min-based (resp. product-based) orde-
ring presented by Figure 3.5 (resp. Figure 3.4). For instance, we have jrpbsr ±SP jbpwsw (resp .
jrpbsr±min jbpwsw). Moreover, using symbolic weights, symmetric Pareto and minimum provide
consistent orderings in the sense that:

Proposition 3.4. If ω �SP ω′⇒ ω �min ω′.
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Figure 3.5: Possibilistic minimum-based order relative to Example 3.3

Proof. Let us consider two solutions ω and ω′ such that ~ω = (α1, . . . , αN ) and ~ω′ = (β1, . . . , βN ).
If ω �SP ω′ then ~ω �Pareto ~ω′ more precisely ∀ i, αi ≥ βi and ∃ j, αj > βj where
i, j ∈ [1, . . . , N ]. From Proposition 3.3 we can deduce that it is impossible to have ~ω ±min ~ω′

since ∀i αi ≥ βi, ω ≥min ω
′ follows. The fact that the inequality is not strict is because αj or βj

can be drowned among other coefficients for some instantiations of αi, βi.

Example 3.6. Let us consider one strict preference pattern is jbpbsb > jbpbsr > jbpbsw induced
by the min chain rule on Example 3.3. We can check that it is found on Figure 3.5 that depicts the
preference relation induced by the product chain rule. The rest of preferences are preferences in
the wide sense (�), for example, jrpbsr � jrpbsb.

Proposition 3.5. Let ω and ω′ be two configurations, then ω �min ω
′⇒ ω �SP ω′.

Proof. Let us consider two configurations ω and ω′ such that ~ω = (α1, . . . , αN ) and ~ω′ =
(β1, . . . , βN ). If ω �min ω′ then ∀ i such that αi 6= 1 or βi 6= 1, we have αi > βi. Thus
clearly ω �SP ω′.

This indicates that �min is a strong form of Pareto, namely, ω �min ω
′ ⇔ ∀i, either βi 6= 1

and αi > βi or αi = βi = 1. Thus, the symmetric Pareto is a refinement of the minimum-based
ordering.

Example 3.7. In Example 3.3 we can see that jbpwsb �min jbpwsr, while we have a strict order
with the symmetric Pareto (equivalently, the product-based) ordering jbpwsb �SP jbpwsr and we
have jbpbsr �SP |min jbpbsw.

Proposition 3.6. Let ω and ω′ be two configurations, then ω �min ω
′⇒ ω �SP ω′.

Proof. It immediately follows from ω �min ω′ ⇒ ω �SP ω′ (Prop. 3.5) and from ω ∼min ω′ ⇒
ω ∼SP ω′ (by Proposition 3.2).
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When there is no additional constraints, i.e., C1 = ∅, Pareto and discrimin orderings yield the
same ordering:

Proposition 3.7. Pareto and discrimin coincide on vectors when C1 =∅.

Proof. Let us consider two vectors ~ω = (α1, . . . , αN ) and ~ω′ = (β1, . . . , βN ), where a symbolic
weight αi of ~ω may only be compared to the corresponding symbolic weight βi of ~ω′ (if there is a
relevant constraint in C0). Three cases arise:

• ~ω �Pareto ~ω′ iff ~ω �discrimin ~ω′: (⇒) if ~ω �Pareto ~ω′ then ~ω �min ~ω′. This means that
min(~ω) ≥ min(~ω′). Since discrimin deletes all equalities αi = βi, we will have ∀i ∈ D
mini∈D αi > mini∈D βi s.t. D is the set of component indexes not deleted. Therefore,
~ω �discrimin ~ω′. (⇐) Since discrimin deletes only weights where αi = βi and never strict
comparisons, then after the deletion process we only have constraints such that αj > βj ,
which means that the strict order is the same as Pareto ordering.

• ~ω ∼Pareto ~ω′ iff ~ω ∼discrimin ~ω′. Obvious.

• ~ω±Pareto ~ω′ iff ~ω±discrimin ~ω′: (⇒) if ~ω±Pareto ~ω′ we have min(~ω)±min(~ω′) (by Proposi-
tion 3.3), and discrimin can only delete equalities, then the vectors remain non comparable
with discrimin. Thus ~ω ±discrimin ~ω′. (⇐) if ~ω ±discrimin ~ω′ then we have not ∀i ∈ D

αi < βi where D is the set of component indexes not deleted. Thus we have ~ω ±Pareto ~ω′.

Consequently from Proposition 3.7, we can derive that �leximin ⇔ �discrimin⇔ �Pareto⇔
�SP . Relations between the different orderings are depicted by Figure 3.6 (inside each box,
relations are equivalent). This indicates a collapse of many notions when no additional constraints
between symbolic weights applicable to different components exist.

3.5.2 Comparison of orderings with additional constraint on symbo-
lic weights

As already mentioned, constraints between symbolic weights, beside those induced from the pre-
ference specification, can be added when available. In this section we will study the relations
between the different ordering relations in the presence of such constraints. First, we will see that
the refinement relations that exist in the case of numerical values remain valid.

Proposition 3.8. Let ω and ω′ be two configurations, then ~ω �Pareto ~ω′⇒ ~ω �SP ~ω′ .

Proof. It suffices to consider the permutation σ as the identity.
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Figure 3.6: Refinements between orderings in symbolic setting with constraints

Minimum-based ordering suffer from a “drowning” effect. Ways to overcome this problem
are the discrimin or leximin orderings. In the numerical case, the latter are refinements of the
min-based ordering [Dubois et al., 1996]. We will prove that this is still the case in the symbolic
framework. More formally:

Proposition 3.9. Let ω and ω′ be two configurations, then ~ω �min ~ω′⇒ ~ω �discrimin ~ω′ and,
~ω �discrimin ~ω′⇒ ~ω �leximin ~ω′ .

Proof. Let us consider two configurations ω and ω′ such that ~ω = (α1, . . . , αN ) and ~ω′ =
(β1, . . . , βN ). If min(~ω′) < min(~ω), then ∃ βi s.t. βi < α1, . . . , αN and βi 6= α1, . . . , αN .
This symbolic weight βi cannot be eliminated in the deletion process of discrimin nor leximin.
Thus, ~ω �min ~ω′⇒ ~ω �disrimin ~ω′ and ~ω �min ~ω′⇒ ~ω �leximin ~ω′ . Besides, it is clear that
leximin still refines discrimin since it suffices to consider the permutation σ processed by leximin
as the identity.

Example 3.8. Let us consider the possibilistic preference network of Example 3.3. Let us con-
sider some additional constraints such that C1 includes (α < β), (β = λ1), (λ1 < θ1). Thus,
C = {(δ1 > δ2), (θ1 > θ2), (λ1 > λ2), (α < β), (β = λ1), (λ1 < θ1)}. Let us take the two
configurations jbpwsb and jrpbsb such that ~jbpwsb = (β, θ1) and ~jrpbsb = (α, λ1). We can see
that ~jbpwsb �min |discrimin|leximin ~jrpbsb.

If we consider only partially ordered symbolic weights, leximin may lead to non comparability
when discrimin or minimum considers two configurations equal. Thus, leximin ordering will
sometimes lead to a partial ordering. This can be illustrated by the following example:

Example 3.9. Let us consider the same two vectors of example 3.8, ~jbpwsb = (β, θ1) and ~jrpbsb =
(α, λ1). We assume the set of constraints C = {(δ1 > δ2), (θ1 > θ2), (λ1 > λ2)(λ1 < α), (β =
λ1), (β < θ1)}, then ~jbpwsb ∼min |discrimin ~jrpbsb while ~jbpwsb ±leximin ~jrpbsb. Now if we
suppose that ~jbpwsb = (β, θ1), then ~jbpwsb ∼min ~jrpbsb while ~jbpwsb ±discrimin|leximin ~jrpbsb.
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Let us now compare the discrimin and the Pareto orderings. Then the leximin and the sym-
metric Pareto orderings will be in a similar relation. Besides, there is no relation between the
discrimin and the symmetric Pareto orderings when C1 6= ∅. Indeed there are situations where
discrimin can compare two vectors and the symmetric Pareto cannot (e.g., if we only know that
the component of one vector is smaller than all the other components of the two vectors), and
situations where symmetric Pareto can compare and discrimin cannot (e.g., ~ω = (α1, α2, α3),
~ω′ = (β1, β2, βN ) and C = {α1 > β1, α2 > β3, α3 > β2}.

Proposition 3.10. Let ω and ω′ be two configurations, then ~ω �Pareto ~ω′⇒ ~ω �discrimin ~ω′.

Proof. Let us consider two solutions ω and ω′ such that ~ω = (α1, . . . , αN ) and ~ω′ = (β1, . . . , βN ).
By definition, if ~ω �Pareto ~ω′ then ∀i, αi ≥ βi and ∃j, αi > βi. Let ~ω∗ (resp. ~ω′∗) denote the
vector induced after deleting all vector components such that αi = βi, ∀i ∈ N . Then, ∀i ∈ D,
such that D is the set of the remaining vector component indexes, we have αi > βi. This means
that ∃βj ∈ ~ω′∗ such that βj < min( ~ω∗). Therefore, ~ω �min ~ω′. Since discrimin refines minimum
(Proposition 3.9), hence Proposition 3.10 holds.

From Proposition 3.10 we can derive that symmetric Pareto and leximin lead to consistent
orderings. Moreover, each time when symmetric Pareto succeeds to order two configurations,
discrimin will induce, if not the same ranking, at most non comparability.

Let us compare the minimum based-ordering and the product-based ordering (equivalently,
SP). It is clear that we have:

Proposition 3.11. Let ω and ω′ be two configurations, then ω ∼SP ω′⇒ ω ∼min ω′.

Proof. Assume two solutions ω and ω′ such that ~ω = (α1, . . . , αN ) and ~ω′ = (β1, . . . , βN ).
If ω ∼SP ω′ then ω ∼Pareto ω′σ. Thus, ∀ i, αi = βiσ, where i ∈ [1 . . . N ]. Therefore,
min(β1, . . . , βN ) = min(α1, . . . , αN ). Hence the symmetric Pareto ordering equalities are al-
ways found in min-based ordering.

Equalities between solutions in product-based ordering may appear when one assumes equa-
lities between symbolic weights associated to the same nodes and the same context or to symbolic
weights of different nodes. This is unlike min-based ordering where it always considers the most
important constraint violated, more precisely, having the smallest symbolic weight. Hence, in
min-based orderings equalities appear when two solutions violate the same preference with the
highest priority compared to the set of the other violated preferences.

Proposition 3.12 shows that symmetric Pareto is a special kind of refinement of the min-based
ordering. Indeed:
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Figure 3.7: Refinements between orderings in symbolic setting without constraints

Proposition 3.12. Let ω and ω′ be two configurations, if ω �min ω
′ we may either have ω ±SP

ω′ or ω �SP ω′.

Proof. Let us consider two solutions ω and ω′ such that ~ω = (α1, . . . , αN ) and ~ω′ = (β1, . . . , βN ).
Indeed, from Proposition 3.11, if ω ∼SP ω′ then ω ∼min ω

′. Moreover, if ω ≺SP ω′ then by the
definition we have ∀i, αi ≤ βi, thus min(α1, . . . , αN , βi, . . . , βN ) ∈ {αi, . . . , αN}, this pro-
ves that we cannot have ω �min ω′ in this case. Hence a contradiction, and Proposition 3.12
follows.

Relations between the different orderings can be illustrated by Figure 3.7. Leximin ordering
refines symmetric Pareto ordering, which in its turn refines Pareto ordering. Moreover, leximin
refines discrimin and both are refinements of minimum ordering. It is important to notice that, in
contrast with the numerical setting, minimum and leximin orderings may lead to non comparability
and thus to partial orderings. Besides, symmetric Pareto still refines the minimum ordering, but
in a wider sense since symmetric Pareto may yield non comparability when minimum succeeds in
comparing (this relation is represented in Figure 3.7 by a dotted line).

One extreme case is when assuming a total preorder between the symbolic weights. In that
case, leximin and minimum orderings are total. However, in the presence of such constraints,
symmetric Pareto may still lead to non comparability. Indeed, the only case, where symmetric
Pareto leads to a total ordering is when there are constraints between subsets of symbolic weights
(corresponding to the comparison of subproducts). Thus, the relationships between the different
orderings are the same as in the numerical setting except for the product and symmetric Pareto
orderings, which are the same as previously proved.

3.6 Optimization and dominance query

In a preference model, two types of queries are commonly used: namely, optimization queries for
finding the optimal configuration(s) (i.e. those which are not dominated by others) and dominance
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queries for comparing configurations.

3.6.1 Optimization

Since π-pref nets allow the user to express indifference, the optimization query may return more
that one configuration. Clearly, the best configurations are those having a joint possibility de-
gree equal to 1. Indeed, such a configuration always exists since the joint possibility distribution
associated to the possibilistic network is normalized, thanks to the normalization of each condi-
tional possibility table (i.e. for each variable Ai, each instantiation p(Ai) of P(Ai): max(π(ai |
p(Ai)), π(¬ai | p(Ai))) = 1 where {¬ai} = DAi/{ai} with ai ∈ DAi). Thus, we can always
find an optimal configuration, starting from the root nodes where we choose each time the most
or one of the most preferred value(s) (i.e. with possibility equal to 1). Then, depending on the
parents instantiation, each time we again choose an alternative with a conditional possibility equal
to 1. At the end of the procedure, we get one or several completely instantiated configurations ha-
ving a possibility equal to 1. Consequently, partial preference orders with incomparable maximal
elements can not be represented by a π-pref net.

Example 3.10. Let us reconsider Example 3.3 and its product-based joint possibility degree de-
picted by Figure 3.4. Then, jbpbsb is the preferred configuration since its joint possibility is equal
to 1, and this is the only one.

This procedure is linear in the size of the network (using a forward sweep algorithm). A
possible variant of the optimization problem is to compute the M most possible configurations
using a variant of the MPE [Nilsson, 1998]. This query can be interesting in π-pref nets even if
the answer is not always obvious to obtain in presence of incomparable configurations.

3.6.2 Dominance

The comparison between the symbolic possibility degrees can be found using Algorithm 1 that
takes as input the set of constraints C between the symbolic weights and two vectors. Let us
consider two configurations ωi and ωj with simplified respective vectors ~ω∗i = (α1, . . . , αk) and
~ω∗j = (β1, . . . , βm) where the components equal to 1 have been deleted, with k ≤ m ≤ n.
Then, the algorithm proceeds by first deleting all pairs of equal components between the vectors
so to get totally different components. Second, it checks if there exists an injective function ϕ :
{1, . . . , k} → {1, . . . ,m} such that ∀i = 1, . . . , k, αi ≥ βϕ(i) and ∃` ∈ {1, . . . , k}, α` > βϕ(`)
(otherwise they remain incomparable).

Thus the algorithm is based on the sequential application of:
(1) The function equality that deletes the common values between

→
ωi and

→
ωj .

(2) The function sort that returns true if given αc ∈
→
ωi, there exists a constraint αc > δ in C such
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that δ ∈ →ωj . Each component of
→
ωj can be used only one time in the comparison process.

(3) The function empty that tests if a vector of weights
→
ω is empty or not.

Algorithm 1: Comparison between two joint possibility degrees
Data: ~ωi, ~ωj , C
Result: R

1 begin
2 equality(→ωi,

→
ωj , C);

3 if (empty(→ωi) and empty(→ωj)) then R←→ωi=
→
ωj;

4 else s← sort(→ωi,
→
ωj, C) ;

5 if s == true then R←→ωi�
→
ωj;

6 else s← sort(→ωj ,
→
ωi, C) ;

7 if s == true then R←→ωj�
→
ωi;

8 else R←→ωj ±
→
ωi ;

9 return R

Note that this algorithm will be discussed in detail in Chapter 6.

Example 3.11. Let us consider the π-pref net ΠG of Example 3.3. Using Algorithm 1, the ordering
between the configurations is defined in Figure 3.4 such that a link from ωi to ωj means that ωi is
preferred to ωj . For instance, consider ~jbpwsr = (β, δ4) and ~jrpwsr = (α, β). First, we should
delete common values, namely the symbolic weight β. Then, we should check if C entails α < δ4
or the inverse. Here, α and δ4 are not comparable. Thus, we have jbpwsr ± jrpwsr.

Clearly, for π-pref nets, the complexity is due to the comparison step in Algorithm 1 (since the
computation of the possibility degrees is a simple matter of using the chain rule) and in particular
to the sort function where the matching between the two vectors needs the definition of different
possible arrangements i.e. the algorithm is of time complexity O(N!).

3.7 Conclusion

This chapter has presented an approach to preference modeling based on joint possibility distribu-
tions obtained from a conditional preference network, albeit without using numerical possibility
values to represent preference intensity. We have used uninstantiated symbols taking values on
the unit interval and constraints between them to describe local relative preferences. Then we
compute the product thereof to assign symbolic possibility values to complete configurations (so-
lutions) using the product chain rule of possibilistic networks. The preference graph between
configurations is then obtained by comparing composite symbolic possibility values.
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Moreover, this model proves to be flexible enough to support different readings leading to
different orderings of solutions, and establishes the main relationships between them. π-pref nets
correctly reflect the elicited information in the sense that no further implicit priority is enforced
like with CP-nets (e.g., in favor of parent nodes). They also offer a cautious way of modeling pre-
ferences without requiring numerical values, which should make them attractive for the same class
of applications as CP-nets. In fact, precise numerical assessments are hard to get for conditional
preferences that are qualitative in nature. Moreover, we have shown that symbolic possibilistic
networks can handle additional qualitative information when available.

In the next chapter, we discuss the possible relations that may exist between π-pref nets and
other preferential models. We also highlight the assets of each model and its drawbacks.
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4.1 Introduction

In this chapter, we raise the problem of comparing π-pref nets (proposed in Chapter 3) to various
preferential models. First, we will discuss possible logical representations of π-pref nets following
the same idea proposed by [Benferhat et al., 2002a] in order to establish a bridge from π-pref nets
to possibilistic logic. Such transformation allows to preserve the connection to a formal logical
framework which is interesting for fusing heterogeneous information. We also show that in the
same manner one can build a symbolic penalty logic base.

Second, we will study different relations between π-pref nets and existing preference models
presented in Chapters 1 and 2. More precisely, we compare and discuss existing relationships
between π-pref nets over binary variables and CP-nets, CP-theories, and OCF-nets. Indeed, CP-
nets share the same preference specification and graphical structure as π-pref nets, CP-theories are

62
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a generalization of CP-nets, while OCF-nets are based on an additive structure which is close to
the one of π-pref nets.

This Chapter is organized as follows: Section 4.2 discusses two logical counterparts of π-
pref nets, namely, possibilistic logic and penalty logic. Section 4.3 is devoted to the relation
between π-pref nets and OCF-nets. Section 4.4 details the transformation between π-pref nets and
CP-nets and explains the constraints applied to the symbolic weights. Section 4.5 outlines some
similarities between π-pref nets and CP-theories. Section 4.6 offers an overall comparison of the
various models presented in this thesis.

4.2 Logical counterparts of π-pref nets

In this section, we are interested by possible logical representations of π-pref nets. In the pos-
sibilistic framework, some attempts to build bridges between graphical and logical models were
proposed. We can mention in particular the transformation between possibilistic network and pos-
sibilistic logic base [Benferhat et al., 2002a,Benferhat et al., 2001a] and the one between possibi-
listic weights and penalty weights [De Saint-Cyr et al., 1994]. The main motivation behind these
transformations is to take advantage of different models at both representational and reasoning
levels.

Following these transformations, we are interested by studying the logical counterparts of
π-pref nets in terms of symbolic possibilistic logic base and symbolic penalty logic base.

4.2.1 From π-pref nets to symbolic logic bases

Possibilistic logic bases [Dubois et al., 1994] and possibilistic networks [Fonck, 1994, Ben Amor
and Benferhat, 2005] are two formats of the possibilistic framework. The former ranks the pieces
of goals (expressed by logical formulas) according to their level of importance, while the latter
exhibits relationships between variables. The two types of representations are semantically equi-
valent when they lead to the same possibility distribution. Possibilistic logic provides a sound and
complete machinery for handling qualitative preference with respect to a semantics expressed by
means of possibility distributions while Bayesian-like networks have a clear appeal for preference
acquisition since they exhibit explicitly independence relations between decision variables.

The goal of this section is to establish a bridge between π-pref nets and symbolic possibilistic
logic. In fact, we wish to take advantage of the graphical representation while preserving the con-
nection to a formal logical framework since there exists computational machineries of reasonable
complexity [Dubois et al., 1994] in possibilistic logic. In order to apply the existing transformation
methods [Benferhat et al., 2001a, Benferhat et al., 2002a] to the symbolic case, we first provide a
remainder of the possibilistic logic base and the transformations of the numerical case.
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4.2.1.1 Recall on possibilistic logic

Possibilistic logic base [Dubois et al., 1994] is a set of a finite propositional language fi (first-order
logic) denoted by Σ. Each formula has a weight ci, belonging to the scale [0, 1], which expresses,
in the preference setting, to what extent the constraint is imperative with consideration to the
incomplete available information. A N-possibilistic base is a possibilistic base where the weights
are computed as necessity measures. The possibilistic base is under the form Σ = {(fi, ci) : i =
{1, . . . ,m}} such that fi can be represented under a conjunctive or disjunctive form [Benferhat
et al., 2001b].

In the qualitative setting, this base can be presented by a set of partitions where each one
contains formulas with the same necessity degree. The order between the alternatives is given by
a possibility distribution. In fact, from this knowledge base one can generate a unique possibility
distribution by associating to each configuration the level of compatibility with the preferences:

∀ω ∈ Ω, πΣ(ω) =
{

1 if ∀(fi, ci) in Σ, ω |= fi

1−max{ci : (fi, ci)} ∈ Σ and ω 2 fi otherwise
(4.1)

Therefore, the configurations satisfying all the logical formulas will have the highest possibility
degree equal to 1. We can distinguish two completion principles that respectively generate the
largest and the smallest possibility distributions which satisfies the set of goals [Gérard et al.,
2007, Kaci et al., 2006]. More precisely, the minimal specificity principle accords the most im-
portant degree to configurations. It does not enforce any preference between the criteria if not
explicitly provided. Contrariwise the maximal of specificity gives the lowest possible degree to
configurations. In fact, they can refer to two kinds of decision makers. Optimistic decision makers
apply the maximum of specificity, because they tend to give the configurations the highest satis-
factory degree 1, and cautious ones use the minimum of specificity, by giving the highest degree
only to configurations that are never dominated by others. In both settings, all configurations are
compared and there is no room for incomparability. Note that standard possibility theory uses the
minimal of specificity.

Example 4.1. Let Ω = {ω1 = abc, ω2 = ab¬c, ω3 = a¬bc, ω4 = a¬b¬c, ω5 = ¬abc, ω6 =
¬ab¬c, ω7 = ¬a¬bc, ω8 = ¬a¬b¬c} be the universe of discourse. We consider the following
possibilistic logic base: Σ = {(¬a ∨ b, 1/3), (¬a ∨ ¬c, 1/3), (a, 1/3), (a ∨ ¬b, 2/3), (a ∨ c, 2/3)}.
We can generate a unique possibility distribution: π(ω2) = 1, π(ω1) = π(ω3) = π(ω4) =
π(ω7) = 2/3, π(ω5) = π(ω6) = π(ω8) = 1/3.
For example, ω7 violates (a, 1/3). The satisfaction degree of ω7 is then π(ω7) = 1− 1/3 = 2/3.

4.2.1.2 Recall on transformations from possibilistic networks to possibilistic logic

The basic idea of the transformation from a possibilistic network to possibilistic logic base is to
view the possibilistic base corresponding to a possibilistic network as the result of fusing elemen-
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tary bases [Benferhat et al., 2001a]. Each elementary base is associated to a variable of the graph
and considers all conditional possibilities different from 1 attached to the node. More precisely,
the elementary base associated with the variable Ai is:

ΣAi = {(¬ai ∨ ¬p(Ai), 1− αi) : π(ai|p(Ai)) = αi and αi 6= 1}

To have the complete logic base associated with the possibilistic network, these local bases should
be combined. More precisely, since we are mainly interested by possibilistic networks with
product-based conditioning, applying the product-based chain rule (Equation 3.1) should give
the same result as if we combine the possibility distributions associated to the elementary bases.
Formally, the complete logic base is given by the following combination:

Definition 4.1. Let Σ1 and Σ2 be two bases, π1 and π2 their associated distributions. The pos-
sibilistic base associated with π2 × π2 is: Σ1 ∪ Σ2 ∪ {(φi ∨ ψj , αi + βj − αiβj) : (φi, αi) ∈
Σ1 and (ψj , βi) ∈ Σ2}

Example 4.2. Consider the possibilistic network ΠG of Figure 4.1. The set of variables is V =
{A,B,C}. From local possibility distributions we can compute the local possibilistic logic bases
relative to each node. For instance the one relative to the node A is computed as follows: we
consider the possibility degree different from 1 here we have π(a) = 2/3 and since A has no
parents then when we apply ΣAi = {(¬ai ∨ ¬p(Ai), 1 − αi) we get ΣA = {(¬a, 1 − 2/3)} =
{(¬a, 1/3)}. Following the same procedure we have these three local possibilistic logic bases:
ΣA = {(¬a, 1/3)}, ΣB = {(¬a∨¬s, 1/2)} and ΣC = {(a∨ b∨¬c, 1/3), (a∨¬b∨ c, 1/3)}. We
first compute the combination of ΣA and ΣB . We get ΣAB = {(¬a, 1/3), (¬a ∨ ¬b, 1/2), (¬a ∨
¬b, 2/3)}. This base is equivalent to ΣAB = {(¬a, 1/3), (¬a ∨ ¬b, 2/3)} since we consider
formulas having the highest necessity degree if they are duplicated. Combining ΣAB and ΣC , we
get: ΣΠG = ΣABC = {(¬a, 1/3), (¬a ∨ ¬b, 2/3), (a ∨ b ∨ ¬c, 1/3), (a ∨ ¬b ∨ c, 1/3)}.

A

CB

π(a) π(¬a)

2/3 1

π(.|.) a ¬a

b 1/3 1

¬b 1 1

π(.|.) ab a¬b ¬ab ¬a¬b

c 2/3 1 1 1

¬c 1 1 1/2 1

Figure 4.1: Possibilistic network of Example 4.2
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Note that the converse transformation from a possibility distribution to possibilistic logic base
is also possible. However, moving from a logical format to a graphical one is less straightforward
since independence relations are not explicit in possibilistic logic [Benferhat et al., 2002a].

4.2.1.3 Transformation from π-pref nets to symbolic logic bases

As detailed earlier, π-pref nets represent a particular reading of possibilistic networks in the prefe-
rence framework where weights are non-instantiated. This, naturally, leads us to apply the afore-
mentioned transformation to the symbolic case, since computing the logical counterpart of π-pref
nets may be of interest for defining inconsistency and merging preference of several sources.

Similarly to the numerical case, we first define the local possibilistic logic bases associated
each node of the π-pref net:

Definition 4.2. The symbolic possibilistic base Σi associated to a Boolean variableAi in a π-pref
net ΠG is defined as follows:
- For each preference statement p(Ai) :ai1�ai2 between the two possible values of a variable Ai,
(¬p(Ai) ∨ ai1, β) ∈ Σi where π(ai2|p(Ai)) = 1− β < 1 in ΠG.
- There is no formula induced by preference statements p(Ai) : ai1 ∼ ai2.

Proposition 4.1. If πi is the possibility distribution induced by Σi associated with node Ai, then
πi(ω[{Ai}∪P(Ai)])=π(ai|p(Ai)) where ai=ω[Ai], p(Ai)=ω[P(Ai)].

Proof. The proof is trivial.

We may merge the local possibilistic bases generated by Definition 4.2 in 3 different ways:

1. The possibilistic base associated with a π-pref net can be obtained by fusing the elemen-
tary bases Σi (i = 1, ..., N) associated to its nodes. Since we are in the product-based
setting (π-pref nets), the combination of these possibilistic bases is defined iteratively as
Comb(Σ1,Σ2) = Σ1 ∪Σ2 ∪ {(pi ∨ qj , αi + βj − αi × βj) : i ∈ I, j ∈ J, pi ∨ qj 6= >},
where Σ1 = {(pi, αi) : i ∈ I} and Σ2 = {(qj , βj) : j ∈ J}. The base resulting from this
product-based combination is a (possibly large) possibilistic base that encodes the same
possibility distribution as πΠG, see [Dubois and Prade, 2004]. Such a logical counterpart
is a symbolic possibilistic base of the form Σ = {(f1, c1),. . . , (fm, cm)} which is a finite
set of weighted formulas fi where ci > 0 is also understood as a lower bound of a neces-
sity degree N(fi) but refers to a symbolic weight [Dubois and Prade, 2004]. Its semantics
is a possibility distribution πΣ(ω) = mini=1,nπ{(fi,ci)}(ω) = 1 if ω � fi and 1 − ci if
ω � ¬fi. This method leads to a symbolic base where one can apply inference rules and
revision. Note that any distribution can be associated with a possibilistic logic base, and
also equivalently represented by a possibilistic network [Benferhat et al., 2001a].
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2. One can also consider the corresponding symbolic base as the union of these local symbolic
bases. Then the possibility distribution would be computed via vector comparisons. To
find the same ordering as π-pref net, we should use symmetric Pareto to compare vectors
of configurations. This representation has no advantage compared to π-pref nets since
we cannot apply inference rules on it. There were several attempts to represent CP-nets
orderings using a symbolic possibilistic logic base. The construction of the local logic
bases is exactly as presented here. However, to each node they associate only one symbolic
weight. Therefore, to each node is associated at most one logic formula. Besides, they
do not consider any indifference between variable values. See [Dubois et al., 2015] for a
bibliography and a discussion. It was also observed that an exact logical representation of
CP-nets was not possible when nodes in the network have several children even though good
approximations can be considered. This is because additional constraints in that framework
compare individual symbolic weights, not product thereof. In addition, they show that
Symmetric Pareto and Leximin orderings respectively lower and upper bound the CP-net
ordering. These results can be exploited with a π-pref-net since it represent its graphical
counterpart [Dubois et al., 2013b, Dubois et al., 2013a].

3. A third method, is to construct a hybrid possibilistic network [Benferhat and Smaoui, 2007]
where we conserve the graphical structure of π-pref net and we associate to each node a
local possibilistic logic base. This hybrid representation generalizes the two representation
frameworks: possibilistic logic and possibilistic networks. Graphical representation is used
to take advantage of independence relations, and logic-based representation is used to have
compact representation of possibility distributions. More precisely, local preferences are no
longer represented by conditional possibility distributions but by possibilistic logic bases.
From each local logic base Σi we can compute the local possibility distribution πi using
Proposition 4.1. Since with π-pref nets we deal with product (symmetric Pareto) then the
possibility distribution π associated to the preference networks is computed such that π =
×Ni=1πi. Hybrid possibilistic networks were proposed for the aim of improving standard
junction tree propagation algorithms [Benferhat and Smaoui, 2007].

Example 4.3. Let us consider a preference specification for dinner over 3 variables V = {M,S,W},
standing for the main course, the soup and wine respectively s.t.
DM = { meat course (Mmc), fish course (Mfc)},DS = { fish soup (Sf ), vegetable soup (Sv)},
DW = { white wine (Ww), red wine (Wr)}.
The preference conditional set is:

The user prefers a meat course (Mmc) to a fish course (Mfc)
If the main course is meat, he prefers to have a fish soup (Sf ) to a vegetable one (Sv)
If the main course is fish, he prefers to have a vegetable soup to a fish soup
If the is served a vegetable soup, he prefers to have red wine (Wr) to white one (Ww)
If the is served a fish soup, he prefers to have white wine to red one

Based on these preference statements, we can construct the possibilistic network of Figure 4.2.
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M

S

W

π(Mmc) 1
π(Mfc) α

π(.|.) Mmc Mfc

Sf 1 β1
Sv β2 1

π(.|.) Sf Sv
Ww 1 δ1
Wr δ2 1

Figure 4.2: The possibilistic network of Example 4.3

• The possibilistic base associated with the product of the different local possibility distribu-
tions π1∗π2 is Σprod = Σ1∪Σ2∪{φ∨ψ, αi+βj−αiβj}: (φi, αi) ∈ Σ1 and (ψj , βj) ∈ Σ2
(the first merging method). Therefore, to find the base associated with the graph we should
apply successively the previous formula on each node logic base. Let us assume:
α
′ = 1− α, β

′
1 = 1− β1, β

′
2 = 1− β2, δ

′
1 = 1− δ1, δ

′
2 = 1− ε2.

The combination of the ΣM and ΣS leads to:
ΣMS = ΣM ∪ΣS ∪ {(Mmc ∨ Sv, α

′ + β
′ − α′ ∗ β′)}. Then, combining the resulting base

with the base associated with the node W we get the final base:
ΣMSW = ΣM ∪ΣS ∪{(Mmc∨Sv, α

′+β
′−α′ ∗β′)}∪Σw∪{(Mmc∨Sv∨Ww, α

′+δ
′
1−

α
′ ∗δ′1), (Mmc∨Sf∨Ww, α

′+δ′2−α
′ ∗δ′2), (Mfc∨Sf∨Ww, β

′
1+δ′2−β

′
1∗δ

′
2), (Mmc∨Sv∨

Ww, β
′
2 +δ

′
1−β

′
2 ∗δ

′
1), (Mmc∨Sv∨Ww, δ

′
1 +(α′+β

′−α′ ∗β′)−δ′1 ∗(α′+β
′−α′ ∗β′)}.

Note that resulting base may contain some subsumed formulas that cannot be detected since
the weights are not comparable.

• The second merging methods corresponds to union the local logic bases and applying the
symmetric Pareto to the resulting vectors.

• Figure 4.3 corresponds to the hybrid network associated to the π-pref net of Figure 4.2
which combines the knowledge bases associated to the nodes and the graphical structure
(third method).

This correspondence is useful if we have to combine pieces of information expressed in dif-
ferent formats, and to check their consistency. Each compact format has its interest for com-
munication purposes, either for modelling expert knowledge, or for supplying information to the
user. Besides, from an inference point of view, the logical and the graphical formats are the most
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M

S

W

ΣM = {(Mmc, 1− α)}

ΣS = {(Mfc ∨ Sf , 1− β1), (Mmc ∨ Sv, 1− β2)}

ΣW = {(Sv ∨Ww, 1− δ1), (Sf ∨Wr, 1− δ2)}

Figure 4.3: The hybrid possibilistic network corresponding to the π-pref net of Example
4.3

interesting ones.

4.2.2 From a π-pref net to penalty logic

This subsection points out another logical counterpart of π-pref nets in terms of a penalty logic
base Pκ [De Saint-Cyr et al., 1994], where weights are additive. This logic associates to each
formula the cost (in [0,+∞)) to pay if this formula is violated. The penalty kPK(ω) relative to a
configuration ω is the sum of the elementary penalties of the violated formulas. This contrasts with
possibilistic logic, where weights are combined by an idempotent operation. The best solution has
a cost equal to 0.

Definition 4.3. A penalty knowledge base Pκ is a finite multi-set of pairs {fi, ci} where fi is a
logic formula and ci is the penalty associated to fi; it represents intuitively what one should pay
in order to get rid of fi, if we pay the requested price we do not need any longer to satisfy fi; so
the larger ci is, the more important fi is. In particular, if ci = +∞ then it is forbidden to remove
fi from Pκ (fi is inviolable).

Since Pκ is a multi-set of pairs, it is possible for a pair (fi, ci) to appear many times in Pκ.
For instance, Pκ1 = {(fi, 1), (fi, 1)} is not equivalent to Pκ2 = {(fi, 1), } since using Pκ, it
costs 2 to delete fi while using Pκ2, it costs only 1. However, in the case where a same formula
appears several times in Pκ then we may replace all the occurrences of the formula fi by only
one occurrence annotated with the sum of the penalties associated to this formula in the first base.
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The new knowledge base obtained is equivalent to the initial base. This contrasts with possibilistic
logic where formulas having the same necessity degrees should appear only once in the logic base.
This is explained by the use of the minimum function rather than sum.

The transformation from a π-pref net (based on the product) to a (symbolic) possibilistic logic
(based on the minimum of specificity) leads to a complex logic base. A way to consider a simpler
logic is to consider penalty logic. This interest is explained by the fact that the combination
between penalty logic bases corresponds to the union of them. The aim is to find a transformation
function that enables us to move from a possibility distribution to a distribution of costs. Let us
consider a set of configurations Ω = {ω1 = ab, ω2 = a¬b, ω3 = ¬ab, ω4 = ¬a¬b} and f()
a function that transforms possibilities to costs, such that: The function f() should respect these

Configuration Possibilistic distribution Costs
ω1 1 f(1) = 0
ω2 β f(β)
ω3 α f(α)
ω4 α ∗ β f(α ∗ β)

Table 4.1: Transformation function from possibilities to penalty weights

properties:

• f(1) = 0, since in penalty logic the best configurations have a cost equal to 0.

• f : α ∈ [0, 1]→ [0,+∞[

• f(α) > 0 where α is a symbolic possibility degree, since costs are always positive.

• f(α ∗ β) = f(α) + f(β), since when violating more than one formula the cost is the sum
of each formula’s cost.

The function f() acts like the logarithm function, we have:

• log(1) = 0.

• log((α) ∗ (β)) = log(α) + log(β).

In order to have positive values, the corresponding function is f(α) = − log(α). Therefore,
α = 1− exp(−a) such that a is a penalty cost.

Thus, this logic with a cost interpretation has a close relationship with product-based π-pref
nets. Indeed, the cost of a solution induced by a penalty logic base corresponds actually to the
logarithmic transformation of the possibility degree computed from a π-pref net. Namely, in each
local possibilistic base Σi associated to a node Ai we can at most violate one formula. Thus, for
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each possibilistic base Σi = {(fi1, αi1), . . . , (fik, αik)} there exists a penalty logic base PKi =
{(fi1,− log(αi1)), . . . , (fik,− log(αik))} such that the ordering induced by πi is the same as
the ordering induced by the cost function. This mirrors the fact that πΠG(ω) = α1 · · · · · αN ⇔
kPK(ω) = −(log(α1)+· · ·+log(αN )). Contrarily to possibilistic bases, the combination between
penalty bases is the union of all PKi (i = 1, ..., N). This yields the same ordering as π-pref nets.
However, there is no proof system for penalty logic yet.

Example 4.4. Considering the hybrid possibilistic network of Figure 4.2 the associated penalty
base is: PK = {(Mmc, log(α′)), (Mfc∨Sf , log(β′1)), (Mmc∨Sv, log(β′2)), (Sv∨Ww, log(δ′1)), (Sf∨
Wr, log(δ′2))}. such that prime signs correspond to reversed scales, for instance, α′ = 1− α.
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4.3 π-Pref nets vs OCF-nets

We have explained that the expression of ordinal ranks parallels the product-based possibilistic
chain rule, where weights are combined by the product operator. It was also proved that OCF
networks share the same independence relation as possibilistic networks, namely, Markov inde-
pendence [Eichhorn and Kern-Isberner, 2015, Eichhorn et al., 2016]. Therefore, it is clear that
OCF networks with a rank interpretation has a close relationship with product-based π-pref nets.
Indeed, the cost of a configuration induced by an OCF-net corresponds actually to a transforma-
tion of the possibility degree computed from a π-pref net. As mentioned before, the set-function
πκ(Ai) = 2−κ(Ai) is a possibility measure [Dubois and Prade, 1991]. The converse holds to some
extent insofar as if π(Ai) = α, the values κ(Ai) = − log2(α) are integer rank weights. However,
we can also extend the OCF framework to positive reals. Up to this proviso, the ordering induced
by the product-based chain rule of π-pref nets is the same as the order induced by the correspon-
ding rank function. In [Ben Amor et al., 2015], it was proposed to use this transformation at the
symbolic level, yielding a symbolic additive counterpart to π-pref nets.

Clearly, for a π-pref ΠG and an OCF network κG, πΠG(ω) = α1 · · · · · αN ⇒ κκG(ω) =
−(log2(α1) + · · ·+ log2(αN )) and κκG(ω) = (α1 + · · ·+αN )⇒ πΠG(ω) = 2−α1 · · · · · 2−αN ).
Thus, after the logarithmic transformation, OCF-nets yield the same ordering on configurations
as π-pref nets. Note that π-pref nets with products cannot always be turned into OCF-nets with
integer values. However, OCF-nets can be turned into π-pref nets with products.

Example 4.5. Let us consider the following conditional rank tables corresponding to an OCF-net
of two binary variables A and B: κ(a) = 3, κ(¬a) = 0, κ(b|a) = 0, κ(b|¬a) = 2, κ(¬b|a) = 1
and κ(¬b|¬a) = 0. This yields κ(¬a¬b) = 0 < κ(¬ab) = 2 < κ(ab) = 3 < κ(a¬b) = 4. Thus
we have ¬a¬b �κG ¬ab �κG ab �κG a¬b. The transformation from this OCF-net to a numeric
π-pref net leads to the following possibilistic conditional tables: π(a) = 0.125, π(¬a) = 1,
π(b|a) = 1, π(b|¬a) = 0.25, π(¬b|a) = 0.5 and π(¬b|¬a) = 1 which yields π(¬a¬b) = 1 >
π(¬ab) = 0.25 > π(ab) = 0.125 > π(a¬b) = 0.0625. Clearly the two models lead to the same
ordering after this transformation.

Until now, OCF-nets have been used for dealing with numerical values only. However, the
transformation of a symbolic possibilistic network leads to a symbolic OCF-net. Thus, the appli-
cation of the different ordering relations defined in Chapter 3 leads exactly to the same orderings
induced by possibilistic networks. In fact, summation and product are handled similarly when we
work in a symbolic setting.

4.4 π-Pref nets vs CP-nets

Recently, numerical OCF-nets have been shown to “mimic” the CP-net ordering [Eichhorn et al.,
2016]. The proposed generation of an OCF-net from a CP-net leads to a total ordering, which
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T

PS

C

t1 ≻ t2

t1: s2 ≻ s1

t2: s1 ≻ s2

t1: p1 ≻ p2

t2: p2 ≻ p1

p1 : c1 ≻ c2

p2 : c2 ≻ c1

Figure 4.4: Preference network for Example 4.6

contrasts with CP-nets. However, they proved that such an ordering is always consistent with the
one induced by the corresponding CP-net. They also showed that the CP-net formalism is able
to represent only a subclass of OCF-nets, which proves that OCF-nets are more expressive than
CP-nets. These remarks can be immediately applied to numerical π-pref nets as well.

Example 4.6. Consider a preference specification about a holiday house in terms of 4 decision
variables V = {T, S, P,C} standing for Type, Size, Place and Car park respectively, with values
T ∈ {flat (t1), house (t2)}, S ∈ {big (s1), small (s2)}, P ∈ {downtown (p1), outskirt (p2)}
andC ∈ {car (c1), nocar (c2)}. Preference on T is unconditional, while all the other preferences
are conditional as shown in Figure 4.4.

These preference statements correspond to the CP-net of Figure 4.4. its induced worsening flip
graph is on Figure 4.5. The preferences expressed by the CP-nets can be represented by a π-pref
net sharing the same graphical structure and where the conditional possibility distributions are
as follows: π(t1) = 1, π(t2) = α, π(p1|t1) = π(p2|t2) = 1, π(p2|t1) = β1, π(p1|t2) = β2,
π(s1|t1) = γ1, π(s2|t2) = γ2, π(s2|t1) = π(s1|t2) = 1, π(c1|p1) = π(c2|p2) = 1, π(c2|p1) = δ1
and π(c1|p2) = δ2. Applying the product-based chain rule, we can compute the joint possibility
distribution relative to T,P,C and S. Fig. 4.6 represents with thin arrows the configuration graph
induced from the joint possibility distribution. Clearly, the configuration t1p1c1s2 is the root (since
it is the unique one with degree π(t1p1c1s2) = 1).

If we consider the preference statement at node P , based on the preferential independence
1.6 and from the preference statement t1: p1 � p2, we can deduce that t1s1p1c1 �CP t1s1p2c1,
t1s2p1c1 �CP t1s2p2c1, t1s1p1c2 �CP t1s1p2c2 and t1s2p1c2 �CP t1s2p2c2. Indeed, we can
deduce as many comparisons as the number of possible configurations of the variables other than
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t1 p1 c1 s2

t1 p1 c2 s2
t1 p1 c1 s1

t1 p1 c2s1

t1 p2 c2 s1

t2 p2 c2 s1

t2 p2 c2 s2

t2 p1 c2 s2

t1 p2 c2 s2

t1 p2 c1 s2

t2 p2 c1 s1

t1 p2 c1 s1

t2 p2 c1 s2

t2 p1 c1 s2

t2 p1 c2 s1

t2 p1 c1 s1

Figure 4.5: CP-net preferences for Example 4.4 up to transitive closure (5 bold arrows
represent Ceteris Paribus preference relations that are not recovered by π-pref net, 8 one-
flip comparisons over 32 can be recovered by transitivity, e.g. from t1p1c1s2 to t2p1c1s2).
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t1p1c1s2
(1) (T,P,C,S)

t1p1c2s2
(δ1) (T,P,S)

t1p1c1s1 
(1) (T,P,C)

t1p1c2s1
(1δ1)(T,P)

t1p2c2s1
(11)(T,C)

t2p2c2s1
() (P,C,S)

t2p2c2s2
(2) (P,C)

t2p1c2 s2
(2 1 δ1) ()

t1p2c2s2
(1) (T,C,S)

t1p2c1s2
(1δ2)(T,S)

t2p2c1s1
(δ2)(P,S)

t1p2c1s1 
(11δ2)(T)

t2p2c1s2
(2δ2)(P)

t2p1c1s2
( 2 1)(C)

t2p1c2s1
(2δ1)(S)

t2p1c1s1
(2)(C,S)

Figure 4.6: Configuration graph of Ex. 4.6. Thin arrows reflect �π, dotted arrows com-
pare sets S(ωi), and bold arrows reflect additional Ceteris Paribus comparisons recovered by the
constraints, also in bold on Fig. 4.5

P and T , namely C and S. However, from the same statement, based on the possibilistic network,
we can deduce that t1s1p1c1 �π t1s1p2c1 and t1s2p1c1 �π t1s2p2c1. This is due the fact that
node S is independent of node P in the context of its parent T . Thus, the preference relation holds
no matter the instantiation of S. Node C depends on D, thus, based on the context, we choose
each time the best values for D.

From this simple example, we can see that π-pref nets and CP-nets do not share the same
form of preference independence. Although both graphical networks are syntactically based on
the same preference statements, they are semantically handled in different ways. More precisely,
orderings in CP-nets are induced from Ceteris Paribus and transitivity, while orderings in π-pref
nets are built using the chain rule and conditional preferences.

Indeed, if we consider the two preference (in)dependencies closely, we can notice that both
have somehow contrasting properties. Let Dn(A) be the set of descendants of the node A and
let Co(A) = V \ Dn(A) \ P(A) be the set of A non descendants, their possible instantiations
are denoted by d and n respectively. The conjunction of instantiations is denoted by xy such
that X ∩ Y = ∅ and X,Y ⊆ V . Let us consider a node A such that DA = {a1, a2} with this
preference statement: p(A) : a1 � a2 where p(A) an instantiation of P(A). In CP-nets setting
and based on the Ceteris Paribus independence, we can deduce that p(A)a1dn � p(A)a2dn (aside
the instantiations of A, the rest of the variables have the same instantiation). In contrast, the same
preference statement is handled differently by possibilistic networks and means that π(a1|p(A)) >
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π(a2|p(A)). Therefore, we have π(a1|p(A)n) > π(a2|p(A)n′) thanks to the Markov properties of
possibilistic networks, namely, each node is independent from its non-descendants in the context of
it parents. Thus, in contrast with CP-nets, the preference is still preserved even if some variables,
precisely, Co(A) are configured differently. Moreover, we can see that based on Ceteris Paribus
independence we have Dn(A) instantiated similarly in both configurations, thus independently of
A, which cannot be the case with possibilistic networks since Co(A) depends on the instantiation
of A.

In this section, we show that the configuration graph of any CP-net is consistent with the
configuration graph of the π-pref net without local indifference, based on the same preference
network, provided that some constraints on products of symbolic weights are added to the π-pref
net, in order to restore the Ceteris Paribus priorities. Precisely, the added constraints reflect the
higher importance of parent nodes with respect to their children. Under an additional property
whose validity can be conjectured, π-pref net can capture CP-nets exactly.

4.4.1 Consistency between CP-nets and π-pref nets

In the following, we first recall that the ordering between configurations induced by a π-pref net
corresponds to the Pareto ordering between the vectors ~ω = (θ1(ω), . . . , θN (ω)) where θi(ω) =
π(ωAi |ωP(Ai)), i = 1, . . . , N (See Section 3.4). The Pareto ordering is defined by

~ω �Pareto ~ω′ iff ∀ k, θk(ω) ≥ θk(ω′) and θi(ω) > θi(ω′) for some i.

It is easy to see that θi(ω) ∈ {1, αAi|p(Ai)} where αAi|p(Ai) is the symbolic weight that appears
in the preference table for variable Ai in the context ωP(Ai). It is easy to see that θk(ω) > θk(ω′)
if and only if θk(ω) = 1 and θk(ω′) is a symbolic value. But it may be that θk(ω) and θk(ω′) are
distinct symbolic values, hence making ω and ω′ incomparable. In particular, there are as many
different symbolic weights αA|p(A) pertaining to variable A as instantiations of parents of A. As
symbolic weights are not comparable across variables, it is easy to see that the only way to have
π(ω) ≥ π(ω′) is to have θk(ω) ≥ θk(ω′) in each component k of ~ω and ~ω′. Otherwise the products
will be incomparable due to the presence of distinct symbolic variables on each side. So,

ω �π ω′ ⇐⇒ ~ω �Pareto ~ω′

Given the ordinal nature of preference tables of CP-nets, it also makes sense to characterize the
quality of ω using the set S(ω) = {Ai : θi(ω) = 1} of satisfied preference statements (one per
variable). It is then clear that the Pareto ordering between configurations induced by the preference
tables is refined by comparing these satisfaction sets:

~ω �Pareto ~ω′ ⇒ S(ω′) ⊂ S(ω) (4.2)
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since if two configurations contain variables having bad assignments in the sense of the preference
tables, the corresponding symbolic values may differ if the contexts for assigning a value to this
variable differ.

Example 4.7. To see that this inclusion-based ordering is stronger than the π-pref net ordering,
consider Figure 4.6 where π(t1p2c1s2) = β1δ2 with S(t1p2c1s2) = {T, S} and π(t2p1c2s1) =
αβ2δ1 with S(t2p1c2s1) = {S}. We do have that S(t1p2c1s2) ⊃ S(t2p1c2s1), but β1δ2 is not
comparable with αβ2δ1. Dotted and thin arrows of Figure 4.6 represent the configuration graph
induced by comparing sets S(ω)

It is noticeable that if the weights αAi|p(Ai) reflecting the satisfaction level due to assigning the
bad value to Ai in the context p(Ai) do not depend on the context, then we have an equivalence in
Equation (4.2):

Proposition 4.2. If ∀i = 1, . . . , N, αAi|p(Ai) = αi,∀p(Ai) ∈ P(Ai), then

~ω �Pareto ~ω′ ⇐⇒ S(ω′) ⊂ S(ω).

Proof. (⇒) This direction is proved by 4.2.
(⇐) Suppose S(ω′) ⊂ S(ω) then ifA ∈ S(ω′) we have θi(ω) = θi(ω′) = 1; ifA ∈ S(ω)\S(ω′),
then θi(ω′) = αi, θi(ω) = 1 and θi(ω′) = αi = θi(ω) otherwise. This implies ~ω �Pareto ~ω′.

The inclusion-based ordering S(ω′) ⊂ S(ω) does not depend on the parent variables context
but only on the fact that a variable has a good or a bad value. Similarly, when the symbolic weights
no longer depend on parents instantiations, there is only one symbolic weight per variable. So, the
above result is not surprising.

Example 4.8. Using the same nodes as in Example 4.7, the unique weight assumption enforces
β1 = β2 = β and δ1 = δ2 = δ, which yields π(t1p2c1s2) = βδ > π(t2p1c2s1) = αβδ.

In the following, we assume that the components of vector ~ω are linearly ordered in agreement
with the partial ordering of variables in the symbolic preference network, namely, if i < j then
Ai is not a descendant of Aj in the preference net (i.e. topological ordering). For instance in the
preference net of Figure 4.4, we can use the ordering (T, P,C, S).

Let us first prove that, in the configuration graphs induced by a CP-net and the corresponding
π-pref net, there cannot be any preference reversals between configurations. Let Ch(A) denote the
children set of A ∈ V .

Lemma 4.1. Let ω and ω′ be two configurations such that ω �CP ω′ and ω and ω′ differ by one
flip of a variable Ai then S(ω) ⊂ S(ω′) is not possible.
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Proof. Compare S(ω) and S(ω′). It is clear that Ai 6∈ S(ω′) (otherwise the flip would not be
improving) and S(ω) = (S(ω′) ∪ {Ai} ∪ Ch+

−(Ai)) \ Ch−+(Ai), where Ch+
−(Ai) is the set of

variables that switch from a bad to a good value when going from ω′ to ω, and Ch−+(Ai) is the set
of variables that switch from a good to a bad value when going from ω′ to ω. It is clear that it can
never be the case that S(ω) ⊂ S(ω′), indeed Ai is in S(ω) and not in S(ω′) by construction. But
S(ω′) may contain variables not in S(ω) (those in Ch−+(Ai) if not empty). So either S(ω′) ⊂ S(ω)
or the two configurations are not Pareto-comparable.

In the following, given two configurations ω and ω′, let Dω,ω′ be the set of variables which
bear different values in ω and ω′.

Proposition 4.3. If ω �CP ω′ then S(ω) ⊂ S(ω′) is not possible.

Proof. If ω �CP ω′, then there is a chain of improving flips ω0 = ω′ ≺CP ω1 ≺CP · · · ≺CP
ωk = ω. Applying the above Lemma, S(ωi) = (S(ωi−1) ∪ {Vi−1} ∪ Ch+

−(Vi−1)) \ (Ch−+(Vi−1)
for some variable Vi−1 = Aj . By the above Lemma, we cannot have S(ωi−1) ⊂ S(ωi). Suppose
we choose the chain of improving flips by flipping at each step a top variable Aj in the preference
net, among the ones to be flipped, i.e. j = min{` : A` ∈ Dωi−1,ω}. It means that when following
the chain of improving flips, the status of each flipped variable will not be questioned by later
flips, as no flipped variable will be a child of variables flipped later on. So S(ω) will contain some
variables not in S(ω′), so S(ω) ⊂ S(ω′) is not possible.

The previous results show that it is impossible to have a preference reversal between CP-net
ordering and the inclusion ordering, which implies that no preference reversal is possible between
CP-net ordering and the π-pref net ordering. It suggests that we can try to add Ceteris Paribus
constraints to a π-pref net so as to capture the preferences expressed by a CP-net.

As previously noticed, in CP-nets, parent preferences look more important than children ones.
This property is not ensured by π-pref nets where all violations are considered having the same
importance. Indeed, we can check from Figures 4.5 and 4.6 that the two configuration graphs
built from the same preference statements of Example 4.6 are different. In the following, we
highlight local constraints between each node and its children that enable Ceteris Paribus to be
simulated. Let DP(A) = ×Ai∈P(A)DAi denote the Cartesian product of domains of variables in
P(A), αA|p(A) = π(a−|p(A)) and γC|p(C) = π(c−|p(C)).

Proposition 4.4. Suppose a CP-net and a π-pref net built from the same preference statements.
Let us add to the latter all constraints induced by the condition: ∀ A ∈ V s.t. Ch(A) 6= ∅:

max
p(A)∈DP(A)

αA|p(A) <
∏

C∈Ch(A)
min

p(C)∈DP(C)
γC|p(C) (4.3)

Let �+
π be the resulting preference ordering built from the preference tables and applying con-

straints between symbolic weights of the form of Equation 4.3, then, ω �CP ω′ ⇒ ω �+
π ω′.
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Proof. The relation �CP is determined by comparing configurations ω, ω′ of the form ω = a+ ∧
p(A)∧ r and ω′ = a− ∧ p(A)∧ r (where R = V \ (A∪P(A))), that differ by one flip of variable
A. So the local preference p(A) : a+ � a− is equivalent to have ω �CP ω′ under Ceteris Paribus
assumption, and also equivalent to have π(a−|p(A)) < π(a+|p(A)) = 1 in the corresponding
π-pref net based on the same preference tables.

Now let us show that ∀A ∈ V , ∀p(A) ∈ DP(A) and every instantiation r of the variables in
V \ ({A} ∪ P(A)), the local preference π(a−|p(A)) < π(a+|p(A)) implies π(a− ∧ p(A) ∧ r) <
π(a+ ∧ p(A) ∧ r) under the condition expressed by Equation (4.3). Consider the instantiation
ch(A) = ∧C∈Ch(A)ωC , where ωC ∈ {c,¬c}, of the children of A such that ch(A) ∧ o = r (i.e.
O = V \ (A ∪ P(A) ∪ Ch(A)). The chain rule states (Equation (3.1)) :
π(ω′) = ∏

B∈V π(ω′B|ω′P(B)) =
π(a−|p(A))·∏C∈Ch(A)π(ω′C |p′(C))·∏B 6∈{A}∪Ch(A) π(ω′B|ω′P(B)).

Clearly the last term does not depend on A and is thus a constant β. So π(ω′) = β · αA|p(A) ·∏
C∈Ch(A) π(ω′C |p′(C)).

Likewise, since ω = a+ ∧ p(A) ∧ ch(A) ∧ o, we have
π(ω) = β ·

∏
C∈Ch(A) π(ωC |p(C)), since π(a+|p(A)) = 1. Note that while p′(C) is of the form

a−∧p−A(C) whereP−A(C) is the set of parents ofC but forA, p(C) is of the form a+∧p−A(C).

So the inequality π(ω) > π(ω′), present in the CP-net, requires:∏
C∈Ch(A)

π(ωC |p(C)) > αA|p(A) ·
∏

C∈Ch(A)
π(ω′C |p′(C)).

Condition (4.3) implies αA|p(A) <
∏
C∈Ch(A) π(ωC |p(C)), which implies the above inequality. It

proves that, under Condition (4.3), ω �CP ω′ implies ω �+
π ω

′.

This proposition ensures that the ordering induced by the joint possibility distribution of a
π-pref net enhanced by constraints of the form (4.3) can refine the CP-net ordering having the
same preference tables, provided that suitable constraints are added at each node A ∈ V between
the local conditional possibility distribution at this node and the product of possibility degrees of
the children of A. It comes down to constraints between each symbolic weight and a product of
other ones. Indeed the less preferred value, min(π(a|p(A), π(¬a|p(A)), of A in the context of the
parents p(A) of A is a symbolic weight (non instantiated possibility degree). In other words, the
inequality ensures that the less preferred value of each A given p(A) is strictly less preferred than
the product of the less preferred values of the children ofA. This result is the symbolic counterpart
of the one in [Eichhorn et al., 2016], using preference networks with numerical ranking functions.

Example 4.9. In the graph of Figure 4.6 induced by the π-pref net of Example 4.6, Proposition 4.4
leads us to add conditions α < min(γ1, γ2)·min(β1, β2) and max(β1, β2) < min(δ1, δ2). Clearly
these conditions are too strong here. First some of the products like γ1β2 never appear in Figure
4.6. Moreover, the reader can check that adding constraints β1γ1 > α and βi < δi, (i = 1, 2)
turns the configuration graph of Figure 4.6 into the CP-net-induced configuration graph of Figure
4.5.
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Instead of imposing priority of parents over children, we can also add the Ceteris Paribus
constraints to the π-pref net directly, considering only worsening flips. Let ω, ω′ differ by one flip,
and such that none of ω �π ω′, ω′ �π ω holds, and moreover, ω �CP ω′. We must enforce the
condition π(ω) > π(ω′). Suppose the flipping variable is A. Clearly, A ∈ S(ω), but A 6∈ S(ω′).
Let α be the possibility degree of A when it takes the bad value in context ωp(A) (it is 1 when
it takes the good value). When flipping A from a good to a bad value, only the quality of the
children variables Ch(A) of A may change. Ch(A) can be partitioned into at most 4 sets, Ch−−(A)
(respectively Ch−+(A), Ch+

−(A), Ch+
+(A)), which represents the set of children of A whose values

remain bad (resp. change from good to bad, from bad to good, and stay good) when flipping A
from a+ to a−. Strictly speaking these sets depend upon ω. Then it can be easily checked that:

π(ω) = 1 ·
∏

Ci∈Ch+
−(A)

γi ·
∏

Cj∈Ch−−(A)

γj · β

π(ω′) = α ·
∏

Ck∈Ch−+(A)

γk ·
∏

Cj∈Ch−−(A)

γj · β

where β is a product of symbols, pertaining to nodes other than A and its children, that remain
unchanged by the flip of A. Then the constraint π(ω) > π(ω′) comes down to the inequality:∏

Ci∈Ch+
−(A)

γi > α ·
∏

Ck∈Ch−+(A)

γk (4.4)

where symbols appearing on one side do not appear on the other side. Such constraints are clearly
weaker than Condition (4.3) but are sufficient to retrieve all the preferences of the CP-net. Note
that the preferences ω �π ω′ and ω �CP ω′ conjointly hold in both approaches whenever A
has no child node, and more generally whenever the worsening flip on A corresponds to no child
variable moving from a bad to a good state, i.e. Ch+

−(A) = ∅. In fact, condition (4.4) holds for
all preference arcs in the configuration graph of the CP-net, whether this preference appears in the
π-pref net or not. We get the following result.

Proposition 4.5. Consider a CP-net and the preference relation �+
π on configurations built from

the same preference tables by adding all constraints of the form (4.4) between configurations
differing by one flip to the preferences of the form ω �π ω′. Then:

ω �CP ω′ ⇒ ω �+
π ω

′

Proof. Indeed, first the preferences according to �CP and �π do not contradict each other, per
Proposition 4.3. Then we add constraints to the π-pref net for all CP-net worsening flips that are
not captured by �π, using constraints (4.4). So we have then captured the whole preference graph
of the CP-net, plus possibly other preferences between configurations.

In the transformation of a CP-net into a π-pref net, we keep the same graphical structure and
the tables are filled directly from the preference statements of the CP-net. Besides, we must point
out that, when mimicking CP-nets, constraints are not elicited from the user but computed directly
from the graph structure.
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Example 4.10. The above constraints (4.4) that must be added to the π-pref configuration graph
of Figure 4.6 are precisely those found to be necessary and sufficient in Example 4.9 to recover
the CP-net ordering, i.e., α < β1γ1, β1 < δ1 and β2 < δ2. Note that the number of of additional
constraints to be added to capture the CP-net comparisons missed by the π-pref net is quite small.
For instance, the number of constraints here is 4 against 120 potential comparisons.

So, in the example, we exactly capture the preference graph of a CP-net using additional
constraints between products of symbolic weights. The above considerations thus encourage us to
study whether π-pref nets without constraints are refined by CP-nets, namely that the configuration
graph of the former contains less strict preferences between configurations than the one of the
latter, so that adding the constraints (4.4) are enough to simulate a CP-net by a π-pref net with
constraints. Note that if it were not the case, it would mean that CP-nets do not respect Pareto-
ordering.

4.4.2 Towards exact representations of CP-nets by π-pref nets

In this subsection, we consider the inclusion-ordering. One may wonder if there may exist some
configurations that can be compared by the inclusion-based ordering, while they remain incompa-
rable for CP-nets. This is not the case in our running example.

Example 4.11. Consider the top configuration ω′ = t1p1c1s2 which inclusion-dominates ω =
t2p2c2s1 in the π-pref net configuration graph in Figure 4.6, since the former has good values for
all variables and only the value t2 is bad in the latter, i.e., S(ω′) = {T, P,C, S} and S(ω) =
{P,C, S}. But the two configurations are far away in terms of flips since Dω,ω′ = {T, P,C, S}.
They can, however, be related by a chain of worsening flips. Namely, as S(ω′) \ S(ω) = {T},
we must flip T first, and ω1 = t1p2c2s1, with S(ω1) = {T,C} so S(ω′) \ S(ω1) = {P, S} and
Dω1,ω′ = {P,C, S}. We now must flip P and get ω2 = t1p1c2s1 with S(ω2) = {T, P} = Dω2,ω′ .
As S(ω′) \ S(ω2) = {C, S}, we must flip C, and ω3 = t1p1c1s1, with S(ω3) = {T, P,C} so
S(ω′) \ S(ω3) = {S} = Dω3,ω′ . We now must flip S and get ω4 = t1p1c1s2 = ω′.

The question whether the preference ordering of configurations induced by CP-nets is con-
sistent with the ordering between the sets of variables that take good values in agreement with
the preference tables seems to have been overlooked so far in the CP-net literature. The inclu-
sion ordering between sets of variables with satisfactory values is intuitive in the sense that if a
configuration ω violates all the preference statements violated by another configuration ω′ plus
some other(s), then ω′ should indeed be strictly preferred to ω. The consistency of CP-nets with
inclusion, namely the property

S(ω) ⊂ S(ω′)⇒ ω′ �CP ω (*)

can be naturally conjectured since the opposite case would cast a doubt on the rationality of such
networks. Proposition 4.3 proves a weak consistency between them. However, at this stage provi-
ding a formal complete proof looks tricky and besides, is not directly related to the expressivity of
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π-pref nets, the very topic of this section. The results in the following are conditioned by the truth
of the conjecture, or are restricted to those CP-nets that agree with the inclusion-based orderings.
Based on this assumption, Proposition 4.6 indicates that the CP-net ordering refines, hence is con-
sistent with, the ordering induced by a π-pref net built from the same preference specification.
This is because the inclusion-ordering refines the the Pareto (or π-pref net) ordering.

Proposition 4.6. Consider a CP-net that refines the inclusion-based ordering and a π-pref net
built from the same preference statements, we have:

ω′ �π ω ⇒ ω′ �CP ω

Let us now prove that, if the conjecture (*) is valid, we are able to exactly induce the CP-net
ordering from the π-pref net ordering by adding suitable constraints between symbolic weights
or their products. First, we have seen that we can add to the π-pref net configuration graph all
missing preference statements induced by the CP-net and not already present in the π-pref net
configuration graph. These statements concern all pairs (ω, ω′) that differ by one flip and such
that π(ω) and π(ω′) are not comparable. Note that adding such preference statements to the Pareto
configuration graph in case of Pareto-incomparability yields the CP-net configuration graph (up to
transitive closure).

The question remains whether we can express the latter in terms of additional constraints
between symbolic weights or products thereof.

Proposition 4.7. Consider a CP-net that refines the inclusion-based ordering and the preference
relation �+

π on configurations built from the same preference tables by enforcing all constraints
of the form (4.4) between configurations differing by one flip. Then:

ω �CP ω′ ⇔ ω �+
π ω

′

Proof. (⇒) This direction is proved by Proposition 4.5.
(⇐) As ω �π ω′ ⇒ ω �CP ω′ by assumption, adding Ceteris Paribus constraints corresponding
to worsening flips to �π will not produce by transitivity any preference relation not in �CP .

It is clear that, beside Ceteris Paribus constraints, other constraints could be added to a π-
pref net, that cannot be expressed by a CP-net, and that account for different types of preference
information. This fact suggests that π-pref nets with constraints have a better expressive power
and are more flexible than CP-nets (known as a powerful qualitative model), and provide a general
class of qualitative graphical models where the Ceteris Paribus ordering could be further refined
without going numerical (i.e. unlike UCP-nets). It is clear therefore that the constraints added
to refine this order should be consistent with Ceteris Paribus. Note, however, a π-pref net may
represent distinct orderings when adding other constraints where similarly the consistency of these
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constraints must, each time, be verified. Finally, π-pref nets are sometimes able to represent
preference orderings when CP-nets fail to do it, as shown by the example below [Ben Amor et al.,
2014].

Example 4.12. Let us consider two binary variables A and B standing respectively for “va-
cations” and “good weather”. Suppose that we have the following preference ordering: ab �
¬a¬b � a¬b � ¬ab. We observe that this complete preorder cannot be represented by a
CP-net. In fact, given two variables we can define two possible structures: either A depends
on B or conversely, both of them are unable to capture this order in the CP-net setting. This
is due to the fact that in both structures we have a reversal of the Ceteris Paribus preferen-
ces. However, such preferences can be represented by a joint possibility distribution such that:
π(ab) > π(¬a¬b) > π(a¬b) > π(¬ab). Thus, we have > : a � ¬a, a : b � ¬b and ¬a : ¬b � b.
It corresponds to a network with two nodes with their corresponding conditional possibility distri-
butions: π(a) = 1, π(¬a) = α, π(b|a) = 1, π(b|¬a) = γ, π(¬b|a) = β and π(¬b|¬a) = 1. This
yields π(ab) = 1 > π(¬a¬b) = α > π(a¬b) = β > π(¬ab) = αγ taking α > β and β = γ.

Some extensions of CP-nets can be considered as akin to π-pref nets. TCP-nets [Brafman and
Domshlak, 2002] also add priority constraints between variable nodes, that we can render in π-pref
nets by inequalities between symbolic weights. Utility-enhanced CP-nets (UCP-nets) [Boutilier
et al., 2001] add additive utility functions to CP-nets in order to encode total orderings consistent
with the Ceteris Paribus assumption. To do so, linear constraints are added on utility values that
are somewhat similar to constraints (4.4). They express that for any variable, given an instantiation
of its parents, the utility gain in choosing the good value rather than the bad one in this context,
should be more important than the maximum value of the sum of the possible utility loss for its
children over all possible instantiations of the other related variables.

4.5 π-pref nets vs CP-theories

As mentioned in Chapter 1, CP-theories [Wilson, 2004, Wilson, 2011] is a set of formulas of the
form u : a � a′[W ] where u is a an instantiation of a subset of variables U ⊂ V , a and a′

are different values of some variable A (not necessarily Boolean). From each formula of that
form, one can deduce a preference relation between two sets of configurations. More precisely,
each formula φ corresponds to some pairs of outcomes (ωi, ωj) such that each pair is intended
to represent a preference for ωi over ωj . Informally, φ represents that given u and any z (i.e.
Z = V \ ({A} ∪ U ∪ W )), a is preferred to a′, irrespective of the instantiations of W . Each
preference formula allow locally partially ordered preferences. Indeed, it is not assumed to have
a total order between the values of each variables. Moreover, more preference statement could be
added downstream preference elicitation.

Clearly, CP-theories do not have any graphical structure but such model generalizes CP-nets
and TCP-nets. Indeed, it represents preference statements that cannot be expressed by CP-nets



CHAPTER 4. π-PREF NETS VS OTHER PREFERENCE MODELS 85

and TCP-nets. More precisely, a preference formula u : a � a′[W ] such that W = ∅ is CP-
net preference statement, while if |W | = 1 then the formula represent an importance relation
of A over W . Besides CP-theories are able to represent lexicographic orders when CP-nets and
TCP-nets are proved to be unable to represent them [Wilson, 2011]. However, determining the
consistency of CP-theories is a hard process. Testing consistency is based on search trees [Wilson,
2011] which consists on creating an upper approximation of ordering consistent with the (partial)
order of CP-theories. the search trees used for this aim are strongly related to P-trees detailed
in Chapter 1. Therefore, one can assume that these two preferential models are linked such that,
built from a same preference specification, one can construct a total ordering by P-tree that refines
the partial ordering of CP-theories provided that the CP-theories is consistent. To find the P-tree
satisfying a particular CP-theories the following conditions should hold:

• For any preference formula φ : u : a � ¬a[W ] in the CP-theories such that DA = {a,¬a}
and any configuration ω such that ω |= u, each variable of U appears once before A on the
path from the root to the implicit leaf ω and A appears necessarily before variables in W .

• For any node and any preference formula φ local preferences are consistent.

Note that these conditions are the same proposed for constructing the search trees [Wilson, 2004]

Example 4.13. Let us consider a CP-theories on three variables V = {A,B,C}. The preference
formulas are: a � ¬a[B,C], a : c � ¬c[B], a : b � ¬b[∅], ¬a : b � ¬b[C], ¬a : ¬c � c[∅].
The corresponding P-tree is represented in Figure 4.7. Let us consider in particular the preference
formula: a : c � ¬c[B]. For any configuration ω such that ω |= a we can check that node A
precedes C which precedes B. This is confirmed for all the other formulas. Besides, we can check
that local preferences are consistent. The total ordering induced by P-tree is: abc � a¬bc �
ab¬c � a¬b¬c � ¬ab¬c � ¬abc � ¬a¬b¬c � ¬a¬bc

At the best of our knowledge, the problem of dominance for CP-theories is not yet addressed.

π-pref nets can also be compared with CP-theories. The latter interpret conditional preference
statements assuming they hold irrespectively of the values of other variables. It means that any
configuration ω such that ωA = a+ and ωP(A) = p(A) is preferred to any configuration ω such
that ωA = a− and ωP(A) = p(A). In terms of possibility functions, it reads ∆(p(A) ∧ a+) >
Π(p(A) ∧ a−), where ∆(ϕ) = minω|=ϕ π(ω). In [Wilson, 2004] are studied hybrid nets where
some variables are handled Ceteris Paribus, while the preference holds irrespectively of other va-
riables. In π-pref nets preference statements are interpreted by π(a+|p(A)) > π(a−|p(A)) which
is provably equivalent to Π(p(A) ∧ a+) > Π(p(A) ∧ a−), i.e. comparing best configurations.
It is clear that if ω �CP ω′ holds, then ω � ω′ holds in a CP-theory, where conditional pre-
ference holds irrespectively of other variables, because the CP-theory generates more preference
constraints between configurations, including the ones induced by the Ceteris Paribus assumption.
Constraints induced by CP theories can thus be captured in π-pref nets by adding more constraints
between products of symbolic weights.
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A

BC

BB C C

a ≻ ¬a

c ≻ ¬c b ≻ ¬b 

b≻ ¬b b≻ ¬b ¬ c≻ c ¬c ≻ c

abc ab ¬c a ¬b ¬c ¬ab ¬c ¬abc ¬a ¬b ¬c ¬a ¬bca ¬bc

Figure 4.7: P-tree corresponding to the CP-theories of Example 4.13

4.6 π-Pref nets vs other models: General discussion

Figure 4.8 presents a classification of the preferential graphical models surveyed. Roughly spea-
king, there are two classes of graphical models: qualitative and quantitative models. However, one
can distinguish models that are halfway namely OCF-networks and π-pref nets.

A summary of the main differences and similarities between models is given in Table 4.3.
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CP-net

TCP-net

P-tree
Marginal 
utility net

PCP-net

UCP-net

GAI-net

πPref-
net

Qualitative graphical models Quantitative graphical models

CUI-net

OCF-net

Logicl models

Possibilistic logicCP-theories Penalty logic

Figure 4.8: Classification of preferential graphical models (Continuous arrows point to
extensions of CP-nets (including Probabilistic CP-nets (PCP-nets) and Multiple agents
CP-nets (mCP-nets) not covered in this chapter since they enlarge the representation to
other features, namely uncertainty or multiple agents. These models will be discussed in
Chapter 5) and dashed lines corresponding to possible relations are discussed throughout
the chapter)
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These models can further be compared in terms of the underlying independence relation (and ex-
pressiveness), and the ease of elicitation. Regarding the first issue, we distinguish three situations:

1. Ceteris Paribus independence is shared by CP-nets, and its extensions. Models based on it
are unable to express all possible orderings between configurations. UCP-nets can represent
some total orderings, at the expense of constraints added on utilities;

2. Generalized additive independence (GAI) used in GAI-nets, is a weaker form of indepen-
dence leading to an improved expressive power;

3. Markov independence is used by π-pref nets, OCF-nets and marginal utility nets. In contrast
with GAI, this kind of independence does not allow mutual dependencies between variables
due to the acyclicity constraint.

Ceteris Paribus and Markov independence lead to different completion principles. With Ceteris
Paribus, pairs of compared partial configurations are completed with the same instantiation of the
rest of the variables, while with Markov-based nets, first we choose the best instantiation for all
dependent variables, and next, instantiate the other variables in the same manner in all possible
ways.

Regarding elicitation, although quantitative models are convenient for providing total orde-
rings, they are not easy to assess (any difference in values may lead to different orderings). In
contrast, eliciting qualitative models is easier since it suffices to provide contextual preference or-
dering. π-pref nets enable a progressive elicitation since we may add constraints between symbolic
weights, or completely instantiate them.

Thanks to some resemblances between these models many transformations can be considered
and are depicted by dashed lines in Figure 4.8. UCP-nets are a restriction of GAI-nets and a
generalization of CP-nets. Indeed, a UCP-net structure can be transformed into a junction tree,
using methods like [Huang and Darwiche, 1996], where to each clique we associate the sum of the
local utilities of the variables belonging to it. However, due to the acyclic restriction of UCP-nets
and the necessary commitment with Ceteris Paribus, not any GAl-net can be represented by a
UCP-net.

The construction of junction tree from any DAG structure can be performed via the following
three steps [Huang and Darwiche, 1996]:

• Moralization of the initial DAG G: corresponding to creating an undirected graph UG from
G by dropping the directions of the arcs. Then, creatingMG from UG by connecting the
parent set of each nodes (by adding edges to UG).

• Triangulation of the moral graph: is defined by finding in each time the node with smallest
set of adjacent nodes, adding edges and then constructing the clusters. Note that it is pos-
sible to have different triangulations of a moral graph. Finding the optimal triangulation is
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BC
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(a) Possibilistic graph (b) Moralized graph (c) Junction tree

Figure 4.9: Example of transformation from a DAG to a junction tree

not obvious and needs greedy polynomial heuristic [Kjærulff, 1990]. The task of finding an
optimal triangulation is stated as an NP-complete problem [Cooper, 1990].

• Building a junction tree from the triangulated moral graph comes down to connect the
clusters created in the previous task with separators. These separators contain the variables
in common between two adjacent clusters.

Note that steps 2 and 3 are non-deterministic which explains the fact that different junction trees
can be built from the same DAG. These steps are illustrated by the following example.

Example 4.14. Let us consider the directed acyclic graph of Figure 4.9(a) representing the graphi-
cal component of an UCP-nets. The construction of the moral graph of Figure 4.9(b) corresponds
to dropping the direction, then relating the nodes B and C by an edge since they are parents of D.
Triangulation yields two cliques ABC and BCD and one seperator BC represented by Figure
4.9(c). The utility table associated to ABC is computed as the sum of utilities in nodes A, B and
C. More precisely, for any instantiations a, b and c of nodes A, B and C respectively, we have
u(abc) = u(a) + u(b|a) + u(c|a).

Besides, when handled symbolically, π-pref nets and marginal utility nets lead to the same or-
derings. Indeed comparing configuration vectors using product or addition makes no difference on
symbolic weights. Transformation from π-pref nets to GAI-nets might also be considered since,
as for Bayesian nets, possibilistic nets can be translated into junction trees. However, an important
difference between these two settings lies in the meaning of values. Both utilities and possibility
degrees express levels of satisfaction, but the latter are bounded. In GAI-nets, what really mat-
ters is the difference between utilities. Thus, representing the same information in π-pref nets is
not possible; one may only try to induce the same qualitative order between the configurations.
The opposite transformation requires two steps. First, translating utilities to possibility degrees.
Second, moving from a junction tree to a possibilistic network. Such a procedure has never been
studied in the literature.
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As can be seen, the advantages of the different models are a matter of trade-off. One may
prefer one or another depending on the level of information available, the expressiveness needed
for the situation at hand, and the time available for eliciting preferences. From a computational
viewpoint, UCP-nets, instantiated π-pref nets and OCF-nets are the less demanding. On the other
hand, elicitation and construction might be onerous for UCP-nets, GAI-nets and TCP-nets, while
CP-nets and π-pref nets (with symbolic weights) are easy to elicit. Getting a total order may
also be considered as important. Thus, one may prefer models such as GAI-nets, OCF-nets and
instantiated π-pref nets in that respect.

4.7 Conclusion

In this chapter, we have explored the expressive power of π-pref nets and compared them to
several preferential models. First, we have proposed to adapt the method proposed in [Benferhat
et al., 2002a] for the transformation from possibilistic networks to logic bases in the symbolic
case. Then, we have proved that the CP-net orderings cannot contradict those of the π-pref nets
and we found suitable additional constraints to refine π-pref net orderings in order to capture
Ceteris Paribus constraints of CP-nets. CP-nets would then be exactly captured by π-pref nets
with constraints. This indicates that CP-nets potentially represent a subclass of π-pref nets with
constraints. Besides, we have discussed possible transformations between preferential models
namely, π-pref nets and OCF-nets and some others.

In many situations, one may need to aggregate users preferences in order to have a syntactic
view of the preferences of a group of agents. Next chapter discusses an extension of π-pref nets
to multiple agents preferences where each subset of agents is defined by particular profile.
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5.1 Introduction

Only a few graphical models have been proposed for modelling multiple agent preferences, they
are based on different extensions of Conditional Preference networks (CP-nets) [Rossi et al., 2004,
Bigot et al., 2013], or Generalized Additive Independence networks (GAI-nets) [Dubus et al.,
2009]. Besides, a multiple agent logic [Belhadi et al., 2013], where formulas are pairs of the form
(p, P ) made of a proposition p and a subset of agents P , has been advocated for handling beliefs.
In fact, (p, P ) means ‘(at least) all agents in P believe that p is true’. But (p, P ) may also have a
preference reading (‘(at least) all agents in P want p to be true’).

The strong similarity of multiple agent logic with possibilistic logic and the existence of trans-
formations between possibilistic logic and possibilistic networks [Benferhat et al., 2002a] suggest

92
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to develop a graphical counterpart to multiple agent logic. When modelling preferences, multiple
agent networks can be seen as a generalization of individual π-pref nets (when possibility degrees
are binary valued). In the following we investigate the interest of multiple agent networks (and of
their graded extension) for handling preferences.

This chapter is organized as follows. Section 5.2 defines conditioning in the case of Boolean
possibilities. Section 5.3 introduces multiple agent logic, and its graphical counterpart in a prefe-
rence perspective. Section 5.4 presents the main steps for transforming one format into another.
Section 5.5 discusses queries evaluation for multiple agent networks. Section 5.6 presents an ex-
tension with priority levels of multiple agent logic and network. Section 5.7 reviews some related
work.

5.2 Conditioning and possibilistic networks: Boolean case

Conditioning is a crucial notion when dealing with possibilistic networks. Here we consider the
elementary situation of a single agent and of two-valued possibility distributions. Possibilistic
networks [Benferhat et al., 2002a], when valued on [0, 1], are usually defined for non-dogmatic
possibility distributions, which means that the distribution is never equal to 0. However, in the
two-valued case, the only non-dogmatic possibility distribution is the vacuous one with value 1
for all states. So we must use a definition of conditioning that makes sense for dogmatic possibility
distributions.

Conditioning in this case is defined in the following way: having Ω the universe of discourse
(set of all configurations). Then the configurations known as possible are restricted by a subset
E 6= ∅, E ⊂ Ω, and the considered possibility measure Π is such that Π(T ) = 1 if E ∩ T 6= ∅
and Π(T ) = 0 otherwise (the possibility distribution being the characteristic function of E).
Conditioning obeys the equation:

Π(T ∩ S) = Π(T |S) ∧Π(S) (5.1)

where ∧ is a Boolean conjunction. Then we define Π(·|S) is the possibility measure associated
with the subset ES = S ∩ E if S 6= ∅ and ES = S if S ∩ E = ∅. ES is the result of revising E
by S, the minimally specific solution of the above equation under the success postulate ES ⊆ S.
Thus:

Π(T |S) = 1 if

{
T ∩ ES = T ∩ S ∩ E 6= ∅ (Π(T ∩ S) = Π(S) = 1)
T ∩ ES = T ∩ S 6= ∅, S ∩ E = ∅ (Π(T ∩ S) = Π(S) = 0)

= 0
{

otherwise (Π(T ∩ S) = 0,Π(S) = 1)

A Boolean possibility distribution can be decomposed into a combination of conditional pos-
sibility distributions. This can be done by applying repeatedly the definition of conditioning.
Indeed, taking an arbitrarily order of variables in set V = {A1, . . . , AN}: π(A1, . . . , AN ) =
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ABC π(C|B) π(B|A) π(A) π(ABC)
¬a¬b¬c 1 1 0 0
¬a¬bc 1 1 0 0
¬ab¬c 1 1 0 0
¬abc 1 1 0 0
a¬b¬c 1 0 1 0
a¬bc 1 0 1 0
ab¬c 1 1 1 1
abc 1 1 1 1

Table 5.1: Recovering the original knowledge from conditional distributions of Example
5.1

π(A1|A2, . . . , AN ) ∧ · · · ∧ π(AN ). This decomposition can be simplified when assuming some
independence between variables. Graphically, it can be represented by a possibilistic network
where each node represents a variable, edges represent the dependencies and conditional distribu-
tions define the associated tables.

Example 5.1. Consider three Boolean variables A,B,C and the possibility distribution defined
by the two configurations of a ∧ b. Let us construct a possibilistic network G1 associated to the
ordering (A,B,C) corresponding to this possibility distribution:

• We compute π(C|A,B): π(c|ab) = π(¬c|ab) = π(c|¬ab) = π(¬c|¬ab) = π(c|a¬c) =
π(¬c|a¬b) = π(c|¬a¬b) = π(¬c|¬a¬b) = 1.

• We check π(c|b) = π(¬c|b) = π(c|¬b) = π(¬c|¬b) = 1, so π(C|B,C) = π(C|B).

• We compute π(B|A): π(b|a) = 1, π(¬b|c) = 0, π(b|¬a) = π(¬b|¬a) = 1, and π(a) =
1, π(¬a) = 0.

It corresponds to a a possibilistic network A→ B → C, where C is independent from A given B.

The original knowledge ab can be recovered by the chain rule as follows (Table 5.1):

Let us consider another possibilistic network G2 such that A → B → C with three binary
variables, with their corresponding conditional possibility distributions: π(a) = 1, π(¬a) = 0,
and

π(C|B) b ¬b
c 1 0
¬c 1 1

π(B|A) a ¬a
b 0 0
¬b 1 1
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We can check that π(c|b) = 1 while π(bc) = π(b) = 1 and π(b|¬a) = 1 while π(¬ab) = π(¬a) =
0. This illustrates the two first cases above in the definition of Π(T |S).

Let us reconstruct the possibility distribution using the chain rule (Equation 3.1):

ABC π(C|B) π(B|A) π(A) π(ABC)
¬a¬b¬c 1 0 0 0
¬a¬bc 0 0 0 0
¬ab¬c 0 1 0 0
¬abc 1 1 0 0
a¬b¬c 1 0 1 0
a¬bc 0 0 1 0
ab¬c 1 1 1 1
abc 1 1 1 1

We can make several observations from these examples

• The two networks G1 and G2 are different but correspond to the same possibility distribution.

• The first network G1 has conditional distributions less specific than the second one. This is
not surprising as the conditioning rule is based on minimum specificity.

• In the second network G2, there is actually no link from A to B since π(B|A) does not
depend on A. So having fixed the ordering of variable, not only the conditional tables are
not unique, but even the network topology is not unique. So we have that π(A,B,C) =
min(π(C|B), π(B), π(A)), with π(b) = 1, π(¬b) = 0.

5.3 Multiple agent representations

Multiple agent logic has been discussed in details in [Belhadi et al., 2013]. Formulas in this logic
are pairs of the form (p, P ), made of a proposition p and a subset of agents P . In this section,
we explain the use of this logic for modelling preferences and present its graphical counterpart.
All will denote the set of all the agents and capital letters, e.g., Pi, · · · denote subsets of All. Let
lowercases e.g. p, q, pi denote propositional formulas of a finite language.

5.3.1 Multiple agent logic

As detailed in Section 4.2.1.2, a possibilistic logic formula [Dubois and Prade, 2004] of the form
(p, α) is understood as N(p) ≥ α (N is a necessity degree), where the higher α, the more impera-
tive p. Multiple agent logic shares formal similarity with possibilistic logic in terms of inference
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rules, axioms, possibilistic measures and possibility distribution [Belhadi et al., 2013]. However,
a multiple agent formula (p, P ) is understood at the semantic level as a constraint of the form
N(p) ⊇ P where N is a set-valued mapping that returns the set of agents for whom satisfying
p is imperative. Therefore, the formula (p, P ) means that at least all the agents in P find p im-
perative. Set-valued possibility measure and necessity measure are related via duality. Indeed,
Π(p) = N(¬p), which corresponds to the maximal set of agents for whom the falsity of p is not
imperative, which could be expressed as “the truth of p is acceptable”. Π(p) ∩Π(¬p) represents
the set of agents that are indifferent to the truth value of p, and N(p) ∩N(¬p) represents a set
of inconsistent agents, which may be empty or not. It can be checked that the set of agents who
think that the truth of p is imperative is a subset of the set of agents who think that its falsity is
not imperative, namely, N(p) ⊆ Π(p) provided there is no inconsistent agent. The semantics of
such a logic is defined by a so-called ma-distribution from a universe of discourse Ω to subsets of
agents, formally, π : Ω→ 2All. Subsets are partially ordered, which contrasts with a possibilistic
logic distribution that maps to a totally ordered scale. A multiple agent formula (pi, Pi) leads to
the following semantic representation by the ma-distribution

π(pi,Pi)(ω) =
{
All if ω |= pi
Pi (= All \Ai) otherwise.

(5.2)

This expression indicates that agents not in Pi are indifferent to pi, but agents in Pi find ¬pi
unacceptable More generally an ma-distribution should be interpreted as follows: π(ω) is the set
of all agents that do not find ω unacceptable

A ma-logic base Γ = {(pi, Pi)|i= 1,m} is associated to an ma-distribution, s.t. πΓ(ω) is the
intersection of sets of agents Pi that find the configuration ω, for which all formulas pi are false,
acceptable.

πΓ(ω) =
{
All if ∀(pi, Pi) ∈ Γ, ω |= pi⋂
{Pi : (pi, Pi) ∈ Γ, ω |= ¬pi} otherwise.

(5.3)

Two types of normalization exist for π:

• The ma-normalization where ∃ ω ∈ Ω s.t. π(ω) = All. Thus, all agents are altogether con-
sistent and have at least one common not unacceptable configuration. This normalization
entails the following one.

• The i-normalization where
⋃
{π(ω), ω ∈ Ω} = All. This means that each agent is con-

sistent individually by having at least one configuration that is not rejected. Yet, there may
exist some contradictions between subgroups of agents, for instance Γ = {(p, P ), (¬p, P )}.

Example 5.2. Let us consider preferences of subsets of agents about drinks and their accompa-
niments. We consider that the agent population is described by two characteristics namely, being
a woman (W ) or a man (M) and being young (Y ) or old (O). The variables are Drink =
{Tea(t), Coffee(¬t)}, Sugar = {Y es(s), No(¬s)}, Cake = {Y es(c), No(¬c)}.
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Let us consider the following ma-base: Γ = {(¬t,M), (t,M ∩ Y ), (¬s,O), (s, Y )}. We can
check that the ma-normalization is not verified. This is becauseN(t) ⊇M andN(¬t) ⊇M ∩ Y ,
henceN(t) ∩N(¬t) ⊇M ∩ Y ∩M = M ∩O. The old men demand tea and not tea.

5.3.2 Graphical representation of multiple agent preferences

Possibilistic networks are the graphical counterpart of possibilistic logic and one may go from one
format to another while preserving semantics [Benferhat et al., 2002a]. Likewise, given the close
similarity between possibilistic and multiple agent logic, we propose a graphical reading of the
latter. First, we introduce the multiple agent conditioning rule:

π(p ∧ q) = π(p|q) ∩ π(q) (5.4)

This means that the set of all agents for whom the truth of p ∧ q is not unacceptable is equal to
the intersection between the set of all agents for whom the truth of q is not unacceptable and the
set of all agents for whom the truth of p is not unacceptable when q is true. It generalizes the
conditioning of Boolean possibilities to multiple agents. As in standard possibilistic networks, the
decomposition of a possibility distribution consists in expressing a joint possibility distribution as
a combination of conditional possibility distributions, a process that in the two-valued possibility
case, does not yield a unique result, even fixing the ordering of the variables, as shown above.

Let E be a subset of A × Ω representing an ma-distribution π, and let E(a) the set of confi-
gurations that agent a ∈ A does not reject. The result of conditioning E by a set of configurations
B will be again defined as the minimally specific revision of E(a) by B that agrees with the defi-
nition of conditioning (5.4), for each agent a ∈ A, namely EB(a) = E(a) ∩B if this intersection
is not empty and B otherwise. Note that the result differs from E ∩ (A×B) even if this set is not
empty. If B contains the set of models [q] of q, then the characteristic function of EB is denoted
by π(·|q). The solution to equation (5.4) is then as follows:

π(p|q) =
{
All if π(p ∧ q) = π(q)
π(p ∧ q) otherwise.

(5.5)

We can follow the same procedure for the multiple agent model. Let V = {A1, . . . , AN}
be a set of variables, each variable Ai has a value domain DAi . ai denotes any value of Ai. In
coherence with Equation 5.4, we can use the chain rule:

π(A1, ..., AN ) = π(A1|A2, ..., AN ) ∩ .. ∩ π(AN−1|AN ) (5.6)

to decompose a joint ma-distribution into a conjunction of conditional possibility distributions.
Now, we introduce a new graphical model for representing multiple agent preferences, called
ma-net for short. This model shares similar graphical component and independence relations as
possibilistic networks [Benferhat et al., 2002a]. Formally,



CHAPTER 5. GRAPHICAL REPRESENTATIONS OF MULTIPLE AGENT
PREFERENCES 98

π(t) π(¬t)
W M ∩ Y

π(s) π(¬s)
Y O

π(.|.) ts t¬s ¬ts ¬t¬s
c M ∩ Y O M ∩ Y W
¬c M ∩O W W M ∩O

Table 5.2: Conditional distributions corresponding to the network of Figure 5.1

Definition 5.1 (ma-net). A multiple agent network G over a set of variables V consists of two
components:

• Graphical component composed of a directed acyclic graph (DAG).

• Numerical component associating to each nodeAi a conditional multiple agent distribution
for each the context p(Ai) of its parents P(Ai).

Example 5.3. Using the same variables and sets of agents as in Example 5.2, the network of
Figure 5.1 and its associated conditional distributions in Table 5.2 represent conditional prefe-
rences of agents. Using the chain rule (Equation 5.6), we have the following ma-distribution:
π(tsc) = ∅, π(ts¬c) = W ∩ Y ∩ O = ∅, π(t¬sc) = W ∩ O, π(t¬s¬c) = W ∩ O,
π(¬tsc) = M ∩ Y , π(¬ts¬c) = M ∩ Y ∩ W = ∅, π(¬t¬sc) = M ∩ Y ∩ O ∩ W = ∅,
π(¬t¬s¬c) = M ∩ Y ∩ O ∩M ∩ O = ∅. In ma-logic, we can encode it by the following base:
{(t ∧ ¬s) ∨ (¬t ∧ s ∧ c), All), (¬t ∨ s,M ∪ Y ), (t ∨ ¬s ∨ ¬c,W ∪O)}

Drink SugarCake

Figure 5.1: DAG of Example 5.3

Let us reconstruct the ma-conditional distributions π(C|T, S) and the marginals π(T ),π(S)
using the conditioning rule:

• π(tsc) = π(ts¬c) = π(ts) = ∅ so π(c|ts) = π(¬c|ts) = All.

• π(t¬sc) = π(t¬s¬c) = π(t¬s) = W ∩O so π(c|t¬s) = π(¬c|t¬s) = All

• π(¬tsc) = π(¬ts) = M ∩ Y so π(c|¬ts) = All. But π(¬ts¬c) = ∅,π(¬ts) = M ∩ Y
so π(¬c|¬ts) = ∅.

• π(¬t¬sc) = π(¬t¬s¬c) = π(¬t¬s) = ∅ so π(c|¬t¬s) = π(¬c|¬t¬s) = All.

• It can be checked that π(s) = M ∩Y , π(¬s) = W ∩O, π(t) = W ∩O, π(¬t) = M ∩Y .
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π(t) π(¬t)
W ∩O M ∩ Y

π(s) π(¬s)
M ∩ Y W ∩O

π(.|.) ts t¬s ¬ts ¬t¬s
c All All All All
¬c All All ∅ All

Table 5.3: Recovered conditional distributions corresponding the network of Figure 5.1

TSC π(C|TS) π(T ) π(S) π(TSC)
111 All W ∩O M ∩ Y ∅
110 All W ∩O M ∩ Y ∅
101 All W ∩O W ∩O W ∩O
100 All W ∩O W ∩O W ∩O
011 All M ∩ Y M ∩ Y M ∩ Y
010 ∅ M ∩ Y M ∩ Y ∅
001 All M ∩ Y W ∩O ∅
000 All M ∩ Y W ∩O ∅

Table 5.4: New conditional distributions yielding the same possibility distribution

This network has different conditional tables from the ones of Table 5.2, but it yields again the
same possibility distribution. We can check that the chain rule applied to above network gives
back the same ma-distribution (Table 5.4) as the one of Table 5.2.

5.4 Bridging logical and graphical multiple agent repre-
sentations

As proposed in Section 4.2.1 for π-pref nets, transformations between possibilistic graphical and
logical representations [Benferhat et al., 2002a] can be also adapted to multiple agent representa-
tions.

5.4.1 Logical encoding of a multiple agent network

The main idea of the logical encoding of ma-nets consists in considering the ma-net G as a com-
bination of local multiple agent logic bases. Each node Ai ∈ V is associated to a logic base as
follows:

ΓAi = {(¬ai ∨ ¬p(Ai), P ) | π(ai|p(Ai))=P in the tables of G and P 6= All}
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where ai is an instantiation of Ai and p(Ai) an instantiation of P(Ai). Each (conditional) pos-
sibility is viewed as a necessity formula expressing the material counterpart of the condition.
Indeed, for a single agent N(¬p|q) = 1 − Π(p|q) = 1 − Π(p ∧ q) = N(¬q ∨ ¬p) = 1 pro-
vided that Π(p|q) = 0. So, in the multiagent case we can replace Π(ai|p(Ai)) by the clause
¬ai ∨ ¬p(Ai) when P 6= All. When considered separately, we can see that the conditional possi-
bilities can be recovered from the local possibility distribution such that Π(ai) = ⋃

ω|=ai

π(ω) since

from Π(ai ∧ p(Ai)) = P and Π(p(Ai)) = All we get π(ai|p(Ai)) = P (by solving Equation
5.3).

A multiple agent network is rarely normalized due to conflicting preferences (which contrasts
with standard possibilistic networks), thus each conditional possibility distribution is represented
by more that one formula. Combined together, it is clear that the resulting logic base is inconsis-
tent with a degree equal to the intersection of all necessity values associated to formulas. Then,
the multiple agent base associated with the ma-net G is ΓG = ΓA1

⋃
· · ·
⋃ΓAN

, ∀Ai ∈ V . The
joint possibility distribution computed from the multiple agent network G by the chain rule is the
intersection of the possibility distributions associated to each node. The possibility distribution as-
sociated to ΓG is also an intersection of distributions associated to the formula(s) corresponding to
each node. This explains why the two representations are represented by the same ma-distribution.
This is the counterpart of the fact that the union of possibilistic logic bases corresponds to the min-
based aggregation of their distributions [Benferhat et al., 1998].

Example 5.4. Let us continue Example 5.3; its ma-net can be rewritten as the ma-logic base
of Example 5.2, both being semantically associated with the same ma-distribution. The ma-net
with conditional tables in Table 5.3 can be expressed by the following ma-base: {(t ∨ ¬s ∨
c, All), (¬t,M ∨ Y ), (t,W ∨O), (¬s,W ∨O), (s,M ∨ Y )}.

5.4.2 Transformation of a multiple agent logic into a graphical struc-
ture

This converse transformation is more complex. Indeed, the independencies represented by the
network are not explicit in logic bases. The transformation consists of two steps: (i) Constructing
the network, thus detecting the dependencies, (ii) Computing the conditional possibilities. First,
the logic base should be put into a special form, where tautologies are removed (by removing sub-
sumed formulas) each formula should represent a disjunction of a variable value and an instance
of all it parents. An algorithm performing this type of transformation is given in [Benferhat et al.,
2002a]. To adapt this algorithm the following definitions are useful:

Definition 5.2. Let (p, P ) be a formula in Γ. Then (p, P ) is said to be subsumed by Γ if Γ⊇P ` p,
where Γ⊇P is composed of classical formulas that appear in Γ in association with sets of agents
that include P or are equal to P .

Removing subsumed formulas does not change the possibility distribution. This means that
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several syntactically different multiple agent logic bases may have the same possibility distribution
as their semantic counterpart. For instance, (x ∨ y,A ∩ B) is subsumed by (x,B), therefore
Γ = {(x ∨ y,A ∩B), (x,B)} = {(x,B)}.

Definition 5.3. Let Γ be a multiple agent logic base in a clausal form, where all clauses involve
an instance of a variable A. Let Z be the set of other variables appearing in the clauses of Γ.
A clausal completion of Γ with respect to variable A, denoted by E(Γ), is the set of clauses of
the form (a ∨ ¬z, P ) where a is an instance of A, z is an instance of all variables in Z , and
P = ⋃

{Pi : (a ∨ pi, Pi) ∈ Γ, z |= ¬pi}, with
⋃(∅) = ∅.

Proposition 5.1. The two bases Γ and E(Γ) are equivalent.

Proof. Variables involved in Γ and E(Γ) are node A and its parents P(A). Thus, we restrict to
configurations built on these variables without any loss of generality. Let a be an instance of A,
p(A) an instance of P(A). We have,

πE(Γ)(a ∧ p(A)) =
{
P if (¬a ∨ ¬p(A), P ) ∈ E(Γ)
All otherwise

⇔ πE(Γ)(a ∧ p(A)) =
{
All \

⋃
{Pi : (¬a ∨ pi, Pi) ∈ Γ, pi |= ¬p(A)}

All otherwise

⇔ πE(Γ)(a ∧ p(A)) =
{
All \

⋃
{Pi : (¬a ∨ pi, Pi) ∈ Γ, p(A) |= ¬pi}

All otherwise

⇔ πE(Γ)(a ∧ p(A)) =
{
All \

⋃
{Pi : (¬a ∨ pi, Pi) ∈ Γ, a ∧ p(A) |= a ∧ ¬pi}

All otherwise

⇔ πE(Γ)(a ∧ p(A)) = πΓ(a ∧ p(A))

The notions of subsumption and clausal completion are instrumental in the procedure (similar
to the one in [Benferhat et al., 2002a]) for finding the dependence graph from the multiple agent
logic base. More precisely, for each Ai in V we execute these steps:

• Determination of the local base for Ai: Let (ai ∨ p, P ) be a clause of Γ s.t. ai is an instance
of Ai, and p is only built from Ai+1, . . . AN . If (ai ∨ p, P ) is subsumed, then remove it
from Γ. If Γ � (p, P ), then replace (ai ∨ p, P ) by (p, P ). Let Ki be the set of clauses
(ai ∨ p, P ) in Γ s.t. p is only built from Ai+1, . . . , AN
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• The parents of the variable Ai are P(Ai) = {Aj : ∃c ∈ Ki s.t. c contains an
instance of Aj}

• Compute the clausal completion of Ki: Replace in Γ, Ki by its clausal completion E(Ki)

• Remove incoherent data: For each (ai∨p, P ) of Γ (where p is built from Ai+1, . . . , AN s.t.
Γ � (p, P )) replace (ai ∨ p, P ) by (p, P ).

• Produce Γi: Let Γi be the set of clauses (ai∨p, P ) in Γ s.t. p is only built fromAi+1, . . . , AN .

At the end of the procedure, each nodeAi of the constructed graph is associated to a local multiple
agent base ΓAi = {(ai∨p(Ai))|ai ∈ DAi and p(Ai) an instatiation of P(Ai)} containing only an
instantiation of the node and its parents. These local bases are useful to compute the conditional
possibilities such that:

πP (ai|p(Ai)) =
{
P if (¬ai ∨ ¬p(Ai), P ) ∈ Γ
All otherwise.

(5.7)

For instance if Γ = {(x ∨ y,A), (x ∨ t, B)}, this base is equivalent to {(x ∨ y ∨ t, A ∪ B), (x ∨
¬y∨ t, B), (x∨y∨¬t, A)}, so, π(¬x|¬y∧¬t) = A∩B, π(¬x|¬y∧ t) = A, π(¬x|y∧¬t) = B,
π(¬x|y ∧ t) = All.

5.5 Specializing representations and queries

Before handling queries, we discuss two types of specializations performed equivalently on ma-
nets and ma-logic bases, w.r.t. a subset of agents.

5.5.1 Sections and restrictions of networks and logic bases

In some cases, one may need to display preferences that are only related to a subset of agents. we
propose two possible queries.

First, one may ask about common preferences expressed by a subset of agents P , i.e. preferen-
ces approved by each element in P . The network obtained by such a section has the same structure
(with possible deletion of nodes or edges) as the original ma-net and its conditional possibilities
are computed such that: π∀P (ai|p(Ai)) = A if P ⊆π(ai|p(Ai)) and π∀P (ai|p(Ai)) = ∅ otherwise.
Its logical counterpart ΓP is a propositional logic base where only formulas weighted by Pi, such
that P ⊆ Pi, are retained. This network can be represented by a Boolean one where for each
agent in P such that π∀P (ai|p(Ai)) = P , we have π(ai|p(Ai)) = 1 and 0 otherwise (as in Section
5.2). Its joint possibility distribution has two layers namely, configurations that are preferred and
those totally rejected. the section ΓP is inconsistent, then, all the configurations have a possibility
degree equal to 0.
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Second, one may focus on all the preferences expressed by each subset of agents in P . Thus,
we forget about preferences of agents out of P . In this kind of restriction, there may exist two
agents in P that may express two opposite preferences. The corresponding network can be con-
structed as: π↓P (ai|p(Ai)) =π(ai|p(Ai)) ∩ P . Its logical reading corresponds to a multiple agent
logic base containing multiple agent formulas of the form (¬ai∨¬p(Ai), Pi∩P ) s.t. Pi∩P 6= ∅.

Example 5.5. In the previous example 5.2, the logic base corresponding to the common preferen-
ces of the subset W ∩O is ΓW∩O = {t,¬s}. However, the restriction of the multiple agents base
to the subset W ∩O correspond to Γ↓W∩O = {(t,W ∩O), (¬s,W ∩O)}

5.5.2 Optimization, dominance and other queries

In the case of non-normalized conditional distributions finding the optimal configurations for a set
of agents P does not always make sense. Indeed, such configurations exist if the set of preferen-
ces of group of agents P is consistent, precisely, if for each node and depending on the parents
instantiation, the set of agents represented by the conditional possibility is a superset of P . The
procedure is explained by Algorithm 2 such that the function Upgrade_Opt_set(config) upda-
tes the set of optimal configurations. Finding this configuration is straightforward and linear w.r.t.
the number of variables. Starting from the root nodes, we choose each time the value(s) ai s.t.
P ⊆ π(ai). Then, depending on the parents instantiation, each time we again choose a value
with a conditional possibility that includes or equals P . In case no subset π(ai) for some i is a
superset of P then the algorithm stops and the set of agents P have inconsistent preferences. Note
that under the ma-normalization, one is always sure to have at least one preferred configuration no
matter the set P .

In this bi-valued setting, dominance queries just amount to testing if the configurations belong
to the same layer or not; it suffices to check if both configurations are preferred or rejected. The
procedure is described by Algorithm 3. Another possible query, is to search for the maximal set
of agents that prefer a given configuration. The answer can be obtained by sweeping through the
ma-net starting from the roots with the set of agents initialized to All, performing, at each node,
the intersection of the current evaluation with the ma-possibility corresponding to the value of the
node variable for the given configuration.

5.6 Extension to graded possibilistic networks

We now recall basic notions of multi-agent possibilistic logic that extends both possibilistic logic
and multi-agent logic. Then, we propose its graphical counterpart.
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Algorithm 2: Finding the optimal configurations for a set of agents
Result: Set of optimal configurations config

1 begin
2 order← topological_sort(ma-net.dag), n←ma-net.node_sizes
3 N← length(n), config← [], out←0, i← 1
4 while (i <= N ) and (out == 0) do
5 ps=parents(pnet.dag, order(i)), CPT← Get_CPT(pnet.CPT{order(i)})
6 if isempty(ps) then
7 if find(P , CPT))== true then
8 config← Upgrade_Opt_set(config)
9 else

10 out← 1

11 else
12 out← 1
13 for j← 1 to size(config) do
14 Actual=config(j,:)
15 for each instantiation m of the node order(i) parents in Actual do
16 if find(P , CPT,m))== true then
17 config← Upgrade_Opt_set(config), out← 0

18 i← i+1

19 return config
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Algorithm 3: Comparing two configurations
Data: A multiple agent network ma-net, A set of agents P , two configurations ω1

and ω2
Result: The set of preferred configuration(s) result

1 begin
2 order← topological_sort(ma-net.dag)
3 n←ma-net.node_sizes, N← length(n), result← ∅
4 for i← 1 to 2 do
5 out←0, j← 1, CPT = Get_CPT(Mprefnet.CPTorder(i))
6 while (j <= N ) and (out == 0) do
7 Degree← the instantiation of the node order(j) in ωi according the

parents instantiation in ωi
8 if The set of agents A * Degree then
9 out← 1

10 else
11 j← j+1

12 if (out==0) then
13 result← result ∪ωi

14 return result
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5.6.1 Possibilistic multiple agent logic

This logic describes the graded preferences of agents using fuzzy set-valued counterparts of the
notions of possibility distribution, possibility measure, and necessity measure. Formulas in this
logic are of the form (p, α/P ) (where α is a necessity measure and P is a subset of agents)
expressing that at least all the agents in P think that it is imperative to satisfy p with a minimal
priority degree equal to α. Asserting (p, α/P ) means that P is the maximal set of agents that
tolerate the falsity of p with level at most 1 − α, while the agents in P are indifferent to the truth
or falsity of p, finding both tolerable at level 1. By duality, Π(p) is the fuzzy set of agents who
do not require the truth of ¬p imperatively. Each possibilistic ma-logic base Γ is associated to an
ma-π distribution πΓ.

πΓ(ω) =
{

1/All if ∀(pi, αi/Pi) ∈ Γ, ω |= pi⋂
{(1− αi)/Pi ∪ 1/Pi | (pi, αi/Pi) ∈ Γ, ω |= ¬pi} otherwise.

(5.8)

where πΓ(ω) = α/P means that at most all the agents in A find ω acceptable with a maximal sa-
tisfaction degree equal to α. The ma-normalization and the i-normalization continue to be defined
as above. Precisely, ma-normalization is still related to the consistency of the propositional logic
base and means that ∃ ω ∈ Ω, π(ω) = 1/All, where 1/All is clearly the same as All. Moreover,
the i-normalization is still defined by Π(Ω) = ⋃

ω∈Ω π(ω) = All, and means that all the agents
are individually consistent.

Example 5.6. Let us consider a multiple agent possibilistic logic corresponding to the preferences
over the variable Drink= {t,¬t}: Γ = {(¬t, 0.9/W ), (t, 0.3/M ∩ Y )}. The possibility distribu-
tion (computed by 5.8) corresponding to this base is:
π(t) = ((1− 0.9/W )∪ (1/All \W ))∩ (1/All) = (0.1/W )∪ (1/W ) = ((0.1/W )∪ (1/W ))∩
(1/All) = (0.1/W ) ∪ (1/W ),
π(¬t) = (0.7/M ∩ Y ) ∪ (1/M ∩ Y ) ∩ (1/All) = 0.7/M ∩ Y ) ∪ (1/M ∩ Y ).
The value of π(t) means that women find a cup of tea fully acceptable and men find it tolerable at
best at a very low level 0.1. The possibilistic logic base representing the preferences of women is
ΓW = {(t, 0.3)} and the one representing the preferences of men is ΓW = {(¬t, 0.9)}.

5.6.2 Multi-agent possibilistic graphical representation

As for ma-logic (with Boolean possibility), we have a graphical counterpart to ma-π logic. This
graphical representation uses fuzzy set-valued degrees as in ma-π logic.

5.6.2.1 Multi-agent possibilistic networks.

Based on the same conditioning (Eq. 5.4) and the same chain rule (Eq. 5.6) where intersection
is extended to fuzzy sets, we can define multi-agent possibilistic networks (ma-π nets for short)
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that are a counterpart of ma-π logic. ma-π nets are an extension of the above-defined graphical
counterpart of ma-logic, and have the same structure as ma-nets.

Example 5.7. Let us consider the ma-π tables of Table 5.5, associated to the network of Figure
5.1 and corresponding to an extension of the network defined in Figure 5.1 and Table 5.2. We can
see that the local possibility distribution associated to node ‘Drink’ corresponds to the logic base
of Example 5.6. It is clear that the network is not ma-normalized and this can be verified on its
associated possibility distribution. For instance, π(t¬sc) = (1/W ∪ 0.1/W )∩ (0.2/Y ∪ 1/O)∩
(1/O ∪ 0.1/Y ) = (1/W ∪ 0.1/W ) ∩ (0.1/Y ∪ 1/O). It is clear that W ∩O agents prefer t¬sc
with a satisfaction degree equal to 1.

π(t) π(¬t)
1/W ∪ 0.1/W 1/M ∩ Y ∪ 0.7/M ∩ Y

π(s) π(¬s)
1/Y ∪ 0.6/O 1/O ∪ 0.2/Y

π(.|.) ts t¬s
c (1/Y )∪ (0.3/O) (1/O)∪(0.1/Y )
¬c (1/O)∪(0.5/Y ) (1/W )∪ (0.6/M)

π(.|.) ¬ts ¬t¬s
c (1/M ∩ Y )∪(0.2/M ∩ Y ) (1/W )∪(0.9/M)
¬c (1/W )∪(0.1/M) (1/M ∩O)∪(0.7/M ∩O)

Table 5.5: Conditional tables of an ma-π net

5.6.2.2 From an ma-π net to an instantiated π-pref net

In contrast with ma-nets, ma-π nets enable us to express levels of preference. Indeed, preferences
are no longer all or nothing. Then, the network pertaining to the preferences of a set P of agents,
induced as a section of the ma-π net, corresponds to a possibilistic preference network (π-pref
net) with instantiated weights. Its structure is similar to the ma-π net and the local possibility
distributions associated to P are defined by: πP (ai|p(Ai)) = α, ∀P ⊆ B s.t. πΓ(ai|p(Ai)) ⊆
α/B. Note that the induced net is not always normalized due to the possible lack of normalization
of the ma-π net. Clearly, normalization states that the preferences of the set P of agents are
consistent and at least one configuration has a possibility degree equal to 1 for agents in P .

Example 5.8. Let us consider the ma-π net defined by Figure 5.1 and Table 5.5. The induced
possibilistic tables representing the preferences of the set W ∩ O are: π(t) = 1, π(¬t) = 0.7,
π(s) = 0.6, π(¬s) = 1, π(c|ts) = 0.3, π(c|t¬s) = 1, π(c|¬ts) = 0.2, π(c|¬t¬s) = 1,
π(¬c|ts) = π(¬c|t¬s) = π(¬c|¬ts) = 1, and π(¬c|¬t¬s) = 0.7. The resulting network is nor-
malized. Then, the possibility distribution is normalized and can be computed using the standard
product-based chain rule (3.1). We can check that t¬sc and t¬s¬c are the best configurations
(π(t¬sc) = π(t¬s¬c) = 1).
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ABC π(C|TS) π(S) π(T ) π(TSC)
tsc 0.3 1 1 0.3
ts¬c 1 1 1 1
t¬sc 1 0.6 1 0.6
t¬s¬c 1 0.6 1 0.6
¬tsc 0.2 1 0.7 0.14
¬t¬s¬c 1 1 0.7 0.7
¬t¬sc 1 0.6 0.7 0.42
¬ts¬c 0.7 0.6 0.7 0.94

Table 5.6: Possibility distribution corresponding to the set W ∩O

5.7 Related work

Few models exist for representing multiple agent preferences. First, multi-agent CP-nets (mCP-
nets) [Rossi et al., 2004] are an extension of CP-nets in a multiple agent setting. They are made
of several partial CP-nets representing the preferences of each agent, where a partial CP-net is a
CP-net where some variables may not be ranked when the agent is indifferent about the values
of these variables. Graphically, the network is obtained by combining the partial CP-nets. We
can reason about an mCP-net by querying each partial CP-net, and then deduce the answer using
different voting concepts like Pareto optimality, lexicographic ordering, and quantitative ranking.
Second, probabilistic CP-nets (PCP-nets) [Bigot et al., 2013] enable a compact representation of a
probability distribution over several CP-nets and stand for a summary of collective preferences. A
PCP-net has the same graphical component as a CP-net. Lastly, generalized additive independence
(GAI) nets [Dubus et al., 2009] are quantitative graphical models where preferences of agents are
expressed by utilities. In a multiple agent framework, each node is characterized by a utility vector
where each of its elements represents the utility of the node given by an agent. An aggregation
procedure is then applied to these utilities to find the optimal solution.

As shown here, ma-nets represent the collective preferences of agents with a single network,
similarly to PCP-nets and GAI nets (and in contrast with mCP-nets), which facilitates the handling
of preferences. Besides, it may handle the indifference and non consistency of some agents, and
can deal with the agents based on their profiles and not only in terms of proportions contrarily to
GAI nets and PCP-nets. The model can be extended to describe preference intensities by adding
priorities, unlike mCP-nets and PCP-nets.
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5.8 Conclusion

In this chapter, we have proposed a multiple agent graphical representations as an extension of π-
pref nets. The proposed models represent the graphical counterparts of multiple agent logic. First,
we have proposed a graphical model where preferences of agents are all or nothing; each set of
agents either totally accepts the choice or totally rejects it. Second, this preference representation
has been extended to handle gradual preferences. We have discussed the basic properties of the
proposed models and proposed their associated possible queries. Moreover, we have shown how
from these networks we can construct individual networks pertaining to subsets of agents.

This chapter calls for several future lines. Indeed, we may think about the symmetrical form
of formulas (p1, P1), where the roles played by p and P should be studied, particularly, for in-
ducing preferences of a subset of agents such that, P2 ⊂ P1, or P1 ∩ P2 = ∅. In fact, based on
such symmetrical form, we may think of inducing another type of networks associated to each
configuration. Computational issues are also of interest. We may think of proposing algorithms to
answer ordering queries and other possible variants in a local manner. For instance, we may think
of identifying non consistent agents directly from multi-agents (possibilistic) networks. One may
also think of several extensions, where the set of agents are described under the form of logical
formulas which would allow us to consider the disjunction and the negation between the charac-
teristics of each set of agents. Finally, the full strength of the representation power of π-pref nets
comes from a symbolic handling of the priorities still to be introduced in the multiple agent case.
Other perspectives are detailed in the general conclusion.
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Implementation: A toolbox for Preference Possibilistic
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6.1 Introduction

This chapter proposes a Matlab toolbox dedicated to π-pref nets, their queries and their main
extension. The purpose of this implementation is to offer an extensible standard tool allowing the
exploitation of new models developed in this thesis.

This Chapter is organized as follows: Section 6.2 presents the toolbox implemented to con-
struct π-pref net and to execute optimization and dominance queries. Section 6.3 is dedicated to
multiple agent networks. It presents the methods to construct the network and execute its possible
queries.

110
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6.2 A toolbox for π-pref nets

In this section, we propose a π-pref nets toolbox implemented with Matlab 7.10 in order to handle
the preference queries namely, dominance and optimization. The implementation uses some adap-
tations of the Possibilistic Networks Toolbox (PNT) [Ben Amor, 2012] implemented in order to
handle several propagation algorithms in possibilistic networks. The software offers 4 main functi-
onalities:

1. Defining the preference network structure;

2. Defining the associated preference tables;

3. Executing the optimization query;

4. Executing the dominance query.

Figure 6.1 presents the main window of the implemented toolbox.

Figure 6.1: The main window of the π-pref net toolbox

6.2.1 Definition of the network structure

This functionality allows to define the set of nodes and the dependency structure. The software
enables the user to define the name of the node, its position, the set of its parents and its cardinality.
Figure 6.2 presents the step of creating a node. Note that the program enables the user to delete a
node such that deleting a node leads to deleting all incoming and outgoing arcs. Figures 6.2 and
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6.3 represent examples of creating a node and defining the parents (thus defining the structure), re-
spectively. The preference possibilistic network is represented by an object called prefnet defined
as follows:

Algorithm 4: Constructing the π-pref net
Result: prefnet

1 begin
2 - nodes: 1-by-N matrix,
3 row vector containing nodes in a topological order (ancestors before descendants);
4 - node_sizes: 1-by-N matrix
5 node_sizes(i) is the number of values node i can take on (its arity);
6 - dag: N-by-N matrix
7 dag(i, j) = 1 if and only if i is parent of j;
8 - CPD: 1-by-N cell array of matrices
9 Each cell CPD{i} contains a tabular_cpd object defined by:

10 ∗ CPD{i}.self : Node i
11 ∗ CPD{i}.CPT : A vector containing the initial Conditional Possibility Distribution of

node i in the context of its parents;
12 -symbols: 1-by-C matrix (C is the number of symbolic weights) symbols(i) is a

symbolic weight
13 -consts: C-by-C matrix
14 consts(i,j)=1 if and only if the symbolic weight i is bigger that j
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Figure 6.2: Creating a node

As a first step, Function mk_prefnet (Algorithm 5) prepares the possibilistic network structure
(i.e. prefnet) using the initial dag (i.e. dag), the node sizes (i.e. node_sizes), the list of nodes (i.e.
nodes, the list of symbols (i.e. symbols) and the matrix of constraints (i.e. consts).

Example 6.1. Let us consider a π-pref net over a set of variables V = {A,B,C,D,E, F,G,H}.
Figure 6.4 represents the graph structure constructed by the software. Clearly, A is the unique
root and H and G are the leaves.
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Algorithm 5: mk_prefnet
Data: dag, node_sizes, nodes, symbols, consts
Result: prefnet

1 begin
2 N← length(dag);
3 prefnet.dag← dag;
4 prefnet.node_sizes← node_sizes(:)’;
5 prefnet.nodes← nodes;
6 prefnet.symbols← symbols;
7 prefnet.consts← consts;

Figure 6.3: Selection of parents

6.2.2 Network preference tables and constraints

After constructing the network structure, one should enter the possibility distributions. Figure 6.5
presents an example of defining a conditional possibility distribution of a node A in the context of
B.

Example 6.2. To encode the preference possibilistic network of Example 6.1, we should first define
the topological order (i.e. ancestors before descendants) which can be [A B CD E F G H] for
instance (note that one can define another topological order provided that the parents appear
before children). In the following we consider that each node is associated to an integer number
such that A = 1, B = 2, C = 3, D = 4, F = 5, E = 6, G = 7 and H = 8. Then, the prefnet
object takes the following values:

• prefnet.nodes= [1 2 3 4 5 6 7 8]

• prefnet.node_sizes= [2 2 2 2 2 2 2 3]
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Figure 6.4: An example of a π-pref net with 8 nodes

Figure 6.5: An example of defining a preference distribution

• prefnet.dag=



0 1 1 0 0 0 0 0
0 0 0 1 0 1 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
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For instance the value 1 in the line 1 column 2 means that the variable 1 (A) is a parent of
the variable 2 (B).

• The conditional possibility distributions are stored as multidimentional arrays (prefnet.CPD)
where the variables are arranged s.t the low numbered parents come before the high num-
bered one:

prefnet.CPD= [1x1 tabular_cpd] [1x1 tabular_cpd] [1 x1 tabular_cpd] [1x 1 tabular_cpd][1x
1 tabular_cpd][1x 1 tabular_cpd][1x 1 tabular_cpd][1x 1 tabular_cpd]

– prefnet.CPD{1}.self = 1

prefnet.CPD{1}.CPT =

(
1
α

)

The order of instances in prefnet.CPD{1}.CPT is as follows:

(
1
2

)

The value 1 (resp. 2) corresponds to the first (resp. second) instance of the variable 1
(A).

– prefnet.CPD{2}.self = 2

prefnet.CPD{2}.CPT =

(
β1 1
1 β2

)

The order of instances in prefnet.CPD{2}.CPT is as follows:

(
11 12
21 22

)

The value 11 (resp. 21, 12, 22) corresponds to the first (resp. second, first, second)
instance of the the variable 1 (A) and the first (resp. first, second, second) instance of
the variable 2 (B).

– prefnet.CPD{3}.self = 3

prefnet.CPD{3}.CPT =

(
1 γ2
γ1 1

)

The order of instances in prefnet.CPD{3}.CPT is as follows:

(
11 12
21 22

)

The value 11 (resp. 21, 12, 22) corresponds to the first (resp. second, first, second)
instance of the the variable 1 (A) and the first (resp. first, second, second) instance of
the variable 3 (C).

– prefnet.CPD{4}.self = 4

prefnet.CPD{4}.CPT =

(
δ1 δ2
1 1

)
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– prefnet.CPD{5}.self = 5

prefnet.CPD{5}.CPT =

(
1 ε2
ε1 1

)

– prefnet.CPD{6}.self = 6

prefnet.CPD{6}.CPT =

(
θ1 1
1 θ2

)

– prefnet.CPD{7}.self = 7

prefnet.CPD{7}.CPT =

(
1 λ2 λ3 1
λ1 1 1 1

)

The order of instances in prefnet.CPD{4}.CPT is as follows:

(
111 121 112 122
211 221 212 222

)

The value 111 (resp. 211, 121, 221, 112, 212, 122, 222) corresponds to the first (resp.
second, first, second, first, second, first, second) instance of the the variable 2 (B), the
first (resp. first, second, second, first, first, second, second) instance of the variable 3
(C) and to the first (resp. first, first, first, second, second, second, second) instance of
the variable 4 (D).

– prefnet.CPD{8}.self = 8

prefnet.CPD{8}.CPT=

 1 φ3
φ1 1
φ2 φ4



The set of constraints is described by a matrix C-by-C where C is the number of constraints.
Figure 6.7 represents an example of setting the constraints between symbolic weights. Since com-
parisons between symbolic weights are made between every two weights, the transitive closure
should be computed in order to find all relations between the weights.

This transitive closure is computed by Algorithm 6 which is based on:

• The function sparse: it converts a full matrix into a sparse form by squeezing out any zero
elements. If a matrix contains many zeros, converting the matrix to sparse storage saves
memory.

• The function graphallshortestpaths: its finds the shortest paths between every pair of nodes
in the graph represented by a matrix.

• The function numel: it returns the number of elements in an array.

Indeed, the matrix consts is considered as a graph where each symbolic weight is represented
by a node such that two nodes are related by an arc if there exists a preference relation between
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Figure 6.6: An example of defining cardinalities

Algorithm 6: Transitive closure of constraints (Function Complete_consts)
Data: consts, symbols
Result: consts

1 begin
2 m←sparse(consts);
3 allShortest← graphallshortestpaths(m);
4 for i← 1 to numel(allShortest) do
5 if allShortest(i)==Inf then
6 allShortest(i)←0;

7 consts←logical(allShortest);
8 return consts

Figure 6.7: A example of defining a constraint
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the two symbolic weights. The algorithm searches if there is a path between two symbolic weights
not directly related by an arc. If such a path exists then the two symbols can be compared. This
can be illustrated by the following example.

Example 6.3. Let us consider the preference network of Example 6.1 with the preference tables
of Example 6.2. The constraints between the symbolic weights is represented by the matrix consts
and is as follows:

prefnet.symbols={α;β1;β2; γ1; γ2; δ1; δ2; ε1; ε2; θ1; θ2;λ1;λ2;λ3;φ1;φ2;φ3;φ4}

prefnet.consts=



0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0


For instance, the value 1 in the line one column 2 means that β1 is bigger than α, and the

value 1 in the line two column three means that β2 is bigger than β1. By the transitive closure one
can deduce that β2 is bigger than α.

6.2.3 Optimization query

As mentioned before, optimization query is defined by traversing the network from roots to leaves
while instantiating the variables to values where the conditional possibility degrees are equal to 1.
Algorithm 7 is dedicated for optimization and uses the following functions:

• The function topological_sort: it returns the nodes in a topological order (parents before
children).

• The function parents: it returns the list of a node parents.
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• The function find: it returns a vector containing the linear indices of each nonzero element
in an array.

• The function subv2ind: it returns an equivalent single index corresponding to a subscript
vector.

Example 6.4. Let us continue the previous example. As we already noted the topological ordering
between the nodes is: [ABCDEFGH]. The algorithm proceeds by the node A. It tests as a first
step if the node has parents. Then, it instantiates the node to its value a1 since π(a1) = 1. The
algorithm processes in the same way till instantiating all the nodes. The result of the algorithm is
given by Figure 6.8 that displays the best configuration which is a1b2c1d2e1f1g1h1.
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Figure 6.8: A example of the optimization query result

6.2.4 Dominance query

Regarding dominance query, comparing configurations amounts to comparing vectors of weights.
Indeed, the software implemented proceeds by asking the user to select two configurations to be
compared then compares their corresponding vectors of weights. Figure 6.9 presents a result of
dominance query displayed by the toolbox. The main steps are as follows:

• Find the vectors of weights by traversing the network once. Algorithm 8 explains the main
steps. It takes as input a configuration interp, the prefnet and the table storing the symbols
symbols. The algorithm uses the following functions:

– The function isempty: It returns a logical 1 (true) if the array is empty and a logical 0
(false) otherwise.

– The function strcmp: It compares two strings and returns 1 (true) if the two are iden-
tical and 0 (false) otherwise.

• Permute one vector while it tests each time if each element of the vector of weights can be
compared to its corresponding element in the other vector. Algorithm 9 uses the following
function:



CHAPTER 6. IMPLEMENTATION: A TOOLBOX FOR PREFERENCE POSSIBILISTIC
NETWORKS 120

Algorithm 7: Optimization query
Data: prefnet
Result: config

1 begin
2 order=topological_sort(dag);
3 n=prefnet.node_sizes;
4 config=zeros(1,N);
5 for i←1 to N do
6 ps=parents(prefnet.dag,order(i));
7 if isempty(ps) then
8 CPT← CPD_to_CPT (pnet.CPD{order(i)});
9 f←find(CPT==1);

10 dup←length(f);
11 if dup==1 then
12 config(:,order(i))=f(1);
13 temp←config
14 else
15 for j←1 to dup do
16 B←config;
17 B(:,order(i))←f(j);
18 if j==1 then temp←B; else temp←[temp; B] ;

19 else
20 s←size(config);
21 CPT← CPD_to_CPT (pnet.CPD{order(i)});
22 for j←1 to s(1) do
23 actual←config(j,:);
24 in←actual(ps);
25 for m← 1 to n(order(i)) do
26 actual←config(j,:);
27 subv2ind(size(CPT), [in m]);
28 if CPT(subv2ind(size(CPT), [in m]))==1 then
29 actual(order(i))←m;
30 if isempty(temp) then temp←actual;
31 else temp←[temp; actual] ;

32 config←temp; temp←[];

33 return config



CHAPTER 6. IMPLEMENTATION: A TOOLBOX FOR PREFERENCE POSSIBILISTIC
NETWORKS 121

– The function perms: It returns a matrix containing all permutations of the elements
of a vector. Each row of the matrix contains a different permutation of the n elements
in the array. The matrix has the same data type as the array, and it has n! rows and n
columns (such that n is the number of symbolic weights in the longest vector).

Algorithm 8: Defining the vector of weights
Data: interp, prefnet, symbols
Result: vect

1 begin
2 vect←[];
3 for i←1 to length(prefnet.dag) do
4 ps←parents(prefnet.dag,i);
5 CPT← CPD_to_CPT(prefnet.CPD{i});
6 if isempty(ps) then
7 if isempty(vect) then
8 interp(i);
9 vect←[CPT(interp(i))];

10 else
11 vect←[vect CPT(interp(i))];

12 else
13 in←interp(ps);
14 vect←[vect CPTsubv2ind(size(CPT), [in interp(i)])];

15 temp←[];
16 for i←1 to length(vect) do
17 if not(vect{i}==1) then
18 z←find(strcmp(symbols, vect(i)));
19 if i==1 then
20 temp←z;
21 else
22 temp←[temp z];

23 vect←temp;
24 return vect

Example 6.5. Let us continue the running example. We consider that the user selected the two
configurations a1b2c1d2e1f1g1h1 and a2b1c2d2e2f2g1h1 to be compared. After the execution of
Algorithm 8 we get the two vectors of symbolic weights such that a1b2c1d2e1f1g1h1 is associa-
ted to [1 1 1 1 1 1 1 1], and a2b1c2d2e2f2g1h1 is associated to [α 1 1 1 1 1 1 φ3]. Clearly,
Algorithm 9 displays the second configuration since 1>α ∗ φ3 (note that as seen in Example 6.4,
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Algorithm 9: Comparing vectors of weights
Data: consts, vect1, vect2
Result: dominant, res

1 begin
2 if isempty(vect1) then
3 if isempty(vect2) then dominant←[]; res←0; else dominant←2; res←1 ;
4 else
5 if isempty(vect2) then
6 dominant←1; res←1;
7 else
8 change←0;
9 if length(vect2)>length(vect1) then

10 temp←vect1; vect1←vect2; vect2←temp; change←1;

11 vect11←vect1; nb_elim←0;
12 for i←1 to length(vect1) do
13 z←find(vect2==vect1(i));
14 if not(isempty(z)) then
15 vect11(i-nb_elim)←[]; vect2(z)←[]; nb_elim←nb_elim+1;

16 vect1←vect11; permutation←perms(vect1); s←size(permutation);
res←0; i←1;

17 while (i<=s(1))&&(res==0) do
18 good←1; j←1; v1←0; v2←0;
19 while (j<=length(vect2))&&(good==1) do
20 if consts(permutation(i,j),vect2(j))==1 then
21 v2←1;
22 else
23 if consts(vect2(j),permutation(i,j))==1 then v1←1; else
24 good←0 ;

25 if (v1&&v2) then good←0 ;
26 j←j+1;

27 if good==1 then res=1;
28 i←i+1;

29 if not(res==1) then
30 dominant=[];
31 else
32 dominant←1;
33 if ((v1==1)$$(change =0))||((v1 =1)$$(change==0)) then
34 dominant←2;

35 return vect
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a1b2c1d2e1f1g1h1 is the best configuration). The result of this dominance query is represented by
Figure 6.9.

Let us now consider two other configurations a1b2c2d2e1f2g1h1 and a2b1c2d1e2f2g1h2. The
corresponding vectors of weights are [1 1 γ1 1 ε2 θ2 λ3 1] and [α 1 1 δ1 1 1 1 1] respectively.
Algorithm 9 returns an empty variable dominant and the logical variable res is equal to false
(logical 0). This means that the two configurations are incomparable. The result of this dominance
query is represented by Figure 6.10.
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Figure 6.9: An example of a dominance query result
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Figure 6.10: An example of a dominance query result (incomparable configurations)

6.3 An extension for ma-nets

This section extends the toolbox for π-pref nets to the multiple agent framework and more speci-
fically to ma-nets (developed in Chapter 5) in order to handle all or nothing preferences.

6.3.1 The construction of ma-nets

Similarly to π-pref nets, the multiple agent network is represented by an object called Mprefnet
and is defined by Algorithm 10.
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Algorithm 10: Constructing the ma-net
Result: Mprefnet

1 begin
2 - nodes: 1-by-N matrix,
3 row vector containing nodes in a topological order (ancestors before

descendants);
4 - node_sizes: 1-by-N matrix
5 node_sizes(i) is the number of values node i can take on (its arity);
6 - dag: N-by-N matrix
7 dag(i, j) = 1 if and only if i is parent of j;
8 - CPD: 1-by-N cell array of matrices
9 Each cell CPD{i} contains a tabular_cpd object defined by:

10 ∗ CPD{i}.self : Node i
11 ∗ CPD{i}.CPT : A vector containing the initial Conditional Possibility

Distribution of node i in the context of its parents;
12 - Lib_characteristic: 1-by-N matrix
13 Lib_characteristic(i) represents a characteristic of a set of agents.

The function mk_Mprefnet makes the possibilistic network structure (i.e. Mprefnet) using
the initial dag (i.e. dag), the node sizes (i.e. node_sizes), the list of nodes (i.e. nodes, the list of
characteristics (i.e. Lib_characteristic).

Algorithm 11: mk_Mprefnet
Data: dag, node_sizes, nodes, Lib_characteristic
Result: Mprefnet

1 begin
2 N← length(dag);
3 Mprefnet.dag← dag;
4 Mprefnet.node_sizes← node_sizes(:)’;
5 Mprefnet.nodes← nodes;
6 Mprefnet.Lib_characteristic← Lib_characteristic;

Example 6.6. Let us reconsider the same example of Chapter 5 Example 5.2. We suppose that the
user entered two characteristic, the age and the gender such that age=[1 2 3] where 1 corresponds
to All, 2 corresponds to ’women’ and 3 corresponds to ’men’. Similarly gender=[1 4 5] where 1
corresponds to All, 4 to ’young and 5 to old. To encode this multiple agent, the Mprefnet object
takes the following values:

• Mprefnet.nodes= [1 2 3]
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• Mprefnet.node_sizes= [2 2 2]

• Mprefnet.Lib_characteristic= [’All’; ’Men’, ’Women’; ’Young’;’Old’]

• Mprefnet.dag=

 0 0 1
0 0 1
0 0 0


• The conditional possibility distributions are stored as multidimentional arrays (Mpref-

net.CPD) where the variables are arranged s.t the low numbered parents come before the
high numbered one:

Mprefnet.CPD= [1x1 tabular_cpd] [1x1 tabular_cpd] [1 x1 tabular_cpd]

– prefnet.CPD{1}.self = 1

prefnet.CPD{1}.CPT =

(
31
24

)

The value 31 (resp. 24) corresponds to the set of agents women W (resp. Young Men
M∩Y ). Indeed, in the value 31, the number three corresponds to the element of index
3 in the table Lib_characteristic and the number 1 corresponds to the element of
index 1 in Lib_characteristic .

– prefnet.CPD{2}.self = 2

prefnet.CPD{2}.CPT =

(
14
15

)

The value 14 (resp. 15) corresponds to the set of agents Young Y (resp. Old O).

– prefnet.CPD{3}.self = 3

prefnet.CPD{3}.CPT =

(
24 15 24 31
25 31 31 25

)

6.3.2 Queries for ma-nets

The software executes different types of queries:

• Searching for the most preferred configurations. Algorithm 12 presents the main steps
to find the best configurations. The algorithm needs the Mprefnet object (Mprefnet), the
number characteristics (Critere) and the set of agents of interest selected by the user (set).
The algorithm outputs a matrix M-by-N where N is the number of nodes and M is the
number of the best configurations for the selected set of agents. Note that the selected set
of agents can be All where if the resulting matrix is empty then the ma-net is not ma-
normalized.
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• Finding the maximal set of agents which prefers a given configuration. This query is exe-
cuted by Algorithm 13.

• Verifying if a given set of agents prefers a given configuration. Algorithm 14 corresponds
to this query. It returns out = 1 if the entered configuration is preferred by the selected set
of agents and out = 0 otherwise. Algorithm 14 is a variant of Algorithm 13 where the user
should also specify the set of agents.

• Comparing two configurations given a set of agents. The algorithm 15 executes the function
select_set (Algorithm 14) for the chosen set of agents. Then if the set of agents prefers both
configurations Algorithm 15 outputs a matrix containing the two configurations, if it only
prefers one of them then variable dominant will contain the preferred one, otherwise we get
domiant = ∅.

Example 6.7. Let us continue Example 6.6. We consider Algorithm 12 for optimization query and
assume that the user selected:

• Young Men M ∩ Y , then config=
(

2 1 1
)

Which can be read as the best configuration for young men is ¬tsc.

• Old Women W ∩O, then config=

(
1 2 1
1 2 2

)
Which can be read as the best configurations for old women are t¬sc and t¬s¬c.

• Men M , then config=∅ Which means that the set of agents Men is not i-normalized (not
consistent).

• All: Clearly the ma-net is not ma-normalized (All is inconsistent). config is then an empty
matrix.
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Algorithm 12: Optimization query by ma-net (function Moptimization)
Data: Mprefnet, set, Critere
Result: config

1 begin
2 order←topological_sort(Mprefnet.dag); n←Mprefnet.node_sizes; N←length(n);

config←zeros(1,N); out←0; i←1;
3 while (i<=N) && (out==0) do
4 ps←parents(Mprefnet.dag,order(i));
5 if isempty(ps) then
6 CPT← CPD_to_CPT(Mprefnet.CPD{order(i)}); f←[];
7 for z=1:length(CPT) do
8 sortir←0; degree←int2str(CPT{z}); y←1;
9 while (y<=Critere) && (sortir==0) do

10 if (strcmp(degree(y), int2str(set(y)))==0) && (strcmp(degree(y),
’1’)==0) then sortir←1; else y←y+1;

11 if (sortir==0) then
12 if isempty(f) then f(1)←z; else f←[f z];

13 dup←length(f);
14 if dup==1 then config(:,order(i))←f(1);
15 else for j←1 to dup do
16 B←config; B(:,order(i))←f(j);
17 if j==1 then temp←B; else temp←[temp; B];

18 if dup==0 then out←1; config←[]; else config←temp;
19

20 else
21 if isempty(config) then out←1;
22 else s←size(config); CPT←CPD_to_CPT(Mprefnet.CPD{order(i)});
23 for j←1 to s(1) do
24 delete←0; for m←1 to n(order(i)) do
25 actual←config(j,:); in←actual(ps);

degree←int2str(CPT{subv2ind(size(CPT), [in m])}); y←1;
sortir←0;

26 while (y<=Critere) && (sortir==0) do
27 if (strcmp(degree(y), int2str(set(y)))==0) && (strcmp(degree(y),

’1’)==0) then sortir←1; else y←y+1;

28 if (sortir==1) then
29 delete←delete+1;
30 else
31 actual(order(i))←m;
32 if isempty(temp) then temp←actual;
33 else temp←[temp; actual];

34 config←temp;
35

36 temp←[]; i←i+1

37 return config
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Algorithm 13: Finding the maximal set of agents which prefers a given configura-
tion (function accept)

Data: Mprefnet, interp, Critere
Result: set

1 begin
2 order←topological_sort(Mprefnet.dag); n←Mprefnet.node_sizes; N←length(n)

set←ones(1,Critere); out←0; i←1;
3 while (i<=N) && (out==0) do
4 ps←parents(Mprefnet.dag,order(i)); y←1;
5 CPT← CPD_to_CPT(Mprefnet.CPD{order(i)});
6 if isempty(ps) then
7 degree←int2str(CPT{interp(order(i))});
8 while (y<=Critere) && (out==0) do
9 if (strcmp(degree(y), ’1’)==0) then

10 if (set(y)==1) then
11 set(y)←str2num(degree(y));
12 else
13 if (strcmp(degree(y), int2str(set(y)))==0) then
14 out←1; set←[];

15 y←y+1;

16 in←interp(ps); m←interp(order(i)); degree←int2str(CPT{subv2ind(size(CPT), [in
m])});

17 while (y<=Critere) && (out==0) do
18 if (strcmp(degree(y), ’1’)==0) then
19 if (set(y)==1) then
20 set(y)←str2num(degree(y));
21 else
22 if (strcmp(degree(y), int2str(set(y)))==0) then
23 out=1; set=[];

24 y=y+1;

25 i=i+1 ;

26 return set

Example 6.8. Now, let us execute Algorithm 13. We assume that the user selected:

• t¬sc: the result of the procedure is set=[35] which corresponds to old women.

• tsc: set=∅ which means that nobody prefers this configuration.
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Algorithm 14: Verifying if a given set of agents prefers a given configuration
Data: Mprefnet,interp, Critere, set
Result: out

1 begin
2 order←topological_sort(Mprefnet.dag); n←Mprefnet.node_sizes; N←length(n);

out←1; i←1; while (i<=N) && (out==1) do
3 ps←parents(Mprefnet.dag,order(i)); y←1;
4 CPT← CPD_to_CPT(Mprefnet.CPD{order(i)}); if isempty(ps) then
5 degree←int2str(CPT{interp(order(i))});
6 while (y<=Critere) && (out==1) do
7 if (strcmp(degree(y), ’1’)==0) &&(strcmp(degree(y), int2str(set(y)))==0)
8 then out←0;
9

10 y←y+1;

11 in←interp(ps); m←interp(order(i)); degree←int2str(CPT{subv2ind(size(CPT), [in
m])}); while (y<=Critere) && (out==1) do

12 if (strcmp(degree(y), ’1’)==0) &&(strcmp(degree(y), int2str(set(y)))==0)
then out←0;

13

14 y←y+1;

15 i←i+1 ;

16 return out

Example 6.9. Let us execute Algorithm 14 on Example 6.6, we assume that:

• interp=[1 2 1] (corresponding to t¬sc) and a set of agents set=[3 5] (corresponding to old
women W ∩ O). The algorithm outputs out=1. This means that the set W ∩ O prefers the
configuration t¬sc.

• interp=[2 1 1] (corresponding to ¬tsc) and a set of agents set=[3 1] (corresponding to
women W ). The algorithm outputs out=0. This means that the set W does not prefer the
configuration ¬tsc
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Algorithm 15: Comparing two configurations given a set of agents
Data: set, Mprefnet, Critere, interp1, interp2
Result: dominant

1 begin
2 dominant←[];
3 out1← accept_set(Mprefnet,interp1, Critere, set);
4 out2← accept_set(Mprefnet,interp2, Critere, set);
5 if (out1==out2) then
6 if (out1==1) then dominant←[interp1; interp2] ;
7 else
8 if (out1==1) then
9 dominant←interp1;

10 if (out2==1) then dominant←interp2 ;

11 return dominant

Example 6.10. Let us continue Example 6.6, dominance query of the set W ∩ O and the two
configurations t¬sc and t¬s¬c executed by Algorithm 15 outputs a matrix such that:

dominant=

(
1 2 1
1 2 2

)
This means that the two configurations are both equally preferred.

6.4 Conclusion

This chapter has illustrated our implementation concerning the toolbox Prefnet and MPrefnet. We
have shown the use of the Prefnet software and the main interfaces. Besides, we have presented
algorithms for dominance and optimization queries. Moreover, we also extended the toolbox to
the multiple agent case. We presented the four important queries.

The multiple agent framework, proposed in this implementation, imposes the preferences of
the agents to be all or nothing. As a continuity of this work, it is important to consider the extension
of the toolbox for multiple agent network where preferences are graded.



CONCLUSION
General Conclusion

Representing preferences into a compact structure aavhas become an important research topic.
Graphical models are of special interest. Indeed, they facilitate elicitation, exhibit some form of
independence, and serve as a basis for solving optimization and dominance queries about choi-
ces. The expressiveness of the representation setting and the complexity of answering queries
are then central issues for each approach. This thesis has proposed an extensive overview of the
main graphical models for preference representation and has provided a comparative survey by
emphasizing their main characteristics.

This thesis has discussed the use of product-based possibilistic networks for representing con-
ditional preference statements on discrete variables. The approach uses non-instantiated possibi-
lity weights to define conditional preference tables. Moreover, additional information about the
relative strengths of symbolic weights can be taken into account. Therefore, it is an interesting
compromise between the two types of models, namely, qualitative models and quantitative mo-
dels. It yields a partial preference order among possible choices corresponding to a symmetric
form of Pareto ordering. In the case of Boolean variables, this partial ordering coincides with the
inclusion between the sets of preference statements that are violated.

The fact that at best we have some information about the relative values of these weights
acknowledges the qualitative nature of preference specification. These conditional preference ta-
bles give birth to vectors of symbolic weights that reflect the preferences that are satisfied and
those that are violated in a considered situation. The comparison of such vectors may rely on
different orderings: the ones induced by the product-based, or the minimum-based chain rule un-
derlying the possibilistic network, the discrimin, or leximin refinements of the minimum-based
ordering, as well as Pareto ordering, and the symmetric Pareto ordering that refines it. A thorough
study of the relations between these orderings in presence of vector components that are symbolic
rather numerical has been presented. In particular, we have established that the product-based
ordering and the symmetric Pareto ordering coincide in presence of constraints comparing pairs
of symbolic weights. This ordering agrees in the Boolean case with the inclusion between the sets
of preference statements that are violated. The symmetric Pareto ordering may be itself refined by
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the leximin ordering. We have highlighted the merits of product-based possibilistic networks for
representing preferences and the flexibility and the representational power of the approach.

The main purpose of any preference model is to support answering various queries about
the preference of the decision maker. These queries might be summed up into two main tasks
namely optimization and dominance. In this thesis, we have investigated the general procedures
of both these tasks with respect to possibilistic symbolic preference networks. We have proved
that optimisation query can be answered easily by traversing the graph from roots to leaves and
choosing each time the best value depending on the context. Thus, this query is linear with the
number of nodes. Besides, we have showed that dominance queries correspond to comparing
vectors of weights. This product-based comparison is defined by reorganizing the vectors given
the inequality constraints between the symbolic weights. The complexity of this query is O(N !)
where N corresponds to the number of nodes.

Furthermore, this graphical model has two logical counterparts in terms of possibilistic logic
and penalty logic. These logical counterparts are of use for reasoning tasks such as consistency
checking and up dating. Transformation to possibilistic logic base is provided as well as an in-
termediate format corresponding to hybrid π-pref nets where we associate to each node a local
symbolic possibilistic logic base instead of a conditional possibility table. Besides, transformation
to penalty logic can be performed by a logarithmic transformation of the possibility degrees and
the union of local penalty logic bases.

Among several graphical models for preferences, CP-nets are often used for learning and re-
presentation purposes. They rely on a simple preference independence property known as the
ceteris paribus independence. In this thesis we have proved that π-pref nets induce a preference
ordering on configurations consistent with the ordering induced by CP-nets. Ceteris paribus pre-
ferences in the latter can be retrieved by adding suitable constraints between products of symbolic
weights. This connection between possibilistic networks and CP-nets allows for an extension of
the expressive power of the latter while maintaining its qualitative nature. Elicitation complexity
is thus kept stable, while the complexity of dominance and optimization queries is cut down.

A multiple-agent logic, which associates subsets of agents to logical formulas, has been re-
cently proposed. We have presented a graphical counterpart of this logic, based on multiple agent
version of possibilistic conditioning, and applied it to preference modeling. First, preferences of
agents are supposed to be all or nothing. We have discussed how one can move from the network
to the logic representation and vice-versa. The new representation enables us to focus on networks
associated to subsets of agents, and to identify inconsistent agents, or conflicting subsets of agents.
The question of optimization and dominance queries is discussed.

Besides, we have proposed an extension of multiple agents networks where gradual preferen-
ces are handled. In this extended graphical network, conditional weights are then associated with
both sets of agents and preference levels. A degree α/A of a configuration ω then expresses that
‘at most all the agents in A find the configuration acceptable with a maximal satisfaction degree
equal to α’. The semantics is then given in terms of fuzzy sets of agents that find a configuration
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more or less satisfactory.

Finally, we have ended this thesis by an implementation of a toolbox for the two main graphical
models proposed in this thesis namely, π-Pref nets and ma-nets. We have presented the most
important algorithms to handle the different queries proposed all along the chapters.

The research done in this dissertation opens up some interesting lines of future research, some
of theoretical nature, and others on practical issues. They concern either π-Pref nets or their
extension to multiple agents preference handling.

• Various extensions of this new framework seem to be interesting. In particular, we might
think on including a bipolar representation of preferences [Benferhat et al., 2002b]. Indeed,
preferences in everyday life come in two forms: positive preferences that describe what
is satisfactory and negative preferences that refer to what is unacceptable. The framework
of possibility theory allows to represent such preferences, but without graphic counterpart
(by possibilistic networks) to the positive part. Thus, our aim will be to offer a compact
representation of preferences in terms of generalized possibilistic networks.

• Uncertainty is something worth investigating in conjunction with the preferences, it con-
cerns those of an agent or agent-variability. In the field of preference representation, some
models have been proposed to deal with uncertainty, including probabilistic CP-nets [Bigot
et al., 2013]. It is natural to ask the question of the possible interest of possibilistic CP-
nets, and extend the scope of representation of preferences by possibilistic networks taking
account of uncertainty.

• Another problem, as part of the continuity of the previous, concerns the learning of the
proposed models. Learning preferences in the form of probabilistic CP-net has already
been studied [da Silva and de Amo, 2011]. This learning is based on Bayesian networks.
We should consider the development of methods and algorithms for learning possibilistic
networks for preferences.

• For multiple agents preference model, We may think about the symmetrical form of formu-
las (a,A), where the roles played by a and A should be studied, particularly, for inducing
preferences of a subset of agents such that, B ⊂ A, or A ∩ B = ∅. In fact, based on such
symmetrical form, we may think of inducing another type of networks associated to each
interpretation.

• Computational issues are also of interest. We may think of proposing algorithms to answer
ordering queries and other possible variants in a local manner. For instance, we may think
of identifying non consistent agents directly from multi-agents (possibilistic) networks.

• One may also think of several extensions, where the set of agents are described under the
form of logical formulas which would allow us to consider the disjunction and the negation
between the characteristics of each set of agents.
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APPENDIX A

Notations

Notion Notation
Basic notions

A set of variables V = {A1, A2, ..., AN}
Subsets of variables W, Z, Y, X
Finite domain associated with variable Ai DAi

The universe of discourse, which is the Cartesian
product of all variable domains in V

Ω = ×Ai∈V DAi

A configuration ω
The restriction of ω to variables in X ω[X]
A good quality of the choice for a variable A a+

A bad quality of the choice for a variable A a−

Operations over sets ∩, ∪, ⊂ \
Complement of setX referring to variables not inX X
Propositional formulas φ, ψ, · · ·
Inference �
Logical operators ∧,∨,¬,→
Tautology >
Contradiction ⊥

Sets of nodes
A node Ai
The set of parents of Ai P(Ai)
Instantiation of P(Ai) p(Ai)
The Set of descendants of Ai Dn(Ai)
The set of non descendants of Ai Co(Ai) = V \ (Dn(Ai)∪

P(Ai) ∪Ai)
The children set of Ai Ch(Ai)

Binary relations
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Indifference ∼
Incomparability ±
Strictly preferred �
Importance relation .

π-Pref net
Constraints between symbolic weights pertaining to
preference statements

C0

Additional constraints added by the user C1
Set of all the constraints C

Relations d’ordres sur des vecteurs
Product dominance relation �prod
min dominance relation �min
Discrimin dominance relation �discrimin
Leximin dominance relation �leximin
Pareto dominance relation �Pareto
Symmetric Pareto dominance relation �SP

Possibilistic logic
Possibilistic Formula (fi, ci)
Possibilistic logic base Σ
Possibility degree of a configuration ω π(ω)
Possibility measure of an event F ⊆ Ω Π(F )
Necessity measure of an event F ⊆ Ω N(F )

Multiple agent logic
A set of agents Pi
A propositional formula pi
Possibilistic Formula (pi, Pi)
The set of all the agents All
Multiple agent logic base Γ
Possibility degree of a configuration ω π(ω)
Possibility measure of an event F ⊆ Ω Π(F )
Necessity measure of an event F ⊆ Ω N(F )

Table A.1: Notations
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