5,618 research outputs found

    Object recognition using shape-from-shading

    Get PDF
    This paper investigates whether surface topography information extracted from intensity images using a recently reported shape-from-shading (SFS) algorithm can be used for the purposes of 3D object recognition. We consider how curvature and shape-index information delivered by this algorithm can be used to recognize objects based on their surface topography. We explore two contrasting object recognition strategies. The first of these is based on a low-level attribute summary and uses histograms of curvature and orientation measurements. The second approach is based on the structural arrangement of constant shape-index maximal patches and their associated region attributes. We show that region curvedness and a string ordering of the regions according to size provides recognition accuracy of about 96 percent. By polling various recognition schemes. including a graph matching method. we show that a recognition rate of 98-99 percent is achievable

    COSMOS-7: Video-oriented MPEG-7 scheme for modelling and filtering of semantic content

    Get PDF
    MPEG-7 prescribes a format for semantic content models for multimedia to ensure interoperability across a multitude of platforms and application domains. However, the standard leaves it open as to how the models should be used and how their content should be filtered. Filtering is a technique used to retrieve only content relevant to user requirements, thereby reducing the necessary content-sifting effort of the user. This paper proposes an MPEG-7 scheme that can be deployed for semantic content modelling and filtering of digital video. The proposed scheme, COSMOS-7, produces rich and multi-faceted semantic content models and supports a content-based filtering approach that only analyses content relating directly to the preferred content requirements of the user

    Engineering simulations for cancer systems biology

    Get PDF
    Computer simulation can be used to inform in vivo and in vitro experimentation, enabling rapid, low-cost hypothesis generation and directing experimental design in order to test those hypotheses. In this way, in silico models become a scientific instrument for investigation, and so should be developed to high standards, be carefully calibrated and their findings presented in such that they may be reproduced. Here, we outline a framework that supports developing simulations as scientific instruments, and we select cancer systems biology as an exemplar domain, with a particular focus on cellular signalling models. We consider the challenges of lack of data, incomplete knowledge and modelling in the context of a rapidly changing knowledge base. Our framework comprises a process to clearly separate scientific and engineering concerns in model and simulation development, and an argumentation approach to documenting models for rigorous way of recording assumptions and knowledge gaps. We propose interactive, dynamic visualisation tools to enable the biological community to interact with cellular signalling models directly for experimental design. There is a mismatch in scale between these cellular models and tissue structures that are affected by tumours, and bridging this gap requires substantial computational resource. We present concurrent programming as a technology to link scales without losing important details through model simplification. We discuss the value of combining this technology, interactive visualisation, argumentation and model separation to support development of multi-scale models that represent biologically plausible cells arranged in biologically plausible structures that model cell behaviour, interactions and response to therapeutic interventions

    3D-HST: A wide-field grism spectroscopic survey with the Hubble Space Telescope

    Get PDF
    We present 3D-HST, a near-infrared spectroscopic Treasury program with the Hubble Space Telescope for studying the processes that shape galaxies in the distant Universe. 3D-HST provides rest-frame optical spectra for a sample of ~7000 galaxies at 1<z<3.5, the epoch when 60% of all star formation took place, the number density of quasars peaked, the first galaxies stopped forming stars, and the structural regularity that we see in galaxies today must have emerged. 3D-HST will cover 3/4 (625 sq.arcmin) of the CANDELS survey area with two orbits of primary WFC3/G141 grism coverage and two to four parallel orbits with the ACS/G800L grism. In the IR these exposure times yield a continuum signal-to-noise of ~5 per resolution element at H~23.1 and a 5sigma emission line sensitivity of 5x10-17 erg/s/cm2 for typical objects, improving by a factor of ~2 for compact sources in images with low sky background levels. The WFC3/G141 spectra provide continuous wavelength coverage from 1.1-1.6 um at a spatial resolution of ~0."13, which, combined with their depth, makes them a unique resource for studying galaxy evolution. We present the preliminary reduction and analysis of the grism observations, including emission line and redshift measurements from combined fits to the extracted grism spectra and photometry from ancillary multi-wavelength catalogs. The present analysis yields redshift estimates with a precision of sigma(z)=0.0034(1+z), or sigma(v)~1000 km/s. We illustrate how the generalized nature of the survey yields near-infrared spectra of remarkable quality for many different types of objects, including a quasar at z=4.7, quiescent galaxies at z~2, and the most distant T-type brown dwarf star known. The CANDELS and 3D-HST surveys combined will provide the definitive imaging and spectroscopic dataset for studies of the 1<z<3.5 Universe until the launch of the James Webb Space Telescope.Comment: Replacement reflects version now accepted by ApJS. A preliminary data release intended to provide a general illustration of the WFC3 grism data is available at http://3dhst.research.yale.edu

    Role of f(R,T,RμνTμν)f(R,T,R_{\mu\nu}T^{\mu\nu}) Model on the Stability of Cylindrical Stellar Model

    Full text link
    The aim of this paper is to investigate the stable/unstable regimes of the non-static anisotropic filamentary stellar models in the framework of f(R,T,RμνTμν)f(R,T,R_{\mu\nu}T^{\mu\nu}) gravity. We construct the field equations and conservation laws in the perspective of this gravity. The perturbation scheme is applied to analyze the behavior of a particular f(R,T,RμνTμν)f(R,T,R_{\mu\nu}T^{\mu\nu}) cosmological model on the evolution of cylindrical system. The role of adiabatic index is also checked in the formulations of instability regions. We have explored the instability constraints at Newtonian and post-Newtonian limits. Our results reinforce the significance of adiabatic index and dark source terms in the stability analysis of celestial objects in modified gravity.Comment: 29 pages, no figure, version accepted for publication in European Physical Journal
    • …
    corecore