98,011 research outputs found

    The Neglected Dimension of Well-Being: Analyzing the Development of "Conversion Efficiency" in Great Britain

    Get PDF
    In Amartya Sen's capability approach, policy makers can focus on different levels to influence the well-being of a society. We argue that improving capability to function as well as absolute levels of functioning achievement should be complemented by attention given to improving individuals' "conversion efficiency", i.e. the efficiency with which individual resources are converted into well-being. In order to examine effects of policies on conversion efficiency and to better understand the trajectories of human well-being over time, it is necessary to measure the development of conversion efficiency. We suggest an intertemporal index of conversion efficiency estimated via a nonparametric order-m approach borrowed from the production efficiency literature to analyze this development of our welfare measure. We exemplify this approach using micro level data from the British Household Panel Survey (BHPS), tracking conversion efficiency for a set of basic functionings in Great Britain from 1991 to 2006. We find that under 30% of the British populace were efficient in their conversion of resources into functionings during the sample horizon. Moreover, age, education and self-employment increase an individual's conversion efficiency, while living in London, being disabled and being separated, divorced or widowed all decrease conversion efficiency. Being married also decreases the conversion efficiency and we find few evidence of gender disparities in conversion efficiency.capability approach, conversion efficiency, efficiency analysis, intertemporal development

    Enhanced spontaneous raman signal collected evanescently by silicon nitride slot waveguides

    Get PDF
    We investigate the effect of waveguide geometry on the conversion efficiency of Raman signals collected by integrated photonic waveguides. Compared to strip-type photonic wires, we report a six-fold increase in conversion efficiency for silicon-nitride slot-waveguides

    Production Efficiency of Ultracold Feshbach Molecules in Bosonic and Fermionic Systems

    Get PDF
    We investigate the production efficiency of ultracold molecules in bosonic 85^{85}Rb and fermionic 40^{40}K when the magnetic field is swept across a Feshbach resonance. For adiabatic sweeps of the magnetic field, the conversion efficiency of each species is solely determined by the phase space density of the atomic cloud, in contrast to a number of theoretical predictions. Our novel model for the adiabatic pairing process, developed from general physical principles, accurately predicts the conversion efficiency for {\it both} ultracold gases of bosons and of fermions. In the non-adiabatic regime our measurements of the 85^{85}Rb molecule conversion efficiency follow a Landau Zener model, with a conversion efficiency that is characterized by the density divided by the time derivative of the magnetic field.Comment: 5 pages, 3 figure

    Solar cell power scanner

    Get PDF
    System locates high- and low-output regions in cadmium sulfide thin film photovoltaic cells. High resolution photograph shows conversion efficiency of each scanned area. X-Y recorder fed by amplified signal from solar cell also produces power contour map. Photo and map reveal high- and low-conversion-efficiency regions

    Conversion Efficiencies of Heteronuclear Feshbach Molecules

    Full text link
    We study the conversion efficiency of heteronuclear Feshbach molecules in population imbalanced atomic gases formed by ramping the magnetic field adiabatically. We extend the recent work [J. E. Williams et al., New J. Phys., 8, 150 (2006)] on the theory of Feshbach molecule formations to various combinations of quantum statistics of each atomic component. A simple calculation for a harmonically trapped ideal gas is in good agreement with the recent experiment [S. B. Papp and C. E. Wieman, Phys. Rev. Lett., 97, 180404 (2006)] without any fitting parameters. We also give the conversion efficiency as an explicit function of initial peak phase space density of the majority species for population imbalanced gases. In the low-density region where Bose-Einstein condensation does not appear, the conversion efficiency is a monotonic function of the initial peak phase space density, but independent of statistics of a minority component. The quantum statistics of majority atoms has a significant effect on the conversion efficiency. In addition, Bose-Einstein condensation of an atomic component is the key element determining the maximum conversion efficiency.Comment: 46 pages, 32 figure

    Enhanced conversion efficiency for harmonic generation with double resonance

    Get PDF
    Conversion efficiency for cw harmonic generation is calculated for the situation in which both fundamental and harmonic waves are resonant. Compared with the situation of a singly resonant cavity at the fundamental, the doubly resonant geometry can lead to an increase of the effective nonlinear coefficient. High conversion efficiency can thus be achieved with nonlinear crystals of relatively low nonlinear coefficient. and with modest pump power for the fundamental input

    Development of a high efficiency thin silicon solar cell

    Get PDF
    Significant improvements in open-circuit voltage and conversion efficiency, even on relatively high bulk resistivity silicon, were achieved by using a screen-printed aluminum paste back surface field. A 4 sq cm 50 micron m thick cell was fabricated from textured 10 omega-cm silicon which had an open-circuit voltage of 595 mV and AMO conversion efficiency at 25 C of 14.3%. The best 4 sq cm 50 micron thick cell (2 omega-cm silicon) produced had an open-circuit voltage of 607 mV and an AMO conversion efficiency of 15%. Processing modifications are described which resulted in better front contact integrity and reduced breakage. These modifications were utilized in the thin cell pilot line to fabricate 4 sq cm cells with an average AMO conversion efficiency at 25 C of better than 12.5% and with lot yields as great as 51% of starts; a production rate of 10,000 cells per month was demonstrated. A pilot line was operated which produced large area (25 cm) ultra-thin cells with an average AMO conversion efficiency at 25 deg of better than 11.5% and a lot yield as high as 17%
    • …
    corecore