12 research outputs found

    Nové knihy

    Get PDF

    A parallel functional language compiler for message-passing multicomputers

    Get PDF
    The research presented in this thesis is about the design and implementation of Naira, a parallel, parallelising compiler for a rich, purely functional programming language. The source language of the compiler is a subset of Haskell 1.2. The front end of Naira is written entirely in the Haskell subset being compiled. Naira has been successfully parallelised and it is the largest successfully parallelised Haskell program having achieved good absolute speedups on a network of SUN workstations. Having the same basic structure as other production compilers of functional languages, Naira's parallelisation technology should carry forward to other functional language compilers. The back end of Naira is written in C and generates parallel code in the C language which is envisioned to be run on distributed-memory machines. The code generator is based on a novel compilation scheme specified using a restricted form of Milner's 7r-calculus which achieves asynchronous communication. We present the first working implementation of this scheme on distributed-memory message-passing multicomputers with split-phase transactions. Simulated assessment of the generated parallel code indicates good parallel behaviour. Parallelism is introduced using explicit, advisory user annotations in the source' program and there are two major aspects of the use of annotations in the compiler. First, the front end of the compiler is parallelised so as to improve its efficiency at compilation time when it is compiling input programs. Secondly, the input programs to the compiler can themselves contain annotations based on which the compiler generates the multi-threaded parallel code. These, therefore, make Naira, unusually and uniquely, both a parallel and a parallelising compiler. We adopt a medium-grained approach to granularity where function applications form the unit of parallelism and load distribution. We have experimented with two different task distribution strategies, deterministic and random, and have also experimented with thread-based and quantum- based scheduling policies. Our experiments show that there is little efficiency difference for regular programs but the quantum-based scheduler is the best in programs with irregular parallelism. The compiler has been successfully built, parallelised and assessed using both idealised and realistic measurement tools: we obtained significant compilation speed-ups on a variety of simulated parallel architectures. The simulated results are supported by the best results obtained on real hardware for such a large program: we measured an absolute speedup of 2.5 on a network of 5 SUN workstations. The compiler has also been shown to have good parallelising potential, based on popular test programs. Results of assessing Naira's generated unoptimised parallel code are comparable to those produced by other successful parallel implementation projects

    Software for Exascale Computing - SPPEXA 2016-2019

    Get PDF
    This open access book summarizes the research done and results obtained in the second funding phase of the Priority Program 1648 "Software for Exascale Computing" (SPPEXA) of the German Research Foundation (DFG) presented at the SPPEXA Symposium in Dresden during October 21-23, 2019. In that respect, it both represents a continuation of Vol. 113 in Springer’s series Lecture Notes in Computational Science and Engineering, the corresponding report of SPPEXA’s first funding phase, and provides an overview of SPPEXA’s contributions towards exascale computing in today's sumpercomputer technology. The individual chapters address one or more of the research directions (1) computational algorithms, (2) system software, (3) application software, (4) data management and exploration, (5) programming, and (6) software tools. The book has an interdisciplinary appeal: scholars from computational sub-fields in computer science, mathematics, physics, or engineering will find it of particular interest

    Analyse und Transformation kontrollfluáparalleler Programme

    Get PDF

    A multiple-SIMD architecture for image and tracking analysis

    Get PDF
    The computational requirements for real-time image based applications are such as to warrant the use of a parallel architecture. Commonly used parallel architectures conform to the classifications of Single Instruction Multiple Data (SIMD), or Multiple Instruction Multiple Data (MIMD). Each class of architecture has its advantages and dis-advantages. For example, SIMD architectures can be used on data-parallel problems, such as the processing of an image. Whereas MIMD architectures are more flexible and better suited to general purpose computing. Both types of processing are typically required for the analysis of the contents of an image. This thesis describes a novel massively parallel heterogeneous architecture, implemented as the Warwick Pyramid Machine. Both SIMD and MIMD processor types are combined within this architecture. Furthermore, the SIMD array is partitioned, into smaller SIMD sub-arrays, forming a Multiple-SIMD array. Thus, local data parallel, global data parallel, and control parallel processing are supported. After describing the present options available in the design of massively parallel machines and the nature of the image analysis problem, the architecture of the Warwick Pyramid Machine is described in some detail. The performance of this architecture is then analysed, both in terms of peak available computational power and in terms of representative applications in image analysis and numerical computation. Two tracking applications are also analysed to show the performance of this architecture. In addition, they illustrate the possible partitioning of applications between the SIMD and MIMD processor arrays. Load-balancing techniques are then described which have the potential to increase the utilisation of the Warwick Pyramid Machine at run-time. These include mapping techniques for image regions across the Multiple-SIMD arrays, and for the compression of sparse data. It is envisaged that these techniques may be found useful in other parallel systems

    Prototyping parallel functional intermediate languages

    Get PDF
    Non-strict higher-order functional programming languages are elegant, concise, mathematically sound and contain few environment-specific features, making them obvious candidates for harnessing high-performance architectures. The validity of this approach has been established by a number of experimental compilers. However, while there have been a number of important theoretical developments in the field of parallel functional programming, implementations have been slow to materialise. The myriad design choices and demands of specific architectures lead to protracted development times. Furthermore, the resulting systems tend to be monolithic entities, and are difficult to extend and test, ultimatly discouraging experimentation. The traditional solution to this problem is the use of a rapid prototyping framework. However, as each existing systems tends to prefer one specific platform and a particular way of expressing parallelism (including implicit specification) it is difficult to envisage a general purpose framework. Fortunately, most of these systems have at least one point of commonality: the use of an intermediate form. Typically, these abstract representations explicitly identify all parallel components but without the background noise of syntactic and (potentially arbitrary) implementation details. To this end, this thesis outlines a framework for rapidly prototyping such intermediate languages. Based on the traditional three-phase compiler model, the design process is driven by the development of various semantic descriptions of the language. Executable versions of the specifications help to both debug and informally validate these models. A number of case studies, covering the spectrum of modern implementations, demonstrate the utility of the framework
    corecore