
warwick.ac.uk/lib-publications

A Thesis Submitted for the Degree of PhD at the University of Warwick

Permanent WRAP URL:

http://wrap.warwick.ac.uk/80185

Copyright and reuse:

This thesis is made available online and is protected by original copyright.

Please scroll down to view the document itself.

Please refer to the repository record for this item for information to help you to cite it.

Our policy information is available from the repository home page.

For more information, please contact the WRAP Team at: wrap@warwick.ac.uk

http://wrap.warwick.ac.uk/80000
mailto:wrap@warwick.ac.uk

A Multiple-SIMD Architecture for

Image and Tracking Analysis

Darren James Kerbyson

A Thesis Submitted to the University of Warwick for the degree of

Doctor of Philosophy

Department of Computer Science

University of Warwick

December 1992

" ..
,,~.' ,.'.

", .' .

~ \

Summary

The computational requirements for real-time image based applications are such as to

warrant the use of a parallel architecture. Commonly used parallel architectures

conform to the classifications of Single Instruction Multiple Data (SIMD), or Multiple

Instruction Multiple Data (MIMD). Each class of architecture has its advantages and

dis-advantages. For example, SIMD architectures can be used on data-parallel

problems, such as the processing of an image. Whereas MIMD architectures are more

flexible and better suited to general purpose computing. Both types of processing are

typically required for the analysis of the contents of an image.

This thesis describes a novel massively parallel heterogeneous architecture,

implemented as the Warwick Pyramid Machine. Both SIMD and MIMD processor

types are combined within this architecture. Furthermore, the SIMD array is

partitioned, into smaller SIMD sub-arrays, forming a Multiple-SIMD array. Thus,

local data parallel, global data parallel, and control parallel processing are supported.

After describing the present options available in the design of massively parallel

machines and the nature of the image analysis problem, the architecture of the

Warwick Pyramid Machine is described in some detail. The performance of this

architecture is then analysed, both in terms of peak available computational power and

in terms of representative applications in image analysis and numerical computation.

Two tracking applications are also analysed to show the performance of this

architecture. In addition, they illustrate the possible partitioning of applications

between the SIMD and MIMD processor arrays.

Load-balancing techniques are then described which have the potential to increase the

utilisation of the Warwick Pyramid Machine at run-time. These include mapping

techniques for image regions across the Multiple-SIMD arrays, and for the

compression of sparse data. It is envisaged that these techniques may be found useful

in other parallel systems.

1

Contents

Summary ... i

1 Introduction .. 1

1.1 Background ... 1

1.1.1 Image analysis ... 2

1.1.2 Parallel architectures .. 3

1.2 Outline of this Thesis ... 4

2 Parallel Architectures ... 7

2.1 Intrcxiuction ... 7
2.2 Classification of Parallel Architectures ... 9

2.2.1 Memory Structure ... 10

2.2.1.1 Shared memory ... 10

2.2.1.2 Distributed shared memory 11

2.2.1.3 Distributed memory ... 12

2.2.2 Inter-connection networks .. 13

2.2.2.1 Bus based systems .. 13

2.2.2.2 Static interconnection networks 14

2.2.2.3 Dynamic interconnection networks 17

2.2.3 The control of parallel processors 19

2.2.4 SIMD vs. MIMD arrays .. 21

2.2.4.1 Active Resources .. 22

2.2.4.2 Technology .. 23

2.2.4.3 Programming .. 24

2.2.4.4 lA>cal autonomy ... 25

2.3 Survey of Existing Parallel Machines .. 27

2.3.1 SIMD architectures .. 27

2.3.1.1 Bit-serial SIMD processor arrays 28

2.3.1.2 Multi-bit SIMD processor arrays 33
2.3.2 MIMD Architectures .. 36

2.3.2.1 Shared Memory machines 36

2.3.2.2 Distributed shared memory 38

ii

2.3.2.3 Distributed memory ... 39

2.4 Summary- .. 41

3 Architectural Options for Image Analysis ... 43

3.1 Introouction ... 43

3.2 Image Analysis Processing .. 44

3.2.1 Iconic processing .. 46

3.2.2 Intermediate processing ... 47

3.2.3 Symbolic processing .. 48

3.3 Computational Requirements for Image Analysis 48

3.4 Image Analysis Architectures ... 51

3.4.1 Dedicated hardware ... 52

3.4.2 Homogeneous pyramids .. 53

3.4.3 Reconfigurable ... 55

3.4.4 Heterogeneous architectures ... 56

3.5 Summary- .. 60

4 The Warwick Pyramid Machine ... 62

4.1 Intro<:luction It ••••••••• It •• It •••••••••••••••• It ••••• It •• It ••••• It •• It ••••• It •• 62

4.2 Overview of the WPM ... 63

4.3 Implementation of the WPM .. 65

4.3.1 The SIMD array ... 66

4.3.1.1 Functionality of the DAP PE 67

4.3.1.2 The SIMD associative Count 70

4.3.2 The MIMD array ... 72

4.3.3 The Cluster Controller .. 74

4.3.3.1 The Cluster Bus ... 75

4.3.3.2 The interface between the DAP SIMD array

and the controller .. 76

4.3.3.3 The scalar ALU ... 77

4.3.3.4 Instruction sequencing 79

4.3.3.5 The shared memory between the controller

and the Transputer .. 82

4.3.4 Connecting Clusters together .. 83

4.3.4.1 Communication at the SIMD level 84

4.3.4.2 The synchronisation of Clusters 86

4.3.5 The prototype system ... 90

4.3.6 M-SIMD Operation of the WPM 92

4.4 Programming the WPM .. 93

4.4.1 The Cluster assembler - CLASS 94

ill

4.4.1.1 The use of CLASS for Cluster operations 96

4.4.2 Remote procedure calls between C and CLASS 97

4.4.3 Pyramid C++ .. 99

4.5 Performance of the WPM .. 101

4.6 Summary .. 103

5 Mapping and Processing Data on the WPM M-SIMD Array 104

5.1 Introduction ... 104

5.2 The Advantage of M-SIMD over SIMD ... 105

5.2.1 I..ocaIAutonomy ... 105

5.2.2 Associative Response Operations 108

5.2.3 Count Response ... 111

5.2.4 Data communication ... 112

5.3 Mapping Data onto the M-SIMD Array .. 113

5.3.1 Sheet mapping ... 114

5.3.2 Crinkled mapping ... 114

5.3.3 Comparison of Data mappings ... 115

5.4 Image Operations on the M-SIMD Array .. 117

5.4.1 SIMD filtering operations .. 117

5.4.2 The use of the WPM associative count 121

5.4.2.1 Histogram generation 122

5.4.2.2 Rank order filters ... 124

5.4.2.3 Mean and Variance calculation 126

5.4.2.4 Image moment calculations 127

5.5 Matrix Operations on the WPM ... 128

5.5.1 Mapping considerations .. 129

5.5.2 Matrix Algorithms ... 131

5.5.2.1 Matrix addition and subtraction 131

5.5.2.2 Matrix multiplication .. 131

5.5.2.3 Matrix inversion ... 133

5.5.2.4 Mattix trans'pose It •••••••••• t.t •••••••• t •• 134
5.5.3 Performance of matrix operations 135

5.5.3.1 Addition and subtraction performance 137

5.5.3.2 Multiplication performance 138

5.5.3.3 Inversion performance 141

5.5.3.4 Transpose performance. 141

5.6 Summary .. 143

6 The Performance of Tracking Operations on the WPM 145

6.1 Introouction st ••••••••••••••••• t •••••••••••• t •• tt ••••••• t •• et •••••• 1 •••••• t ••• t •• 145

iv

6.1.1 Estimation of unknown quantities 146

6.2 Tracking Algorithms ... 148

6.2.1 Tracking models ... 150

6.2.2 Data Association ... 154

6.2.2.1 The Nearest Neighbour Standard Filter 156

6.2.2.2 The optimal Bayesian approach 156

6.2.2.3 The Probabilistic Data Association Filter 157

6.3 Tracking Application 1 - Object Tracking .. 159

6.3.1 Object tracking models .. 160

6.3.1.1 Position tracking model. 160

6.3.1.2 Size tracking model. .. 161

6.3.2 Object detection and segmentation processing 163

6.3.2.1 ObjectDetection ... 164

6.3.2.2 Object Segmentation .. 167

6.4 Tracking Application 2 - Generic Target Tracking 170

6.4.1 Image processing operations ... 171

6.4.1.1 Image thresholding ... 171

6.4.1.2 Monotonicity Operator 171

6.4.1.3 Corner detection ... 172

6.5 Performance on the WPM ... 174

6.5.1 The image processing ... 174

6.5.2 Tracking operations ... 175

6.5.2.1 The data association .. 176

6.5.2.2 Processing of the Kalman filters 178

6.6 Summary .. 182

7 Load-Balancing on the WPM .. 183

7.1 Introduction ... 183

7.2 Minimising Clusters Used for Processing 185

7.2.1 Calculation of Image Shifts .. 186

7.2.2 Voting on an image shift.. .. 188

7.3 The Bin Packing of Clusters .. 191

7.3.1 Three-dimensional bin packing .. 192

7.3.2 Two-dimensional bin packing ... 194

7.3.3 Comparison between the FDDH and the FPDS

algorithms.. 197

7.3.4 Implementation of the load-balancing algorithms 200

7.4 wad-BalaIlcing of Sparse Data It •••••• It •••••••••••••• It •• It •• It •••••• It •• 201
7.4.1 The Monotonic Lagrangian Grid 202

v

7.4.2 The Partitioned Monotonic Lagrangian Grid 207

7.4.3 Comparison between the MLG and the PMLG 209

7.4.4 Construction of an MLG on an SIMD array 212

7.5 Summary .. 213

8 Conclusions .. 215

Bibliography .. 220

Appendix A • Cluster Bus Ports ... 234

Appendix B • The Cluster Assembler .. 240

Appendix C • The Kalman Filter ... 247

vi

List of Figures

2.1 A shared memory system ... 11

2.2 A distributed shared memory system ... 11

2.3 A distributed memory system .. 12

2.4 Some static interconnection network topologies 15

2.5 Three dynamic interconnection topologies ... 18

2.6 The organisation of an SISD architecture ... 19

2.7 The organisation of an SIMD architecture .. 20

2.8 The organisation of an MISD architecture .. 20

2.9 The organisation of an MIMD architecture ... 21

2.10 The organisation of an M-SIMD architecture .. 26

2.11 The configuration of a two-dimensional SIMD array 27

2.12 The MPP processing element .. 29

2.13 Example reconfiguration of the RP A PEs .. 31

2.14 Two CM2 Nodes with associated memory and floating point unit. 32

2.15 Four clusters from the DASH prototype .. 38

3.1 Example image analysis processing flow ... 44

3.2 The levels of processing within image analysis .. 46

3.3 The configuration of the SYDAMA-2 system .. 53

3.4 The structure of a multiple-layer homogeneous pyramid architecture 54

3.5 The Orthogonal Multi-Processor with an Enhanced mesh 57

3.6 The Image Understanding Architecture ... 59

4.1 The Warwick Pyramid Machine ... 63

4.2 A Cluster, the modular component of the WPM 64

4.3 A 16x16 DAP SIMD array, showing the detail of 4 PEs 66

4.4 The DAP processing element It ••••••••••••• I ••• It ••••••••••••• f ••• 67

4.5 A 64 input count It ••••• It •• It •••••••••••••••••••••••••••••• It •••••••••••••••••••••••• 71

4.6 A 256 input count from four 64 input counts .. 72

4.7 The internal components of a T800 and a T9000 Transputer 73

4.8 The main components of the Cluster controller .. 74

vii

4.9 Operation of the Cluster Bus ... 76

4.10 Interface between the SIMD array and the controller 77

4.11 The controllers scalar ALU (the AMD29116) .. 78

4.12 The Cluster controllers intruction word ... 80

4.13 The controllers sequencer showing Transputer Load path 81

4.14 The shared memory between the Transputer and the controller 83

4.15 The interconnection of four Clusters .. 84

4.16 Interconnecting Cluster SIMD arrays ... 85

4.17 The hand-shaking mechanism between Clusters 87

4.18 Example synchronisation between six Clusters in a shift operation 89

4.19 The prototype Cluster boards .. 91

4.20 The Remote Procedure Call frame used within the Cluster 97

5.1 Number of regions that can be processed in parallel on an ideal M-

SIMD architecture and on the WPM M-SIMD array 106

5.2 Efficiency of the WPM and SIMD array for varying region sizes 107

5.3 Comparison between the ideal M-SIMD architecture, the WPM M-

SIMD array and an SIMD array for associative response operations 109

5.4 Relative performance of the WPM M-SIMD array, and an SIMD array,

with the ideal M-SIMD architecture for associative operations 110

5.5 The time taken to count the number of bits set in a single bit plane on

both an SIMD array and on the WPM .. 112

5.6 The time taken to shift data across the M-SIMD array within the WPM,

and an SIMD array.. 113

5.7 Sheet and Crinkled data mappings on an array processor 115

5.8 Convolution paths for a 5x5 mask on an array processor 118

5.9 3x3 convolution masks for smoothing and high-pass filtering 120

5.10 The horizontal Sobel gradient operator ... 120

5.11 The Sobel operator decomposed into neighbour additions 121

5.12 The Faddeev formulation of matrix inversion .. 133

5.13 Example iteration of the Faddeev inversion algorithm on a 3x3 matrix 134

5.14 Transposing a matrix on an array processor ... 134

5.15 An example of sixteen matrices mapped onto a processor array 136

5.16 Time taken to perform a 16x 16 matrix addition for a varying number of

matrices If ••• If •••••••••••• I ••• I ••••••••••••• If •••••••••••••••• If ••••• If •••• I ••••• It 138

5.17 16x16 matrix multiplication on a 128x128 DAP SIMD array 138

5.18 16x 16 matrix multiplication on an 8x8 Cluster WPM 139

5.19 Comparison of the minimum processing time for matrix multiplication

1:>etween the DAP and WPM arrays ... 139

Vlll

5.20 Comparison between the WPM and the DAP SIMD array for matrix

multiplication over a range of matrix sizes. 140

5.21 Comparison of the minimum time for matrix inversion between the DAP

and WPM arrays ... 141
5.22 Comparison of matrix transpose on the DAP and WPM arrays 142

6.1 The combination of two Gaussian measurements 147

6.2 Example of validation gating in two dimensions 156

6.3 Two images from a sequence approaching a car 159

6.4 Processing flow showing image processing, size and position tracking 160

6.5 The Imager showing relationship between the size of an object and its

depth from a camera ... 161

6.6 Example detection of circles using the circular Hough transform 165

6.7 Edge points which contribute to a single parameter space location within

the Spoke filter ... 165

6.8 Example of the Spoke filter .. 166

6.9 Example of the Convex hull algorithm .. 169

6.10 Example output from the object segmentation ... 169

6.11 Processing flow in a generic multiple-target tracking environment.. 170

6.12 Example image from a meteor sequence .. 171

6.13 The mono tonic operator of Kories .. 172

6.14 Example image showing the categories of the Harris Corner detector 173

6.15 The parameters passed between the validation gating, PDAF or NNSF

data association and the tracking Kalman fIlters 176

6.16 Validation gates mapped onto four Clusters within the WPM 177

6.17 Time taken to perform a number of Kalman filter operations, n=4, m=2,

on a WPM Cluster and a T800 Transputer ... 180

7.1 The area of an aeroplane on an M-SIMD machine 185

7.2 An object across five Clusters showing the possible shift directions that

can take place to free each Cluster of it ... 187

7.3 Example of a North-East shift on part of a region mapped across four

Clusters ... , ... 189
7.4 Example distribution of sub-images across the WPM, from four images 191

7.5 Example of a set of jobs mapped onto an array processor where each

job requires (pj, qj) processors and tj time ... 192

7.6 Example of the malleability of the mapping of sub-images 193

7.7 Example of shelf packing of eight blocks .. 195

lX

7.8 The utilisation of the WPM using the FFDH Shelf and FPDS load-

balancing algorithms .. 197

7.9 The number of sub-images assigned across the WPM using the FFDH

Shelf and FPDS algorithms .. 198

7.10 The communications required using the FFDH shelf and FPDS

algorithms.. 199

7.11 The time cost for the communications required within the FFDH Shelf

and FPDS algorithms ... 199

7.12 Example of the MLG mapping on a set of 16 data elements 203

7.13 Further example of the MLG mapping resulting in poor locality between

data elements ... 204

7.14 Originl vs. MLG separation on randomly distributed data 205

7.15 Original vs. PMLG separation on randomly distributed data 208

7.16 Mapping nine compressed data sets into a single Cluster 209

7.17 Example of unevenly distributed data ... 210

x

List of Tables

2.1 Trends in VLSI speed and density ... 8

2.2 Comparison of some network topologies ... 16

4.1 The DAP instruction groups .. 69

4.2 Operations performed for inter-Cluster communications 88

4.3 Overhead for synchronised communications .. 90

4.4 Delays across the Cluster bus ... 95

4.5 Comparison of the use of macros and RPC calls 99

4.6 Cluster peak computational, memory and communication performances 102

5.1 Characteristics of Sheet and Crinkled mappings .. 116

5.2 Time taken for convolution operations on the WPM 119

5.3 Comparison of the time taken for the computation of the Sobel filter 121

5.4 Comparison of histogram generation algorithms on the WPM 123

5.5 Comparison of Rank order filter calculations on the WPM 125

5.6 Comparison of the mapping of matrices across a processor array 130

5.7 Time for the computation and communication in matrix operations 135

5.8 Multiplicative factors applied to the computation, broadcast and shifting

times of the various data mappings ... 137

6.1 Image processing operations on the M-SIMD level of the WPM 175

6.2 Matrix/vector operations required on a single iteration of a Kalman filter

with n states and m measurements ... 179

6.3 Timings for the image processing and tracking operations in the two

tracking applications ... 181
7.1 Voting of the SIMD patches shown in Figure 7.3 190

7.2 Time taken for the load-balancing algorithms ... 201

7.3 Processor operations to find all data points within a distance of 16 pixels

from each oilier ... 212

7.4 Time taken for the construction of a PMLG block on the SIMD array

within a WPM Cluster ... 213

7.5 Time taken, and advantages of, the load-balancing techniques on the

WPM ... 213

Xl

Acknowledgements

There are many people to whom grateful thanks are due. Firstly, I would like to thank

Professor Graham Nudd, my supervisor, for enabling this work to take place and for

his guidance throughout it. I would also like to thank other members of the VLSI

group, both past and present, for their help and support. Special thanks must be given

to Tim Atherton for his constant enthusiasm to many aspects of this work, and to

Roger Packwood for his support in the early stages.

I would also like to thank Tim Atherton and Kay Garbett for their valued work in

proof-reading this thesis.

Finally, I would like to give very special thanks to Kay Garbett, for her support, love,

understanding, and patience during the writing of this thesis.

xii

Declaration

This thesis is presented in accordance with the regulations for the degree of Doctor of

Philosophy. It has been composed by myself and has not been submitted in any

previous application for any degree. The work described in this thesis has been

undertaken by myself except where otherwise stated.

Overviews of the Warwick Pyramid Machine have been published in [Nudd88,

Vaudin89, Nudd89, Atherton90, Nudd91, Nudd92a]. The use of the Warwick

Pyramid Machine for tracking operations has been published in [Kerbyson92,

Nudd92b, Nudd92c].

Xlll

Chapter 1

Introduction

1.1 Background

There has been rapid progress in increasing the performance of conventional uni

processor computer systems over recent years [Hennessy90]. Two factors account for

much of the performance gained, namely the increase in clock speeds and the increase

in the density of components achievable in VLSI. Further, studies of the efficient

utilisation of components, within a processor, lead to the development of the Reduced

Instruction Set Computer (RISC) approach [Patterson80]. The resulting effect on

processors has been an increase in instructional throughput and overall performance.

There are application areas, which have sufficient demands upon computational

resources to make uni-processor systems in-feasible options. Parallel processing has

become associated with such areas. These application areas include meteorology,

oceanography, medical imagery, fuel combustion, and computer vision [Rattner9I].

Current research programmes aim to achieve the processing performances required for

these applications, such as that initiated by the V.S. government - The Grand

Challenges in High Performance Computing [Grand93]. The aim of this is to achieve

Tera-Flop (1012 floating point operations) performances for a range of applications.

The requirements posed by each of these applications is ever increasing. For instance,

the size of the data sets involved in the computation is often a function of the sampling

resolution. The sampling resolution can relate to the smallest particle allowed in a

many-body physical simulation, or to the spatial resolution of an image, or to the

temporal resolution between images. Factors such as these enables processing with

increasingly fine resolution, as and when the computational power pennits.

I

1 Introduction

The factors which increase the amount of computation in image analysis include the

spatial resolution of the image sensors, the number of frames processed per second,

and the algorithms used. The resolution of the images are increasing, for example, this

can be seen with the current shift towards High Definition Television (HDTV)

standards [Harris92]. Another factor is the increase in frame rate, e.g. Kodak has

recently demonstrated a camera which can capture video at a rate of 1000 frames per

second [Kodak90].

Image analysis has received much attention in terms of the algorithms required for

specific operations [Suetens92]. However, little work has been done to produce

processors able to achieve real-time performance. This thesis is concerned with the

computational requirements of image analysis. A major contribution of the work

presented here is the analysis of a programmable parallel architecture which has been

optimised for use on a range of algorithms found in image analysis.

1.1.1 Image analysis

Image analysis is the process of taking in an image and extracting some high level

measurements from it. In a computer vision environment, one would like to use such a

system to mimic the functionality of the human visual system. This requires the

processing of low-level pixel based information and the processing of high level

information after it is extracted from the input images. This processing flow is

commonly referred to as a bottom-up approach.

Several levels of processing are commonly associated with image analysis - low,

intermediate and high [Weems91, Duff88, Leviadli88]. The low level involves the

processing of image pixels either globally, where the operations are done for each

pixel, or locally where regions of interest are processed in an object dependent way.

The high level processing deals with symbolic representations of the images, possibly

re-enforcing hypotheses through the use of known 'world' information. The

intermediate level processing forms a transitionary level between the low and high

processing levels. An image tracking application is used, within this work, to illustrate

these different levels of processing.

2

1 Introduction

A generic tracking operation also requires several levels of processing [Kolbe90], as

in image analysis. At the lowest level, sensor data is processed to produce possible

locations of objects being tracked. These are commonly incorporated into optimal

tracking filters, requiring numeric processing on small data sets. Further operations

may use the output from the tracking filters for high level decision making processes,

such as that for resource allocation.

1.1.2 Parallel architectures

For the efficient utilisation of a parallel machine, the architecture should match the

required computation, communication and structure of the data. In image analysis, the

computation is such as to warrant a parallel solution. The question remains however,

as to which type of architecture is most efficient. Parallel architectures are normally

classified into two categories, according to their control structure, either as Single

Instruction Multiple Data (SIMD) or Multiple Instruction Multiple Data (MIMD)

[Flynn66]. Each type of architecture has their own advantages and disadvantages.

• SIMD architectures are synchronous with each of the processors operating from a

single instruction stream [Hord90]. Thus, they act like a sequential processor

in that only a single program needs to be written. An SIMD machine can be

implemented by the replication of a single processing element. However, a

major disadvantage of an SIMD processor is its instruction bottleneck. If the

data set being processed, for anyone instruction, is not as large as the SIMD

processor array then poor utilisation, and performance, will result. Scaling the

size of an SIMD architecture further increases the efficiency problems.

• MIMD architectures do not suffer from the same instruction bottleneck as an SIMD

architecture. They enable individual processes to be executed concurrently on

each processor. However, due to the asynchronous operation, programming

complications can occur such as deadlock. Additionally, the replicated

components required for the provision of multiple instruction streams adds to

the overall component costs.

The different processing levels, within image analysis operations, are suited to the

different control structures within parallel architectures. The low-level operations are

3

1 Introductioo

suited to an SIMD processor array and the higher-level operations are suited to an

MIMD processor array. Thus, a heterogeneous architectural solution might be

appropriate. That is, a machine which combines some of the features of both SIMD

and MIMD architectures.

The main thesis of this work is the analysis of a novel architecture which contains both

SIMD and MIMD processor arrays. This machine is termed the Warwick Pyramid

Machine (WPM) [Nudd89, Nudd91, Nudd92a, Nudd92b]. It combines a fine grain

massively parallel SIMD array, partitioned into smaller Multiple-SIMD arrays, with a

course grained MIMD array. This machine was designed from a study of the

requirements of image analysis, and is thus aimed at the combined processing of the

low and high levels of image analysis.

1.2 Outline of this Thesis

This thesis contains a detailed description of the design and implementation of the

Warwick Pyramid Machine. The performance advantages achievable on this

architecture are examined. In addition, a number of image processing and tracking

operations are examined and the performance analysed on this architecture. Load

balancing techniques, for the efficient utilisation of this architecture, are also

described. The thesis is organised in the following way:

Chapter 2 contains a review of parallel architectures. It classifies architectures

according to their memory, interconnection and control structures. The

ways in which parallel architectures have exploited these factors are

described through a review of existing single array machines. The

machines are classified according to their control structure, that is to either

SIMD or MIMD control paradigms.

Chapter 3 reviews the operations involved in image analysis. The computational

requirements of the different processing levels are examined.

Architectures, which have been designed to efficiently exploit the different

levels of processing within image analysis, are examined.

4

1 Introduction

Chapter 4 contains a detailed description of the Warwick Pyramid Machine. This

machine is a massively parallel heterogeneous architecture combining

several processor types. The design of the Warwick Pyramid Machine, the

implementation of a prototype, and also the issues concerned with the

programming of a dual paradigm architecture, are described.

Chapter 5 contains an analysis of the advantages that this architecture can achieve

over conventional parallel architectures. In particular, the capabilities of the

Multiple-SIMD array are examined. The mapping of data onto the

architecture is illustrated using both image based data and numeric (matrix

based) data.

Chapter 6 examines two tracking applications and illustrates how different parts of

the processing can be mapped onto the different levels of the Warwick

Pyramid Machine. The fIrst is a low density tracking example, from an

image analysis application, requiring image operations and the tracking of

the size and position of a small number of objects through an image

sequence. The second is a higher density situation, treated as a generic

target tracking application, where the image pre-processing poses less of a

requirement then the actual tracking operations.

Chapter 7 considers the dynamic mapping of data across the Warwick Pyramid

Machine, at run-time, to increase the machines utilisation. Load-balancing

techniques are considered for both the dynamic mapping of image regions

across the machine and for the mapping of sparse data sets.

Chapter 8 draws some conclusions from this work and makes some suggestions for

further work.

The contributions to the fIelds of parallel processing and image analysis contained

within this thesis include :

• The design and implementation of an heterogeneous architecture which

contains the capability of simultaneously processing low-level and high

level infonnation.

5

1 Introduction

• The novel partitioning of the SIMD array, into a Multiple-SIMD array,

within the architecture enabling the instruction bottleneck of conventional

SIMD arrays to be overcome. This enables SIMD arrays to be scaled in

size without perfonnance inefficiencies.

• The use of the Multiple-SIMD for the novel formulation of some

commonly used operations in low-level image analysis.

• The partitioning of tracking applications across the multiple-levels within

the Warwick Pyramid Machine.

• The novel formulation of an object size tracking operation that exploits a

linear relationship between range and inverse size. This enables a set of

size based measurements to be used to estimate the depth of objects from

the image plane .

• Novel dynamic load-balancing algorithms which enable the quick re

arrangement of data, both dense iconic data and sparse data sets, across

the Warwick Pyramid Machine at run-time.

6

Chapter 2

Parallel Architectures

2.1 Introduction

Applications, such as image analysis and image generation, require vast amounts of

computing power if they are to achieve the real-time operation required in robotics and

simulation environments. Other areas such as climatic modelling, fluid dynamics, and

vehicle dynamics amongst others, also require Tera-Flop (1012 floating point

operations) levels of computational power [Rattner91]. The performance of

conventional uniprocessor systems cannot currently achieve this level of performance,

thus a parallel solution has to be sought.

In this chapter, the options available for the construction of general purpose parallel

architectures are described and surveyed. The options include the structure of the

memory, the interconnection between processors, and the control structure of multiple

processors. The parallel architectures considered here are homogeneous, i.e. those that

are constructed from a single type of processor. Later, in Chapter 3, the computational

requirements for image analysis are reviewed which leads to a discussion on

heterogeneous architectures.

The performance trends within microprocessors are reflected both by the trends in

clock speed and in the density of semiconductor technology. These trends have been

described by Procter [Procter91] and can be seen in Table 2.1 for ECL and CMOS

semiconductor families. In CMOS the clock speed is doubling approximately every 4

years and the density of components is doubling every 1.5 years.

7

2 Parallel Architectures

ECL CMOS DRAM

Chip level speed (trend p.a.) +20% +20% +12%

Chip density (trend p.a.) +35% +55% +60%

Table 2.1 - Trends in VLSI clock speed and density.

The difference between the trends in the clock rate and the density can be accounted

for by the relationship between them and the minimum feature size. The clock speed

scales approximately linearly with the minimum feature size, whereas the density

scales as the square of it. If the clock speed is solely relied upon to increase present

performances, and the current trends continue, then TeraFlop performances will not be

achieved within the next 60 years (assuming a current uniprocessor can achieve

30Mflops).

Performance improvements may also be achieved by the use of processors working

concurrently, with increasing semiconductor densities as well as increasing the

numbers of processors within a system. However it is not usually a simple task to

connect together an ever increasing number of processors so that they can co-operate

on a single task. In some cases it has been shown that adding more processors into a

system can actually increase the amount of time taken for a given task [Hwang85].

Many parallel architectures have been proposed, some have been built and a few have

become commercial products. Several surveys on parallel architectures have been

carried out, including that of Duncan [Duncan90] which gives an overview of the

options available for parallel processing, and those of Gehringer [Gehinger88] and

Lim and Binford [Lim87] who survey existing commercial machines. A survey of

current (1991) parallel machines, their costs, availability and configurations, is given

by Trew and Wilson [Trew91]. In addition, several books are devoted to parallel

processing such as that by Hwang [Hwang85] and that by Almasi and Gottlieb

[Almasi89].

This chapter details the options available for the use of processors within a parallel

processing system, and surveys existing parallel architectures. In Section 2.2, parallel

architectures are described in terms of their memory structure, interconnection

8

2 Parallel Architectures

schemes between processors, and control structure. In Section 2.3, existing parallel

architectures are described and classified according to their control structures.

2.2 Classification of Parallel Architectures

There are several levels in which a processor can be classed as being parallel. At a

high level, a processor may be deemed to be parallel if it belongs to an array of such

processors, or at a low level parallelism can be seen through bit-parallel operations

within an ALU. Duncan [Ducan90] states that processors which employ only low

level parallel mechanisms should be excluded from any parallel classification and

viewed only as sequential processors (often referred to as a von Neumann

architecture). Low-level mechanisms within a uniprocessor include:

- Multi-bit (word) operation

- Instruction pipelining, allowing overlapping of various components of a single

operations such as fetching, execute, and store

- Separate CPU and I/O capabilities

- Super-scalar, where multiple functional units exist such as in the Motorola 88110

[Diefendorff92]. This contains several integer functional units in addition to

separate units for floating point addition, multiplication and division.

However the present generation of Reduced Instruction Set Computers (RISC) have

ever increasing functionality, and increased performance in the commercial market

place. For instance, the Motorola 88110 includes an additional graphics processing

unit with the capability of performing integer addition or subtraction on either 8-, 16-,

32-bit words within its single 64-bit ALU. Each word-length is packed so as to fill the

64-bit ALU. Thus the processing of eight 8-bit data words can take place in parallel

within a single cycle. One can see that classifying parallelism is not as simple as it may

seem.

The main factors which distinguish architecture types are their memory structures, the

interconnection topologies between processors and/or between processors and

memory, and the control structure of the processors. These are described below.

9

2 Parallel Architectures

2.2.1 Memory Structure

An ideal configuration, encompassing both processors and memory, is the Parallel -

RAM (P-RAM) model, widely used within theoretical Computer Science, e.g.

[Gibbons88]. In this model, it is assumed that a number of processors can

simultaneously access any piece of data, from any memory location within the

machine, with no overheads or conflicts. Although this is a useful model in the

research of parallel algorithms it is not a feasible proposition for implementation. The

hardware required to implement n-ported memory increases with the number of

processors. In reality, any architecture may be used to simulate a P-RAM model, but

with a time penalty due to the control and accessibility of the data within the memory

structure.

The P-RAM model is feasible, to some extent, when the number of processors in the

network is small. This class of machines is commonly referred to as shared memory

architectures. In such architectures all processors have access to a common memory

structure. An alternative structure, which is somewhat easier to implement, is that of a

distributed memory architecture, in which each processor has its own local memory

and communicates to other processors or memories through a separate inter

connection network.

2.2.1.1 Shared memory

Shared memory architectures commonly consist of a number of processors connected

to a number of memory banks via a switching network - as shown in Figure 2.1. Each

processor can simultaneously access all parts of the memory with equal latency. The

switching network is responsible for connecting any of the processors to any of the

memories.

Although shared memory systems have no overheads associated with data locality or

access, they do have synchronisation problems - those associated with the updating of

information in the correct sequence across processors. Techniques such as

semaphores must be used. Semaphores enable software synchronisation of the update

of data, but result with time overheads in the software.

10

2 Parallel Architectures

• • •

• •• M

Figure 2.1 - A shared memory system.

However as the number of processors increases, the requirements of a memory

switching network results in the system being un-economic to implement. In addition,

as the number of processors increases, the chances that more than one processor will

access the same memory location at anyone time also increases, causing memory

contention problems.

2.2.1.2 Distributed shared memory

In distributed shared memory systems each processor has its own local memory,

which may be treated as a cache, and forms part of the overall memory structure. Data

which is frequently accessed by the processors is stored within these local memories.

Other data can be accessed from the local memories of the other processors, but with

increased latency time. The structure of a distributed shared memory system is shown

in Figure 2.2.

• • •

• • •

Memory Interconnection network

Figure 2.2 - A distributed shared memory system.

11

2 Parallel Architectures

The memory network does not need as high a bandwidth as that for shared memory

systems since most of the memory access is now between the processors and their

local memory. Thus a hierarchical memory system is formed, having a high

bandwidth between a processor and its local memory, and a lower bandwidth between

a processor and the rest of the shared memory. This system works well as long as the

data is efficiently distributed amongst the local memories.

The design of the memory network is not as critical within the distributed system as in

the shared memory system since its utilisation is less. This results in a greater potential

for scalability with increasing numbers of processors. Problems arise however, when

two processors need to process the same data. One solution is to make multiple copies

of the data within the processors local memories. This can cause significant cache

coherency problems between processors but can be solved for small numbers of

processors through a hardware implementation.

2.2.1.3 Distributed memory

In a distributed memory system, each processor is connected only to its own local

memory, with no hardware support for global memory access. Instead the processors

themselves are interconnected, allowing data to be passed between processors, using

either message passing operations in asynchronous systems (e.g. MIMD) or in lock

step in synchronous systems (e.g. SIMD). The structure of a distributed memory

system is shown in Figure 2.3.

Processor Interconnection network

• • •

• • •

Figure 2.3 - A distributed memory system.

12

2 Parallel Architeeturcs

The inter-processor network within a distributed processing system is typically slower

than that of the two shared memory systems. Thus the distribution of the data, across

a network of distributed memory processors, is more critical than within shared

memory systems. Message passing, for inter-processor communication in

asynchronous systems, has the potential to hide communication latencies by

scheduling further processes during the communication time.

Distributed memory systems scale readily. The required communication networks are

not as intrinsically inbuilt as those of shared memory systems. The latter places

restrictions on the number of processors. The disadvantage of the distributed system is

the increase in latency time for the communication of data between processors. This

necessitates optimisation of the data distribution so as to minimise the required

communications.

2.2.2 Inter-connection networks

The interconnection network between processors in a distributed system, or between

memories within shared memory systems, forms an important feature of any parallel

architecture. Various interconnection networks have been proposed and generally fall

into two categories - static and dynamic [Feng81]. Static networks result in a fixed

interconnection scheme and are typically used for inter-processor communication.

Dynamic networks have the capability to rearrange the connections between nodes

within the network and are used within shared memory systems.

It is advantageous to use a network topology which matches the communication

patterns, in the processing of the data, for which the system will be used. However,

for a general purpose system, such information about the data can not be assumed in

advance. Restricting the system to image processing reduces the available options as

will be discussed in Chapter 3.

2.2.2.1 Bus based systems

The simplest interconnection network is a common bus to which each processor

within the network is connected. Bus networks have a low minimum latency for

communications between any two processors since no intennediate processors are

13

2 Parallel Architectures

involved. They are easily constructed requiring few resources, growing linearly with

the number of processors.

The major disadvantage of a bus based system is that its throughput is fixed. Only one

processor communication can take place at anyone time. Thus as the number of

processors increases, increasing possible communication traffic, bus contention can

become a problem. The effect of this is an increase in average latency times.

2.2.2.2 Static interconnection networks

The perfonnance of a bus system can be improved by increasing the number of

connections from each processor. The resulting processor topology affects the

maximum latency time for communication between two processors. The maximum

latency is proportional to the diameter of the processor network (maximum distance

between any two processors). Some static interconnection networks are shown in

Figure 2.4 and described below. Reviews of interconnection networks have been

given by Feng [Feng81] and by Broomell [Broome1l83].

Binary tree - In a binary tree, the maximum number of connections per processor is

3: leaf nodes have 2 and the root has one. Binary trees are particularly useful in

supporting divide and conquer algorithms for searching and sorting operations

[Duncan90]. Other trees have been suggested but the binary is the most analysed.

It is also suited to VLSI implementation. The maximum distance between any two

nodes in a binary tree is 210g2(N+ 1) - 2.

Quadtree - The quadtree can be thought of as a two-dimensional binary tree, with

several levels of processors, fonning a pyramid and having a single processor on

the first level or an apex. Each processor is connected to a single processor in the

level above it, and to four processors in the level below it. Additionally the

processors can be connected to their four nearest neighbours on the same level.

Five connections from each processor are thus required and the maximum distance

between any two nodes is 210g2(N+ 1)-2.

Star - In a star the central processor is connected to all other processors requiring (N

I) connections in an N processor system. The number of inter-connections for the

central node makes a star topology impractical for large numbers of processors.

14

2 Parallel Architectures

a) Linear b) Binary tree c) Star

~"" b. ~

~ 'l

~ ~

~

d) Ring e) Fully connected f) 4-way mesh

g) Quadtree pyramid h) 3-cube i) 4-cube

Figure 2 .4 - Some static interconnection network topologies.

Meshes (ID) - A one dimensional nearest neighbour network forms a single linear

array of processors, each requiring two connections. The maximum distance

between any two processors is (N-I) in an N processor system. This distance can

be halved by joining the end two processors together forming a ring topology.

Meshes (2D) - Two dimensional processor meshes have been popular in both SIMD

and MIMD processor arrays because of their simplicity and scalability. Typically

each processor is 4-way connected to its nearest neighbours, forming a grid, and

15

2 Parallel Archjtectures

is sometimes referred to as a NEWS (North, East, West, South) network. Other

mesh networks have also been implemented: the 6-way mesh which forms a

hexagonal grid; and the 8-way mesh in which each processor is also connected to

its four nearest diagonal neighbours. The diameter in a 4-way mesh is 2...JN and in

an 8-way mesh is ...IN. These distances can be halved by wrapping around the

edges of the array to form a torus network (the top edge connected to the bottom

edge and the left edge to the right edge).

Hypercube - Each processor within a hypercube requires log2N inter-connections in

an N processor system. The maximum distance between any two processors is

log2N. The network topology forms a k-dimensional cube (k = log2N), three and

four dimensional cubes are shown in Figure 2.4. Each processor is addressed by a

k-bit binary number. Adjacent processors differ in their addresses by a single bit,

determined by which one of the k-dimensions which differs. This leads to simple

and elegant communications between processors.

Fully connected - Each processor is connected to each other processor in a fully

connected network topology. This requires N connections from each processor

with a total of !N(N-l) inter-connections in the network for an N processor

network. The implementation of such a network becomes unrealistic for large N.

Network Total number Connections Diameter

of connections N=64 per processor N=64 N=64

bus 1 1 1 1 1 1

binary tree N-l 63 3 3 2Iog2(N+l)-2 12

quadtree N-l 63 5 5 21og2(N+ 1)-2 12

star N-l 63 N-l 63 2 2

linear N-l 63 2 2 N-l 63

ring N 64 2 2 !N 32

2D grid (4-way) 2(N-~N) 112 4 4 2~N -2 14

2D torus (4-way) 2N 128 4 4 ..IN 8
1

hypercube ;!N log2 N 192 log2 N 8 log2 N 6
1

fully connected "iN (N-l) 2016 N 64 1 1

Table 2.2 - Comparison of some network topologies.

16

2 Parallel Architectures

A summary of the connections per processor, the total number of connections within

the network, and network diameters is given in Table 2.2 for the networks described

above. Also included is an example case for N = 64 processors. The use of the wrap

around on the ID and 2D meshes can be seen be halve the network diameter while

having a minimal effect on the total number of connections. The hypercube networks

require more inter-connections than the 2D meshes, but their network diameter is

proportional to log2N compared with VN for the mesh. The fully connected system

requires a large number of connections (proportional to NZ), and in the example case

of N = 64, is ten times greater than any other network.

2.2.2.3 Dynamic interconnection networks

In a dynamic interconnection network, the paths between any two processors is not

fixed and connections are made dynamically through the use of switching networks.

Their advantage is that the communication paths are set up only when they are required

and do not exist permanently. They require less resources than the fully connected

static network but potentially have similar communication bandwidths. Such a

dynamic network enables each processor to connect with any other processor or, in

the case of a shared memory architecture, can be used to connect a processor with any

memory bank. Some dynamic crossbar switching networks and multi-stage networks

are described below and shown in Figure 2.5.

Crossbar networks

One of the simplest dynamic interconnection networks is the crossbar. The crossbar

consists of a set of switches which can directly connect any of the N input nodes to

any of the M outputs nodes (a node can be a processor or a memory). Once the

switches have been set, data can flow unhindered through the network, experiencing

only the time-delay through a single switch. A crossbar switch interconnecting four

nodes is shown in Figure 2.5a. The number of switches scales with the product of the

number of input and output nodes. The limitations of the crossbar is that a connection

can only be made to a node which is not busy i.e. not already connected to another

node within the crossbar.

17

2 Parallel Architectures

a) Crossbar

b) Omega c) Banyan

Figure 2.5 - Three dynamic interconnection topologies.

Multi-stage switching networks

The complexity of a crossbar network can be reduced by the use of multi-stage

switching networks. An example is that of the Omega network, Figure 2.5b

[Lawrie75]. Each switching element has four modes of operation: either passing the

inputs straight through; crossing them over; or allowing the upper!lower inputs to be

connected to both outputs. Thus each of the input nodes may be connected to any of

the output nodes. A total of Nlog2N switching elements are required in comparison to

N2 elements in a crossbar. However the latency of the communication has now

increased by a factor of log2N due to the extra switching stages. As the number of

processors increases, the delay across the switching network can become a limiting

factor to the use of multi-stage networks.

A multi-stage network may also be used for connection between differing numbers of

inputs and outputs as can be seen with the Banyan network in Figure 2.5c. Here the

18

2 Parallel Architectures

number of inputs to each switching element is two while the number of outputs is

three, enabling four input nodes to be connected to 9 output nodes.

Multi-stage networks, including that of the Omega and the Banyan, provide nearly as

Iowa latency as a common bus system, making them ideally suited to shared memory

architectures. However contention can arise in a similar manner to the crossbar

network if the desired output path to a node is blocked by a path between other input

and output nodes.

2.2.3 The control of parallel processors

A classification of parallel architectures in terms of their control structure was

described by Flynn in 1966 [Flynn66]. There have been many more attempts since

then for such a parallel architecture classification scheme but only Flynn's has

obtained wide spread use. Flynn categorised all architectures into one of four groups:

SISD - Single Instruction Single Data

SIMD - Single Instruction Multiple Data

MISD - Multiple Instruction Single Data

MIMD - Multiple Instruction Multiple Data

These categories are concerned with only two features of an architecture, the number

of instruction streams and the number of data streams. The SISD category conforms to

a conventional von Neumann architecture which has a single instruction and single

data path thus leading to a bottleneck between processor and memories. This is shown

in Figure 2.6.

Figure 2.6 - The organisation of an SISD architecture.

The SIMD category again has only a single instructional stream but has multiple data

paths between processors and memory. The processors are required to perform the

same operation but use their own operands. This is shown in Figure 2.7. The

19

2 Parallel Architectures

bottleneck in the SIMD architectures is not the interface between processors and

memory, but is in the single instruction path giving the processors little or no

operational autonomy.

Figure 2.7 - The organisation of an SIMD architecture.

The third category, MISD, with multiple instruction streams and only a single data

stream is not well defined - how can several operations be performed on the same data

at the same time? Flynn suggests that this category suits machines in which either each

processor has an instruction stream and all data is stored within a shared memory, or a

pipelined machine in which the processors perform their own operations on data

which is then passed down a pipeline. The organisation of the MISD architecture is

shown in Figure 2.8.

Figure 2.8- The organisation of an MISD architecture.

The final category of architecture is that of MIMD which has both multiple instruction

and multiple data streams. One such configuration of an MIMD architecture is that of

multiple-SISD (M-SISD) processors. The configuration of an MIMD architecture is

shown in Figure 2.9.

20

•
• •

• • •
• • •

2 Parallel Architectures

Figure 2.9 - The organisation of an M/MD architecture.

In Flynns classification, only two important categories enable parallel processing to

take place - namely that of SIMD and MIMD. Both architectures enable operations to

take place on multiple pieces of data at anyone time through the provision of multiple

data streams and additionally MIMD has multiple instruction streams. A considerable

number of parallel machines have been designed, some of which conform to SIMD

control and some to MIMD. Several architectures have progressed into commercial

products, examples of which are described in Section 2.3.

The majority of the machines which have been implemented have been designed in the

form of two-dimensional arrays, although some incorporate a hyper-cube

interconnection topology. Array topologies offer scalability in that further processors

may be added, forming a larger array, without altering the existing processors to a

great extent. One common question which arises in the design of an array is whether

the control structure should be SIMD or MIMD?

2.2.4 SIMD vs. MIMD arrays

SIMD and MIMD arrays differ fundamentally in their control structure. An SIMD

array has a single instruction stream, whereas an MIMD array has an instruction

stream for every processor in the array. The instruction stream is provided by a

sequencer, which addresses the instruction memory, and providing added

functionality such as looping and branching etc. Such a functional unit represents a

control overhead, in terms of gates or silicon area, which could be used to implement

further arithmetic functionality. The control overhead is far greater in an MIMD array

than in an SIMD array. Thus in an SIMD array, a greater proportion of the active

components can be used for the functionality within the processors.

21

2 Parallel Architectures

2.2.4.1 Active Resources

A comparison between SIMD and MIMD arrays using a measure of active resources

(e.g. gate counts), was given by Uhr in 1982 [Uhr82]. Uhr calculated that 10% of the

total gate count in a serial processor (as used in forming Multiple SISD arrays) were

active in comparison to 50-66% for an SIMD array. Although the comparison used

technologies and machines in existence at that time, the use of active resources to

compare architectures remains mostly valid tcxlay.

A comparison made using active resources is only valid if those parts forming the

functional units of the processors within the comparison are being fully utilised. This

can be viewed at one of two levels: at an operation level where the size of the data

effects the utilisation of each processing unit; and at a higher level where the mapping

of data elements across the array will effect the overall array utilisation.

An analysis of the utilisation of the functional unit of the processors, when

considering different word-length of data, has lead to the conclusion that a set of

single-bit processors is more efficient than any other type of processing unit [Hillis85,

Uhr82]. Such a processor, commonly termed a single bit Processing Element (PE),

can perform any operation that a larger word-length processor can do, but in increased

time due to their bit-serial operation.

The utilisation of a processor on different data sizes can be seen through the example

of a I-bit and a 32-bit integer addition. A 32-bit addition takes a single cycle on a 32-

bit processor, but 32 cycles bit-serially. If it is assumed that 32 bit-serial processors

can be implemented using the same amount of resources as a single 32-bit processor

then 32 such bit-serial additions can be performed in parallel. A one-bit addition on a

32-bit processor and on a bit-serial processor takes a single cycle to perform.

However the bit-serial processors can do 32 such operations in parallel - an

improvement by a factor of 32 over the 32-bit processor. In fact, a bit-serial processor

may perform an operation on arbitrary sized data with no wastage of cycles.

Operations which require the multiple access of operands, such as that for the

alignment of the mantissa in floating-point operations, results in poor performance on

bit-serial processors in comparison with an integral floating point unit within a uni-

22

2 Parallel Architcctures

processor. However a floating point unit within a uniprocessor lies idle on all non

floating point operations. This can lead to poor utilisation of the resources. The

resources given to any arithmetic unit, such as a floating point one, may be used to

provide an enlarged processor array having an increased performance.

The number of processors within an array is limited, it is affected by the amount of

data one wishes to process in a data parallel fashion. This results in a complex trade

off between the number of possible processors in an array and the array utilisation.

For instance, if the amount of data to be mapped across the array is less than the

number of processors then some processors wil1lie idle, resulting in poor utilisation.

2.2.4.2 Technology

Another issue in comparing SIMD and MIMD processing systems is the technology

available for VLSI implementation. The numbers of processors which can be

implemented within a single IC package are severely limited by the package pin count.

The number of components that can be placed on a piece of silicon scales inversely to

the square of the feature size. The number of pins on an IC depends upon bonding

techniques on the edge of the IC, these have scaled more slowly over the past two

decades [Hennessy91]. The package pin-count is of prime importance for a bit-serial

processor array where, if it is assumed that memory for each of the processors is

implemented using current memory technology off chip, a separate IC pin is required

from each bit-serial processor to its memory. Thus the number of pins required scales

linearly with the number of processors in the IC.

The pin-count limitation on current IC packing is about 500 pins [Asthana89], less

control and power requirements. Therefore it is feasible for a 16x16 bit-serial SIMD

array to be implemented on a single chip, with each PE requiring a single pin. Due to

this limitation it may be more efficient to implement processors, with larger word

lengths than bit-serial, to utilise available on-chip resources which may not require as

many external connections. Several SIMD processor designs have appeared which use

enhanced functional units for their processors. These include support to enhance the

performance of floating point operations e.g. the DAP co-processor [AMT90], the

paper design of the GPFP SIMD array [Bea190] and the J.LP A [Jesshope89].

23

2 Parallel Architectures

A further technology consideration is the clocking system of the processor array. A

bit-serial processor has the potential for a higher clocking rate than a larger grain

processor due to the non-existence of carry propagation delays within the processor

ALU. However such a clock rate can rarely be achieved if the array uses a large

wordlength ALU for its sequencing.

The distribution of the clock can also become a limiting factor in the scaling of an

SIMD processor array [Jesshope89]. It becomes increasingly difficult to ensure that all

processors will be synchronised, as the array increases in size, due to clock and

instruction stream distribution problems. MIMD processors do not suffer in the same

way, having both have local clocks and instruction streams.

The possibility of using wafer-scale integration for parallel computers is also being

investigated. Wafer-scale integration has been primarily suggested for use in SIMD

machines, where the processors may be easily replicated across the silicon, but could

be equally be applied to MIMD machines. Example wafer-scale SIMD processors

include the WASP bit-serial associative SIMD processor [Lea88], and the 3-

dimensional wafer stack from Hughes [Grinberg84]. The use of this technology

promises to alleviate any pin-count problems while increasing the density of

components in a unit volume.

2.2.4.3 Programming

An MIMD processor array requires the implementation of message passing operations

to be used for the communication of data between processors, unless suitable software

is available to hide the available parallelism. Problems which may arise from this

situation include deadlock.

An SIMD array is considerably easier to program than an MIMD array, acting like a

sequential processor in the way in which code is written, requiring only a single

instruction stream. To ensure maximum utilisation of the processors, where possible,

additional software complexity can arise for the manipulation and mapping of data

across an SIMD array.

SIMD arrays can be efficiently utilised in data parallel problems - problems which

contain sufficient data so as to require the use of all the processors in the same way

24

2 Parallel Architectures

across the array. They can suffer limitations if the operation being performed does not

require data parallel computation but instead control parallel computation.

MIMD processor arrays do not suffer the same inefficiencies, in that a data parallel

operation may be performed on the MIMD array as if it were a control parallel one,

using the message passing operations rather than synchronous communications

(Single Program Multiple Data - SPMD operation). However, problems can arise in

the debugging of asynchronous programs since the errors can be non-deterministic.

2.2.4.4 Local autonomy

The disadvantage of an SIMD array, and its single instruction stream, may be

improved upon by adding local autonomous functions to the processing elements. A

discussion on the autonomy options available for PEs was given by Fountain

[Fountain88a] along with the cost in terms of percentage increase in hardware

complexity. Local autonomy options include:

• Activity control. At its simplest level, this involves a single-bit flag in each

PE which indicates if the result of the operations should be written back to

memory thus effectively disabling a set of PEs.

• Data control. This enables the address of data within local memory or the

local connectivity functions to be calculated locally which otherwise would

be calculated globally.

• Function control. This allows the processor to locally control functional

units such as barrel shifters or multipliers. This can be useful for the

alignment of mantissas in floating point operations.

• Operation control. This provides each PE with a local instruction store,

which is sequenced globally, allowing sets of processors to perform

different operations.

• Sequencing control. This provides each processor with its own instruction

stream thus forming an MIMD processor array, e.g. the Transputer.

The gradual addition of these autonomous functions to an SIMD processor transforms

it into an MIMD one. The percentage overhead on the activity, data, function,

operation and sequencing control was calculated by Fountain to be 1 %, 6%, 1%, 30%

25

2 Parallel Architectures

and between 25-600% respectively. It was assumed that each of the processors

contained a 16-bit ALU for this calculation.

The local autonomy considered by Fountain was limited to the functions that could be

added to each individual processor. Maresca [Maresca88] suggests that a more useful

and practical level of autonomy is the logical division of processors into clusters, with

each cluster having local autonomous control. One example of this is that of a

Multiple-SIMD (M-SIMD) architecture which provides local autonomy in the form of

instruction sequencing across sets of PEs. This approach has been used in the P ASM

processor array [SiegeI81] - a configurable MIMD/SIMD system.

A discussion of M-SIMD architectures was given by Hwang [Hwang80, Hwang85].

Hwang used a model containing r PEs which could take their instruction stream from

any of m control units using a dynamic reconfigurable switching network as shown in

Figure 2.10. On an M-SIMD architecture the resources required for any operation, in

terms of PE numbers, can be matched to the amount of data parallelism within it

Figure 2.10 - The organisation of an M-SIMD architecture.

Local autonomy across sets of processors in the form of a pyramid M-SIMD

architecture has been used by Cantoni et. al. [Cantoni87]. Cantoni used bit-serial

processors to form a quadtree pyramid of processors. Each processor layer within the

quadtree was controlled by separate controllers, thus giving each layer the ability to

perform different operations.

26

2 Parallel Architectures

2.3 Survey of Existing Parallel Machines

Existing single array parallel machines are described below. They are categorised

according to their control structure, i.e. either to SIMD or MIMO. SIMD architectures

are further classified according to the granularity of their processing elements. Many

SIMD processors have been built using single-bit PEs but more recently incorporate

multiple-bit PEs as a result of the increased integration possible in VLSI. MIMO

architectures are classified according to their memory structure, either shared memory,

distributed shared memory, or distributed memory.

2.3.1 SIMD architectures

The configuration of SIMD machines, designed to date, have been similar and can be

characterised by an array of PEs each with its own memory and controlled by one or

sometimes more array controllers. A characteristic SIMD array is shown in Figure

2.11 where the interconnection scheme is a two-dimensional mesh. The functionality

of the PEs, coupled with their interconnection schemes and the technology in which

they were implemented, gives rise to the performance of each SIMO system.

Host
Interfaces --I'!!:!I"---

Figure 2.11 - The configuration of a two-dimensional SIMD array.

A pioneer project to implement the first large scale SIMD machine, known as ILLIAC

IV, started in 1966 at the University of Illinios [Barnes68]. The original design

27

2 Parallel Architectures

incorporated 256 64-bit PEs, each with 2Kwords of memory, and a controller for each

set of 64 PEs. Each PE had hardware support for floating point operations and could

perform a 64-bit multiplication in 400ns. The prototype machine, built in 1972,

contained only 64 PEs and was operational from 1975 to 1981. The time lag before

the machine became operational was due to the debugging of the hardware, being

implemented in the available technology at that time. Each PE used 210 printed circuit

boards with the entire machine containing a staggering six million discrete components

[Almasi89].

Since the implementation of ILLIAC IV several other SIMD machines have been

proposed and built. They can be classified in terms of the granularity of their PEs.

Many SIMD arrays use bit-serial PEs, including the Massively Parallel Processor

(MPP), the Distributed Array Processor (DAP), the Connection Machine (CM). More

recent SIMD designs have used multi-bit processors. These include the Massively

Parallel machine (MasPar) and a co-processor to the DAP. The main characteristics of

these architectures are described below.

2.3.1.1 Bit-serial SIMD processor arrays.

The Massively Parallel Processor (MPP).

The MPP [Batcher80] was built by Goodyear and was flrst operational in 1983. It is

to date one of the largest SIMD processors ever built. It consists of 128x128 PEs

forming a two dimensional mesh (or torus with array wrap-around). A single array

control unit provides an instruction stream, and also an interface to a host (V AX)

computer. Each of the PEs is a simple one bit design with additional functionality, in

the form of a shift register, to aid the performance of floating point operations. The

MPP processing element is shown in Figure 2.12.

The single-bit PE contains a single full bit adder, two general purpose registers, A and

P, and a further two registers to store the sum & carry output from the adder, B & C.

The shift register has a programmable length of between 2 and 30 bits and can be used

to supply data to the adder. The P register is used for neighbourhood (4-way)

communications and is associated with logic which can perform any logical function

on two variables. Additionally the PEs are connected from West to East via a set of

28

2 Parallel Architectures

shift registers, S, for fast data I/O. Activity control is provided by the G register. Each

PE can address 1Kbits of local memory. A custom designed le, containing 2x4 PEs,

is used to build up the whole MPP array.

Shift Register

w E
xternal Memory

Figure 2.12 - The MPP processing element.

More recently, an enhanced version of the MPP processing element has been used

within the design of a custom IC. This accommodates 8x16 PEs, using recent

technology. The resulting machine has been called BLITZEN, the details of which

have been described by Blevins et. al. [Blevins90]. The major differences between the

MPP and BLITZEN include 1Kbits per PE on chip, reduced access to off-chip

memory (4pins per 16 PEs), 8-way connectivity and an additional local control

function of on-chip memory address modification.

The Distributed Array Processor (DAP).

The DAP is a further example of a bit-serial SIMD processing array similar, but with

simpler PEs, to that of the MPP. The design of the DAP PE has remained virtually the

same since the its conception in 1972, pre-dating the MPP. The design of the PE was

constrained by the technology available at that time. Thus a main design requirement

was to minimise the number of les required for each PE. The first DAP PE, as

described by Reddaway [Reddaway73], required -3 discrete IC's for each PE

(excluding memory devices). It consisted of a one-bit full adder, 7 one-bit latches,

associated routing circuitry, and 4Kbits memory.

29

2 Parallel Architectures

The present PE design dates from the mid 70's, having fewer registers per PE. In

1979 four of these PEs could be implemented on a single IC using 200 gate

equivalents [Reddaway79]. The commercial DAP product uses a custom IC containing

an array of SxS of these bit-serial PEs using -3,000 gates. The current DAP machine

consists of an array of either 32x32 or 64x64 PEs.

Each PE consists of a full adder, with 3 inputs and 2 outputs, three general purpose

registers and two multiplexors to route the inputs to, and outputs from, the adder. The

PEs are four way connected in a NEWS communications mesh and also connected to

row and column highways for associative response operations. Additionally the PEs

are connected from South to North for fast autonomous data I/O. A PE can address up

to 64Kbits of external memory. Each DAP instruction effectively combines the states

of the internal registers with a memory value within a single instruction cycle.

The functionality of the DAP is further explored in Chapter 4.

The CLIP architecture

The Cellular Logic Image Processor (CLIP) series of architectures were designed and

built by Fountain and Duff at University College London. The design of the CLIP-4

processor took place over the ten years to 1980 and is described by Fountain

[Fountain87]. The prototype CLIP-4 consisted of a 96x96 processor array containing

bit-serial PEs like the DAP and MPP. A commercial product consisting of a 32x32 PE

array was also marketed.

Each CLIP-4 PE contained 4 registers, on-chip 32-bit memory, and a Boolean

functional unit able to perform any logical combination on two single bit operand

inputs. A network of adders was included in the CLIP-4 array to generate the sum of

the number of bits set in a binary image. The PEs were arranged in an eight connected

two-dimensional network. Eight PEs were implemented on a single custom IC.

The Reconfigurable Processor Array (RPA)

The RPA was designed by Jesshope et. a1. [JesshopeS7J at Southampton University.

The goal of the RP A was not to improve the peak computational power of each PE but

instead to allow dynamic configuration of the processors to match the parallelism

30

2 Parallel Arcbitectures

within an application. The flexibility was thus aimed at increasing the overall

utilisation of the array by reducing the number of idle processors at anyone time.

The PEs within the RP A were again bit-serial processors arranged in a 32x32 mesh

but also included local communication configuration control. This control enables a

chain of PEs to be constructed to form an arbitrary carry propagation path, resulting in

multi-bit Processing Units (PUs). The reconfiguration of the array is performed

through local registers within each PE. Examples of this reconfiguration are shown in

Figure 2.13 [O'Gorman89] for PUs of size 2, 4, 6, and 8-bits. Each PE also included

64-bits of memory, an 8-bit deep activity control stack, and support for floating point

operations including a barrel shifter.

a) 2-bit PU b) 4-bit PU c) 6-bit PU d) 8-bit PU

Figure 2.13 - Example reconfiguration of the RPA PEs.

The performance of the added functionality within the RPA PE was found to be

minimal and in some cases (e.g. floating point multiplication) even worse than the

simpler DAP PE [Rushton89].

The Connection Machine

The Connection Machine (CM) was originally designed by Hillis at MIT [Hillis85]

from a study of the needs of AI. From 1983, the CM was manufactured by Thinking

Machine Corporation (TMC) [TMC89]. Three different machines have appeared· the

CMl, CM2 and CM5. The CMl and CM2 series are both SIMD machines having a

31

7

2 Parallel Architectures

maximum of 65536 bit-serial PEs. The recently announced CMS is an MIMD

architecture. The configuration of the CM2 machine is described here.

Each of the PEs within a CM2 has a simple bit-serial design, consisting of five I-bit

registers, two 1 of 8 multiplexors and an activity flag. The multiplexors can perform

any function of three input values. A total of 65536 PEs are used within the largest

CM2, connected in a 12 dimensional hypercube with 4096 nodes. Each node within

the hypercube consists of sixteen PEs, with communication support, implemented on

a custom VLSI chip. Two nodes are shown in Figure 2.14.

A hardware router to support packet switching communication, between any PEs

across the hypercube network, exists at each node. The hypercube network can also

be used for inter-PE communications, using various network topologies, such as the

two dimensional mesh, offering increased bandwidth over the packet router. Note that

each node has only one communication connection with its adjacent nodes in the

hypercube and so inter-PE communications across node boundaries take place

sequentially for each PE within the node.

to 1 other nodes to 1 other nodes

~~
~'~~"""~if+--l

Memory
Memory Floating
and FPU 14--1111 Point
Interface Unit

Figure 2.14 - Two CM2 Nodes with associated memory and floating point unit.

A floating point unit, with associated interface circuitry, is an optional part to each set

of two nodes within the CM2, as shown in Figure 2.14. This unit considerably

enhances the floating point capabilities of the CM2 bit-serial processors. The interface

32

2 Parallel Architcctures

unit is used to convert (corner turn) data words from the bit-serial oriented fonnat to a

word oriented one, suitable for use in the floating point unit. A total of 2048 floating

point units exist in the full sized CM2 machine.

The PEs within the CM2 are controlled by a set of four sequencers, allowing up to

four separate programs to be executed concurrently. Each sequencer can control a

quarter of the array or alternatively work in unison on a single program across the

entire PE array.

Associative SIMD arrays

A further type of SIMD processor array that has been investigated is associative SIMD

arrays. They are distinguished from other SIMD arrays by the type of local memory

each processor has - Content Addressable Memory (CAM). The CAM enables PEs

within the array to be identified by their memory contents rather than their position

within an array. Typically a qualifying instruction is broadcast by the SIMD controller,

part of which is passed to the CAM for matching, which sets the activity control

within the PEs to detennine which will perfonn the subsequent operations.

Two examples of an associative processor array are the GLiTCR [Duller89] from the

University of Bristol and the ASP [Lea91] from BruneI University. The two

approaches are similar. Both use single-bit PEs, each with between 64-70 bits of

CAM, and local activity control can be set from the output of a CAM match. The PEs

are arranged in a one-dimensional array but have support for communications over

greater distances between PEs on-chip. A total of 64 PEs have been implemented on a

single IC for both the GLiTCH and ASP. Recently, the ASP has been proposed as a

suitable Fault Tolerant processor array suited to wafer-scale integration [Lea88].

2.3.1.2 Multi·bit SIMD processor arrays.

The increase available in VLSI integration has been utilised within SIMD processor

array designs by enhancing the perfonnance of the PEs. Improved perfonnance has

been achieved by both increasing the wordsize of the PEs, from single-bit, and by

adding circuitry to increase local autonomy, typically optimised for floating point

operations.

33

2 Parallel Architectures

DAP with CP8 co-processor.

Recently, each of the DAP PEs has been complimented by the addition of a co

processor unit - the CP8 [AMT90]. The CP8 contains an 8-bit ALU capable of an 8-

bit addition in a single cycle, a 32-bit shift register able to shift by bytes or bits under

local data control, and a serial I/O interface to external memory. It works concurrently

with the existing I-bit DAP PE, improving floating point performance by an order of

magnitude. Neighbourhood communications and Boolean operations are still carried

out by the I-bit DAP processors.

The CLIP-7 processor

The experience gained in the design and use of the CLIP-4 was used in the design of a

multi-bit CLIP-7 processor [Fountain88b]. Its goal was to examine the various

options available in the transformation from an SIMD processor to an MIMD one by

the addition of different degrees of local autonomous functions. Each CLIP-7 PE

consists of a I6-bit ALU having both activity and function control along with the local

generation of memory address. The instruction stream remains that of the conventional

SIMD processing system, utilising a single array controller. The fIrst system to be

constructed from the CLIP-7 chips was a 256 PE linear array.

The JlP A processor

The design of the RPA has been improved with the design of the IlPA, detailed by

Jesshope et. al. [Jesshope89]. The PE in the JlPA contains an 8-bit ALU, an 8-bit

multiplier, lKbytes internal memory, which can be locally addressed, and a

communications co-processor. Support for floating point operations, and a bit-serial

interface to external memory, is also included. It is also proposed that each JlPA chip

(currently estimated to contain 4 JlPA PEs [Jesshope89]) would contain a local

sequencer and microcode which itself is under the control of a central array controller.

The communications co-processor handles all inter-PE communications either in a

packet switching node, using a hardware router, or in NEWS mode allowing for

global SIMD shifting operations over the two-dimensional grid.

34

2 Para1lel Architectyres

The MasPar MP-! Architecture

The Massively Parallel (MasPar) MP-I is one of the latest SIMD machines (1989) to

appear as a commercial product [Nickolls90, Christy90]. Its design is a departure

from the bit-serial approach of the MPP, DAP and connection machine. The available

level of integration has been used so as to enhance the performance of each PE,

making them multi-bit (4-bit) ALUs with added floating point support circuitry. The

MasPar MP-I contains between IK and I6K PEs implemented in custom ICs, each

containing two clusters of 16 PEs, operating with a cycle time of 7Ons.

Each PE consists of a 4-bit ALU, a I-bit logic unit, a 16-bit exponent unit, a 64-bit

mantissa unit with local control optimised for floating point operations, and 40 32-bit

on-chip registers. An additional 16Kbytes of memory per PE exist off-chip which can

be locally addressed by the PEs, or globally addressed by the array controller. Local

addressing to external memory is a factor of three slower than global addressing.

The PEs are interconnected via two communications networks. The first is a static

local neighbour network, the X-Net, enabling a PE to communicate with any of its 8

neighbours. The second network is a three stage crossbar router which enables any

cluster of 16 PEs to communicate with any other cluster of PEs. Each of the routers

contains 1024 ports enabling a total of 1024 simultaneous connections to be available

at anyone time. Communications across this router requires the originating PE to

transmit the destination PE address first, followed by the data. A connection takes 40

cycles to establish if the destination cluster is not busy, and 10 cycles to close. Since

the router is effectively multiplexed between 16 PEs within each cluster, its

communication bandwidth is a factor of 16 less than that of the X-Net.

Recently, the second range of MasPar machines has been announced, the MP-2

[Nass92]. This machine uses 32-bit processors and boasts a performance increase of a

factor of five over the MP-I. A custom VLSI chip contains a total of thirty-two 32-bit

processors.

The General Purpose Floating Point (GPFP) support PE

Bit-serial floating point operations have been examined by Beal and Lambrinoudakis

[Bea190, Lambrinoudakis9I], and compared with that of the DAP PEs with and

35

2 Parallel Architectures

without the CP8 co-processor. The outcome of this was the design of the GFPF

which retains the flexibility to act like a conventional bit-serial processor but includes

support specific to floating point operations.

The performance of floating point operations has been greatly improved in the GFPF

PE by the use of a 4-bit ALU, a 4-bit multiplier unit, an alignment/normalisation unit

and on-chip 256bit memory with local address modification circuitry. These units

reduce the cycle counts for the floating point operations to a bare minimum. It is

estimated that on the GFPF single precision floating point addition would take 20

cycles and multiplication 61 cycles [Beal90] - an improvement by a factor of 50 over

the DAP and by a factor of 2-3 over the DAP with CP-8 co-processor.

2.3.2 MIMD Architectures

There has been a large proliferation of MIMD machines compared with SIMD

machines. This can mainly be accounted for by the construction of many MIMD

machines from existing commercial uniprocessors, built in a Multiple-SISD fashion,

and having additional support for inter-processor communications. Thus the

development of custom VLSI processors is not usually a problem, and performance

advances can be achieved by the use of faster uni-processors.

Some common MIMD architectures are described below and classified by their

memory structure. The most common memory structure is that of distributed memory,

due to its ease of design (typically in a Multiple-SISD form). The use of the

Transputer has also lead to an expansion in distributed memory machines.

2.3.2.1 Shared Memory machines

The Encore Multimax

The Encore MuItimax is constructed from up to 20 National Semiconductor 32332

processors, each with an associated Weitek floating point unit. Each processor has a

64Kbyte cache and is connected to a maximum of 320 Mbytes of shared memory

[Gehinger88]. The processors and memory are connected via three common buses,

having a total memory bandwidth of 100 Mbyte/s. This bandwidth is shared by all

processors in the system and forms a bottleneck to the addition of further processors.

36

2 Parallel Architectures

A recently announced range from Encore (the Encore 91) [Trew91] uses an enhanced

bus between its memory and processors. It is hierarchical in structure, with each set of

four processors sharing a single bus with a bandwidth of looMbytes/s, and each set

of four processors connected to a lower capacity bus (26.6Mbyte/s). A total of eight

sets of four processors can be interconnected in this way. The processor used in this

machine is the Motorola 88100, having improved floating point performance over the

Weitek FPU, and has either two or four Cache memory management units each with

16Kbytes of associative cache memory.

DASH

DASH (Directory Architecture for SHared memory) is a prototype machine, aimed at

investigating cache-coherence problems in large-scale machines, being developed at

Stanford University [Lenoski92]. It will eventually consist of 64 processors, 16 of

which are currently implemented, arranged into clusters. Each cluster contains four

MIPS R3000 processors, each with an R3010 co-processor. Connected to each of the

processors within a cluster is a memory hierarchy consisting of a two level cache and

shared main memory. The memory within other clusters can be accessed using a two

dimensional mesh interconnection scheme. The machine can thus be classified as

shared memory within a cluster and distributed shared memory between clusters. Four

clusters of the DASH prototype are shown in Figure 2.15.

The first level cache consists of two 64Kbyte caches used for instruction and data

caching, and operates synchronously with the processor. The second level cache is a

256Kbyte data cache connected to the processor with a bandwidth of 16Mbytes/s. A

common bus, with a maximum bandwidth of 64Mbytes/s, within the cluster connects

the processors to the local shared memory. Inter-cluster communications are

performed using a pair of wormhole routed meshes, one for request messages and the

other for replies. This network has a peak bandwidth of 120Mbytes/s.

Early results have shown that near-linear speedups can be obtained on DASH using

real applications, when implemented using load balancing techniques [Lenoski92,

Singh92]. It remains to be seen if such hierarchical shared memory interconnection

schemes can be extended to systems with lOO's to 1000's of processors.

37

2 Parallel Architectures

Figure 2.15 - Four clustersjrom the DASH prototype.

2.3.2.2 Distributed shared memory

IBM RP3

An example of a distributed shared memory machine is that of the mM RP3 (Research

Parallel Processor Prototype) [Pfister87]. Each node within the RP3 consists of a

proprietary 32-bit RISe processor with a 32Kbyte cache, an FPU and up to 8Mbytes

of memory. A total of 512 nodes can be contained within the machine. A memory

management unit enables non-local memory access to be perfonned over an Omega

network, interconnecting all nodes with an total bandwidth of 12.8Gbytes/s.

Local memory references take lOOns while non-local references take 500ns across this

network, assuming that their is no contention. This is typical of a distributed shared

memory system in which the memory access latency increases as the memory accessed

moves funher from the processor. These machines are scalable to a greater extent than

shared memory machines, allowing a larger number of processors to be supported.

38

2 Parallel Architccturcs

2.3.2.3 Distributed memory

The Transputer

The Transputer [Inmos85] was the first conventional processor incorporating

hardware communication, allowing a parallel network to be easily constructed. It was

first introduced in 1985 and has appeared in several forms, including a 16-bit version

and a 32-bit version with a FPU - the T800. More recently, a 64-bit floating point

version has been announced, the T9000, and includes enhanced inter-processor

communication facilities [Inmos91]. Several independent companies including Meiko,

Parsys and Parsytec, were created around the Transputer product. These companies

now hold a large percentage of the European parallel computing market [Trew91].

The performance of a Transputer machine is typically calculated from the performance

of a single processor multiplied by the number of processors in the machine. The

30MHz of the T800 Transputer can operate with a peak instruction rate of 30MIPS

and 4.3Mflops. It has four bi-directional communication links which can operate

asynchronously at a speed of 20Mbits/s. The machines offered by the different

manufacturers differ mainly in their interconnection networks, I/O support and

software support.

Meiko - The Meiko computing surface is, in theory, expandable indefinitely with the

largest system produced containing 1024 processing nodes [Barr89]. A

board in the computing surface can contain 16 processors, which are fully

dynamically interconnected, each with up to 4Mbytes of memory. The boards

fit into a common back-plane, over which non-board level communications

can be performed. Dynamic connection between all processors cannot be

guarantied in this system.

Parsys - The Parsys SNlOOO series machines originated from the ESPRIT Supernode

project [Nicole88]. It can contain up to 1024 processors arranged into

modules of 16 with associated control and I/O support (a SuperNode). Full

reconfiguration between the Transputers is possible using two levels of

switching. The first switching level uses 72-way crossbar chips, supporting

up to 72 Transputers, and the second connects SuperNodes together.

39

2 Parallel Architoctures

Parsytec - The Parsytec SuperCluster [Parsytec88] series of machines consists of a

16-node cluster with a 96 by 96 communications matrix. This matrix

provides full connectivity between all nodes within a cluster, and the

remaining 32 links interconnect with four further cluster boards within the

SuperCluster and also to further SuperClusters. The largest machine installed

by Parsytec is a 400 node machine.

Parsytec has also recently announced a new range of machines, the GC [Parsytec91],

which will use the T9000 product. Other manufacturers such as, Meiko, have

incorporated more powerful processors (e.g. the Intel i860) into their machines but

continue to use Transputers to provide a communications network.

NCube

The Ncube range of machines originated from Caltech, where a prototype hypercube

machine was built - the Cosmic cube [Seitz85]. Two ranges of commercial machines

have so far been produced. The most recent, the Ncube/2, contains up to 8192

processors arranged in a 13-dimensional hypercube. The processors are of a custom

built design containing a 64-bit CPU with floating point unit, 14 serial DMA channel

pairs and routing hardware. Between 1Mbyte and 64Mbytes of memory can be

attached to each processor. A high integration is achieved through the use of a small

number of components, with 64 nodes implemented on a single board. The hypercube

network uses the serial-DMA channels operating at a rate of 4.44Mbits/s.

The Intel iWarp

The Intel iWarp was produced from a joint project between Intel and Carnegie Mellon

University [Peterson91]. Each processor is a custom designed 32-bit RISe with

floating point circuitry operating at 20MHz. Four-way connectivity is provided with

on-chip communication support using worm-hole routing. Each iWarp processor

claims to achieve 100 MOPS by exploiting the parallelism available within the

processor through the use of a 96-bit instruction word. The communication takes place

across eight byte-wide buses (four input and four output) providing a total

communication bandwidth from each node of 320Mbytes/s. On chip buffering

provides 20 logical data-paths between processors which are time shared over the four

40

2 Parallel Architectures

physical communication channels. This allows connections to be made between non

adjacent processors without affecting intennediate processors.

The Connection Machine S (CMS)

The CMS is the latest range of machines from Thinking Machines Corporation

[TMC92]. It is an MIMD machine, with support for SIMD programming, and

represents a departure from the CM! and CM2 SIMD range of machines. There are

three types of node within the CMS: a processing node; a control node; and an I/O

node. Each processing node contains a SPARC RISC processor, with up to 32

Mbytes of memory partitioned across four optional vector-processing units. Each

processing node can deliver a peak of 128 Mflops (double precision).

A control node is similar to a processing node, but lacks the vector units, and includes

added I/O connections. Each control node is responsible for a partition within the

whole machine and one or more control nodes may exist within a machine. All

processing nodes are interconnected by two networks, a data network for message

passing and a control network which supports data parallel operation.

The CMS was one of the fIrst machines to boast scalable perfonnance up to Teraflops.

A total of 16K nodes can be used within a CMS giving a 2 Teraflop perfonnance. The

cost of a machine of this size is currently estimated at $300 million and has not yet

been built. It remains to be seen whether a machine with this number of processors

could be reliably built and sustain the claimed perfonnance.

2.4 Summary

The options available for the memory structures, inter-processor connection schemes

and control structures for parallel machines have been described and compared. The

ideal P-RAM model of computation is an infeasible option for a parallel machine,

except when only a few processors are required, in which case a shared memory

architecture with cache coherency support can be used. As the number of processors

increases, a distributed memory architecture is required. The processor interconnection

41

2 Parallel Architectures

schemes have shown that there is a trade off between the complexity of their

implementation and the time taken for communication between any two nodes.

The survey of existing parallel architectures has illustrated that two main approaches

are commonly taken in the design of a parallel machine, namely that of SIMD and

MIMD. Each type of architecture has its own advantages.

The SIMD architecture can be easily implemented in VLSI, requiring only one

functional unit to be replicated. It requires only one instruction stream, thus making it

easy to program. However, the same single instruction stream can prove to be the

bottleneck in applications which do not exhibit a high degree of data parallelism,

leading to poor performance. Commonly, early SIMD machines such as the MPP,

DAP and CLIP used single-bit PEs arranged in two-dimensional meshes. More

recently, the available increase in VLSI density has been used to increase the

functionality of each PE and increase the network topology. For example, the PEs in

the MasPar MP-l consist of 4-bit ALUs, with floating point support circuitry, and

communicate via a nearest neighbour network or a 3-stage routing network.

The MIMD architectures are usually constructed from the latest high performance

uniprocessor available, and built in a Multiple-SISD fashion. This can be less efficient

than SIMD processors, with the replication of instruction paths and memories taking

place. For example, the Stanford DASH uses the MIPS R3000 processor and the

CMS the SPARe processor. However, sometimes custom designed processors, such

as in the Ncube/2 series, are used. The Transputer was the first processor to

incorporate communication support for parallel processing on chip and has spawned a

number of machines. Communications are performed bit-serially in the Transputer and

Ncube machines, where as others, such as the iWarp, allow byte-wide communication

with increased bandwidths. The inter-processor communication networks commonly

form hyper-cubes (e.g. Ncube) or can be dynamically reconfigured to match the

processing requirements (e.g. the Transputer machines from Parsytec and Parsys).

In the following chapter, the computational requirements for image analysis

applications are examined, and the formulation of image analysis architectures

discussed. It will be seen that such an application can benefit from both SIMD (for

data parallel operations) and MIMD architectures (for control parallel operations).

42

Chapter 3

Architectural Options for Image
Analysis

3.1 Introduction

In this chapter, the architectural options available for the operation of image analysis

are described. These options differ from those for a general purpose parallel

architecture, described in Chapter 2, in that several levels of processing can arise.

Architectures which combine several levels of processors, or those that consist of a

number of types of processor, might be suitable to this processing.

Image analysis, sometimes referred to as Image Understanding or computer vision, is

concerned with the extraction of high level information from the contents of an image.

An image analysis architecture needs to efficiently match both the processing and the

data on which it is performed. Image analysis is commonly divided into several

processing levels, each with its own representation of an image [Weems91,

Levialdi88, Duff88]. At the lowest level, the image is a two-dimensional data array,

initially containing intensity values, and at the highest level can be a relational graph

containing the symbolic information about the image. Each level contains different data

types and requires different forms of processing.

The different levels of processing required are suited to different processor types.

Typically, the low-level, or iconic processing, is best suited to SIMD processors.

High-level, or symbolic processing, is best suited to MIMD processors

[Choauldry91]. Architectures which combine SIMD and MIMD processors have been

proposed for use in image analysis.

43

3 Architectuml Qvtions for Image Analysis

The contents of this chapter are as follows: image analysis processing is described in

Section 3.2; the processor requirements for the different levels of processing are

discussed in Section 3.3; architectural options for image analysis are described in

Section 3.4, and are illustrated through examples of current experimental machines.

3.2 Image Analysis Processing

Image analysis is concerned with the transformation of information contained within

an image, from a spatial intensity representation, into a meaningful descriptive form.

The resulting description can then be used for high level interpretations of the world

being viewed, for example in intelligent autonomous vehicle environments.

An example of an image analysis processing flow is shown in Figure 3.1. This is a

common processing flow used in many applications [WSTL90, Schalkoff89,

Cantoni86]. The early processing steps typically identifies regions of interest within

the input image which then require further (localised) processing. In the processing

flow shown, the object detection phase can result in tentative object locations, forming

regions of interest, which are further processed in an object dependent way, e.g. to

segment each detected object.

Global processing· - - - - - - - - _. Local processing

Detection Segmentation Interpretation

Increase in data complexity

........... -------------------- Increase in amount of data

Figure 3.1 - Example image analysis processing flow.

The size of the data set during this processing flow generally decreases [Cantoni86]

from image data arrays to lists of features and then to further representations of the

contents of the image. However, the complexity of the data generally increases, from

image data consisting of 8-bit words to linked lists, or arrays, of features and through

to symbolic relationships.

44

3 Architectural Options for Image Analysjs

Two general approaches can be taken within an image analysis system - namely those

of top-down and bottom-up approaches [Ballard82]. A bottom-up, or data-directed

approach, uses no a-priori knowledge, extracting low-level features from the input

images which are then processed at increasingly higher levels. Alternatively a top

down approach uses a high-level model of hypothesised information which may be

contained within the input image. This is processed at increasingly lower levels, down

to the raw input data, looking for evidence to support initial hypothesis at each stage.

Marr [Marr82] was one of the first to propose a computational approach to computer

vision. He considered three representations of images to be important. These are the

Primal sketch, the 2}-D sketch and the 3-D model representation. The Primal sketch

makes the information contained with an image (and its distribution) explicit, e.g.

zero-crossings, blobs, edge segments, groups and boundaries. The 2}-D sketch is a

viewer centred representation of the image, containing information about surface

orientation, depth and their discontinuities. The 3-D sketch uses the 2}-D sketch to

produce a three dimensional, object centred, representation dealing with volumetric,

skeletal and surface measures.

Image analysis thus encompasses many techniques on different representations of

images. It includes the operations of image processing, pattern recognition, model

based vision and higher level relational approaches which have a strong link with

Artificial Intelligence. The low-level operations use image-based information, whereas

the high-level operations use non-image related knowledge, either extracted from the

images or matched to existing models.

Many techniques are being developed for image analysis, including operations for

region segmentation, motion interpretation, the use of colour and range information,

shape from shading, structure from motion, and multi-sensor fusion including

stereopsis [Suetens92, Nevatia82]. Such a broad range of techniques cannot be

individually reviewed within the context of this thesis. However, in reviewing the

requirements for parallel processing, the structure of the data and the form of the

processing to be performed will be discussed.

The different levels of processing associated with image analysis have been commonly

classified into three broad levels [Weems91, Leviadi88, Duff88, Hwang91,

45

3 Architectural Options for Image Analysis

Maresca88, Levitan87, Tanimot085]. These are - iconic, where the data remains in the

form of images (2D data arrays); intermediate, consisting of representations of the

images in non-iconic form; and symbolic, where the data consists of descriptions or

abstract representations of the images.

The three levels of processing in image analysis are shown schematically in Figure

3.2. The arrows in Figure 3.2 indicate the interactions between the levels. The

downward arrows indicate that further processing can take place between the levels,

dependent upon earlier processing, consistent with a top-down approach.

SYMBOLIC Descriptions of objects and scenes
Control strategies

Focus of attention ,
f Object feature mat hypotheses .i it ching

(INTERMEDIATE Description of points, lines, regions

eature extraction F j ~
, , Additional process mg

(ICONIC Image pixels, depth maps, sequences

Figure 3.2 - The levels of processing within image analysis.

3.2.1 Iconic processing

This level of processing can be characterised by operations which take images as input

and produce images as output. These operations commonly form the early stages of

processing in an image analysis system and are often referred to as low-level

operations. An example is a local neighbourhood operation, where each output pixel is

a function of the pixels within a local window centred about itself.

The data in the iconic processing stage remains in the form of a two-dimensional

array. Commonly, the input images have 256 grey-levels (8-bits precision) per pixel

which are expanded upon by summation or multiplication operations. Other iconic

representations include:

46

3 Architectural Ovtions for Image Analysis

- Labelled images, in terms of regions, edges, corners, texture etc.

- Transforms, including Fourier, Hough or feature-spaces

- Multi-resolution, consisting of images containing different spatial resolutions

- Depth maps, from binocular vision systems or from range sensors

- Motion flow-fields, from image sequences

Rosenfeld [Rosenfeld82] considers four classes of operations for low-level image

analysis. These are distinguished by their structure :

- Point operations, only a single pixel is involved in the computation. An

example is a simple threshold operation resulting in a binary image.

- Neighbourhood operations, which require a local window of pixels for

the calculation of each output pixel. Many operations in low-level image

analysis have this form including convolutions for enhancement and edge

detection, rank order filters, and local histogram operations.

- Global operations, where each output is a function of most or all of the

input image. This includes transformation operations such as the Fourier

Transform and the Hough transform.

- Statistical operations, e.g. histogram generation. Although this is strictly

classed as an intermediate operation, it can be used to produce an iconic

output in operations such as histogram equalisation.

Low-level iconic processing is usually uniform across the whole image. Little or no

information is available about what parts of the image are of interest and thus will

require specific processing.

3.2.2 Intermediate processing

The intermediate level is not as well defmed as the iconic level. It is often thought of as

a transitionary level, taking image data as input and producing non-image data as

output [Tanimot085]. It is used to interface sensor information and information about

the world. Thus, the intermediate level fonns an interface between the iconic and the

symbolic processing levels.

The processing involved at this level often takes the fonn of extracting features from

images, through grouping, splitting and labelling to form symbolic representations.

47

3 Architectural Options for Ima,;c Analysis

The resulting symbolic representations should also be integrated so that the different

representations can be related, e.g. a region is related to its boundary lines.

Most symbolic representations can be built from three types of image features: points,

lines, and regions [Tanimot085]. Points in an image can represent end-points oflines,

maximum or minimum intensity locations, centres of regions, or corners. Lines can

represent object boundaries - the position of changes of regions e.g. texture. Regions

are a collated set of pixels, possibly representing an area of the same texture, or the

output from a segmentation process.

Weems [Weems91] considers the intermediate level to also include the processes of

model transformations, and model matching. The model transformations (such as

rotation, scaling and translation) take place on the extracted image features and are

matched to existing models.

3.2.3 Symbolic processing

Symbolic level processing aims to generate descriptions of objects in the 3-

dimensional world, from the image data through the use of intermediate

representations. Further processing may then take place to interpret the symbol

representation, such as that for manoeuvre planning in a robotic environment, or for

resource allocation.

The form of the processing that should take place in this high level stage is not well

understood [Duff88]. Operations that have been carried out in the symbolic level have,

in general, been specific to the problems in which they have been applied.

Weems [Weems91] considers the symbolic processing to also be responsible for

maintaining the knowledge of the world. This can be achieved through the matching of

models, the production of hypotheses about the contents of the image, comparing the

hypothesis and resolving any conflicts through further processing.

3.3 Computational Requirements for Image Analysis

The structure of the data, contained within the three processing levels of an image

analysis application, exhibit different degrees of parallelism and complexity. The

48

3 Architectural Options for Image Analysis

structure of the data, and the operations petformed, results in the possible utilisation of

parallel processors. The efficient matching (or mapping) of the data and operations

onto a parallel processor affects the overall utilisation and system petfonnance. When

real-time operation is required, the choice of operations performed is often restricted

by the petfonnance of the system.

Image analysis requires a large amount of processing and data throughput. For

instance, the number of multiply-accumulate operations per second required for the

operation of a single spatial filter, on an image in real-time, is:

1
m2 *N2*T

where m2 is the number of elements in the filter, N2 is the number of pixels in the

image and T is the frame time (in seconds). Even for a modest filter of size 7x7, on an

image of size 512x512, a total of321 *1()6 multiply-accumulate operations are required

per second with a typical frame time of 4Oms. Uni-processors are inadequate even for

a single task of this complexity.

The structure and types of data for image analysis operations are described below.

Each is considered within the three levels of processing outlined in Section 3.2.

Iconic level requirements

The processing at the iconic level involves the processing of regular, 2-

dimensional, arrays of data. The high degree of implicit data parallelism may

be utilised so long as the operations to be performed can take place on all the

elements of the array in parallel. Such a situation arises in early image analysis

operations. However, in later operations, local areas or regions of interest may

be required to be processed independently. The main features of iconic

processing are :

• The operations typically involve the use of local data values, as with

spatial filters, requiring simple (local) patterns of data addressing.

• The word size of the data is typically low, starting at 8-bits from an

image sensor, and increasing as a result of processing.

49

3 Architectural Options for 1m2" Analysis

Exceptions to these include transformations, e.g. the FFT and Hough

transforms, which require global communications and can also result in

enlarged word lengths with the need for floating point arithmetic

[Rosenfeld88].

The operations involved in the iconic processing level are suited to the SIMD

processing paradigm when the operation is global. Local region processing is

also suited to SIMD. However, poor utilisation of an SIMD array will result if

the region sizes are less than the size of the processor array.

Intermediate level requirements

The intermediate level requires the extraction of features from the iconic data

while retaining spatial relationships. The operations which are performed at

this level on the extracted features will typically involve a large area of the

image, e.g. for the collation of edges. Thus more complicated communications

are required than for the iconic level. The extraction of the features from the

image data can be performed in parallel if multiple data-paths exist between the

iconic and intermediate processing levels.

The structure of the data that is processed in this level typically consists of

lists, or arrays of features. The processing is usually irregular and data

dependent [Choudhary92], dealing with the collation of features to build a

symbolic representation. The extraction and collation of the data is local to

image regions and can thus be performed in parallel. These operations are

suited to the MIMD parallel processing paradigm.

Symbolic level requirements

Since the processing in this level is object/scene dependent, the processor

requirements cannot be accurately determined. The techniques that can be used

at this level include Artificial Intelligence and database interrogation for model

matching. However, it is generally accepted that the processors in this layer

should be as flexible and general purpose as possible [Duff88]. The

parallelism contained within the operations at this level is also unclear, but will

probably require the dynamic scheduling of processes [Choudhary92].

50

3 Architectural Options for Image Analysis

The flexibility required at this level is suited to the MIMD processor paradigm.

The unstructured control, communications and lower granularity, in an MIMD

processor array in comparison to an SIMD array, provides a better match to the

required flexibility.

It is clear from the above discussion that the three levels of iconic, intermediate and

symbolic processing have differing computational requirements:

• the iconic processing is best suited to an SIMD array

• the symbolic processing is best suited to an MIMD array

• the intermediate level forms the interface between the iconic and symbolic

levels in bottom-up processing, and vica-versa for top-down processing

The apparent conflict in the processing requirements for image analysis result in a

question of which type of processor should be used?

Several proposed image analysis systems have recognised the need for a dual

paradigm architecture. A number of experimental systems use separate processor

levels for the image analysis processing levels described above. The architectural

options that have been applied in experimental image analysis systems are described in

Section 3.4 below.

3.4 Image Analysis Architectures

There have been several architectures proposed which consist of a number of

processor arrays, each applied to a different level of processing within image analysis.

In 1984, Reeves [Reeves84] suggested a system which combines an SIMD array with

an MIMD array, where the iconic processing would be mapped to the SIMD array and

the symbolic processing mapped to the MIMD array. This general approach has also

been suggested by others and forms the basis of many proposed image analysis

systems [Siegel81, Nudd89, Segal90, Hwang91].

Many options arise in the construction of an architecture from several processor

arrays, including which processors to use. Also the connectivity, and control of the

processors within, and between, the arrays is an important factor. The options used

51

3 Architectural Options for Image Analysis

within experimental image analysis systems have conformed to the following four

main categories:

1) Dedicated hardware

- those that use specific purpose components for certain operations

2) Homogeneous pyramids -

- those that use a single processor type within several processor arrays

3) Reconfigurable

- those that can change their control structure dynamically

4) Heterogeneous arrays

- those that use different processor types in multiple processor arrays

3.4.1 Dedicated hardware

Dedicated chips for specific operations typically offer increased performance over a

general purpose programmable system. This is due to the hardware being dedicated to

the computation of a specific operation. Available operations, that can be performed on

single chips include the FFr and Hough Transforms, FIR filters, histograms, rank

order filters and convolutions [LSI89, Slorach88]. However, systems built solely

from dedicated components are limited to performing specific operations.

A system, which incorporates a range of dedicated chips with an array of general

purpose MIMD processors, has been proposed and built at ETH in Switzerland. This

system is called the SYDAMA-2 [Stokar92]. Special attention was given to the design

of a bus interconnection scheme, between the dedicated processing chips, to enable

real-time operation, both in terms of the required computation and bandwidth. A

schematic of the SYDAMA-2 is shown in Figure 3.3.

The dedicated processors are connected together in a ring topology, via a pipelined

ring bus. This bus consists of 48 communication lines which are time multiplexed to

provide 96 logical lines. This enables twelve 8-bit video data streams to be transmitted

concurrently. Each stage within this bus consists of a 64x64 cross-bar switch,

enabling the transmitted data from the previous stage in the ring to be transmitted to the

next stage, or used within the processing of the current stage. The input and output

video data are connected directly to this bus.

52

3 Architectuml Options for Image Analysis

Convolver

FFf
en
::l
.0
bJl Hough ·a Reconfigurable
4) Transputer s:: Histogram :.::l Network
4)
0..
~

FIR

I/O

Figure 3.3 - The configuration of the SYDAMA-2 system.

Each dedicated processor is under the control of a single Transputer. Further

Transputers are connected to form a dynamically reconfigurable MIMD network,

available for general purpose computing. The MIMD network enables an operation to

be performed on the image data that could not be performed using the dedicated

hardware components. However, such operations are limited by the computation and

communication capabilities of the Transputer network.

3.4.2 Homogeneous pyramids

A number of architectures have been suggested which form homogeneous pyramids of

processors. These architectures consist of multiple arrays (levels) of a single type of

processing element. Each level contains a different number of processors, the largest

at the bottom, with progressively smaller arrays towards the top. These architectures

therefore form a pyramid of processing elements. The basic architecture of a

homogeneous pyramid is shown in Figure 3.4.

Homogeneous pyramids include the GAM pyramid [Schaefer87], the PAPIA

[Cantoni87], and the SPHINX [Clermont87]. Much of the algorithmic work on

multiple-layer pyramids has been carried out by Tanimoto [Tanimot086, Tanimoto87].

The design of these pyramids have much in common. They are all designed for use as

a hierarchical image analysis system. They all use bit-serial processors within their

53

3 Architectural Options for Imace Analysis

multiple levels. They all have connections between processors within the same

pyramid levels and to levels above and below that level. Typically a quadtree structure

is formed, i.e. each processor is connected to four processors in the level below and to

one processor in the level above.

4t=======~

Figure 3.4 - The structure of a multiple-layer homogeneous pyramid architecture.

The GAM pyramid has five processing levels, with each level a factor of four smaller

than the one beneath it. A total of 341 processors were used, implemented by the

available Massively Parallel Processor (MPP) PE. All processors operate under the

control of a single controller, i.e. operate as an SIMD machine except for

communications between levels. Here, local autonomy enables one level to perform a

'send' operation while another performs a 'receive' operation. A camera interface

provides input 16x16 images at the lowest array level.

The P APIA pyramid was proposed as an eight level machine, containing a total of

21,845 processors, with the bottom level consisting of an array of 128x128

processors. The bit-serial processing element was custom designed, and a proposed

second generation le design would contain a mini-pyramid with 3 levels. Three

controllers where included in the design: one to control the upper four levels; one for

the 5th and 6th levels; and the third for the lower two levels. Thus, a full sized PAPIA

machine forms a Multiple-SIMD architecture.

The SPHINX pyramid has a very similar form to that of the PAPIA pyramid. It uses a

custom designed processing element, but has individual controllers for each processor

54

3 Architectural Options for Image Analysis

level. The synchronisation of these controllers, for communication between levels, is

discussed by Clermont [Clermont87].

All of these pyramids form multiple levels of SIMD processors, either controlled on a

per level basis or, in the case of the GAM pyramid, under the common control of a

single controller. Although these architectures are very well suited to multi-resolution

algorithms, they are not suited to the mixture of iconic and symbolic operations

involved in image analysis. Cantoni [Cantoni87] envisaged that low level operations

would be performed on the PAPIA pyramid, and that high level vision operations

would be relegated to a host computer. This however, makes the assumption that little

computation is required in the high level operations.

3.4.3 Reconfigurable

Some architectures enable the dynamic reconfiguration of their control structure

between SIMD and MIMD modes of operation. An example is the PArtitionable

Simd/Mimd (PASM) machine [SeigeI81]. PASM contains a resource of up to 1024

processors which can be partitioned to operate as many independent SIMD and MIMD

machines as required for an application. The reconfiguration can be performed

dynamically. A prototype, the PASM-l, has been constructed containing a total of 30

Motorola MC68000-series processors [Kuehn85].

PASM consists of four main components; the Parallel Computation Unit (PCU), a set

of Micro-Controllers (MCs), a memory management system and a system controller.

The PCU contains the processors, each with their own memory, and an

interconnection network. Each processor may take its instruction stream from its own

memory, in MIMD mode, or from an MC, in SIMD mode. Each MC is a processor (a

MC68000 in the prototype) that acts as a control unit for a group of processors in

SIMD mode. Each MC is responsible for a fixed groups of processors, in the

prototype each MC can control four processors.

The interconnection network between processors is capable of operating both

synchronously and asynchronously. When a set of processors are operating in SIMD

mode, the relevant part of the network operates synchronously supporting nearest

neighbour communications. When the processors operate in MIMD mode, the relevant

55

3 Architectural Options for Image Analysis

parts of the network operate asynchronously, supporting point to point

communications. However, this reconfiguration capability results in complex control

and communication overheads.

3.4.4 Heterogeneous architectures

Heterogeneous architectures contain two, or more, types of processor. Typically,

individual arrays are formed from each processor type and interconnected to form a

multiple-level heterogeneous architecture. An application using an heterogeneous

architecture can be split into constituent components such that the components best

suited to one type of processor can be mapped onto that processor. Thus, in an image

analysis application, the different levels of processing can each be performed on the

most suitable processor array.

Several heterogeneous architectures have been proposed for use in image analysis,

including the Display Array (DisArray) from Oxford University [Page89], the

Orthogonal Multiprocessor with an Enhanced Mesh by Hwang at University of

Southern California [Hwang91], and the Image Understanding Architecture (IUA) a

joint project by Hughes Research Laboratories and the University of Massachusetts

[Weems89].

The DisArray combines an array of SIMD processors with an array of MIMD

processors. The design of the DisArray resulted from a study of vision and computer

graphic operations. Low level operations are performed on the SIMD array and

higher-level operations are performed on the MIMD array. The SIMD array consists of

16x16 bit-serial processing elements. The MIMD array contains ten T414 Transputers,

inter-connected using a crossbar switch, with a further thirty processors arranged in a

fixed 5x6 grid.

The SIMD array has a dedicated controller, based on a single T800 Transputer, having

the benefits associated with the Transputer software support. The controller is

connected to the crossbar switch and thus enables data transfers to take place between

the SIMD and MIMD arrays. However, the available bandwidth is limited to a single

Transputer link, at a maximum of 20Mbits/s. Although this system is small, some

56

3 Architectyral Options for Image Analysis

graphic and vision algorithms have exploited the individual capabilities of both the

SIMD and MIMD arrays.

The Onhogonal Multiprocessor with an Enhanced Mesh has recently been proposed

by Hwang [Hwang91]. It has the potential to support both low and high level image

analysis tasks through the use of an SIMD and an MIMD processor array. The MIMD

array is termed the Onhogonal Multiprocessor (OMP) and the SIMD array is termed

the Enhanced Mesh (EM). Interaction between the two arrays is provided by a

common shared memory. The OMP and the EM are both shown in Figure 3.5 along

with the shared memory.

SIMD processor (EM) Shared memory MIMD processor (OMP)

--®--®-
~ ~ ... ~ -®--®-

~~~l0 ~~~ 

~ ~ ... ~ 

Array .... --------t System .... _____ ... 
Controller ... Manager I'" 

VO 

Figure 35 - The Orthogonal Multi-Processor with an Enhanced mesh. 

The shared memory forms an integral part of the architecture. It enables data transfers 

to be made transparently between the SIMD and MIMD arrays in either direction. The 

shared memory consists of n2 memory modules. Each module consists of three 

memory sub-modules, interconnected via a 3x3 crossbar switch, and interfaces to the 

SIMD array, the MIMD array, and the system manager for I/O. Each memory module 

contains the memory for a total of k}k2 SIMD processing elements, and part of the 

memory for a single OMP (MIMD) processor. The crossbar switch enables SIMD, 

57 



3 Architectural Options for Image Analysis 

MIMD, and I/O memory operations to take place alternatively on data contained within 

the three memory sub-modules. 

The SIMD array consists of NxN processing elements with four way nearest 

neighbour connectivity. The processors are controlled via a single array controller and 

can communicate to the MIMD array via the shared memory. The MIMD array is 

based upon the OMP multiprocessor [Hwang90]. It consists of n Intel i860 

processors. Each processor is connected to a pair of dedicated busses, running 

horizontally and vertically through a square grid of the n2 memory modules. Thus, 

each processor can access a total of 2n-1 memory modules. Local memory connected 

to each OMP processor stores local data and code. All OMP processors are connected 

to a common communications bus which can be used for interprocessor 

communication and synchronisation. 

A range of low and high level image analysis tasks have been shown to be efficiently 

executed on the combined OMP and EM [Hwang91]. A prototype of the combined 

OMP and EM has not been constructed, but Hwang suggests that a suitable size would 

be 64x64 SIMD PEs, 16x16 MIMD processors and 16x16 shared memory modules. 

However, the single controller on the SIMD array can result with in-efficient local 

processing for image regions. 

The Image Understanding Architecture (IUA) also consists of several processor 

arrays. It has been designed to match the processing requirements of image analysis 

[Weems89]. It consists of three layers of processors: one for low level processing; 

one for the intermediate level; and one for the high (symbolic) level. These layers form 

a pyramid of processors. However, unlike the homogeneous pyramids described 

above, the three layers form a heterogeneous pyramid. Interleaving the processor 

layers is shared memory, enabling communications between the layers to take place. 

The IUA is shown in Figure 3.6. 

The low level array is implemented using a custom designed, bit-serial Content 

Addressable Array Parallel Processor (CAAPP). The CAAPP is used to form a 

512x512 array, intended to perform low-level image processing operations. The 

mechanisms of a global Some/None and COUNT operations are included in this array 

to aid associative operations. The CAAPP array operates as a conventional SIMD 

58 



3 Architectural Options for Image Analysis 

array, under the control of a single Array Control Unit (ACU). Each CAAPP 

processor has access to 32Kbits of external memory, which is also shared by the 

intermediate level. 

Symbolic Processing Array 

Shared Memory 

Intermediate and 
Communications array 

Shared Memory 

Content Addressable Array 

Figure 3.6 - The Image Understanding Architecture. 

The SIMD array also incorporates a reconfigurable bus termed the Coterie network by 

Weems [Weems89] and the Gated Connection Network (GCN) by Hughes [Shu88]. 

It consists of an array of eight transmission gates per PE. It enables a broadcast bus to 

be set up between sets of processors, which need not be adjacent, using the dynamic 

swi tching of the transmission gates. The performance of image analysis operations 

such as maximum / minimum calculations, labelling connected components, and 

minimum spanning trees are enhanced as a result of this network [Shu88]. The 

calculation of the minimum spanning tree occurs in applications such as the 

unwrapping of fringe interferograms [Judge92]. 

The Intermediate level consists of an array of 64x64 Intermediate Communications 

Associative Processors (lCAP). Each ICAP consists of a DSP processor with local 

and shared memories. The ICAP processors are interconnected, enabling intermediate 

grouping operations to be performed. The ICAP has two modes of operation, either 

synchronous, where all ICAPs operate on the same instruction stream, or 

59 



3 Architectuml <mtions for Imafle Analysis 

asynchronously, operating with independent instruction streams. Control for the ICAP 

processors is provided by the ACU when operating synchronously, or by the 

symbolic level processors when operating asynchronously. 

The Symbolic Processor Array (SPA) contains general purpose MIMD processors, 

with co-processor support for symbolic operations. The SPA communicates to the 

ICAP processors through the second layer of shared memory. The detailed 

specification for the SPA has not yet been carried out, although it is envisaged that it 

will consist of 64 processors running a LISP based black-board system [Weems89]. 

Using the Motorola M68020 as a single symbolic processor, a prototype IUA has 

been constructed which consists of a l/64th of the whole machine. 

3.5 Summary 

The operations required for image analysis conform to three levels of processing, 

namely: iconic, intermediate, and symbolic. These three levels have different 

computational requirements, resulting in a system requiring multiple-levels of 

processors. Each processor level is dedicated to a part of the overall image analysis 

task. The iconic level requires SIMD processing, which can be global across the 

whole image, or local to specific regions within the image. The intermediate and 

symbolic levels require the flexibility of MIMD processing. 

Several architectures have been proposed for use in image analysis. The SYDAMA-2 

uses dedicated components which are suited only to the calculation of specific 

operations. The proposed homogeneous pyramids of SPHINX, PAPIA, and GAM 

contain multiple layers of processors. These are suited to multiple-resolution 

processing and not to combined iconic and symbolic processing. The dual processing 

paradigms of PASM, the combined OMP / EM, and the IUA contain the capability of 

the dual processing required for image analysis. 

However, the IUA and the combined OMP / EM, enable only global SIMD processing 

with MIMD processing. Thus, local SIMD processing can not be performed efficiently 

on either of these machines. PASM promises the capability of reconfigurable SIMD / 

60 



3 Architectural Options for Image Analysis 

MIMD processing including local SIMD processing. However, the reconfigurability 

results in complex control and communication systems. 

In the next chapter the design of a dual-paradigm architecture is described, which 

encompasses both local and global SIMD processing, with MIMD processing. The 

machine is called the Warwick Pyramid Machine (WPM), and is designed for use in 

image analysis applications. Its design and implementation is described in Chapter 4. 

The mapping of data onto the WPM is described in Chapter 5, and a study of its use 

for tracking operations is contained in Chapter 6. Finally load-balancing 

considerations, for efficient utilisation of the WPM, are discussed in Chapter 7. 

61 



Chapter 4 

The Warwick Pyramid Machine 

4.1 Introduction 

This chapter details the design and implementation of the Warwick Pyramid Machine 

(WPM) [Nudd89, Nudd91, Nudd92a]. The WPM incorporates several types of 

processors for the simultaneous processing of iconic and symbolic data types. It 

consists of several processing levels: at the lowest level is a massively parallel SIMD 

array; the next level consists of an array of controllers, each of which controls a square 

sub-section of the SIMD array; and an array of MIMD processors. The apex of the 

pyramid consists of a single Host node such as a SUN workstation. 

The partitioning of the SIMD array, into smaller Multiple-SIMD arrays each under 

local autonomous control, enables the WPM to process many data sub-regions 

simultaneously. This approach differs from other architectures, such as the IUA 

[Weems89] and the OMP with EM [Hwang91] (see Section 3.4.4), although they also 

combine SIMD and MIMD processor arrays. The SIMD arrays in these architectures 

contain little or no autonomous control, except for activity controlled operations. 

The description of the WPM within this chapter is divided in the following way. In 

Section 4.2, an overview of the WPM is given. In Section 4.3, the details of the 

prototype WPM are given. The prototype implementation is described in terms of its 

SIMD array, its MIMD array, and its controller array. A part of each of these arrays 

forms a modular and scalable unit (a Cluster), and this is also described. The 

programming issues associated with the WPM are described in Section 4.4. Finally, 

performance figures for each of the levels within the prototype WPM are given in 

Section 4.5. 

62 



4 The Warwick Pyramid Machine 

4.2 Overview of the WPM 

The WPM contains both MIMD and Multiple-SIMD (M-SIMD) processor arrays. The 

machine can be viewed as forming a pyramid of processors. At its base is a massively 

parallel two-dimensional SIMD array connected to a camera ouput, partitioned into 

smaller M-SIMD arrays, and capable of processing iconic data. Further up is a smaller 

two-dimensional array of coarser MIMD processors which are aimed at the processing 

of symbolic data. At the pyramids apex is a single host workstation providing both a 

user interface, to the lower levels, and storage facilities. These processor levels are 

shown in Figure 4.1. 

• ................................... _ ................... - HOST 
..... _ .................... _ .......... -MIMD array 

•. - SIMD array 

Figure 4.1 - The Warwick Pyramid Machine. 

The WPM is configured such that each of the M-SIMD arrays has its own controller 

and each is associated with a single MIMD processor. This forms a modular and 

scalable functional unit which is termed a Cluster. The spatial arrangement of 

processors between levels is preserved, such that the top-left MIMD processor is 

associated with the top-left M-SIMD array. The configuration of a single Cluster is 

shown schematically in Figure 4.2. 

Clusters are four-way interconnected at each of their three levels: at the SIMD level for 

synchronous communications; at the controller level for local instruction 

synchronisation; and at the MIMD level for asynchronous message passing 

communications. The interconnections at the MIMD level and the controller level are 

shown by the arrows in Figure 4.2. 

63 



4 The Warwick Pyramid Machine 

MIMD processor 

Array controller 

SIMD array 

Array 
memory 

Figure 4.2 - A Cluster, the modular component of the WPM. 

Shared memory exists between the MIMD processor and SIMD array within a Cluster, 

enabling communications between the two to take place. This interconnection scheme 

has a greater bandwidth over an architecture which simply interconnects an SIMD and 

MIMD array along a single axis. The shared memory is accessible by both the MIMD 

processor and the controller. The controller can pass data to the SIMD array, from the 

shared memory using broadcast operations, or data can be placed in the shared 

memory from the SIMD array, using its associate response mechanisms. 

The SIMD array within a Cluster has two modes of operation; either Cluster mode, or 

Array mode, both of which are described below. 

• Cluster mode enables each SIMD array to operate autonomously, 

communicating only at the MIMD level. This enables image regions, within 

each Cluster, to be processed independently, thus overcoming the single 

instruction bottleneck of a conventional SIMD array. In Cluster mode, the 

communication boundaries of the SIMD array are wrapped around, internal to 

the Cluster, forming a torus network. 

• Array mode enables some or all of the Clusters to be synchronised. This 

allows communications between adjacent Clusters to take place at both the 

64 



4 The Warwick Pyramid Machine 

SIMD and MIMD levels. When all Clusters are synchronised, the whole M

SIMD array acts like a conventional SIMD array. This feature is important in 

shifting operations in which communications are required between each PE 

and their neighbour, e.g. in a filtering operation. A global filtering operation, 

on the whole SIMD level, requires the synchronisation of all the SIMD 

Cluster arrays. 

In the prototype WPM, the SIMD level of a Cluster is implemented using an array of 

16xl6 DAP processing elements. The MIMD level of the WPM is implemented using 

the Transputer (T800). The controller within each Cluster has been designed for 

general SIMD array usage, giving flexibility for expansion, or for the functional 

change of the SIMD array. However, the prototype controller incorporates specific 

facilities to support the functional capabilities of the DAP processors. 

The modular design of the WPM enables its design to be specified in terms of a single 

Cluster, as this contains part of each of the three processing levels. Thus, the design 

of the Cluster enables a multiple-Cluster configuration of the machine to be 

constructed. An 8x8 array of Clusters is envisaged as a full sized Warwick Pyramid 

Machine. 

The use of available processors has enabled the quick prototyping of the WPM to take 

place. Although this may not have produced an optimal match between the processing 

levels, in terms of their computational capabilities, or in the use of current VLSI 

technology, it has enabled a prototype WPM to be constructed, tested and analysed for 

use in various applications. 

4.3 Implementation of the WPM 

The implementation of the prototype WPM Cluster is described below in terms of its 

three levels. The prototype uses an array of 16x16 DAP processing elements for the 

SIMD level, a single Transputer for the MIMD level, and a bit-slice SIMD controller 

design. The controller provides instruction sequencing for the SIMD array, 16-bit 

scalar functionality, and shared memory between the SIMD and MIMD arrays within a 

65 



4 The Warwick Pyramid Machine 

Cluster. The interconnections of Clusters between their three levels are also detailed 

below and the communication performance is discussed. 

4.3.1 The SIMD array 

The SIMD array, within each WPM Cluster, is implemented using the AMT DAP bit

serial processing element. The heart of the present commercial DAP machine is used to 

implement the WPM SIMD array. A set of four ICs are used from the DAP machine, 

each containing an array of 8x8 PEs implemented using approximately 3,000 gate 

equivalents. 

The DAP PEs are arranged in a 4-way connected mesh network, NEWS (North, East, 

West, South). Figure 4.3 shows the arrangement of 16x16 DAP PEs as used within a 

WPM Cluster. The enlarged view of four PEs, on the right of Figure 4.3, shows the 

row and column highways, running horizontally and vertically through the PEs, used 

in PE associative operations. 

[:::::::::::::::::::::::::~i~::~~iI~f.~f.:::::::::::::: :: ::::] 
Communication network 
Row highways 
Column highways 

Figure 4.3 - A 16x16 DAP SIMD array, showing the detail 0/4 PEs. 

A 16-bit register known as the Edge Register is situated along two sides of the SIMD 

array. It is used to store the associative responses of the SIMD array and can also be 

used to broadcast values across the array. The associative response can take the form 

66 



4 The Warwick Pyramid Machine 

of extracting a specific row or column from the array, using the row and column 

highways, or it can extract the logical AND of all rows or all columns. The Edge 

Register can broadcast a value across the rows of the SIMO array or down the 

columns of the array. The value may be stored in specific rows or columns by the use 

of conditional store instructions. 

The associative capabilities of the OAP PEs have been enhanced, within the WPM, by 

the addition of a 256-bit input count within each Cluster. This can count the number of 

bits set, one taken from each PE, to produce a 9-bit result. In addition, it provides a 

single bit Some/None response which indicates if any of the PEs have a bit set. Both 

of these responses can be used by the Cluster controller for conditional instruction 

sequencing. 

4.3.1.1 Functionality of the DAP PE 

Each OAP PE contains a full-adder with 3 inputs and 2 outputs, five single-bit 

registers and two multiplexors to route the inputs to, and outputs from the full-adder. 

A DAP PE is shown in Figure 4.4. 

North 
East 

West 
South 

Q 
A 

ZERO 
Edge R. 
Memory 

I 
N 
P 
U 
T 

M 
U INV 
X 

D plane in (-1) 
D plane in (-2) 

To neig bours 

Carry 

FULL 

ADDER 

Figure 4.4 - The DAP processing element. 

Edge R. 

0 
U 
T 
p 
U 
T Memory 

Dplaneout 

67 



4 The Warwick Pyramid Machine 

Each register can be viewed as a plane of registers when considering the SIMD array 

as a whole. The function of each PE is detennined by an instruction word of 13-bits. 

Each DAP instruction effectively combines the states of the internal registers with a 

memory value. Most DAP operations take a single cycle, including a read from or 

write to the external memory. The perfonnance of the DAP is limited by the bandwidth 

to its external memory. 

The input to the full-adder can be taken from either: the PEs four nearest neighbours; 

the Q or A registers internal to the PE; external memory; a zero; or from the Edge 

Register. The output multiplexor can route data from the Q, A, or S registers, or from 

the input multiplex or, to external memory, or to the Edge Register using associative 

response operations. The S register takes its value from the memory input or from the 

Sum output of the full-adder dependent upon the value of the A register. This is used 

in conditional operations, with the A register being the activity control. 

Four bits in the DAP instruction word detennine the data-path through the PE (Le. 

which one of the inputs is selected by each of the multiplexors). Each of the sixteen 

combinations of these four bits represent a different instruction group as shown in 

Table 4.1. These groups fonn the DAP assembly language instruction set - APAL 

[AMT88]. 

Each of the registers within the DAP PE have a specific use, or uses, depending upon 

the instruction group being executed. The C register is used to hold the carry output 

from the full adder, and the Q register the Sum. The registers Q, A and C can be 

updated during all instruction groups, except 2 and 6, using clock control lines which 

are part of the DAP instruction word. Shifting of a data bit, between PEs, is 

perfonned in a group 12 instruction. During this instruction, two of the inputs of the 

full-adder are taken from the Q register (the third is zeroed) producing the value of Q 

on the carry output. The carry output can be shifted in any direction to the four 

neighbouring PEs. 

The A register acts as an accumulator in that its previous value can be ANDed with the 

value from the input multiplexor. Alternatively, it can take the value of the input 

multiplexor. It also acts as an activity control bit on a conditional store or addition 

instructions, in groups 10 and 11. The conditional operations are two cycle 

68 



4 The Warwick Pyramid Machine 

instructions. In the first cycle, a memory bit is read into the S register while also 

performing the addition or copy to the Q register. This is followed in the next cycle by 

writing either the S or Q registers to memory, using the A register as the selector. 

Group Description Input MUX Output MUX 

0 memory ::) PE memory none 

1 XOR memory with bit of Edge Register::) PE memory none 

2 memory ::) Edge Register memory input MUX 

3 orthogonal Edge Register::) PE orthogonal R none 

4 Zero::) PE zero input MUX 

5 bit of Edge Register::) PE zero none 

6 Edge Register::) memory (main store mode) R input MUX 

7 Edge Register::) PE R none 

8 Q ::) PE/store/Edge Register Q Q 

9 A ::) PE/store/Edge Register A input MUX 

10 conditional add::) store memory S 

11 conditional write ::) store zero S 

12 shift Q ::) nearest neighbour neighbour none 

13 ripple add (in any direction) neighbour none 

14/15 no-ops - -

Table 4.1 - The DAP instruction groups. 

The D plane is independent of the normal operation of the PE, allowing autonomous 

shifting from south to north across the whole SIMD array. It can perform one of four 

operations - no shifting, shift even rows only, shift odd rows only, or shift all rows. 

This is designed specifically to be connected to a sensor output, allowing for possible 

frame interlace. The shifting takes place independently of the PEs operation, but the 

data from the D plane can be accessed by the PEs when the shifting is complete. The 

overhead of shifting in an input image into the array is minimal. The D plane has not 

as yet been used within the WPM. 

69 



4 The Warwick Pyramid Machine 

All the instruction groups of Table 4.1 have been implemented on the DAP PEs within 

the WPM, except for Main Store Mode (DAP group 6 instructions). This mode allows 

the Edge Register to be written to the memory of a single row of the SIMD PEs. The 

memory is arranged in the DAP machine such that one row of PEs is connected to one 

set of memory chips. Hence, by making part of the memory address the row address, 

the memory may be selectively accessed. For the WPMs 16x16 array, four bits would 

be needed to specify a row address, thus limiting the addressable memory to 4kbits 

per PE when using a 16-bit address field. Instead, a 16-bit word is used to address a 

total of 64kbits of memory per PE. Individual writing to memory rows can still take 

place using the conditional write instructions, involving a slight overhead when 

compared to the DAP group 6 instructions. 

4.3.1.2 The SIMD associative Count 

The DAP PEs associative response capabilities, within the WPM, have been enhanced 

by a count device. This has a single input from each of the PEs, connected to each PEs 

external memory line within the 16x16 SIMD array of a Cluster. It performs the 

function of counting the number of inputs which are set, and outputs a 9-bit 

summation value. In addition, a check is made to see if any of the outputs are set, a 

SomelNone operation, outputting a single bit result. Both outputs of this count can be 

used by the Cluster controller. 

The count and SomelNone can be used for a number of different functions. Consider 

the problem of determining if a feature exists within an image. The output of such 

processing could consist of a binary mask, the same size of the image, with a '1' 

indicating the presence of the feature and a '0' indicating its absence. The SomelNone 

line can be used to quickly ascertain if there are any such features within the image that 

are contained within a Cluster. The count could give the area over which the features 

exists. Its use in image operations is described further in Section 5.4.2. 

The use of a count for the number of responders is not novel in the context of array 

processors. In 1971 Foster [Foster71] showed that the design of an N input count 

could be implemented using a maximum of N full adders. His design was used within 

an array of associative processors. However, if the exact number of responders is not 

70 



4 The Warwick Pyramid Machine 

required, only an approximation, then a technique using a resistive summing network 

and an analog to digital converter may be used [Kaplan63]. 

The Grid array processor uses a shift register and an accumulator, to count the number 

of set bits within a word [Pass85]. This cycles at four times the speed of the processor 

array. The DAP machine has no support for counting bits. In applications such as 

histogram generation, the count of different pixel values can be performed in parallel 

across the array, using bit-serial operations [Reddaway90]. 

Within the WPM, a count design similar to Foster's is used, since in most image and 

numerical applications a precise result is required. However, the count is limited to the 

boundary of each Cluster to reduce hardware complexity. The design is implemented 

in a gate array with a 2-micron design process [Walton89]. At the time of design, no 

IC packaging was available with the required number of pins - one per PE (256) plus 

output, control, and power. Thus, the design was modularised into 4 ICs, each 

performing the count of 64 inputs, Figure 4.5. However, the count could be 

incorporated within the design of the PE on a single IC, since it requires only 8,000 

gates (2,000 per 64 input count). 

7bit count input - - - - - - - - - - - - - - - - - - - - , 
. • ." .':':':'':'".:,.:.,.;'',';';';''. ':'':';';.' '; ',...,;.:.g C~unt output 

~~~ .... 

i

I one L _______________________________ •

Figure 4.5 - A 64 input count.

To achieve the same clock speed as the DAP chips (lOMHz), pipeline latches were

incorporated into the design, two in the count data-path and one in the Some/None

data-path. Thus, the output of the count is available two cycles after the data was

active on the DAP memory lines, and the Some/None one cycle after. Four of these

les can be connected together as shown in Figure 4.6. The outputs from the left hand

71

4 The Warwick Pyramid Machine

count ICs are used as the inputs to the right hand count ICs. The outputs of the right

hand counts are added externally to produce the total 256 count output which can be

used by the Cluster controller. Similarly the Some/None outputs, from each count IC,

are OR'ed externally to produce the Some/None output for the Cluster.

Count
output

Figure 4.6 - A 256 input count/rom/our 64 input counts.

4.3.2 The MIMD array

The Transputer is used to implement the MIMD array within the WPM. The

Transputer is a conventional microprocessor, with on-chip communication capability,

allowing several such devices to form an MIMD network. The T800 Transputer is

used within the WPM and is described below. A future implementation of the WPM

could utilise the 1'9000 Transputer, when available, with improved performance.

The Transputer consists of a single VLSI device requiring only the addition of a clock

circuit, in its simplest form, and has on chip-memory which can be used for both

program and data storage. Further, external memory can be added using the

Transputers in-built memory interface, requiring only a minimum of ICs for buffering

and latching. Communication connections between Transputers are made by simply

connecting the relevant pin from one Transputer to the correct pin on another

Transputer. These communication channels are called links.

The internal components of a Transputer can be seen in Figure 4.7 for both a T800

and T9000 Version. The 30MHz version of the T800 operates with a peak instruction

rate of 30MIPs and 4.3MFLOPs. It contains an on-chip 4k memory cache which can

be accessed at 3 times the speed of external memory. Each of the four links operate

72

4 The Warwick Pyramid Machine

asynchronously with a capacity of 20Mbits/s in each direction, typically resulting in a

O.9MByte/s sustained communication rate.

Figure 4.7 - The internal components of a T800 and a T9000 Transputer.

The T9000 operates at a clock speed of 50MHz and differs from the T800 in its

computation and communication rates. It can execute instructions at a peak rate of

200MIPS (>70MIPS sustained) and 25MFLOPS (>15MFLOPS sustained)

[lnmos91]. It uses super-scalar techniques such that the processor pipeline can issue

and execute up to four instructions in each cycle. The T9000 also benefits from an

internal cross-bar switch which can interchange four 32-bit data buses and four 32-bit

address buses. Its links can operate at a rate of 10Mbytes/s using an extra handshaking

line in each of the links directions. An additional two links exist, which can be daisy

chained together across several processors, to aid the control, debugging and

reliability within a network.

Each Cluster within the WPM uses a single T800 Transputer as its MIMD processor

connected in a four-way mesh network. Each of the Transputers has an additional

2Mbyte of external memory and runs at 25MHz. The busing system of the Transputer

is used extensively to interface with the Cluster controller, for both the loading of the

instruction memory (to drive the SIMD array) and for data communication, the latter in

the fonn of shared memory between the Cluster controller and the Transputer.

73

4 The Wanyick Pyramid Machine

4.3.3 The Cluster Controller

The utilisation of the SIMD array is of prime importance for its overall performance.

At the lowest level, it is important to keep the array cycling at its full speed while

doing useful operations. This is the Cluster controller's primary purpose, to provide

an instruction stream to the SIMD array at its maximum throughput. The Cluster

controller incorporates a scalar computation capability for the manipulation of numeric

data. In addition, it provides an interface between the MIMD processor and the SIMD

array, for both high level instruction calls from the MIMD processor to the array and

for information retrieval from the array to the MIMD processor.

The controller is similar to a conventional 16-bit single bus microprocessor. The main

elements of the controller are: an instruction store to drive both itself and the SIMD

array; a scalar ALU with storage capacity for the manipulation of data; and a shared

memory interface between the MIMD processor and SIMD array within a Cluster. All

of these components need to cycle at the same rate, i.e. at the rate at which the DAP

array can execute instructions. The main components of the Cluster control1er are

shown in Figure 4.8.

Test flag inputs Instruction
memory

ALU
(29116)

Shared
Memory

ddress I----..... --Clusterbus--..,..-'""J"'--.... --.,.--... --
...•.........• · • • · • • •

~ •.••••.••.••........

Address Count

Edge

Figure 4.8 - The main components o/the Cluster controller.

The main requirement of the controller is to keep the PE array busy, provide memory

addressing within the SIMD array, and in loop control within multi-bit operations. A

74

4 The Warwick Pyramid Machine

single library routine is used to provide the necessary instructions for a single

operation, such as an addition, for an arbitrary data word size. This avoides replication

of instruction code for each possible data word size. The requirements for such a

routine involves a programmable loop control (looping over the data word size) and

indexed addressing into each data operand.

Consider the case when two images are to be added together, both mapped onto the

SIMD array such that each PE contains one image pixel. The addition is performed bit

wise, by fIrst adding the LSB of each image and storing the result, followed by the

second bit and so on. Indexed addressing of both the input and output images is

required. The looping and indexing has to be performed in parallel with the SIMD

array operations so as not to impair the arrays performance.

The description of the Cluster controller is split into the following components: the

Cluster bus, the interface between the Cluster bus and the DAP SIMD array, the scalar

ALU, the instruction sequencer, and the shared memory between the controller and the

Transputer.

4.3.3.1 The Cluster Bus

There is a single internal bus that connects all the components of the controller

together, termed the Cluster bus. It is used for data transfers between the components

of the controller and for the addressing of both the SIMD array memory and the

controller's local memory. Each of the components on this bus are treated as ports,

with a unique port address. Ports which source data on the Cluster bus are considered

separate to destination ports. Thus, each component on the Cluster bus may have one

or more port addresses. Example ports already mentioned are the DAP PE's

associative count (source) and the SIMD array's Edge Register which can be read

from or written to (both a source and a destination).

Only one source port and one destination port may be active in anyone cycle (as with

a conventional single bus microprocessor). The active ports are specified by a IO-bit

field within each controller micro-code instruction, 5-bits for the source port and 5-bits

for the destination. A special case is made for the indexed addressing of the SIMD PEs

memory, explained in more detail in Section 4.3.3.3 along with the operation of the

75

4 The Warwick Pyramid Machine

scalar ALU. A total of 32 source and 32 destination ports are available within a

Cluster. A list of the all ports on the Cluster bus is listed in Appendix A.

A 16-bit immediate operand is also incorporated as a separate source port on the

Cluster bus, existing as part of the controller instruction. This enables values to be

passed to any of the components on the Cluster bus, and can also specify the address

of data within the SIMD array when it is known at compile time.

The Cluster bus is shown schematically in Figure 4.9. The source port becomes active

when the input to the source decoder from the controller instruction is stable, just after

the start of an instruction cycle, and the destination latch is clocked at the end of a

cycle, using the controller clock gated with the destination decoder.

5-bit source 5-bit Destination

- r--"1.."

•••• Cluster Bus

Figure 4.9 - Operation ojthe Cluster Bus.

4.3.3.2 The interface between the DAP SIMD array and the controller

The DAP SIMD array has several connections to the Cluster bus within the controller.

These are: EDGE - the Edge Register (source or destination port) to pass data to and

from the array; COUNT - the SIMD array count output (source), PEADDR - the PE

memory address (destination) and PEINV (destination) - a one-bit broadcast facility

across the SIMD array. PEINV uses the lowest bit from the Cluster bus and optionally

inverts the value from the input multiplexor within each DAP PE. The interface

between the Cluster bus and the DAP SIMD array is shown in Figure 4.10.

The Edge Register is, in effect, a two way latch in that it can be written to, or read

from, by the Cluster bus and the SIMD array. Logic around the Edge Register

76

4 The Warwick Pyramid Machine

interprets the EDGE source and destination Cluster bus controls, along with the OAP

instruction group, for the enabling and clocking of this register. A run-time error can .

occur when this register is written to from both the Cluster bus and the OAP SIMO

array at the same time. This sets a single bit within an error latch which can be

subsequently read at the end of an instruction sequence when checking for run-time

errors. Note that this error is a result of bad programming and should be picked up at

program compilation time.

OAP PEs

Count

Memory

Figure 4.10 - Interface between the SIMD array and the controller.

The ANY line from the count device is not connected to a port on the Cluster bus but

is instead connected to the controller's sequencer. This allows conditional operations

to be performed on the result of a Some/None calculation.

4.3.3.3 The scalar ALV

The role of the ALU is to provide scalar manipulation of SIMD array responses and to

provide indexed addressing for the SIMD array memory. It was originally intended

that conventional bit-slice components would be used to build a 16-bit ALU. These

components have the advantage of being flexible, readily available and can be

incorporated into designs running at clock speeds in the 20MHz range. However the

AMD29116 component was chosen, a modification of the conventional bit-slice

77

4 The Warwick Pyramid Machine

architecture, containing a 16-bit ALU on a single device [AMD86]. The AMD29116

was also used in the prototype DisArray [Page89].

The AMD29116 can perfonn additions, subtractions, and logical operations between

one, two and three operands. In addition, a barrel shifter enables word rotations on

one of these operands. Operands may be taken from an external input, an internal

accumulator or a internal register file (32 words). The results from the ALU may be

stored in the accumulator, the register file, or placed on the external outputs. Flags

representing a Carry (C), Zero (Z), Negative (N), and Overflow (0) as a result of an

ALU operation are also produced.

A priority encoder is also incorporated within the AMD29116. It produces an output

corresponding to the position of the highest bit set within the input operand. This is

useful for finding the position of the first responder from the SIMD array when using

its associative response mechanisms. All the constituents of the ALU are connected

together via an internal bus.

The way in which the ALU is connected to the Cluster bus is shown in Figure 4.11.

The ALU may source data onto the Cluster bus or be a destination port, taking data

from it. The output flags C, Z, N, and 0 are latched at the end of each cycle, and are

available to the instruction sequencer at the start of the next cycle. They may be used

for conditional operations such as instruction branching.

16-bit
instruction

r-------,:; fI)

~~
orI: ALU

Figure 4.11 - The controller's scalar ALU (the AMD29116).

Indexed addressing is achieved by switching the ALUs internal bus from being an

input to an output half way through a cycle. An operand, representing the base PE data

78

4 The Warwick Pyramid Machine

memory address, is read into the ALU and latched at the mid-point of the cycle. The

address value can then undergo an operation within the ALU, such as an addition with

one of its internal registers, and then output the result towards the end of the cycle.

The ALU register used for the addition can be thought of as an indexing register

indicating which bit of the operands, within the SIMD memory, is currently being

used in a multi-bit operation. The same ALU register can be used to index into one or

more operands, and is incremented for each subsequent bit, up to and including the

word-length of the data being used in the SIMD array.

The actual device used for the ALU is the AMD29116-A which cycles 25% faster than

the standard part at 75ns. Switching around the ALUs internal bus at the half cycle

point, from input to output, allows sufficient time for data to propagate externally

through the Cluster bus to a destination latch.

Indexed addressing, as required by the SIMD array, is treated as a separate port on the

Cluster bus, in addition to the normal ALU source and destination ports. The

destination is specified by

(Clock & Dest alu) + (Clock & Dest immed_alu)

and the source is specified by

(Source alu) + (Clock & Source immed_alu)

where Source and Dest are available from the Cluster bus port decoding (active low)

and Clock is the controller's system clock, which is high in the first half cycle.

4.3.3.4 Instruction sequencing

The instruction sequencer provides the instruction stream for all the elements within

the controller: the DAP SIMD array; the ALU; the Cluster bus addressing; and the

sequencer itself. The sequencer used is the AMD29331 - a 16-bit unit with a cycle time

of SOns. It contains an address register, a counter and a 33-word deep stack along

with associated busing circuitry. The operation of the sequencer is decoded from a 6-

bit instruction word supplied at the start of each cycle.

79

4 The Wanyick Pyramid Machine

The instruction memory that the sequencer addresses is a horizontal micro-code,

combining the separate instructions, for each of the controller's components. This

results in a 61-bit format, as shown in Figure 4.12, and is implemented as a 64-bit

wide instruction word using 4bit-wide memories with 3-bits spare. The 16-bit

sequencer enables the addressing of a total of 64kwords, only 16k of which are

implemented within the prototype Clusters .

•
SEQ Immediate Operand ALU(29116) Cluster Bus DAPPEs i (29331) sourceJ Dest

6 5 5 16 16 13 -..
i i i , i , , i , , , , , i , i , , i , i i , , , , , , , i ,

o 16 32
,

48
,
64

Figure 4.12 - The Cluster controller's instruction word.

The sequencer contains an address register which can be incremented in every cycle,

outputting its value to the external instruction memory. The counter can be used within

loops, set at the start with an appropriate value, and decremented on each loop

iteration. Both the address and counter registers can be set from an external source,

across the Cluster bus or from the integral 33-word deep stack. Thus, nested

operations are allowed including subroutine calls and looping.

Operands, such as subroutine address calls from the Transputer, can be passed to the

sequencer via the Cluster bus. The sequencer reads the Cluster bus as its default state

(i.e. defaults to a bus destination) but can also source the bus allowing its internal

address register or stack to be read. The sequencer is shown schematic ally in Figure

4.13 along with its interface with the Transputer.

At the start of each cycle the sequencer decodes and executes an instruction, outputting

the resultant address to the instruction memory. The address output may be the current

contents of the address register, an address from the internal stack or an address

supplied from the Cluster bus. The instruction addressed in the instruction memory is

then stored in the instruction latch at the end of the cycle and is executed in the next

cycle. The memories used are 16k by 4bits with an access time of 45ns. The

80

4 The Warwick Pyramid Machine

sequencer takes < 30ns to perform its instruction, leaving ample time for latch output

and set-up delays within the lOOns cycle time.

Sequencer .~ ~
29331 -Alld-dress·- ~ ~ tlJl1Insllltrucull'on

~

Bus decode
ALU
DAP

Operand
6 Scquencer

Figure 4.13 - The controller's sequencer showing Transputer Load Path.

The flag outputs from the ALU (C,Z,N,O) can be used for conditional branching

operations, being latched from the ALU at the end of the previous cycle. The particular

flag used within a conditional operation is specified by a 4 bit selector port, which can

be written to from the Cluster bus. A total of twelve flags can be connected to the

sequencer in this way. Further flag inputs are used by the controller, including the

Some/None function from the SIMD count and local neighbour synchronisation flags

(discussed in Section 4.3.4.2).

The Cluster instruction memory is loaded at boot-time from the Transputer. This is

achieved by logic around the sequencer, asserting its HOW input to three-state its

output, and enabling the Transputer to read and write to the controller's instruction

store. The addressing and data system of the Transputer is thus enabled to the

controller's instruction memory, and treated as if it where mapped within the

Transputers own memory. The instruction memory may also be read back to the

Transputer for debugging pUIposes. During loading or debugging phases the clock to

the rest of the controller is suspended.

81

4 The Warwick Pyramid Machine

4.3.3.5 The shared memory between the controller and the Transputer

Communications between the controller and the Transputer take place via shared

memory. Typically, the Transputer will queue requests for the controller to perform

computation on the array, which may subsequently generate results. Thus, a bi

directional data-flow is generated. The memory is also used as the controller's only

local data store.

The shared memory is transparently accessible from both the Transputer and the

controller. Conventional dual-ported memories have built-in logic which gives priority

to the processor making the earliest access, and if necessary, delays the second

processor's access. However, the timing of the controller's operation is more critical

than that of the Transputer and hence conventional dual-port operation is not suitable

for this shared memory. Instead, the shared memory is implemented using standard

memories with additional arbitration logic.

It is important that the controller does not have to wait for access to the memory, so as

not to decrease the utilisation of the array. More importantly, synchronisation with

neighbouring Clusters should not be lost due to a shared memory access by a

Transputer. There would be no way of guaranting that several controllers would be

delayed, by the arbitration system in the dual-ported memories, by the same amount.

Although the Transputers can execute the same program, they run asynchronously at

the timing level. Thus, the Transputer can be made to wait by the shared memory

arbitration logic for each shared memory access until it is known that the controller is

not accessing the memory.

The controller, unlike a more conventional processor, is only a single bus system

having no separate mechanism for memory addressing. The Cluster bus is used for

both address and data transfers to and from the shared memory. The shared memory,

along with the interface to the Transputer, is shown in Figure 4.14.

A write to the shared memory from the controller takes three cycles. This consists of a

data write to the memory address latch, a data write to the data latch, and then the

actual memory write operation. Note however, the last cycle can be overlapped with

the start of a subsequent write operation, therefore taking only two cycles in a

82

4 The Warwick Pyramid Machine

pipelined fashion. A read from the memory is very similar, again taking three cycles.

The fIrst cycle is used to write to the address latch, the second reads the data from the

memory into the memory latch, and the last transfers the data across the Cluster bus to

its destination.

To Transputer Transputer Bus .. -
Address Memory

Contention 16kwords
Logic ~fl=:::::::~' 35ns ~ het

RAM ADDR (dest)
~~~:;::....J 

Cluster Bus ••• 

R/W 

Figure 4.14 - The shared memory between the Transputer and the controller. 

The arbitration logic in Figure 4.14 performs the function of locking the Transputer 

out if the controller is doing a memory access in the next cycle. The M EMW AlT signal 

is used to hold the Transputer in the middle of a memory access and is only asserted 

when the controller and Transputer are both accessing the shared memory. It is 

assumed that the fIrst cycle of the controller's memory access is always a write to its 

address latch, followed a write to the data latch when writing to this memory. Thus, 

the Cluster bus destination ports, RAMADDR and RAMDATA are used to ascertain 

when the controller is accessing the shared memory. 

4.3.4 Connecting Clusters together 

Communication is possible between adjacent Clusters at both the Transputer and 

SIMD array levels. The Transputer level allows message passing, and can be used for 

accumulation of results between Clusters. At the SIMD level, groups of Clusters can 

83 



4 The WalWick Pyramid Machine 

perform filtering operations, on the iconic data, as if the Clusters within the group 

formed a conventional SIMD array. This is achieved by the synchronisation of 

controllers, such that adjacent controllers and SIMD arrays perform the same 

operations in parallel. The interconnection of four Clusters is shown schematically in 

Figure 4.15. 

Figure 4.15 - The interconnection offour Clusters. 

The SIMD arrays are connected together between Clusters by the 4-way NEWS 

network between the SIMD PEs. A total of 64 lines emerge from each Cluster - 16 

from each edge of the SIMD array. Each set of 16 lines is connected to their 

neighbouring Clusters, forming a 2D mesh. SIMD PEs, on the edge of the Cluster 

array, are connected to their opposites on the other side of the SIMD array, forming a 

2D torus network. 

Each Cluster has its own clock generation circuitry operating at lOMHz. With the 

number of Clusters in a full sized WPM approaching 8x8, it might be unsafe to have a 

global clock for all Clusters without incurring severe distribution problems 

[Jesshope89]. Adjacent communications at the SIMD level use a synchronisation 

mechanism in the fOnD of handshaking. 

4.3.4.1 Communication at the SIMD level 

The NEWS communication network of the SIMD array within the Cluster can operate 

in one of two modes, either in array mode or Cluster mode. Cluster mode wraps 

84 



4 The warwick Pyramid Machine 

around the data between the North/South and East/West edges. Array mode allows 

shifting of data between Clusters (operating a group of Clusters as a larger array) and 

connects the left edge of the left-most Clusters to the right edge of the right-most 

Clusters to form a 2D Torus for the whole SIMD array. 

In addition, any of the Cluster edges can be specified to shift in a line of zeros (using 

the eye control line of the DAP PEs), and is used in array mode when the Cluster 

concerned is on the edge of the array. E.g. when the Cluster is on the north edge of 

the array, a south shift would shift a row of zeros into the top most row. This can also 

be used when a group of Clusters are synchronised - the Clusters on the edge of this 

group can have their communication inputs zeroed, which would have nonnally come 

from Clusters outside of the group. 

s 

I 
I 
I 
I 
I 

~1j!IiI-~-E 

ii':i: From Cluster Bus 

I ~h t- SHTCTL (destination) 

dir/re/cyc 
Enables 

........, __ ~-(E+W)&C 

Figure 4.16 - Interconnecting Cluster SIMD arrays. 

The communication connections within a Cluster are shown in Figure 4.16. These 

extend in all four directions to join with the neighbouring Clusters. All the buffers 

shown in Figure 4.16 are bi-directional and 16-bits wide. The enabling and direction 

controls for these buffers, along with the CYC DAP control lines, are decoded from 

the DAP instruction and the shift-control register. The shift control register is a 

destination port on the Cluster bus (SHFTCTL) and its operation is described in 

85 



4 The Warwick Pyramid Machine 

Appendix A. The buffer enable lines are logical functions between the lines indicating 

a shift in each of the NEWS directions and the mode of operation - 'A' for array mode 

and cC' for Cluster mode. 

The two buffers which use the Cluster mode line perform the wrap-around within the 

Cluster, from North->South, from East->West, and vice versa. The remaining four 

buffers are used for array mode operation. In addition to the operation of these 

buffers, the synchronisation mechanism ensures that two adjacent Clusters do not shift 

to each other which could cause hardware shorts. The synchronisation mechanism is 

described below. 

4.3.4.2 The synchronisation of Clusters 

A shift within an SIMD array consists of a read, a shift, and a write operation taking 

three cycles. However, this operation only works if the whole SIMD array is 

operating in lock-step using the same clock. The WPM requires additional circuitry for 

the shifting of data between Cluster boundaries to overcome the non-synchronised 

clocking between Clusters. 

The synchronisation mechanism used assumes that adjacent Clusters are executing the 

same operations but are out of clock step by a [mite amount of time. A hand-shaking 

line, for each of the four directions, is connected to the sequencers test inputs, 

allowing the controller to loop until the required line changes state, i.e. until adjacent 

communication is possible. The sequencer is given a maximum number of loop 

iterations to undertake before a time-out takes place. A suitable message can be 

returned to the calling routine of the Transputer on a time-out 

The synchronisation mechanism is shown in Figure 4.17 for a Cluster B, illustrating 

its communication interface to the East and West. In each direction there are two 

latches, one for each of the two data communication directions, along with two single

bit flags indicating if there is any data in the latches. The flags are set by a Cluster 

shifting data into the respective latch and are reset by the adjacent Cluster shifting data 

out from the latch. The outputs from the flags are passed to the controller's sequencer, 

via the condition code latch (Figure 4.13), enabling conditional looping on the status 

of each flag. 

86 



4 The Warwick Pyramid Machine 

SIMD 
Array 

A 

Figure 4.17 - The hand-shaking mechanism between Clusters. 

The operations performed for a synchronised shift, from East to West for Cluster B 

(left to right in Figure 4.17), are as follows. Note that only the control lines within 

Cluster B's shaded area are used. It is assumed that all three Clusters, A, Band C are 

performing the same synchronised shift. 

Firstly, a check is made to see if the East latch is empty (empty.e = 0) and repeated 

until it is, while the DAP PEs constantly reads data from memory. Cluster B performs 

a non-destructive shift East, shifting its right-most column into the East latch and 

causing a transition on shift.e and setting empty.e (indicating the presence of data). A 

non-destructive shift differs from a normal shift in that the data appears at its 

destination on the NEWS network but is not latched into the Q register within the DAP 

PEs (this is a modified DAP instruction). The non-destructive shift is repeated until 

full. w has been set by Cluster A. Note that the transition on shift.e occurs only on the 

first non-destructive shift, latching the data only once. 

Once full.w is set, a normal (destructive) shift is performed, activating reset.w, which 

zeros full.w (no data now present in the West latch). The data is then written into the 

DAP memory. The whole process can be repeated for each subsequent bit of data 

being shifted. The whole operation can be seen in Table 4.2 which indicates the 

operations being performed by the sequencer, DAP array and ALU. 

87 



4 The Warwick Pyramid Machine 

step Sequencer DAP array ALU 

1 repeat until (empty.e=O) read data from memory provide PE address 

2 repeat until (full.w=l) non-destructive shift & -
set empty.e (once only) 

3 - shift (activate reset w) -
4 - write data to memory -

Table 4.2 - Operations performed/or inter-Cluster communications. 

Each of the Clusters within a group, requiring synchronised SIMD communications, 

operate the loop described in Table 4.2 with the exception of those Clusters at the edge 

of the array or group. These only have a single neighbouring Cluster and so only need 

half of the checks performed above. Note that there is a dependency only on rows of 

Clusters for East->West communications, and only on columns for North->South 

communications. The time for a single synchronised shift is four cycles (cf. three 

cycles for a normal SIMD shift). This represents a 25% overhead for the required 

hand-shaking once each of the Clusters, within the group, have been initially 

synchronised. 

A ripple effect is apparent in the direction of the communication. For a shift East, the 

neighbouring West Cluster will be at most one cycle ahead of the East Cluster. This is 

due to the West Cluster having to wait until after the East Cluster has performed its 

first non-destructive shift. This results in a latency delay, equal to the number of 

Clusters being synchronised, in the overall communication time. 

There is also an initial synchronisation overhead, to ensure each of the Clusters start 

executing the loop, which should be added to the total time. This effect can be seen 

more clearly in the Figure 4.18 below, where the group of Clusters, A->F, are 

shifting towards Cluster F. The ripple effect can clearly be seen moving down the 

Clusters, in the direction of the shift 

88 



A 

B 

C 

D 

E 

F 

4 The Warwick Pyramid Machine 

I 1 :::::::::::::::::::::::::::::~::::I:~<~::;i@il.i::;~:::~::: ; 

t::::::::~:~:)::~:::::::::::~:I¥btW;~%:' 

, , , , i , , • i i , i i i , , , , , i i i i i 

Cycle count 

Start of 
shift 

o shift 1 
El shift 2 
mJ shift 3 
III shift 4 

Figure 4.18 - Example synchronisation between six Clusters in a shift operation. 

The total time for a shift is: 

Tsync + nbits*4 + Ncluster 

where Ncluster is the number of Clusters being synchronised in the same row, nbits is 

the word-size of the data and Tsync is the number of cycles that the slowest Cluster is 

behind the quickest Cluster. Ignoring the time for initial synchronisation, Tsync, which 

would be apparent in any synchronisation mechanism within the WPM, the total 

overhead (compared with the normal shift time of nbits*3) is : 

nbits + Ncluster 

Subsequent synchronised communications between Clusters in the same direction will 

not be subject to the delay Tsync. However, subsequent communications in the 

opposite direction, (East->West in the above example) will have a latency time of 

2*Ncluster. This is double the ftrst latency due to the dependency between Clusters 

being changed to the opposite direction, the West Cluster will now be at most one 

cycle behind the East Cluster. Any shifting in the orthogonal directions (North->South 

and South-> North) will undergo the same initial synchronisation, having the initial 

delay of Tsync. 

The operation of the synchronisation mechanism resembles that of a FIFO but has 

only the capacity of a single word in each of the communication directions. The latches 

in each direction could be replaced with a FIFO, and the shifting operations changed 

so that the non-destructive shifts are done for all the bits of the data before the 

destructive shifts, thus eliminating the ripple effect in the direction of the shift. 

89 



4 The Warwick Pyramid Machine 

However, there is an added hardware overhead in the use of FIFOs and there is 

always the possibility that they may fill and create the same waiting requirements as 

with a single latch. 

The overhead in the WPM synchronisation mechanism is shown in Table 4.3 for 8 

and 32 bit data. Note that the overhead asymptotically approaches 25% for larger data

words (due to the 4 cycle shift instead of 3). The use of FIFOs would result in a 25% 

overhead for all data words, assuming that the FIFO size is not exceeded. Although 

these figures may appear large at first glance, the time for shifting within an 

application is typically small when compared to the overall time. 

Synchronised Time Overhead For 

communication: (cycles) 8-bit data 32-bit data 

1 st communication Tsync+4*nbits+Ncluster 40% 29% 

2nd+ (same direction) 4*nbits+Ncluster 40% 29% 

2nd+ (opposite direction) 4*nbits+2*Ncluster 50% 33 % 

2nd+ (orthogonal direction) Tsvnc+4*nbits+Nc1uster 40% 29% 

Table 43 - Overhead/or synchronised communications. 

4.3.5 The Prototype system 

Two prototype Clusters have been built within a rack system, each comprising of five 

6U Eurocards connected together via two bus back-planes. The timing of the 

controller's clock was found to be the most critical item during the build of the 

prototypes. The controller's clock was buffered onto each of the system boards within 

the rack. Similar buffering was placed in the Cluster bus to reduce its loading. 

The five prototype boards of a Cluster were: 

• a single Transputer board, equipped with a 25MHz T800 and 2MBytes of 

RAM. The Transputer memory system drives the lower bus back-plane. 

90 



4 The Warwick Pyramid Machine 

• a controller board comprising the sequencer, ALU, instruction memory and 

instruction latches. This drives the instruction to the DAP and Cluster bus port 

add ress ing on the upper bus back-plane. 

• a shared memory board with interface to the Transputer and system clock 

• a DAP PE board containing 4 DAP chips (16x16 PEs) 

• a DAP memory board attached to the DAP PE board via four 96-way DIN 

connectors 

The five Cluster buards are shown in Figure 4.19. 

Figure 4.19 - The prototype Cluster boards. 

The prototype Cluster was designed to be modular, resulting in some redundancy of 

circuitry between the boards. The integration of the Cluster to a greater extent would, 

for instance, eliminate the need for duplicate Transputer interfaces on the controller 

and shared memory boards. Duplicate Cluster bus decode logic, and the buffering 

91 



4 The Warwick Pyramid Machine 

between boards would also not be needed. These would be important considerations if 

the controller were to be made to cycle at a faster rate, necessary for faster SIMD 

processors. 

Debugging capabilities were included in the form of being able to single step the 

system clock within the controller. This can be performed under the control of the 

Transputer using a bit from the status latch, shown in Figure 4.13. The sequencer 

address and Cluster bus data values, which indicate the controller's activity, can be 

monitored by the Transputer for tracing and breakpoint purposes. This is achieved by 

extra memory-mapped buffers between the address output of the sequencer and the 

Transputer bus (not shown in Figure 4.13) and also a latch between the Cluster bus 

and the Transputer bus (not shown in Figure 4.14). 

It has not been necessary to single step parts of the controller outside of a debugging 

environment except in the case of booting the system. At boot time the system clock is 

disabled and the instruction store is loaded by the Transputer. The sequencer is single 

stepped, by itself without clocking the rest of the system, so as to fill the instruction 

latch with the first valid instruction of the controller. The clock can then be enabled to 

the whole controller to commence nonnal operation. 

4.3.6 M-SIMD Operation of the WPM 

The computational components within the WPM, in terms of its component Cluster, 

have been described above. Each of the Clusters operate on their own instruction 

stream, connected in a 4-way mesh at the SIMD and MIMD levels and have a 

synchronisation mechanism at the controller level enabling data movements at the 

SIMD level. Clusters thus operate autonomously, except when iconic data movements 

are required which produces operational dependencies between adjacent Clusters. 

The associative facilities of the SIMD arrays have been cut into the Cluster sized 

boundaries, thus aiding local operations within the Clusters. However, it is not always 

the case that the processing required will fit within a Cluster (such as an object 

contained within the image being twice the Cluster size). In this case, the associative 

response will be needed across Cluster boundaries. This can be achieved by firstly 

performing the associative response on each of the object Clusters, with results 

92 



4 The Warwick Pyramid Machine 

accumulated with those of adjacent Clusters. The accumulation may be performed on 

either the Transputers or on the controllers using synchronised SIMD shifting. 

When an object within the image could fit within one Cluster, but lies across Cluster 

boundaries, it can be shifted to fit fully within a single Cluster. This minimises the 

number of Clusters associated with the object thus increasing the maximum 

throughput. When the object can not fit fully within a Cluster boundary, the set of 

Clusters involved with the object should be minimised to reduce the overhead of the 

synchronisation mechanism for data movements and accumulation of results. These 

issues are discussed in Sections 7.2 and 7.3. 

The local autonomy that is available within Clusters can be used for local iconic 

operations, or alternatively an additional type of parallelism may be exploited. That is, 

a form of algorithmic parallelism such that each Cluster, or set of Clusters, can 

perform their own sequence of operations on their own data. Either containing copies 

of a complete image or different images from different sensors, for multi-sensor 

fusion. In a multi-user system, groups of Clusters could be assigned to different 

users. This type of parallelism has not been exploited on the WPM. 

4.4 Programming the WPM 

The Warwick Pyramid Machine combines both SIMD and MIMD elements which 

have quite separate programming paradigms. An array of MIMD processors such as 

the Transputer is conventionally programmed in Occam or other high-level languages 

with parallel constructs and communication capabilities as extensions (e.g. C). SIMD 

arrays are again usually programmed in a high level language, such as Fortran with 

array extensions, or with embedded assembly instructions within the language. 

These two paradigms were reflected in the implementation by the fact that the WPM 

was first programmed using two separate languages, using software tools to collate 

both at run time. The Transputers were programmed in a parallel version of C, and the 

DAP SIMD array in its native assembly language, AP AL, with associated instructions 

for the controller forming the CLuster ASSembly language (CLASS). The format and 

use of CLASS is described below. Further details are given in Appendix B. A 

93 



4 The Warwick Pyramid Machine 

simulator of the Cluster SIMD array and controller, PSIM, has also been written 

which uses CLASS instructions [Francis89]. 

Investigative work has been performed providing a unified programming paradigm 

within an object oriented programming language, C++. This work is reported by 

Vaudin [Vaudin91] and is illustrated later. Both the programming approaches lead to 

the implementation of a set of library routines, implemented in CLASS, that can be 

used on the DAP SIMD array. 

4.4.1 The Cluster assembler - CLASS 

The Cluster assembler has a one to one mapping between an assembly instruction and 

the instructions executed on the Cluster. Each CLASS instruction contains the 

parallelism available within the Cluster enabling each of its components to be 

programmed within the same instruction. Thus, the programmer needs to be fully 

aware of the parallelism available within the Cluster. 

A CLASS instruction is split into several fields, each representing the instruction to a 

component of the Cluster, and is compiled into the 64-bit horizontal instruction word 

described earlier. The fields, each separated by a semi-colon and in order, are: the 

29331 sequencer, the 29116 ALU, the DAP SIMD array and the Cluster bus control 

along with the optional 16-bit immediate operand. An example CLASS instruction is 

shown below. 

FOR D MOVE SOZR RO! SF SEQ ... OxlO 

The 'FOR_D' instructs the sequencer to initialise a loop with OxlO iterations (indicated 

in the Cluster bus field at the end of the instruction), the ALU is instructed to move a 

zero to the register R01, and the DAP's instruction moves a zero to the store plane 

currently addressed by its memory register PEADDR. An understanding of this 

assembly language requires an understanding of each of the components within the 

instruction. 

94 



4 The Warwick Pyramid Machine 

The instructions that the sequencer and ALU can perrOlm, along with their respective 

mnemonics, are briefly described in Appendix B. Further details can be found by 

referring to their respective data sheets [AMD86, AMD87]. The instructions that can 

be perrormed on the DAP are defined by the APAL instruction set [AMT88]. 

The DAP executes its instruction the cycle after it is specified in the CLASS 

instruction. The placement of the DAP instruction the cycle before it is executed 

improves the readability of the CLASS code. The operations for the ALU, and 

subsequent writes to the PEADDR array memory address latch, occur on the same line 

as the DAP instruction that uses the memory. The contents of the address latch will be 

correct at the start of the next cycle when the DAP instruction is executed. 

The Cluster bus is controlled by the final field in a CLASS instruction. This simply 

takes the form of 'destination port = source port'. When the immediate operand is the 

source only a value need be specified. The special case of passing the immediate 

operand through the ALU before writing the result to the PEADDR latch, for PE 

indexed addressing, is done by specifying the immediate operand before the 

destination (PEADDR) and source (ALU) ports. A list of the ports and their uses is 

listed in Appendix A. 

All Cluster bus port data interchanges take a single cycle, although there are delays in a 

few cases. Some of the delays are due to the pipeline in the DAP instruction and others 

due to the single bus access to the controller's shared memory. These Cluster bus 

delays are listed in Table 4.4 below. 

tion Dela 

ALU calculation -> sequencer 1 

ALU calculation -> sequencer use of condition codes 1 

writing shared memory RAMADDR -> reading RAMDATA 2 

PE operation -> reading the EDGE port (associative response) 2 

PE operation -> reading the COUNr port 3 

Table 4.4 - Delays across the Cluster bus. 

95 



4 The Warwick Pyramid Machine 

4.4.1.1 The use of CLASS for Cluster operations 

Example routines for the Cluster, programmed in CLASS, are given below. The first 

is a multi-bit copy routine and the second an addition. Both the routines are of similar 

structure, with a loop performed on the sequencer with the FOR_D and DJMP_S 

instructions. looping for a total of nbits. The constants srcl, src2 and dest specify the 

locations of the input images and the output image. The registers RlO-R12 in the ALU 

are used as SIMD memory addressing registers, incremented in each iteration of the 

loop, and take initial values of the image addresses-I. The minus one is due to the pre

incrementation, before output, of an ALU register. 

/* Copy - copies data from PE memory src to PE memory dest */ 

fdefine copy (nbits,dest,src) \ 

MOVE SODR RlO ; ALU = src-l \ 

MOVE SODR Rll ALU = dest-l \ 

FOR D ; SEQ = nbits \ 

INC SORR RlO QS PEADDR = ALU \ 

DJMP_S; INC SORR Rll SQ PEADDR = ALU 

/* Add - adds data at PE srcl to src2 and puts in dest */ 

fdefine add(nbits,dest,srcl,src2) \ 

MOVE SODR RlO ALU = src-I \ 

MOVE SODR RlI ; ALU = src2-I \ 

MOVE SODR Rl2 QT ; ALU = dest-l \ 

FOR D ; CQ ; SEQ = nbits \ 

INC SORR RIO QS ; PEADDR = ALU \ 

INC SORR Rll CQPCQS ; PEADDR = ALU \ 

DJMP Si INC SORR Rl2 SQ ; PEADDR ... ALU -

The routines above take a total of 2*nbits+3 and 3*nbits+4 cycles to execute 

respectively, where nbits is the word length of the data being processed. These times 

are typical of two and three operand operations, one input and one output in the copy, 

96 



4 The Warwick Pyramid Machine 

and 2 input and 1 output in the addition. The DAP PE requires a single cycle for each 

memory access both for a memory read and a write. 

The routines written in CLASS were initially defined within a macro. That is, a macro 

heading is used to replicate the code contained within the body of the macro, replacing 

its parameter with different values for each use. Thus, the same macro can be used for 

an image of any word length. However, the code is replicated for each use of the 

macro. This could become a limitation on a large application or within an operational 

system when the amount of controller instruction memory is limited. 

4.4.2 Remote procedure calls between C and CLASS 

An alternative method defines each of the macros as a subroutine call, with associated 

parameters, initiated by the Transputer from its C program. A section of the shared 

memory is reserved for a remote procedure call (RPC) mechanism, for the calling of 

these routines. This enables the Transputer to provide the address of controller library 

routines, within the instruction memory (which is known at compile time), to be 

executed along with any necessary parameters. 

The frame for each RPC call consists of: the address of the library routine within the 

instruction memory; the location of the start of the next RPC frame within the shared 

memory; and the library routines parameters. An example of the RPC frame is shown 

in Figure 4.20. The arguments typically define the location of the operands and 

provide scope for the passing of results back to the Transputer. A calling routine exists 

within the Transputer C program, to set up the RPC frame, and a server program runs 

on the Cluster to execute RPC calls. 

Next Call 
Format Frame Address 

100 101 102 103 104 105 RAM Address 

Example I 300 105 I 8 I 16 I I 0 I· · · 
Figure 420 - The Remote Procedure Call frame used within a Cluster. 

97 



4 The Warwick Pyramid Machine 

The controller executes a loop, polling the start of the RPC frame area in the shared 

memory, until an RPC frame is set. This is indicated by a non-zero at the start of the 

frame. The address of the next frame is put into a memory location within the shared 

memory so that it can be read back and used to indicate the location to poll for the start 

of subsequent RPC frames. A single ALU register is used as a pointer to the parameter 

list, and is incremented every time an argument is taken or put into an RPC frame. The 

ordering of the parameters is defined both within the C calling procedure, and within 

the CLASS routine. 

The difference in code for the copy routine using an RPC frame is shown below. The 

main body of the code remains unchanged, only the initialisation of the image 

operands, within the ALU, has changed. The operations fun c t ion ( ) , 

get _ arg ( ) , and funct ion_end are macro defmitions which perform the function 

of setting a label (0 cycles), getting the next argument from the RPC frame (3 cycles 

per argument), and returning from a subroutine call (1 cycle) respectively. 

function (copy) 

get_arg(RIO) 

get_arg(Rll) 

FOR D i 

INC SORR RIO 

DJMP_S; INC SORR RIl 

function end 

QS 

SQ 

SEQ - nbits 

PEADDR = ALU 

; PEADDER ... ALU 

The overall result of using the RPC mechanism is that the addressing of variables is 

shifted from having to be known at compile time, and built into the macros, to that of 

the Transputer supplying them in the RPC parameter list. However, the functions of 

get_arg () and function_end add an overhead of 3n+l cycles (n = the number 

of arguments) when compared with the macro definition. However, only 10 

instruction words are required to store the subroutine, in comparison to 6 words per 

use of a macro. This is summarised in Table 4.5 for an n-bit addition operation. 

98 



4 The Warwick Pyramid Machine 

Macros RPC 

Number of instructions 3*nbit+3 3*nbits+ll 
Code size (no. of uses) * (3*nbit+3) 3*nbits+ll 
Transputer overhead Low High 

Table 45 - Comparison of the use of macros and RPC calls. 

An additional consideration is the amount of time spent by the Transputer in providing 

the RPC calls. In order to minimise this overhead the subroutine size must be 

sufficiently large as to free the Transputer for a significant percentage of the total 

processing time available. To date, the functions performed on the nAP SIMn array 

have been defined in terms of a set of macros and called within a single RPC frame. 

4.4.3 Pyramid C++ 

The problem of programming a parallel machine is enlarged when two separate 

programming languages are required for the programming of the separate parts (the 

SIMD and MIMD within the WPM). A solution using a single language was found by 

the use and slight modification of the C++ programming language, termed Pyramid 

C++. The implementation of this language has been described in detail by Vaudin 

[Vaudin91]. 

C++ is an object oriented language programmed through the defmitions of classes (not 

to be confused with the CLuster ASSembler - CLASS). A class contains a list of 

variables which are to be used to store an object's data and a list of functions which 

are the operations which will act on the data. Only the functions defined in the class 

(called member functions) can access the data of the object, ensuring encapsulation of 

the object. 

An Image class has been defined in Pyramid C++ which allows images to be created 

in the same way as other objects, but implemented in such a way as to distribute the 

data across the SIMD processor array. When an operation is performed on an Image 

object, an 'invisible' RPC call to the controller for the operation to be done on the 

99 



4 The Warwick Pyramid Machine 

SIMD array takes place. The difficulties associated with the separate call for an SIMD 

operation has now been removed - it is performed automatically by the C++ operation. 

The operations that can be performed on the Image object is limited to those specified 

in the definition of the Image class. As a default, all basic arithmetic and logical 

operations are provided in this class, in addition to data movements across the array. If 

a definitive list of operations for the SIMD array is available all could be implemented 

within the Pyramid C++ Image class requiring no further micro-coding on the SIMD 

array and controller. However, to date only a subset of operations are implemented. 

Therefore the use of the Pyramid C++ is limited to these basic operations. A simplified 

definition of the Image class is given below containing functions for arithmetic and 

shifting operations. The full Image class definition contains a larger list of operations. 

class Image { 

public: 

Image(); 

Image& operator+(Image&); 

Image& operator-(Image&); 

Image& operator*(Image&); 

Image& operator/(Image&); 

Image& S(); 

Image& N () ; 

Image& E(); 

Image& W(); 

The use of the Image class is illustrated below. Four images are defined, each of size 

l28xl28 pixels and with a word length of 8 bits (ByteImage). Note that the data 

contained within the Images is stored on the SIMD array but can be manipulated just 

like ordinary variables, their implementation being hidden from the programmer. The 

first two images are two input frames and the second two are temporary images. The 

operation that is performed on the first image, framel, is a shift North. The second 

operation performs an arithmetic addition between the two images framel and frame2. 

100 



4 The Warwick Pyramid Machine 

main () 

Bytelmage framel(128,128), frame2(128,128); 

Bytelmage templ(128,128), temp2(128,128); 

temp1 ~ framel.N(); 

temp2 = framel + frame2; 

The Image class also contains constructors and destructors - routines that are called 

when an object is first declared and when the object is destroyed respectively. These 

two routines can provide dynamic storage capability for the SIMD processor array. 

However such a capability adds to the overhead of the RPC calls to the SIMD array 

but this must be offset by the ease in which the system may be programmed within a 

single language. 

4.5 Performance of the WPM 

The peak performance of a single Cluster is simply the summation of the peaks on 

each of its constituent levels. The Cluster has a peak execution rate of 2.5x 1 09 logical 

operations per second on the DAP SIMD array, with the ALU within the controller 

performing a further 10 million 16-bit instructions per second. Table 4.6 shows the 

time taken and throughput of some basic arithmetic operations on a single Cluster. The 

performance figures increase linearly with the number of Clusters existing within the 

overall machine. 

The timings for the arithmetic operations on the SIMD array are given for two data 

mappings; the first is where one data item is mapped to each PE (Matrix) and the 

second is where one data item is mapped across a row of 16 PEs (Vector). Vector 

mode is supported by a set of instructions allowing vector addition (DAP instruction 

group 13). The floating point operations have not been implemented on the WPM but 

the figures are taken from performances published for the DAP [Bea190]. This is 

assumed to be valid since the same functionality exists within the SIMD arrays of the 

WPM and of the AMT DAP machine (except for DAP group 6 instructions which are 

used in Vector mode). 

101 



4 The Warwick Pyramid Machine 

Communication and memory bandwidths are also given in Table 4.6. It can be seen 

that there is a general reduction in both sets of figures when going from the SIMD 

array to the Transputer, reflecting the reduction in volume of the data in the 

transformation of an image to a symbolic representation. 

Operation Cycle Count Single Cluster 
(16x16 SIMD arr'!)') 

ArIthmetiC (MatriX) MOPS 
1 bit Logical 1 2560 
8 bit Integer addition 24 107 
8 bit integer Multiply/Accumulate 192 13 
Controller 16-bit scalar 1 !Q 

ArIthmetiC (Vector) MUPS 
8 bit addition 6 27 
8 bit multiplication JS3 2 

Floatin2 Pomt (MatrIX) MFLOPS 
32 bit addition 860 3 
32 bit multiplication 1280 2 
32 bit division 1710 1.5 

ASSOCIative (wlthm ~Iuster) MOPS 
broadcast 2 1~~Q. 
response 2 1280 
Some/None 1 2560 
count 3 853 

Memory Access MB~e/sec 
DAPmemory 1 320 
Controller (Dual Port) 2 10 
Transputer (inc. Dual Port) 3 6.6 

CommumcatIon MB}!e/sec 
DAP shifting 1 320 
Transputer T800 (serial links) - 10 

Table 4.6 - Cluster peak computational, memory, and communication performances. 

The DAP SIMD array or the Transputer T800 MIMD arrays can be replaced by 

different parts as the respective technology advances. For instance, the replacement of 

the T800 Transputer with the T9000 would lead to a greater capacity in the MIMD 

102 



4 The WWWick Pyramid Machine 

array (approximately a ten times improvement in computational and communication 

abilities) and the addition of the DAP co-processor would improve its floating point 

capabilities by a factor of five [AMT90]. However the implementation of the prototype 

WPM has used available parts to demonstrate its concepts. 

The peak performance allows an approximate comparison to be made with other 

parallel architectures, but in practice is a poor performance indicator. Other factors 

such as compiler optimisation, overheads in communication or synchronisation and 

poor utilisation of the array may lead to poor performance on a particular type of 

algorithm or application. Other comparison metrics are in common usage such as 

computation efficiency and traffic [Simmons89] which provide indicators on how well 

a particular algorithm is utilising the features of an architecture. Specific algorithms 

have also been defined for this purpose taking the form of benchmarks, the results of 

which form a sounder basis for a relative comparison [Chambers92]. 

4.6 Summary 

The design and implementation of the Warwick Pyramid machine has been detailed in 

this chapter. The peak performance of this machine is the peak of both of its SIMD 

and MIMD arrays, which work concurrently. The partitioning of the control and 

associative response across the SIMD array enables both global operations, when M

SIMD arrays are synchronised, and local operations within Clusters. The 

programming of the WPM, using the Cluster assembler and the Pyramid C++ 

languages, has also been described. 

The advantages of the local autonomy and partitioned associative response capabilities 

that the WPM architecture has over that of the conventional SIMD arrays are quantified 

in the next chapter. Representative image analysis and numerical algorithms are used 

to illustrate these advantages. Target tracking is used in Chapter 6 to illustrate the 

different data forms that can arise in an image analysis system and how these can be 

efficiently mapped onto the different layers within the WPM. Finally, in Chapter 7, the 

options available to efficiently utilise the operational autonomy within the WPM, by 

the use of load-balancing techniques, are discussed. 

103 



Chapter 5 

Mapping and Processing Data on 
the WPM M-SIMD Array 

5.1 Introduction 

The way in which data is mapped across a parallel machine affects the speed-up that 

can be achieved over a serial implementation of an algorithm. The speed-up increases 

in general with the difference between the sizes of the parallel processor, and the data 

set to be processed. For example, the intuitive mapping of data from an image sensor 

Ca 2D pixel array), is the mapping of one pixel on to each PE, arranged spatially as in 

the original image. This however, assumes that the PE array is of the same size as the 

image and has the same topology, i.e. a two dimensional PE array. For SIMD arrays 

this situation is feasible and indeed offers, for many applications, real-time 

processing. However, a programmable array has to cope with a multitude of image 

sizes from a variety of sensors. 

The organisation of the lower level of the WPM, as M-SIMD, affects the most 

efficient data mapping across the SIMD processors. The partitioned M-SIMD array 

approach results in a number of computational differences over that of existing 

conventional SIMD arrays. The increase in operational autonomy can result in an 

increase in algorithmic performance and additionally, the partitioned associative 

response mechanism allows one response operation per Cluster in parallel. However, 

the same partitioned array can also result in increased communication (shifting) cost 

when all, or a subset of, Clusters operate in their synchronised mode (using the hand

shaking mechanism discussed in Section 4.3.4) over that of a conventional SIMD 

machine. 

104 



5 Mawing and Processing Data on the WPM M-SIMD Array 

This chapter details the performance advantages that M-SIMD offers over conventional 

SIMD arrays in a number of applications. The contents include: 

• a comparison between a conventional DAP SIMD array and the WPM SIMD 

array. This is detailed in Section 5.2 and is described in terms of their local 

autonomy, associative responses, associative count, and data communication. 

• a description of the ways in which data can be mapped onto an SIMD array 

and an M-SIMD array. This is given in Section 5.3. 

• the use of image processing operations on the M-SIMD array, described in 

Section 5.4. Included in this is the use of the Clusters associative count. 

• a description of the mapping of numeric matrix data for use in standard matrix 

operations. The performance of these operations is detailed in Section 5.5. 

5.2 The Advantages of M-SIMD over SIMD 

The cost of the additional hardware for the M-SIMD array of the WPM, over a 

conventional SIMD array, is in providing separate instruction streams within each 

SIMD patch. The performance gains (or losses) that result from the additional 

hardware can be seen by examining the local autonomy gain and the partitioned 

associative response mechanism. Such considerations provide a bound on the 

computational gains that can be achieved at an algorithmic independent level. The 

effect of the local autonomy and the associative networks within the WPM form the 

basis of the possible performance increases over that of conventional SIMD 

architectures in any application domain. 

The performance differences, between the WPM and a conventional DAP SIMD array, 

are described below. They are compared in terms of the differences in local autonomy, 

associative response, count response, and data communications. 

S.2.1 Local Autonomy 

The local autonomy, available within each Cluster of the WPM, has full effect when 

independent processing is performed on separate regions within the image data 

processed. This is sometimes referred to as region of interest processing in image 

105 



5 MaIming and Processing Data on the wpM M-SIMD Array 

analysis and as object processing in the target tracking domain. The independent 

region processing is typically only a component of an image analysis processing flow. 

The performance advantages on an M-SIMD array are only applicable to this 

component of the total processing. 

The size of each SIMD patch, within an M-SIMD array, also effects any such 

achievable performance improvements. Figure 5.1 shows the effect on the 

performance of M-SIMD architectures of the region size being processed. Two 

configurations of M-SIMD architectures are considered; the first is where each M

SIMD patch, from a square processor array, can be configured to be the same size as 

the image regions being processed (an ideal M-SIMD configuration); the second 

considers the WPM M-SIMD array, with its fixed 16x16 SIMD arrays. In both arrays, 

it is assumed that the total number of SIMD PEs is equal to 128x128. In the case of 

the WPM, this is 8x8 Clusters. 

.-
be) 

..9 ---1 
p.. 
c:: .... ... 

1:l 
e 
::l 
Z 

10 

8 

6 

4 

2 

0 
0 16x16 

- Ideal M-SIMD 

-WPM 

32x32 
Region Size (pixels) 

48x48 64x64 

Figure 5.1 - Number of regions that can be processed in parallel on an ideal M-SIMD 

architecture and on the WPM M-SIMD array. 

The graph of Figure 5.1 shows the number of image regions, of a given size, that can 

be mapped across either type of M-SIMD array. These are mapped such that no two 

regions lie within the same SIMD patch, i.e. it is the number of regions that can be 

processed independently at anyone time. The number of regions mapped across the 

M-SIMD array represents the performance increase achievable with local region of 

interest processing. Note that a natural log scale is used in Figure 5.1. 

106 



5 Mawin~ and Processin~ Data on the WPM M-SIMD Array 

Note that for the conventional SIMD architecture, with only a single instruction 

stream, the number of regions that can be processed in parallel is only one - the x-axis 

in Figure 5.1. The ideal M-SIMD array has the maximum number of regions that can 

be mapped across it, through the use of its reconfiguration capability. However, on 

the WPM the same number of regions are mapped across the array for region sizes 

equal to or less than 16x16 pixels. The same is true for region sizes greater than 16x16 

pixels and less than or equal to 32x32. The cost of having the reconfiguration in the 

ideal M-SIMD architecture is high, one controller per PE in the worst case (an MIMD 

architecture). This is unrealistic to implement. 

The configuration of the WPM represents a compromise between hardware complexity 

and performance. It achieves an optimum performance increase when the size of the 

regions being processed are equal to each M-SIMD patch size (16x16 PEs) or a 

multiple of it. For regions with other sizes there is a loss in possible performance gain. 

This can be seen more clearly in Figure 5.2. This shows the percentage efficiency of 

both the WPM and a conventional SIMD array when compared with the ideal M-SIMD 

architecture. The efficiency is taken as being the ratio of the number of regions 

mapped across the WPM, or SIMD array, to the number of regions mapped across the 

ideal M-SIMD array. Note that a conventional SIMD array has poor utilisation when 

the object is small, but this gradually increases to 100% when the object covers the 

whole array. 

-. 
~ -->. u c 
0 .-u 
S 
~ 

100 

WPM 
80 

60 

40 

20 
SIMD 

O~~~~~~~~~--~~--~ 
o 16x16 32x32 

Region Size (pixels) 
48x48 64x64 

Figure 5.2 - Efficiency of the WPM and SIMD array for varying region sizes. 

107 



5 Map,ping and Processing Data on the WPM M-SIMD Array 

The efficiency of the WPM is a maximum when the region sizes are multiples of the 

SIMD patch size (16x16). However this comparison does not include the 

synchronisation and communication costs in the WPM which exist when a region is 

mapped across a set of SIMD patches. 

5.2.2 Associative Response Operations 

In addition to the autonomous control of each SIMD patch within the WPM, 

independent associative operations can be performed. The associative operations can 

take the form of the Logical AND of all columns (or rows) across the SIMD patch - to 

find the position of the first responder for example. Or it can be used to broadcast a 

value across an SIMD patch. 

The multiple associative response mechanisms, within the WPM, can be used in 

parallel within each SIMD patch. This results in an increase in performance for such 

operations, equal to the number of Clusters within the M-SIMD machine. The results 

of the associative response may be used either within the Cluster they originated from, 

possibly causing data dependent conditional instruction branching, or be broadcast 

back to the SIMD patch. Alternatively, they can be placed within the Cluster's shared 

memory for further processing by the MIMD processor. 

Similar performance efficiencies occur for the WPM, when compared with the ideal 

M-SIMD architecture, for associative response operations to that of the operational 

autonomy, as shown in Figures 5.1 and 5.2 for different sized regions. However, the 

effects are more marked when the region is larger than the SIMD patch size, due to 

communication overheads between SIMD patches. In this case the accumulation of 

partial associative responses between SIMD patches are required. 

The accumulation of the results, within the WPM, can be performed on either the M

SIMD array, or on the MIMD array after passing results to the Cluster's shared 

memory. Accumulation on the M-SIMD array is carried out by broadcasting the 

associative responses back to the SIMD patch, shifting and reading this on the 

neighbouring Cluster and then doing an accumulation with its own value by using the 

associative response mechanism again. On the MIMD processors, the associative 

results are asynchronously communicated to neighbouring processors for 

108 



5 MaPping and Processing Data on the WPM M-SIMD Array 

accumulation, in parallel with further operations on the M-SIMD array. The 

accumulation process in either case can use a distance doubling technique 

(accumulating neighbouring results followed by every second neighbour and so on), 

until the accumulation has covered the whole region concerned. 

For an object covering N2 Clusters, 2Dog2Nl accumulation and 2(N-l) shifting 

operations are required. On the M-SIMD array the total time taken for this operation is 

HfLog2Nl+4(N-l) cycles, ignoring the synchronisation time between Clusters. On 

the T800 Transputers with 20Mbit/s link speed, the time taken is dwarfed by the 

communication time of "" 4(N -1) jls. The communication time on the Transputer is 

approximately ten times slower than on the WPM M-SIMD array, but can be 

performed concurrently with the M-SIMD array. 

5 -

o I 
I I 

l~----J - Ideal M-SIMD 

-5-1 ~ 

-10 If 
o 16x16 

-WPM 
-SIMD 

I 

32x32 
Region Size (pixels) 

I 

48x48 
I 

64x64 

Figure 5.3 - Comparison between the ideal M-SI MD architecture, the WPM M-SI MD 

array and an SIMD array for associative response operations. 

The performance of associative responses on the WPM, an SIMD architecture and the 

ideal M-SIMD architecture is shown in Figure 5.3. This shows the effective time per 

associative response for varying region sizes. The effective time is the time taken for 

the operation divided by the number of associative responses that take place in parallel. 

The conventional SIMD architecture can only do one such operation at a time. The M

SIMD machines can complete many operations in a single cycle dependent upon the 

109 



5 Map,ping and Processing Data on the wpM M-SIMD Army 

region size. The performance of the ideal M-SIMD architecture reduces to that of the 

SIMD architecture when only one region can be mapped across it. 

Again, the WPM achieves optimum performance on regions of size 16x 16, the size of 

each Cluster SIMD array, but is less effective than the SIMD array when the regions 

are larger than 32x32. This is due to the overhead involved in accumulating partial 

results across Clusters. This effect can be seen when the regions exceed the 

boundaries of one, two and four Clusters. 

The relative performance of both the WPM M-SIMD array, and the conventional 

SIMD array, against that of the ideal M-SIMD architecture is shown in Figure 5.4. 

The peak for the WPM shows the case when the regions are the same size as the 

SIMD patches (l6x 16) giving an optimum performance. The SIMD array also gives 

the same performance as the ideal M-SIMD array when only one associative operation 

can be performed at anyone time, i.e. when the region size if greater than 64x64. 

100 
g~ 

80 o '-" 

§~ 60 §~ 
.go 
o::E 40 
0.8 
o ;::I 

.~ 8 20 
(I:j .~ 

~8" 0 
0 16x16 32x32 

Region Size (pixels) 
48x48 

SIMD 

WPM 

64x64 

Figure 5.4 - Relative performance of the WPM M-SIMD array, and an SIMD array, 

with the ideal M -SIMD architecture for associative operations. 

The poor performance achievable on the WPM for associative operations, when the 

regions are not equal to the Cluster SIMD array size, should not be considered in 

isolation. Other factors that should also be considered when giving the overall 

performance of the WPM, include the frequency with which such operations are 

110 



5 Marmin~ and Processin~ Data on the WPM M-SIMD Array 

required, the proportion of time allocated to such operations and other benefits that the 

organisation of the WPM provide. 

5.2.3 Count Response 

The associative count response mechanism at the M-SIMD level, within each Cluster 

in the WPM, greatly improves the performance of counting operations. It enables 

previously unconsidered algorithms to be used for various operations (see Section 

5.4.2). On the WPM, a count takes 3 cycles within a Cluster, reducing to a single 

cycle when using the counts pipelined design. Note that global counts are accumulated 

in a similar way to associative responses as described above. 

A conventional SIMD array performs the count of the number of bits set in a bit-plane 

by using a distance doubling technique. This is done by firstly adding together 

neighbouring bits, followed by every second neighbour, every fourth and so on, but 

noting that the word size of the data increases by one bit after each addition. The time 

required for this operation is : 

2log2N 

I (3n+l) + 
n=1 

log2N 

I n.2(n-l) + 
0=1 

2log2N I n.2(n-l-log
2N) 

n=log2N 

where N2 is the size of the SIMD array. The first term is the time taken to perform the 

additions, and the second two represent the communication time. The communication 

time is split into two parts because the distance doubling is performed in a separable 

fashion for both dimensions of the SIMD array. 

A comparison between the time taken to perform the count on the WPM, and the time 

taken on a conventional SIMD with no additional hardware, is shown in Figure 5.5. 

The graph shows the time taken on a total SIMD array size of 128x128 for varying 

region sizes. The additional hardware in WPM out performs that of the conventional 

SIMD array by between one and two orders of magnitude. 

In some applications it may be necessary to count several bit-planes at the same time 

(e.g. in histogram calculations). On a conventional SIMD array, a certain amount of 

parallel computation is possible during the distance doubling, whereas on the WPM 

the time increases linearly with the number of bit-planes to be counted. However, the 

111 



5 Mapping and Processing Data on the WPM M-SIMD Array 

count within the WPM will still out perform the possible parallelism on the SIMD 

array although the perfonnance difference is reduced. For the count of 256 bit-planes 

the performance of the WPM is approximately three times greater than that of SIMD. 

8 
SIMD ...-.. 

ell 
10 6 -u 
>. 
u 
Ol) 

4 0 --
~ 

'-" 
10 
8 

2 E= 

WPM 

0 
0 32x32 64x64 96x96 128x128 

Region Size (pixels) 

Figure 5.5 - The time taken to count the nwnber of bits set in a single bit plane on both 

an SIMD array and on the WPM. 

5.2.4 Data communication 

Communication between Clusters at the M-SIMD level, within WPM, uses a 

handshaking mechanism adding an extra cycle per shift (ignoring the synchronisation 

time). This implies that the cycles required to shift the data by a distance of n PEs is 

(2n+2) cycles on the WPM compared with (n+2) cycles on a conventional SIMD 

array. The extra two cycles are for a memory read at the start of the shift, and a 

memory write at the end of the shift. However, the WPM performs better on longer 

shifts when compared to the conventional SIMD array as follows. 

If the shifting distance required is greater than 31, then the internal SIMD torus 

network within each WPM Cluster can be used to effectively by-pass that Cluster. 

Consider three Clusters - A, B and C undergoing a shift in the direction of A to C 

(assumed West to East). The data originates inside A and it is required to shift all the 

data to C - a distance of 32 PEs. Initially, the first column of this data is shifted east 

into B, B then does a shift west while in Cluster mode (see Section 4.2), using its 

internal SIMD torus network, shifting the data to its east-most column. On the next 

112 



5 Mapping and Processing Data on the WPM M-SIMD Array 

and subsequent shifts east, data is again shifted into B from A but also into C from the 

last column of B. 

The result is two different types of shift, the fIrst (a type one shift) by-passes a Cluster 

and takes three cycles for each bit of the data. The second (a type two shift) perfonns 

the last shifts, ensuring that the data lies in the correct position within the fInal Cluster. 

This take 32 cycles per data bit. These times assume that the shifts are perfonned in 

units of 16 PEs, however the general case is shown in Figure 5.6 for an arbitrary 

shift. It can be seen that the WPM out-perfonns a conventional SIMD array when 

shifting data a distance of 64 PEs or more. 

l2C 

10( -en 
0 8C -~ 
~ 6C 
0 

~ 4C 

2C 

0 
0 20 40 60 80 100 120 

Shift Distance (PEs) 

Figure 5.6 - The time taken to shift data across the M-SIMD array within the WPM, 

and across an SIMD array. 

5.3 Mapping Data onto the M-SIMD Array 

It is often the case that the data to be processed is larger than the processor array being 

used. This is especially true with image data. In such situations, consideration must be 

given to how the data should be mapped across the processor array. There are two 

main mapping strategies commonly employed: sheet mapping, and crinkled mapping. 

Both mappings result in one or more data items mapped to each PE. The mapping 

techniques are general purpose, irrespective of processor array type and are described 

below, and also by Reddaway [Reddaway88] and Liddell [Lidde1l87]. 

113 



5 Mawing and Processing Data on the WPM M-SIMD Array 

The size of the processor array and the image data is generalised for the following 

discussion. assuming only that they are both square for simplicity. The processor 

array size is denoted as N2 with each PE referred to as Pij. and the image size as m2 

with each pixel referred to as Iij. The symbol '=>' is used to denote the mapping of a 

specific image pixel onto a specific PE. Using this tenninology. for the simplest case 

of the processor array equal in size to the image, N = m, and Iij => Pij. 

5.3.1 Sheet mapping 

In this mapping. the image is divided into array-sized patches or sheets which are then 

placed onto the processor array, so that each PE has a pixel from each of the sheets. 

When an individual sheet of the image is addressed on the processor array, each PE 

operates on a pixel within the same sheet. Sheet mapping can thus be expressed as :-

Iij => P(i mod N)U mod N) where i = l .. m, j = l .. m 

A total number of r ~ 12 sheets result from this mapping. N.B. the upper bound, 

denoted by r 1, is required in this expression to cope with the case when the image 

size is not an exact multiple of the array size. Sheet mapping retains the spatial 

arrangement of the image pixels, within each sheet, across the processor array so that 

shifting can be used to access neighbouring pixel values. However, discontinuities 

exist at the boundaries of each sheet, requiring additional processing with 

neighbourhood communications. This adds to the communication costs in most 

algorithms. However, sheet mapping allows local operations to be performed on a 

subset of the image, corresponding to a single sheet (or sheets) of the mapping. Thus, 

only the relevant sheets need to be processed. reducing computation time in a manner 

suggested in Section 5.2.1 for an M-SIMD architecture. 

5.3.2 Crinkled mapping 

With crinkled mapping, the image is divided into as many patches as there are PEs. 

Each patch is mapped to a separate PE, thus preserving locality between all image 

patches on the processor array. When the image is addressed on the processor array, 

each PE operates on a pixel within its image patch, e.g. the top left of each image 

patch. This mapping is expressed as 

114 



5 MaWing and Processing Data on the wpM M-SIMD Array 

Iij ~ P(i div r m/Nl)U div r m1N1) where i = l..m, j = l..m 

In this mapping, neighbouring pixels within an image patch are mapped to the same 

PE. This means fewer neighbourhood communications are required on SIMD shift 

operations. However, only global operations can be perfonned and each PE will 

operate on a pixel from each image patch across the whole image. There is no 

perfonnance gain for region processing in crinkled mapping - it is the same as if the 

whole image is being processed. In addition, temporary storage for intennediate 

results may be needed for the entire image during processing, unlike sheet mapping 

where memory is only required for the current sheet being processed. 

5.3.3 Comparison of Data mappings 

A comparison of both sheet and crinkled mapping is shown in Figure 5.7. In both 

mappings the total number of pixels held within each PE is r ~ l2. The properties of 

each mapping, along with the overhead involved in shifting data across the processor 

array, is shown in Table 5.1. The time for a single shift, a copy and the amount of 

temporary memory required per pixel, are denoted as Tshift, Tcopy and Mtemp 

respectively. 

Image 

• 
• 
• 

Sheet Mapping 

~ 
Processor Array 

APE 
Crinkled Mapping 

Figure 5.7 - Sheet and Crinkled data mappings on an array processor. 

115 



5 MaIWin" and Processin~ Data on the WPM M-SIMD Array 

For data shifting, each of the r ~ 12 sheets in sheet mapping need to shifted 

separately. In crinkled mapping, most of the neighbouring pixels are contained within 

the correct PE, thus requiring local memory addressing (which has no extra time cost) 

and the shifting time is proportional to r ~ 1. Additionally, in sheet mapping each of 

the sheet boundaries require further manipulation, by using the wrap-around facility of 

the processor array. Data is shifted to the correct destination PE, but data at the edge of 

the array have to be copied into the correct sheet. 

Sheet mapping Crinkled mapping 

Local Operations Good Poor 

Amount of Temporary Storage 1 * MtemD r ~ 12 * Mtemp 

Neighbourhood shifting (cycles) r ~ 1 * Tshift r ~ 1 * Tshift 

Sheet boundary processing (cycles) r ~ 12 * Tcopy none 

Table 5.1 - Characteristics of Sheet and Crinkled mappings. 

There is a trade-off between the two mappings in terms of memory requirements, 

communication costs, and local region processing. Sheet mapping should be used if 

the time for communications, plus the time for local operations, is less than the time 

for the same communications in the crinkled mapping, plus the time for the equivalent 

global operations. Crinkled mapping should be used when the converse is true. 

The local autonomy available, for the region processing within the WPM, suits the 

sheet mapping characteristics of an image when it is larger than the processor array. 

However, to preserve the spatial arrangement of data between Clusters, the sheets are 

crinkled mapped between Clusters. This mapping may be viewed in two ways, the 

first being crinkled mapping when viewed at the Cluster level and the second as sheet 

mapping when viewing the SIMD array within each Cluster. 

Thus, each Cluster within the WPM holds a local region of the full image, which if 

necessary is divided into sheets. These can be processed independently in local 

116 



5 Mawinll and Processinll Data on the WPM M-SIMD Array 

operations. In the following examples in Sections 5.4 and 5.5, it will be assumed that 

the processor array size is the same as the image size for simplicity. When the images 

are larger than the array size the performance of such operations can be scaled, and the 

communication costs of the mapping techniques added, as discussed above. 

5.4 Image Operations on the M-SIMD Array 

The performance of the M-SIMD array on several image processing operations is 

considered below. The first is a global filtering operation which is performed in a 

similar way on either an SIMD array or an M-SIMD array. An example fllter is shown 

for the Sobel edge detection filter which can be decomposed into filters of smaller size. 

The use of the WPM associative count is also described for a number of image 

operations. 

5.4.1 SIMD filtering operations 

A common operation in early image analysis applications is that of a filtering operation 

in the form of a two-dimensional convolution. Examples can be found in 

[Schalkoff89, Pran78] for template matching, enhancement (e.g. smoothing) and edge 

gradient operators (Sobel, Laplacian). All the filtering operations take the same 

mathematical form. For a two-dimensional convolution this is : 

F(i,j) = W ... I(i,j) 

where I is the input image, F the output image, '*' is the convolution operator, W is 

the convolution weighting function commonly referred to as the convolution mask and 

ij indicate the image pixel. Each output pixel is a function of the input image pixels, 

around the same location, weighted by the convolution mask. The filtering operation 

can be re-written as a summation in each of the convolution mask dimensions :-

R S 
F(i,j) = L L W(p,q) . I(i-p, j-q) 

p=-R q=-S 

where Rand S specify the size of the convolution mask. 

117 



5 Mawin(l and Processin(l Data on the WPM M-SIMD Array 

On an SIMD array processor the convolution is very easily perfonned, since the same 

operation can be perfonned for each image pixel in parallel. The processing consists of 

a multiply-accumulate operation for each of the mask coefficients, thus shifting the 

resulting accumulation to the position of the next mask coefficient location. Then 

performing the next multiply-accumulate, and so on until all of the mask coefficients 

have been used. Note that the word-size of the data increases both with the 

multiplication (Sbit data increases to 16bit) and with the accumulations. It is assumed 

below that the data remains at 16bits after the multiplications. 

The whole operation thus consists of a series of multiply-accumulates and shift 

operations. The efficiency of the filter operation depends upon the convolution path 

taken while shifting and it must be ensured that the final result ends at the centre of the 

mask. It was shown by Lee [Lee87] that for rectangular masks there is an optimum 

shortest convolution path. For square masks the path starts at a corner point of the 

mask and spirals in to its centre. The shortest path for a general 5x5 convolution mask 

is shown in Figure 5.Sa. 

1 2 - - I'" ~ .... 

3 

~ 

4 

• 

a) non-separable b) separable 

Figure 5.8 - Convolution paths for a5x5 mask on an array processor. 

Fewer multiply-accumulate and shifting operations are required if the mask is 

separable, Le. when the two-dimensional convolution can be fonned from two one

dimensional convolutions, such as the Laplacian [Nudd89]. This reduces the 

118 



5 Mawing and Processing Data on the WPM M-SIMD Array 

complexity of the convolution path from 0(n2) to O(n) and can be seen in Figure 5.8b. 

Note that the path taken is split into four parts requiring a total convolution path equal 

to two one-dimensional convolutions of size lx5. 

The time taken to perform non-separable and separable convolutions on the WPM is 

given in Table 5.2. This uses the multiply-accumulate time, T mace, for 8-bit data, with 

known multiplicand values (convolution coefficients are usually known at compilation 

time), and the shifting time for 16-bit data, TShift = 67 cycles. The time taken increases 

in proportion to the mask size. The worst case given is when all the convolution 

coefficients consist of a maximum number of bits set, requiring a maximum number of 

additions in the multiplication (T mace = 276 cycles). The average case is when the 

convolution coefficients consist of an average of four set bits (T mace = 164 cycles). 

Non-se£arable (cycles) S~arable (c'ycles) 

nxn General mask n2Tmace + (n2-1)Tshift 2nTmacc + 2(n-l)Tshift 

3x3 General mask (average) 2012 1252 

(worst) 3020 1924 

7x7 General mask (average) 11252 3100 

(worst) 16740 4668 

Table 5.2 - Time taken/or convolution operations on the WPM. 

It can be seen from Table 5.2 that the time taken to perform a single 7x7 mask is 

already in the order of milli-seconds. Thus, it is advantageous to try and optimise the 

convolution masks to minimise the number of multiplications used within the 

convolution operation. Simple convolutions are shown in Figure 5.9 for a 3x3 

smoothing filter and a 3x3 high pass filter. These masks require only additions and 

subtractions for each mask coefficient, reducing the time taken for the convolution, 

and in the case of the smoothing mask, is also separable. Note that the coefficient 

value of eight, in the high pass filter, can be achieved by adding the middle value, 

shifted by 3 bits relative to the accumulation value, so as to appear 8 times larger. 

Such shifts require a change of addressing only and have zero time cost 

119 



5 MappinJI and ProcessioJI Data on the WPM M-SIMD Array 

1 1 1 -1 -1 -1 
1 1 1 -1 8 -1 

1 1 1 -1 -1 -1 

Figure 5.9 - 3.x3 convolution masks/or smoothing and high-pass filtering. 

One of the simplest gradient filters is the Sobel operator. This consists of two 3x3 

masks, one for the horizontal gradient, Ox, and one for the vertical gradient, Oy. A 

brief description of the foundations of the Sobel operator is given by Danielsson in his 

appendix [Danielsson90]. The gradient at a particular point is given by the square root 

of the sum of these two gradients squared, but is sometimes approximated by taking 

the sum of the modulus of the two gradients - known as the city-block form. The 

mask for Ox is given in Figure 5.10 which also shows its conventional decomposition 

into two one-dimensional convolutions. The vertical gradient mask, Oy, is a 900 

rotated version of the horizontal mask, Ox. 

G= x 

1 

2 

1 

0 -1 

0 -2 

0 -1 

Figure 5.10 - The horizontal Sobel gradient operator. 

The Sobel mask can be decomposed further into a set of very simple convolution 

masks, consisting only of neighbourhood additions, as described by Danielsson 

[Danielsson90]. This decomposition, in addition to reducing the computational 

requirements even further than that shown in Figure 5.10, suggests a set of 

generalised gradient operators based around the original Sobel operator but with 

increased mask sizes. 

The decomposition of the Sobel, into a set of neighbourhood additions, is shown in 

Figure 5.11. It consists of smoothing convolutions followed by gradient convolutions 

for each of the gradients Gx and Gy. Larger Sobellike masks are obtained by adding 

further sets of smoothing convolutions to the front of the sequence in Figure 5.11. 

120 



5 Maollinll and Processinll Data on the WPM M-SIMD Array 

1 0 -1 

2 0 -2 

1 0 -1 

-1 -2 -1 

0 0 0 

1 2 1 

Figure 5.11 - The Sobel operator decomposed into neighbour additions. 

The total number of additions and subtractions required using this decomposition is 

2n, where nxn is the mask size. Similarly a total of 2n communications are required. 

The times taken for the Sobel filter, in its conventional 3x3 form and decomposed 3x3 

and 5x5 forms, are given in Table 5.3. These times also take into account the increase 

in the data word-length after the addition operations (from 8-bit to 9-bit after the fIrst 

addition, 9-bit to lO-bit after the fourth, and so on). The times assume that the city

block method is used to calculate the fmal gradient to the accuracy of the fInal addition. 

The accuracy is 11 bits for the 3x3 Sobe1. 

Sobel (both Ox and Oy) Time (cycles) 

Conventional Sobel (3x3) 481 

Decomposed Sobel (3x3) 404 

Decomposed Sobel (5x5) 762 

Table 53 - Comparison o/the time taken/or the computation o/the Sobelfilter. 

5.4.2 The use of the WPM associative count 

Described here are several algorithms that benefIt from the use of an associative count 

within each Cluster of the WPM. The operations examined are those of histogram 

generation, rank order filtering, mean and variance, and image moment calculations. 

These operations occur often within image analysis applications, performed not only 

on grey-scale images, but also on output filtered images which remain as two

dimensional data. 

121 



5 Mmwing and Processing Data on the WPM M-SIMD Array 

The count operates only within a Cluster boundary. Consider an operation to count the 

area of an object which is in the form of a binary image. If the object is contained 

within a single Cluster then a single count operation can be performed within that 

Cluster and the count output stored in its the shared memory. If the object lies across 

Cluster boundaries then a count on each of the Clusters containing part of the object 

can be performed in parallel and the results accumulated as described in Section 5.2.2. 

For the following operations it is assumed that the count is required only within a 

single Cluster. However, some operations provide a number of output values which 

would need to be accumulated across Clusters when the locality constraint is not 

imposed. In this case, the times for the algorithms would be increased by the factors 

described in Section 5.2.2. 

5.4.2.1 Histogram generation 

Histogram techniques have been widely used within image analysis, not only for grey

level segmentation [Schalkoff89], but also for further analysis such as in finding the 

modal image plane velocity for motion segmentation [Burt91]. Histograms are 

generated by counting the occurrence of each of the possible values taken by the data 

set. 

An implementation for the generation of histograms was given by Howarth 

[Howarth88]. This performed a comparison, on the SIMD array, between the image 

data and the value being looked for, with the number of correct comparisons counted. 

This is repeated for all the values required. For 8-bit data, a total of 5000 cycles were 

required - the time being dominated by the 256 comparisons, one for each histogram 

value. 

A more efficient method is described by Reeves [Reeves80]. This uses a theoretical 

model of an array count device which evaluates a Boolean expression for each of the 

grey levels required. For example, the grey level of 64 (using 8-bit data) is 

The intermediate results are saved, using the fact that some adjacent grey levels differ 

by a single bit, e.g. the value of 164 differs from 165 by just the LSB. This method can 

122 



5 Mapj1ing and Processing Data on the wpM M-SIMD Array 

be extended, saving all intermediate results, and requires (n-2) storage bit-planes. It 

takes (5.2n - 8) operations on the WPM, where n is the number of bits in the data. For 

8-bit data, the total number of cycles required is 1272. Note that the time taken on the 

WPM differs from Reeves analysis where only (4.2n -8) operations are required. The 

extra cycle per grey level required on the WPM is due to the count being attached to 

the DAP PE memory lines and is not an integral component of the PEs. Consequently, 

an extra cycle is required to output the result of the Boolean calculation on to the DAP 

memory lines for counting. 

The calculation of the histogram can be improved further, as described by Francis 

[Francis91], by performing the Boolean calculations to decode each half of the data 

word (for 8-bit data, x7->X4 and X3->xO) and storing the results for each half. Each of 

the decoded results require 2n/2 storage bit-planes. The two decoded halves are 

combined sequentially, using an ANDing operation the result of which represents a 

single grey level, and can be counted. The number of operations required, for 8-bit 

data, is 160 cycles (for the decoding operation) and 768 cycles for the combination 

and counting operation. 

The histogram calculation using the decoding method is generalised for arbitrary 

word-length data in Table 5.4 and compared with the method of Reeves. The different 

operation cycle counts for n odd and n even, with the method of Francis, results from 

having uneven lengths for half the data word when n is odd. The amount of storage 

required, for the method of Francis, increases as 2n which may become a limiting 

factor for larger word-length data. 

Histogram Reeves Francis 

Generation Algorithm Algorithm 

word-size Cycle count Storage Cycle count Stora~e 

nbit (n even) 5.20 - 8 n-2 2n/2(n+2)+ 3.2n 2(nI2+1) 

nbit (n odd) " " 2(n-3)!2(3n+ 7)+3.2n 3.2(n-l)/2 

5 bit 152 3 140 12 

8 bit 1272 6 928 32 

Table 5.4 - Comparison of histogram generation algorithms on the WPM. 

123 



5 Mawing and Processing Data on the wpM M -SIMD Array 

5.4.2.2 Rank order filters 

Producing a particular rank value from a local image region is a common operation in 

image processing. It includes finding the minimum or maximum value, within a 

region, or using the median value for noise reduction with edge preservation. The 

operation is typically performed over a region of the image in a similar way to a 

convolution, such that the rank is calculated in parallel at all pixellocations. 

The most common way in which the calculation of a rank, such as the median, is to 

sort the values from each of the local regions in parallel across the processor array. 

The sorting of n2 values (where nxn is the size of the local region around each pixel) 

takes 0(n4) comparison operations plus 0(n2) shifting to get all the required values 

within each PE. In fact, the sort can be implemented by calculating the maximum 

value, in 0(n2) operations, and repeating until the required rank is obtained, or, if the 

rank is nearer the Oth rank, starting with the minimum. A total of Min[(n2-R),R] 

iterations are required where R is the rank required. The worst time for this operation 

occurs for the median, which takes 

3n4(Tcomp+ Tccopy)/8 + (n2+2n-3)Tshift cycles 

where Tcomp is the comparison time, Tccopy is the time for a conditional copy, and 

Tshift is the time for a shift - all for 8-bit data. (Tcomp = 19 cycles, Tccopy = 27 cycles, 

and Tshift = 35 cycles). This algorithm is termed the conventional method below. 

An approximation to the median calculation can be made using a method known as the 

median of medians and is discussed by Reddaway [Reddaway85]. This involves 

decomposing the two dimensional region into two one-dimensional regions of size n. 

This requires 0(n2) operations thus reducing the computation required. 

The operation to find a particular rank is slow due to the effective calculation of all 

ranks resulting from the sort. However, a novel algorithm which calculates a particular 

rank, without the need to sort, was introduced by Danielsson [Danielsson81]. This 

algorithm works in a bit-serial fashion, starting at the MSB, and counts the number of 

values with a zero MSB. If this is less than the rank required then the value required 

must contain a 1 in the MSB. This is repeated for all bits down to the LSB of the data 

such that the set of remaining values contains the rank required as its maximum 

124 



5 Mawing and Processing Data on the WPM M-SIMD Array 

This algorithm, which is tenned the iconic method below, has been implemented on 

the WPM [Francis91] by shifting all values, within the local mask, in to each PE. The 

operation was found to take 

8*5*n2+810g2n+3 + (n2+2n-3)Tshift cycles 

for an nxn mask size using 8-bit data, where Tshift is the shift time. However the 

counting operation can also be done on the associative count within the Cluster. The 

count can only be used to calculate one rank, at one pixellocation, at a time and it 

takes 17*8 cycles per calculation. To calculate a rank for each of the PEs within the 

Cluster takes 

17*8*(PEnum) + 255 * Ts hi ft cycles 

for a mask size of up to 16x16 using 8-bit data, where Tshift is the time for a shift, and 

PEnum is the number of PEs requiring a count. This operation is O(p) cycles, where p 

is the number of PEs within the Cluster, whereas that implemented without the count 

takes 0(n2) - i.e. dependent upon the mask size. 

If only a small number of ranks are required, from the image area within the Cluster, 

the use of the hardware count is more efficient. A comparison is shown in Table 5.5. 

However, if the rank is to be calculated for each pixel location, the iconic based 

method is more efficient. A further consideration is the amount of temporary storage 

required during the operation especially for a large mask size. e.g. for a 15x15 mask. 

In this case, the iconic method would require 1800 bits of storage per PE (for 8-bit 

data) in comparison to the count method of zero. 

Method (using 8-bit data) Cycle Count Storage (8-bit) 

Conventional (1 per PE) 3n4(T comp+ T ccopy)/8+(n2+ 2n-3)T shift 8n2 

Iconic (1 per PE) 40*n2+810g2n+ 3+(n2+ 2n-3)T shift 8(n2 + log2n2) 

Count (per rank) 136 None 

Table 55 - Comparison of Rank order filter calculations on the WPM. 

125 



5 Map,ping and Processing Data on the wpM M-SIMD Array 

5.4.2.3 Mean and Variance calculation 

The mean grey-level and variance of an image region are fundamental quantities used 

within image analysis and are sometimes used in the classification and correspondence 

of objects through image sequences. Both calculations involve a summation across the 

image followed by a single division by the number of values within the summed 

region. The mean, I, and the variance ai are given by: 

I = ~ L L I(x,y) 
2 1 ~~ -2 

and crI = N ~ ~ (I(x,y) - I ) 
x,y E R x,y E R 

where N is the size of the summed region R. Both of these quantities can be calculated 

in a bit serial fashion, by counting powers of two as described by Bowen [Bowen82], 

using the associative count within each Cluster. 

The PEs within the SIMD array are initially labelled with their respective x and y 

position within the whole processor array. The mean is calculated by initially starting 

with the MSB of the data, counting the number of 1 's set within the region, and the 

resultant count shifted one place to the left on the controller (i.e. doubling the resultant 

count). This is repeated for subsequent bits, although no shift is performed on the last 

bit of the data. The shift on the controller ensures that progressive bit-planes are 

treated as having half the significance of the previous bit-plane. 

The variance is found in a similar way, but is preceded by the calculation of the mean, 

a subtraction and a square operation within each PE. The count and controller shift 

operations take two cycles per data bit-plane (using the pipeline design of the count). 

The total time taken is 

(2*nbits+3) cycles 

for the mean and 

(6*nbits+6+ Tsub+ T mult) cycles 

for the variance, where nbits is the size of the data, Tsub is the subtraction time and 

T mult is the multiplication time. For 8-bit data (T sub = 28, T mult = 236), the time for 

the mean and variance are 19 and 318 cycles respectively. The variance time is 

126 



5 Mawing and Processing Data on the WPM M-SIMD Array 

dominated by the multiply operation, T multo The normalisation of the resulting two 

values, by the division, can be performed on the Cluster controller taking an additional 

85 cycles. 

5.4.2.4 Image moment calculations 

A set of moment invariants, used as shape descriptors, can be used for object 

classification purposes [Nevatia82]. These are invariant to rotations, translations and 

scaling in size. A set, Ml to M7, of these moment invariants is listed below:-

MI = 1120 + 1102 

M2 = (1120 -1102)2 + 411il 

M3 = (1130 - 31112)2 + (31121 -11 03)2 

M4 = (1130 + 1112)2 + (1121 + 1103)2 

MS = (1130 - 31112) (1130 + 1112) [(1130 + 1112)2 - 3(1121 + 1103)2] + 

(31121 -1130) (1121 + 1103) [ 3(1130 + 1112)2 - (1121 + 1103)2] 

M6 = (1120 -1102) [ (1130 + 1112)2 - (1121 + 1103)2] + 

41111(1130 + 1112) (1121 + 1103) 

M7 = (31121 -1103) (1130 + 1112) [ (1130 + 1112)2 - 3(1121 + 1103)2] -

(1130 - 31112) (1121 + 1103) [3(1130 + 1112)2 - (1121 + 1103)2] 

1 "'''' -p -q where 11 pq = area[(p+q)/2+1] £..J £..J (x - x) (y - y) 
x,y E R 

for an image region R, of known size, with a centroid position of (x, y). The 

calculation of the moment invariants at first glance seems complex but they can be 

decomposed into a set of products in the form (11pq + 11rs) which, once calculated, can 

be used in the calculation of subsequent moments. The processing required is as 

follows, assuming that the PEs are initially labelled with their (x,y) position within the 

processor array and that all resulting values are in 16-bit fixed point integer form. 

1) Calculate image area and centroid (X, y), broadcast results back to the SIMD array 

2) perform the subtraction between the centroid and the PE location, followed by the 

squaring and cubing of each value, using the required combinations of p and q (nine 

multiplications) 

127 



5 Mawing and Processing Data on the WPM M-SIMD Array 

3) perform the division by the area for each one of 1111,1102, 1120,1103,1130,1121,1112 

and a further ...Jarea division (approximated to be a division by the upper half bits of the 

area) for the latter 4 values 

4) use the count to perform the summation for each of the seven values of 11 

5) add together the various values of 11 on the controller forming partial product terms, 

which can then placed on the SIMD array, in vector mode, and perform the necessary 

multiplications to calculate Ml to M7. In total two iterations of this process are 

required due to data dependencies. 

The total time taken for this operation on the WPM is 3838 cycles. The values of Ml 

to M7 are calculated in 16-bit fixed point format 

5.5 Matrix Operations on the WPM 

The matrix operations of addition, subtraction, multiplication, inversion and 

transposition are frequently used within many computational applications such as the 

analysis of data where relationships between many variables exist. An example is the 

formulation of a Kalman filter [Kalman60], containing information about a system 

being modelled. This is related to a measurement model and is updated at every 

measurement time point. The system and measurement models can contain an arbitrary 

number of values. The computational requirements of the matrix operations are 

examined here. 

Many Kalman filters may be operating in parallel and require updating at the same 

time. The use of Kalman filters for tracking applications is discussed later in Chapter 

6, along with their computational requirements. The mapping of the matrices across a 

processor array differs from the previously described methods, in Section 5.3, in that 

the matrices are typically smaller than the processor array. Any data mapping 

technique used must maximise the number of such matrices which can be operated on 

in parallel, whilst also minimising the time taken. 

128 



5 Mal1l1ing and Processing Data on the WPM M-SIMD Array 

5.5.1 Mapping considerations 

A major impact, on the performance of matrix operations, is the way in which the 

matrices are mapped across the processor array and the number of matrices 

undergoing the same operation at anyone time. Two extreme cases occur when there 

is only a single matrix mapped across the processor array and the other when there are 

sufficient matrices such that one can be mapped to each PE and processed in parallel. 

The computation required for the matrix operation can be separated into two parts - the 

actual computation between the matrix elements (addition/subtractions or 

multiplications/divisions) and the time taken for necessary routing of data between PEs 

(required in matrix multiplication, inversion and transposition). The mapping used 

should be chosen so as to minimise the latter routing time, while mapping as many 

matrices across the array as possible for greatest utilisation. 

In the following analysis both a WPM M-SIMD array and a conventional DAP SIMD 

array are compared. It is assumed that the size of the matrices being processed are of 

size nxn with each data element in 32bit floating-point format, the processor array is of 

size N xN and that an integer number of Clusters are within the WPM. The data 

mappings used are centred around those of sheet and crinkled mappings, discussed in 

Section 5.3. However, for the mapping of matrices it is more important to analyse the 

number of matrices that can fit across the array at anyone time. Four data mappings 

are considered and listed below. This should not be treated as a definitive list but is 

representative of the options available for data mapping across an array processor. 

I) One per PE - all elements of a matrix are mapped to a single PE 

2) Sheet mapping - each matrix element is mapped to a PE, spatially arranged. 

3) Crinkled mapping - a set of matrix elements are mapped to a single PE, such 

that for a crinkling factor of c, c2 elements of each matrix are contained 

within each PE. 

4) Linear Crinkled mapping - all the matrix elements within the same row are 

mapped to a single PE and spatially arranged in a column. This is a 

combination of sheet mapping, down the columns, and crinkled mapping, 

across the rows. 

129 



5 Mawing and Processing Data on the wpM M-SIMD Array 

The mappings of 2, 3 and 4 above can be used to map, in a similar fashion to that 

described in Section 5.3, a matrix onto a processor array which is smaller than itself. 

However, in the WPM the processor array can be treated either as the whole SIMD 

array or as the set M-SIMD arrays of the Clusters. For instance, a 32x32 matrix may 

be sheet mapped, or crinkled mapped, into a 16x16 SIMD array within a Cluster, or 

sheet mapped across four Clusters. 

A comparison of the mappings used, to place the matrices onto a conventional DAP 

SIMD array, within a WPM Cluster, and across the WPM array, is given in Table 5.6. 

The number of PEs required for each mapping, along with the number of such 

matrices that can be mapped across the whole SIMD array, and within a single WPM 

Cluster (if the matrix is small enough), are shown. The lower bounds on the quantities 

within Table 5.6 ensures that only whole matrices mapped across the array are 

considered. The number of matrices mapped within the WPM array is the total number 

of Clusters within the array divided by the number of Clusters used by each matrix. It 

is assumed for simplicity that each matrix larger than 16x 16 has sole use of the 

Clusters it is mapped onto, e.g. a matrix of size 17x 17 would have the sole use of four 

Clusters. 

Mapping PEs # of matrix # of matrices in # of matrices in the WPM 

used elemcot,,/PE SIMDarray 1) Cluster {o<=16) 2) array (n>1()1 

One per PE 1 n2 N2 162 N2 

Sheet n2 1 L ~ J2 L~6J2 L N/16 J2 r n/161 

n2 
c2 N 2 16 2 L N/16 J2 Crinkled 

c2 L(nlc)J L(nlc)J r n/(16c) 1 

Linear crinkled n n N*L~ J 16*L ~6J L ~l~J 16* r n/161 

Table 5.6 - Comparison of the mapping of matrices across a processor array. 

The number of matrix elements mapped on to each PE in each mapping represents the 

increase in computation required for that mapping, and also the data storage (in words) 

required per PE. The product between the number of matrix elements per PE, and the 

130 



5 Mawing and Processing Data on the WPM M-SIMD Array 

number of PEs used remains constant at n2, irrespective of the mapping used (Le.- the 

total number of matrix elements within the matrix remains constant). 

5.5.2 Matrix Algorithms 

The algorithms for matrix addition, subtraction, division, inversion and transposition 

are described below. It is assumed, for operations between two matrices, that they are 

both mapped in the same way across the same PEs within the processor array. The 

way in which these matrix elements are initially placed across the array has not been 

considered. The time for the 32-bit floating point operations of addition, subtraction, 

multiplication and division are denoted below as TCadd, TCsub, TCmult. TCdiv 

respectively. 

5.5.2.1 Matrix addition and subtraction 

Both the operations of matrix addition and matrix subtraction can be very easily 

performed on a processor array no matter which data mapping is used. There is no 

overhead in data communications - all the additions/subtractions to be performed are 

with matrix elements mapped to the same PEs. Thus, the total time taken is simply the 

time taken to perform the floating point addition, Tfadd, or subtraction, Tfsub, times the 

number of matrix elements mapped to each PE. 

5.5.2.2 Matrix multiplication 

Matrix multiplication requires the dot product between each row of the first matrix and 

each column of the second matrix. A total of n3 multiplications and (n-l)n2 additions 

are required. The multiplication of two matrices A, B is shown below. Matrix 

elements are referred to as aij and bij respectively. 

a12 ... aln] [bll b12 ... bIn] 
a22 a2n b21 b12 b2n • = . . . . . . 
an2 ann bn 1 bn2 bnn 

all b11+a12b2l··· a1nbnl all b12+a12b22··· a1nbn2 

a2l bIl +a22b2l··· a2nbnl a21 b12+a22b22···a2nbn2 

all bln+a12b2n··· alnbnn 

a21 bln+a22b2n··· a2nbnn 

131 



5 Mawing and Processing Data on the WPM M-SIMD Array 

Although this looks complex, it can be split up into dot products between each row 

and each column of the matrices. This results in a total of n matrices, one from each 

dot product, which are added together forming the matrix multiplication result above. 

The form of the dot products are shown below, where the terminology of An. 

specifies the nth row of A and A.n specifies the nth column. 

[ A.I A.I]- [ 
Bl. 

1 A·I ... 
B 1. 

+ 

B 1-

[ A.2 A.2]- [ 
B2· 

1 A·2 ... 
B2. 

+ ... + 

B2. 

[ A·n ... A.n]- [ 
Bn• 

1 A. n 
Bn• 

Bn • 

The decomposition of matrix multiplications can be very easily implemented on an 

SIMD processor array. It requires a column of the first matrix, A, to be broadcast 

across the array and a row of the second matrix, B, to be broadcast down it. The 

broadcast can be done either by using the associative response mechanism of the 

array, and broadcasting a row (and column) across the array, or by shifting the values 

of the row (and column) across the array (using masking and conditional storage 

operations). Either method may be employed, the quickest depends upon the size of 

the matrices and the number of matrices mapped across the array. 

Once the broadcast has taken place the fIrst multiplication between each broadcasted 

value can be performed, taking TCmult cycles, times the number of matrix elements 

mapped to each PE. The broadcast is then repeated for the second and subsequent 

row/column and the associated multiplication performed. A post addition stage 

accumulates all of the partial products taking (n-l)*TCadd cycles. 

132 



5 Mapj)ing and Processing Data on the WPM M-SIMD Array 

5.5.2.3 Matrix inversion 

Matrix inversion on an array processor can be performed through the use of an 

algorithm developed by Faddeev [Faddeev59] which allows in-place matrix inversion 

operations [Grinberg84]. The algorithm works on the four matrices, A, B, C and D 

as shown in Figure 5.12. Gaussian elimination is applied to the rows and columns of 

the whole matrix forming the result of C A-I B + D. Thus, if A is set to be the data 

matrix, C and B to be the identity matrix and D to be a zero matrix, the inverse, A-I, 

can be obtained. 

~ 
~ 

Figure 5.12 - The Faddeev formulation of matrix inversion. 

A Gaussian elimination of a single row and column is performed by forming a new 

matrix derived from A, in which each element is equal to the product of the leading 

row and column elements from A, followed by a division by the top left element of A. 

The new matrix is then subtracted from the original matrix A, and carried forward to 

the next iteration of the algorithm. A total of n iterations are required. The products 

between the leading row and column elements can be formed by the broadcast of the 

flrst row and flrst column, of the matrix, across the processor array, followed by an 

in-place multiplication. The division can be performed after the global broadcast of the 

top left element of the matrix A across the processor array. 

The double sized matrix implied by Figure 5.12 is not required, if the original matrix 

is shifted up and left one place before the subtraction of the new matrix. This keeps the 

active part of the double sized matrix on the same PEs within the array on all 

iterations. This is shown more clearly in the example of Figure 5.13 which depicts one 

iteration of the inversion algorithm on a 3x3 matrix (taken from the example by 

Grinberg [Grinberg84]). The shaded region indicates the active region of the double 

sized matrix which is mapped onto the same PEs within the processor array, 

throughout the algorithm. 

133 



5 Mawing and Processing Data on the WPM M-SIMD Array 

I 1 
I o 0 8 2 6 1 o 0 0 0 o 0 
10 1 0 7 0 
I 0 0 1 
1----- . 3 0 

-1 0 0 10 0 0 -1 0 0 o 0 
o -1 0 I 0 0 0 

I 
0 0 0 0 o 0 0 -1 0 0 o 0 

0 o -1 I 0 0 0 0 0 0 0 o 0 0 0 -1 0 o 0 

a) Original b) row*col / (flfst element) c) Subtraction from original 

Figure 5.13 - Example iteration of the Faddeev inversion algorithm on a 3x3 matrix. 

5.5.2.4 Matrix transpose 

The transposing of a matrix requires only data routing to move the elements of the 

matrix across the processor array. If all the matrix were mapped onto a single PE - no 

routing would be required, only a change in addressing (which can be performed with 

no time cost). When the matrix is mapped across a processor array, shifting operations 

are required to move the elements to their destination such as is shown for a 6x6 

matrix in Figure 5.14. 

No wrap-around With wrap-around 

• Elements remain in place 

11 stored after 1 st shift 

11] stored after 2nd shift 

~ stored after 5th shift 

Figure 5.14 - Transposing a matrix on an array processor. 

All elements of the matrix need to be moved except the leading diagonal elements as 

illustrated in Figure 5.14. The operation can be understood by considering the lower 

left half of the matrix (not including the leading diagonal). This region is shifted up 

and right one position with the elements on the top diagonal of this being stored on the 

array - e.g. A, B, C are moved to A'}, B'I, C'1 respectively. This is repeated for 

n-l iterations (n being the dimension of the matrix, in this case 6). The index on the 

values in Figure 5.14 indicate the iteration in which the values are stored. 

134 



5 Mawiog and Processing Data 00 the wpM M-SIMP Array 

The matrix transpose algorithm is perfonned twice, once for the lower left region of 

the matrix and another for the upper right (shifting it down and left). However, if the 

matrix is the same size as the array, the algorithm need only be perfonned once by 

using the arrays wrap-around facility as illustrated on the right hand matrix in Figure 

5.14. 

The time taken to perfonn a matrix transpose is 

(1 28Tshift + 194)(n-l) cycles 

when not using the wrap-around of the array, where Tshift is the time for a single bit 

shift. If the matrix is the same size as the processor array (16x16 on a single Cluster of 

the WPM or 128x128 for the whole WPM array) this time is halved requiring 

(64Tshift + 97)(n-l) cycles. 

Note that, if the matrix is larger than the Cluster size within the WPM then the shift 

time, Tshift. is two cycles, due to hand shaking between Clusters, otherwise it is one. 

5.5.3 Performance of matrix operations 

The time spent on the computation and the data routing for all four matrix operations 

can be seen in Table 5.7. The data routing for a matrix multiplication and matrix 

inversion can be perfonned by using either the associative broadcast mechanisms of 

the SIMD array, or by a shifting operation. The method used is simply the one that 

takes the minimum number of cycles. The distance, d, in the shifting tenn is governed 

by the number of PEs the matrix is mapped over, i.e. n, n/c and n, in sheet, crinkled, 

and linear crinkled mappings respectively. 

Matrix Computation (cycles) Routing (Broadcast) Routing (Shiftin.ID 

Addition Tfadd zero zero 

Multiplication (Tfmult+ TfadcU*n - Tfadd 64nTbroad 64o{l+{d-l)(Tshift+2» 

Inversion {Tfmult+ Tfdiv+ Tfsub)*n 96nTbroad 1280(1 +(d-l)(T shift+2» 

Transposition zero - (1 28*Tshift+ 194)*(d-l) 

Table 5.7 - Time/or the computation and communication in matrix operations. 

135 



5 Maru>ing and Processing Data on the WPM M-SIMD Array 

The time taken to perform a single I-bit shift, TShift. is 2 cycles on the WPM (ignoring 

any necessary synchronisation) when the matrix is mapped across more than one 

Cluster and 1 cycle otherwise (the same as on the conventional DAP). The broadcast 

time, Tbroad, is 4 cycles when only one matrix is mapped across the array (when n=16 

on a Cluster or n=N on a conventional SIMD array). Tbroad is 6 cycles when several 

matrices are mapped within one SIMD array or across several Clusters in the WPM. In 

the case of the WPM, the broadcast time is inflated by an additional 6 cycles per 

Cluster that the matrices are mapped over, to account for its partitioned associative 

mechanism. 

When several matrices are mapped across the processor array, the associative 

mechanism, although allowing quick broadcasting of values across the array, must be 

used serially for each row/column of the matrices in the array. This increases the 

broadcast time by a factor of I ~ l (representing the integer number of matrices 

within the single dimension of the processor array of size N). An example of four 4x4 

matrices mapped onto a 16x16 PE array is shown in Figure 5.15. Each of the first 

columns of the matrices are broadcast across the PEs containing their matrix elements. 

This is done serially for column A, B, C and D. The WPM can perform a separate 

broadcast within each Cluster, decreasing the overall time taken for the broadcast 

operations. 

A B c D 

~ 1 st Broadcast 

~ 2nd Broadcast 

~. 3rd Broadcast 

~f:::~ 4th Broadcast 

Figure 5.15 - An example of sixteen matrices mapped onto a processor array. 

136 



5 MaIWin~ and Processin~ Data on the WPM M-SIMD Array 

The times in Table 5.7 assume that each matrix element is mapped onto a single PE 

(Le. sheet mapping). However, other data mappings can be employed as detailed in 

Table 5.6. The effect on the computation, broadcasting and shifting for the matrix 

operations is shown in Table 5.8. These are multiplicative factors which should be 

applied to the matrix cycle times given in Table 5.7. 

The perfonnance of the matrix operations, on various size and numbers of matrices, 

has been simulated using the computational and routing requirements listed in Tables 

5.7 and 5.8. The times for the floating point operations were taken from those given 

by Beal [Beal90] and also listed in Table 4.6. 

Mapping Multiplicative increase in :-

Computation broadcast shifting 

One per PE n2 0 0 

Sheet 1 L~J 1 

Crinkled c2 L(~c)J c2 

Linear crinkled n !L~ J n 
2 

Table 5.8 - Multiplicative factors applied to the computation, broadcast and shifting 

times o/the various data mappings. 

5.5.3.1 Addition and subtraction performance 

In Figure 5.16, the time taken to perfonn addition on a varying number of 16x16 

matrices is shown for a 128x128 SIMO array (either OAP or WPM). The operation 

involves only floating point operations (no communications) and so the time for the 

operation is the same on the WPM as on the OAP. The steps that are apparent are due 

to the differing number of matrices that can be mapped across the array in the different 

mappings. For example, linear crinkled mapping enables 1024 matrices to be operated 

upon in parallel. When this number is exceeded there is a sudden jump to having to 

processes up to an extra 1024 matrices, i.e. a doubling of the time taken. Note that the 

change in the steps within Figure 5.16 (and subsequent figures) should be vertical but 

are shown sloped due to the plotting resolution used. 

137 



5 Mawin~ and Processin~ Data on the WPM M-SIMD Array 

22 
Vi' 
0 3 -* en 
<I) 

U 2 >. 
u 
'-" 
<I) 

E 
E== 

l~apPing: 
~ _OneperPE 

:::=
~ -Sheet 

__ _ Crinkled 

- Linear Crinkled 
0 

640 1280 1920 

Number of 16x16 matrices 

Figure 5.16 - Time taken to perform a 16x16 matrix addition for a varying number of 

matrices. 

5.5.3.2 Multiplication performance 

The time taken for the multiplication of 16x 16 matrices is shown in Figure 5.17 for a 

128x128 DAP SIMD array. In Figure 5.18 this is shown for an 8x8 Cluster WPM. It 

can be seen in both graphs that the times taken by the different mappings are affected 

by the broadcast/communications required within the matrix multiplication. The Linear 

Crinkled mapping and crinkled mapping have the minimum communication times on 

the DAP and can be seen to be most effective when the number of matrices lies 

between 600 and 1024 (when the utilisation of both of these mappings is high). The 

one per PE mapping is not shown - it has a constant time requirement of 8.5x106 

cycles over the range of number of matrices considered. When the number of matrices 

approaches that of the number of PEs, the one per PE mapping will be the most 

efficient - it would have high utilisation and no requirement for data routing. 

V')-

0 -* 1:1) 
Q) -(,) >. 
(,) 
'-" 
s:: 
<I) 

~ r-
<I) 

E .... 
r-

2C 

1~ 

IC 

5 

0 
0 

Mapping: 

Sheet 

Oinkled 

Linear Oinkled 

320 

r ~1r-----

640 960 1280 

Number of 16x16 Matrices 

Figure 5.17 -16x16 matrix multiplication on a 128x128 DAP SIMD array. 

138 



5 Mawing and Processing Data on the WPM M-SIMD Array 

On the WPM, the communications required can be perfonned in less time due to the 

partitioned associative mechanism within each Cluster. This can be seen in Figure 

5.18, the curve of each mapping being similar to that for the addition in Figure 5.16, 

where no communications were needed. 

2C 
vY"' 

0 -* 1~ 
Cl) 

0 
U 
>. lC C,) 
'-' 
c:: 
0 

~ 5 
E-< 
0 e 
~ 0 

Mapping: 

Sheet 
Ginkled 
Linear Oinkled c-~-~ 

==~~~~;C; : : ---:;:=::::;:=:::: :::::::;::>:::::::: =::: ;;:::~::::P-'~--"~~~"= 

0 320 640 960 1280 
Number of 16x16 Matrices 

Figure 5.18 -16x16 matrix multiplication on an 8x8 Cluster WPM. 

The mapping which has the minimum time requirement, over the range of matrices 

considered, is plotted in Figure 5.19 for both the DAP and WPM arrays. It can be 

seen that the WPM out-perfonns the DAP array, in places by 50%. This is purely due 

to the effect of the decrease in communication times using the local associative 

mechanisms. The required floating point operations are the same for both arrays. 

1C 

-* 7.~ 
Cl) 

~ 
C,) 

C 5 
'-' 
c 

~ 2.~ 
o e 
~ O~----~----,-----~--__ ~ ____ ~ ____ ,-____ ,-__ ~ 

o 320 640 960 1280 

Number of 16x16 Matrices 

Figure 5.19 - Comparison o/the minimum processing time/or matrix multiplication 

between the DAP and WPM arrays. 

139 



5 MaIming and Processing Data on the WPM M-SIMD Array 

The size of the matrices was chosen in the above example to match the size of the 

WPM Cluster, giving the WPM an ideal processing capability. Recall however, that if 

the size of the matrices is 17x17, 4 Clusters are required, reducing array utilisation. 

Thus, one should examine a range of matrix sizes in order to gain a fuller comparison 

between the WPM and the DAP. Figure 5.20 gives a comparison for the mappings 

considered, for a range of matrix sizes. It is assumed that the processor array was as 

fully utilised as possible within each mapping, i.e. the number of matrices was equal 

to the maximum that could be placed across the array (see Table 5.6). 

8 

7 

6 

5 

4 

3 

2 

1 

Mapping: 

<D OAP One per PE 

<Z> OAP Sheet 

0,) OAP Crinkled 

® OAP Linear Crinkled 

G> WPM Sheet 

® WPM Crinkled 

CD WPM Linear Crinkled 

O~-----~~~~~==~~----~I~----~-----ir-----~----~I o 4x4 12x12 16x16 2Ox20 24x24 28x28 32x32 

Matrix size 

Figure 5.20 - Comparison between the WPM and the DAP SIMD array for matrix 

multiplication over a range of matrix sizes. 

140 



5 Map,ping and Processing Data on the WPM M-SIMD Array 

The times shown in Figure 5.20 are given as the effective number of cycles per matrix 

multiply, i.e. the overall time taken divided by the number of matrices worked on in 

parallel. The effect of the partitioned associative mechanism within the WPM can be 

seen for a matrix size of 17x17. The sheet mapping, crinkled and linear crinkled 

mappings all exhibit a sudden jump due to the increase in broadcast/communication 

required when performing the inter-Cluster operations. The jump is also a feature of 

the poor utilisation that a 17x17 matrix has using 2x2 Clusters (32x32 PEs).This poor 

utilisation does not occur on the DAP SIMD array. 

5.5.3.3 Inversion performance 

A similar comparison to that of matrix multiplication was carried out for matrix 

inversion and yielded similar results. The comparison of the minimum time taken over 

the range of the number of matrices considered is shown in Figure 5.21. This is 

similar to that of Figure 5.19 for the matrix multiplication. The effect of the size of the 

matrices on performance of matrix inversion is similar to that of the multiplication, as 

shown in Figure 5.20, and has not been included here. 

2e 
-n-

o ...... 
* 1~ 
en 
0 -u 
;>., lC u --t:: 
0 

~ 5 

0 
E Minimum WPM time ..... 

0 f-o 
0 320 640 960 1280 

Number of 16x16 Matrices 

Figure 5.21 - Comparison o/the minimum processing time/or matrix inversion 

between the DAP and WPM arrays. 

5.5.3.4 Transpose performance 

The time taken to perform a transpose is dependent only on the shifting 

communication time (see Table 5.7). The times for the One per PE data mapping is 

141 



5 Map,ping and Processing Data on the WPM M-SIMD Array 

zero - no communications are required, only a change in data addressing. A 

comparison between the time taken for matrix transposition on the WPM and the DAP 

SIMD array is shown in Figure 5.22 using sheet mapping for a range of matrix sizes. 

The performance on either array is the same for matrices less than 16x 16. The torus 

network within the WPM Cluster can be used when the matrix is of size 16x16, 

halving the time required. For matrices larger than 16x16, the shifting time on the 

WPM doubles, thus increasing the overall time taken for the transposition in 

comparison to the DAP SIMD array. 

rI)' 
o -* '-" 
en 
o 

15 

~ 7.5 
u 
o e 
~ 

o~~--~----~----~----~--~----~----~----~ 
o 8x8 16x16 24x24 32x32 

Matrix size 

Figure 522 - Comparison o/matrix transpose on the DAP and WPM arrays. 

The operations of matrix addition and subtraction can be performed on either the 

SIMD array within the DAP or on the M-SIMD array within the WPM, with no 

difference in the time for execution. These operations do not require any 

communications only the use of the computational components of the PEs. This is not 

true for matrix multiplication and inversion - both of which need communications 

across PEs when the matrix is mapped across more than one PE. The communication 

time is altered on the WPM by the use of its partitioned associative response networks. 

For matrices of size less than or equal to 16x16 the time taken is less on the M-SIMD 

array than on the conventional SIMD array. However, it is worse for matrices of size 

between 17x17 and 26x26 (see Figure 5.19). 

Matrix transposition was shown to have similar performance on both the WPM and 

the conventional SIMD array for matrices of size up to 16x16. However when inter-

142 



5 Mawing and Processing Data on the wpM M-SIMD Array 

Cluster communications are required, the shifting time is doubled on the WPM, thus 

increasing the time taken in comparison to the SIMD array. 

The SIMD element used for the comparison was the simple 1 bit OAP PE (as used in 

the OAP product and the WPM). However the computational power of SIMD PEs is 

constantly increasing - the OAP is now produced with an 8-bit co-processor [AMT90] 

enhancing floating-point operations by a factor of 5, and other 4-bit PEs have 

appeared such as in the MAS-PAR [Nickolls90]. The effect of these processors on 

matrix operations will be to decrease the computation time required, making the 

communication time more prominent in the overall processing time. The increase in 

performance the WPM achieves, over that of a conventional SIMD array, for matrices 

of size of 16x16 (and others) will be further improved upon in such situations. 

Only square matrices have been considered above. The analysis could be extended to 

rectangular matrices, adding another matrix size parameter, but this has not been done. 

Another factor would be to allow matrices of different sizes to be processed across the 

array processor. It is expected that the local-autonomy within the WPM would aid the 

processing of different sized matrices, one size of matrices could be mapped onto one 

set of Clusters, and another size to a different set 

5.6 Summary 

A comparison of the WPM with its M-SIMD array over that of the conventional SIMD 

array has been given in Section 5.2. The local autonomy, associative response 

mechanisms and the inter-Cluster communications have all shown that a performance 

increase can be achieved over a conventional SIMO array in situations where the size 

of the data being processed is the same size as the M-SIMD array within a Cluster. 

Image processing operations were examined in Section 5.4. Such operations are iconic 

and global, requiring data parallel usage of the processor array. The performance of 

the WPM in such situations is affected by the increase in time required for inter

Cluster synchronisation and the increased time required for the shifting of data 

between PEs. 

143 



5 Mawing and Processing Data on the wpM M-SIMD Array 

Local area operations using the count were examined in Section 5.4.2 including 

histogram generation, rank order filters and various moments. Such operations require 

one output over the local region in which they are performed. The local autonomy 

coupled with the enhanced associative mechanisms within the WPM improve the 

performance of these operations. 

Finally in Section 5.5 the matrix operations of addition, subtraction, multiplication, 

inversion and transposition were examined. These operations are effectively local 

region operations, in the image processing sense, when considering a matrix as a local 

region. It was shown that matrix multiplication and inversion can be performed in 

reduced time on the WPM compared to a conventional SIMD array depending upon 

the matrix size. Matrix subtraction and addition require computation which is only 

affected by the perfonnance of the PEs, and not by the way in which the PEs are 

configured. A matrix transpose can be performed on either processor array with 

similar time requirements, although the time taken on the WPM is increased by the 

synchronisation of adjacent Clusters and by the increased communication time. 

In the next chapter, the application domain of target tracking is considered. The ways 

in which the differing types of data, that occur, can be mapped across the WPM array 

is examined. The use of both the M-SIMD and the MIMD arrays within the WPM is 

required. 

144 



Chapter 6 

The Performance 
Operations on 

6.1 Introduction 

of Tracking 
the WPM 

The tracking of objects, both in the form of iconic regions which have an observable 

size and shape, and those that appear as only a few pixels, and its implementation on 

the WPM is considered within this chapter. Typically, the computational requirement 

is complex in that both image data and derived numerical quantities have to be 

processed over a number of frames, extracting temporal information. In this chapter, 

the structure of the data involved within the computation is described, along with the 

use of the different levels of the WPM. 

Target tracking has received much attention over the last two decades for both military 

and civilian applications [Bar-Shalom88]. More recently, there has been increasing 

interest in applying similar techniques to computer vision for the tracking of image and 

object features. Algorithms have been developed for the estimation of the motion 

parameters of moving objects, the estimation of camera ego-motion, and a 

combination of the two [Vega89]. 

The techniques used for tracking and computer vision are similar, and the underlying 

models are sometimes identical. For example, both require feature points (or 

measurements) as inputs from each image. These are incorporated into models of the 

kinematic motion, using optimal estimators to produce estimates of the motion, and 

predications of where the motion will take the feature points in subsequent frames. 

145 



6 The Performance of Tracking Operations on the WPM 

The processing involved for tracking applications requires the initial processing of the 

sensor data, in an application specific manner, in order to produce measurements. 

These are then incorporated into estimators for kinematic information and predications. 

The computational requirements range from global iconic processing on the sensor 

data, through to numeric processing for the estimation process. Both types of 

processing requirements are illustrated in this chapter, through two example tracking 

situations. 

This chapter is divided in the following way. The remaining part of this introduction 

gives an overview of estimation using observed measurements. Section 6.2 details the 

different types of estimators that can be used, along with tracking models commonly 

used for the estimation of kinematic information. The first example application 

describes a low density situation, detailed in Section 6.3, using illustrative tracking 

models and image processing to track objects across an image. The second example 

application describes a higher density situation, detailed in Section 6.4, using a generic 

form of tracking which can arise in both computer vision and target tracking domains. 

The mapping and performance considerations of both applications, on the WPM, are 

discussed in Section 6.5. 

6.1.1 Estimation of unknown quantities 

If the motion of an object under track is unknown by an observer, its effect can be 

observed through measurements from the object, such as its position (x, y) on the 

image plane, or range, bearing, and angle from RADAR. Each measurement has an 

associated error variance resulting from measurement noise. The error variance gives a 

measure of the amount of information contained within the measurement and thus a 

measure of how much it can be relied upon. 

The motion must be estimated from a sequence of such measurements using both a 

model of the motion being performed, and an estimation strategy. Inadequacies in 

either the model or the estimation strategy leads to poor tracking performance. The 

optimal estimation of a system from a sequence of measurements is discussed below. 

It has been rigorously covered in mathematical terms in several texts, see for example 

Maybeck [Maybeck79] and Sorenson [Sorenson75]. 

146 



6 The Perfonnance of Tracking Operations on the WPM 

The problem of estimating the states of a given system, x, at a time n, broadly stated, 

is to find a function, f, that estimates the value of x, using available measurement 

information :-

x(n) = f[ n, zn ] where zn = { Z (j ), j = 1, .. , n } 

zn is the time history of the observations (measurements) and z(j) is the measurement 

of the system at time j. The measurement, at time n, depends upon the state, x(n), time 

n, and some random perturbation (measurement noise) w(n) :-

z(n) = h[ n, x(n), w(n) ] 

An example showing the combination of two measurements, each with an associated 

error variance is shown in Figure 6.1. It is assumed in this example that the variance 

within both measurements has Gaussian distributions. The measurements are 

represented by the peak of each Gaussian and the error represented by the width. 

Hence, the wider it is the greater the error variance. For example, the measurement Zl 

in Figure 6.1 has a smaller error variance than that of Z2. The combination of the two 

forms an estimate with a narrower error distribution, which is nearer to the more 

accurate measurement, Z}, than to the less accurate measurement, Z2. 

1 

P(x) 

x 

Figure 6.1 - The combination of two Gaussian measurements 

There are two widely used approaches for estimation: Bayesian and non-Bayesian. 

The non-Bayesian approach is used when the states being estimated are not random 

147 



6 The Performance of Trackin~ Qverations on the WPM 

variables. The Bayesian approach is used to estimate states which are random 

variables. The Kalman filter [Kalman60] is a Bayesian approach in common usage 

which uses a state-space representation, or model, of a linear system. The Kalman 

filter can be extended to model (sub-optimally) non-linear systems by the linearisation 

of the system at each time point. This is known as the Extended Kalman filter (EKF). 

Two models are used by the Kalman filter, that of the system and that relating the 

measurements to the system. A generalised system and measurement model for a 

linear Kalman filter is :-

where 

x(n) = F(n) x(n-l) + v(n) 

zen) = H (n) x(n) + wen) 

x(n) = the system states at time n 

F(n) = the state transitional matrix, relating the state, x(n-l), to x(n) 

zen) = the measurement vector at time n 

H(n) = the observation matrix, relating the measurements to the system states 

v(n) = additive system white noise 

wen) = additive measurement white noise 

Associated with the system states is a covariance matrix, Pen). This is a measure of 

the noise within the system states using the system and measurement noise processes. 

A discussion of estimation theory, using both approaches, is given by Maybeck 

[Maybeck79] and others. An introduction is given in Appendix e, along with the 

formulation of both the Kalman filter and the EKF. Both the Kalman filter and the 

EKF are used in the example tracking applications in Sections 6.3 and 6.4. 

6.2 Tracking Algorithms 

There are two main approaches to the analysis of motion within image sequences. The 

first is concerned with a dense motion calculation. Here, the motion is estimated at 

each pixel and examples include methods based on the calculation of optical flow. The 

second uses feature points, extracted from the input images, which are combined 

148 



6 The Performance of Tracking Operations on the WPM 

temporally within a model to give an estimation of the motion. Both the dense and 

sparse methods are described below. 

Dense motion estimation 

Optical flow is the apparent velocity of the brightness patterns within an 

image, resulting from relative motion between objects on the image plane and 

the camera. It is commonly calculated through a brightness and smoothness 

constraint as first described by Horn and Schunck [Horn81]. Optical flows 

methods, until recently, have been concerned with the calculation of the flow 

over two successive image frames. More recently, methods dealing with more 

frames have been devised, an example being the incremental calculation by 

Singh [Singh91]. The optical flow calculation assumes a constant image 

intensity between frames. This can limit its practical usage. Additionally, the 

smoothness constraints can result in large errors occurring along the 

boundaries of objects moving at different velocities. 

Another example of a dense map estimation is given by Matthies et. al. 

[Matthies89]. He calculates a dense depth map using known camera lateral 

and transversal motion. The movement of each of the pixels in the image is a 

function of the camera motion and the distance between the scene and the 

camera. This relationship is incorporated into a model suitable for recursive 

(Kalman) depth estimation. A similar method has been used by Heel [HeeI88] 

which also considers the possible motion of the objects contained within the 

image. 

Sparse motion estimation 

Motion estimation can be performed on sparse data sets in a similar manner to 

that of the dense motion estimation. Analysis, such as that given by Matthies 

[Matthies89] for depth estimation, gives both dense and sparse estimation 

techniques. The sparse data is usually assumed to be the result of some pre

processing, ideally locating temporally invariant features which appear across 

the image sequence. Harris [Harris87] has used corners for this purpose, to 

determine camera ego-motion. Line parameters have also been considered as 

149 



6 The Performance of Tracking Operations on the WPM 

suitable features by Deriche and Faugeras [Deriche90], such as a line's 

orientation, mid-point, and length. 

Other examples of motion estimation using sparse data sets include that of 

Broida and Chellappa [Broida86]. They use a recursive solution to estimate 

object motion on a set of features extracted from an object. The features used 

in their case where assumed to be extracted by some other means. Du et. al. 

[Du91] use the object position in three-dimensions for the gaze control of a 

robots head. The head incorporates two cameras to give both the x and y 

position on the image plane, and a depth estimate is obtained using the stereo 

effect. Marslin et. al. [Marslin91] use the velocity (extracted over two frames) 

and the orientation of a road-vehicle (after a model matching process). This is 

incorporated into a four state tracking model for recursive fIltering. 

The detailed differences in the underlying mathematical models, of each of the 

applications mentioned above, vary considerably. However, it is the computational 

requirements that are of particular interest here. Example models used in the tracking 

of objects are considered in Section 6.2.1. Methods which relate the estimates 

produced from the tracking models to the measurements on the image plane are 

described in Section 6.2.2. This latter process is commonly referred to as data 

association. 

6.2.1 Tracking models 

One of the simplest linear system models used for target tracking over the last few 

decades is the a-B and the a-B-Y trackers. Both trackers can be implemented easily 

and are not computation ally demanding. The a-B tracker uses a 1st-order model 

considering position and velocity only. The a-B-Y tracker uses a 2nd-order model 

which includes acceleration. Both trackers can be used when only position information 

can be observed. 

The a-B-y considers each tracking dimension separately. Further dimensions may be 

added as appropriate if they can be assumed to be de-coupled from each other. For 

example, tracking in the x and y image dimensions is often modelled by two separate 

tracking filters. The a-B-y has the following system and measurement models: 

150 



6 The Performance of Tracking Operations on the WPM 

a 

A [1 T 
x(nln) = g 6 2 A LT2 ] T x(n-1In-l) + 

A 
[ zen) - z (nln-l)] 

zen) = [1 0 0] x(n) + wen) 

where ~ (n) = [ x X ·x]' (position, velocity and acceleration), zen) is the position 

measurement, ~(nln-l) is the position prediction, wen) is the observation noise and T 

is the sample time period. 

The values of a, ~, and 'Yare constant ftlter coefficients affecting the position, velocity 

and acceleration respectively. They detennine how quickly the tracker can respond to 

movements of the target. Large gain values lead to more responsive ftlters but are also 

more susceptible to noise. Optimal values of a, ~, and 'Y have been calculated by 

Kalata [Kalata84]. 

Similar models to those of the a-~-y trackers can be used in a Kalman filter. The main 

advantage of a Kalman filter approach, over the fixed coefficient a-~-y models, is that 

it can adapt more readily to a changing environment. As examples, two models are 

considered below. The first models position with constant velocity, and the second 

position and velocity with constant acceleration. Again, the image dimensions of x and 

y can be modelled separately if they can be assumed to be de-coupled from each other. 

Position and velocity tracking model 

The system model and measurement model for a constant velocity system, in a 

single dimension, is given by : 

x(n) = [6 T] x(n-1) + v(n) 

zen) = [1 0] x(n) + wen) 

where x(n) = [x x]' (position, velocity), zen) is the measurement, T is the 

sampling time period, and wen) is the measurement noise. 

151 



6 The Perfounance of Tracking Operations on the WPM 

The system noise process v(n) represents the change that can occur in the 

kinematics of the system due to un-modelled higher order motions. If a constant 

acceleration, 'i(n) with variance (Jv2, is assumed throughout the time period, T, 

then the change in the velocity of the system will be T'X(n), with a variance of 

T2(Jv2. The change in position will be i T2'X(n) with a variance of t T4(Jv2. 

This gives the covariance matrix of the system noise v(n) :-

Position, velocity and acceleration tracking model 

The system model and the measurement model for a constant-acceleration 

system, in a single dimension, is given by : 

X(D) = [g ~ ~r }(D-l) + >(0) 

z(n) = [1 0 0] x(n) + w(n) 

where this time x(n) = [ x X 'x r (position, velocity and acceleration), z(n) is 

the measurement, T is the sampling time period, and w(n) is the measurement 

noise. 

The system noise process, v(n), now represents the change that can occur in 

the kinematics of the system due to third and higher order motions. If the third 

order motion is assumed constant, then the covariance matrix of the noise v(n) 

is : 

Other noise processes exist for these tracking models when the higher order 

motions are not constant. These are discussed by Bar-Shalom [Bar-Shalom88]. 

152 



6 The Perfonnance of Tracking Operations on the WPM 

It is important to keep the tracking model of lowest order possible to maintain 

accuracy. Information theory states that a piece of data contains a finite amount of 

information and distributing that amongst a large set of estimates results in a smaller 

proportion of the information being assigned to each. This increases estimation errors 

[Maybeck79]. However, a low order tracking model will not be able to track a target 

with higher order dynamics. Conversely, using a higher order tracking model for a 

target with low order dynamics may result in poor tracking performance due to the 

higher order terms. 

The change in tracking model can be performed dynamically and is required when the 

target being tracked undergoes some form of manoeuvre. In such situations, a low 

order model can be used until a manoeuvre is detected and then a change to a higher 

order one made. This is known as variable dimension filtering [Bar-Shalom88]. When 

the higher order term in the model is deemed insignificant it may be removed from the 

model, thus reducing the order of the model. 

The manoeuvre is seen through a 'large' innovation component of the Kalman filter. 

The innovation is the difference between predictions and measurements, and can be 

monitored for significance. A fading memory average of the normalised innovations 

squared is commonly used for this :-

p(n) = ap(n-l) + v'(n) S-l(n) v(n) 

where v(n) is the innovation from the Kalman filter, S(n) is the error covariance of the 

innovation and Cl is a 'forgetting' factor giving an effective memory Of_l_. If the value 
I-a 

of pen) exceeds a certain threshold, then a manoeuvre is deemed to have taken place 

and the order of the model can be increased. 

Similarly a test for significance of the highest order term, xa(n) in the tracking model, 

can be performed. If the value of p(n) falls below a certain threshold then the model 

can be reduced to a lower order one. Such that :-

p(n) = ap(n-l) + xa'(n) pa-l(n) xa(n) 

where xa(n) is the highest order term (for both the x and y dimensions) and Pa(n) is 

its respective covariance matrix. Each of the thresholds on pen) are chosen from chi-

153 



6 The Performance of Tracking Operations on the WPM 

squared distribution tables. The values depend upon the number of degrees of freedom 

and the probability required for a correct hypothesis. Chi-squared testing is discussed 

by Bar-Shalom [Bar-Shalom88]. Manoeuvres will not be discussed further. 

6.2.2 Data Association 

Both the dense and sparse methods of feature tracking are termed as correspondence 

methods in the review by Vega [Vega89]. This is derived from a matching operation, 

between frames, for correspondence and can lead to one of the most computationally 

demanding elements of a tracking system. This processing is known as 'data 

association' in the target tracking domain and is the problem of associating 

measurements with previously tracked data. 

Correlation-based matching can be used in dense methods for pixel correspondence. 

An example is the Sum of Squared Differences (SSD) method of Anandan 

[Anandan87]. It integrates the squared intensity difference between two shifted images 

over a small area to obtain an error measure :-

m n 

e(.1x, .1y; x, y) = L L w(i,j)[Ij(x-.1x+i, y-.1y+j) - Ij-l (x+i, y+j)]2 
i=-m j=-n 

where Ij and Ij-l are two consecutive image frames, and w(i,j) is an optional weighting 

function. The summations are performed over a finite window indicated by the bounds 

on the summations. The error measure, e( ), is calculated for a number of translations 

of the second image, compared to the first, indicated by.1x and .1y. An error surface 

results for each pixel location, the minimum of which represents the best 

correspondence, and whose shape can be used to determine its covariance. A poor 

match produces a flat surface, a good match produces a 'peak' minimum 

[Anandan87]. However, such techniques are rotation and scale variant and can 

produce large errors in the matching process. 

For feature based methods, a situation can exist where the features extracted in the 

current frame can correspond with any of the features tracked from previous frames. A 

large combinatorial problem can result. If there are mk measurements in the current 

frame and n tracks, then the number of permutations possible is given by :-

154 



6 The Performance of Tracking Operations on the WPM 

This can soon lead to a large number of association possibilities, even with a modest 

numbers of measurements and targets being tracked. 

This problem can be overcome by the use of 'validation gating'. Validation gating 

limits the search space in which a measurement can be correctly hypothesised as 

originating from a particular target. The validation gate is the region in which the 

correct measurement will occur with a high probability, and is similar to limiting the 

search space in the SSD correlation window. When tracking a target's position, the 

validation gate is centred around its predicted position. The size of the gate is 

determined by the covariance of the predicted position and by the probability required 

to include the correct measurement. 

The validation gate can be defined from the prediction outputs of the Kalman filter as 

v'(k) S-l(k) v(k) < 'Y 

where v(k) is the Kalman filter innovation, S(k) is the innovation covariance, and the 

constant 'Y is chosen from chi-squared distribution tables which gives a probability of 

the correct measurement occurring within the validation gate. The constant 'Y is 

typically chosen to give a probability mass of 99%. Any measurement within the 

validation gate can be associated with the target being tracked, others outside cannot. 

A two-dimensional example is shown in Figure 6.2 for two targets, Tl and T2. The 

measurements ZI, Z2, Z3, are validated for target TI, and the measurements Z2, Z4 are 

validated for T2. The measurement zs is not validated for either. 

There remains however, a strategy to determine which of the validated measurements 

should be associated with which of the targets under track. The set of validated 

measurements may consist of the correct measurement, measurements from other 

targets or from false alarms, including background noise and clutter. Several methods 

exist for the data association strategy, including a simple nearest-neighbour approach, 

an optimal Bayesian approach considering all possible associations through the time, 

and simplifications considering the previous n frames or just the current frame. Some 

of these approaches are described below. 

155 



6 The Perfonnance of Tracking Operations on the WPM 

• Predicted position 

* Measurements 

Figure 6.2 - Example of validation gating in two dimensions. 

6.2.2.1 The Nearest Neighbour Standard Filter 

The simplest approach for data association in low density tracking situations is to use a 

technique known as the Nearest Neighbour Standard Filter (NNSF) [Bar-Shalom88]. 

In the NNSF, the measurement nearest to the predicted position is taken as being the 

correct measurement. The Mahalanobis distance, between the predicted object 

position, ~ (nln-1), and each of the detection measurements, {zi(n)}, in the validation 

gate, is computed. The measurement, corresponding to that giving the minimum 

Mahalanobis distance, is chosen as the correct measurement. The Mahalanobis 

distance is similar to the validation gate definition :-

n2(Zj(n» = [zj(n) - ~(nln-1) ]' S-I(n) [zi(n) - ~(nln-1)] 

Thus, the error covariance information, S(n), is used such that those dimensions in 

which there is small ambiguity are given a greater weighting than those with a larger 

ambiguity. The major shortfall of the NNSF occurs when the nearest measurement is 

not the correct measurement. This can lead to a significant effect on the tracking 

performance. 

6.2.2.2 The optimal Bayesian approach 

The optimal Bayesian approach considers the combinations of all measurements from 

time zero to the present time, rather than the associations of the latest set of 

measurements. The total number of measurement histories at time n is :-

156 



6 The Performance of Tracking Operations on the WPM 

n 

Ln=fI (1 +mj) 
j=l 

where mj is the number of measurements at time j. Note that the extra 1 within the 

above equation is due to the possibility that none of the measurements is correct. A 

separate Kalman filter is used to produce state and covariance estimates for each 

possible measurement history. A weighted Bayesian estimate can be obtained from the 

conditional mean of the state. At time n this is given by :-

Ln 
~ (nln) = I :i (nln) ~n,i 

i=l 

where ~n,i is the probability that the i th measurement history is the correct one. The 

computation and memory requirements increase exponentially. 

Sub-optimal algorithms use an N-scan method, combining measurement histories 

which are identical over the previous N time periods. The number of expected 

measurement histories required to be processed and stored is approximately :-

N 

Ln = 11 (1 + E[mj]) 
j=l 

where E[mj] is the expected number of measurements in the jth frame. 

6.2.2.3 The Probabilistic Data Association Filter 

The algorithm corresponding to the situation where the N-Scan is equal to zero, is the 

Probabilistic Data Association Filter (PDAF). This was first introduced by Bar

Shalom [Bar-Shalom75]. The PDAF takes a weighted summation of the innovations, 

between all validated measurements and the predicted position, for each target. The 

weighted innovation used in the Kalman filter is given by :-

mn 

v(n) = L ~i(n)vi(n) 
i=l 

where mn is the number of measurements within the validation gate at time n, vi(n) is 

the innovation between the prediction and the ith measurement, and ~i(n) is the 

probability that the ith measurement is the correct measurement. The error covariance 

157 



6 The Perfonnance of Tracking Operations on the WPM 

associated with the updated estimate also differs from that of the standard Kalman 

filter. The updated covariance, P(nln), in the PDAF is given by :-

P(nln) = (30(n)P(nln-l) + [l-(30(n)]PC<nln) + Pa(n) 

where P(nln-!) is the predicted covariance weighted by the probability, (30, that none 

of the measurements is the correct one. Pe(nln) is the covariance given by the standard 

Kalman filter weighted by the probability of the correct measurement existing, and 

Pin) increases the covariance representing the ambiguity in the measurement origin. 

This is given by :-

Pa(n) = W (n)[~(3i(n)Vi(n)Vi'(n)-Vi(n)Vi'(n)] W'(n) 
1=1 

where Wen) is the Kalman gain. The probabilities, l3i(n) and 130(n), are given by : 

and 

where 

and the constant b is given by : 

b - (21t)nzf2 C (l-PDPG) 
- mn nz P 

'Y D 

(3o(n) = __ b_ 
mn 

b+ L ej 
j=l 

Further 'Y is a chi-squared number, nz is the dimension of the measurements, z, and 

Cnz, PD, PG are constants. 

Two tracking applications are now considered. The first is concerned with the tracking 

of an object in a low density environment. The second considers a general multi-target 

tracking situation which may arise in both computer vision and target tracking 

scenarios. The NNSF data association technique is used in the fIrst application and the 

PDAF is used in the second. 

158 



6 The Perfonnance of Tracking Operations on the WPM 

6.3 Tracking Application 1 - Object Tracking 

The fIrst application is concerned with the tracking of an object across the image plane 

as a camera moves towards it. Tracking is performed on the measured position of an 

object on the image plane, in the x and y dimensions. The known forward component 

of the camera motion is used in a novel object size-tracking formulation through the 

image sequence. The size formulation enables estimates of the objects distance from 

the camera and its physical size to be made. 

a) Range = 39.5m b) Range = 9.5m 

Figure 6.3 - Two imagesfrom a sequence approaching a car. 

The image processing used on each image within the sequence follows the classical 

processing flow of enhancement, detection, segmentation, feature extraction and 

classification. The early stages are global fIltering operations, and the later stages are 

local to individual objects found within the image. The detection and segmentation 

stages of the image processing are described in Section 6.3.2. Both techniques are 

size based, requiring an estimate of the objects image size. 

The processing flow is shown in Figure 6.4. The first operation on the nth image is a 

global edge orientation calculation followed by a global object detection whose 

predicted size, 6~(nln- l), is used from previous frames . The set of detected object's 

centroids, {zd(n)}, are compared with the predicted position of the object, ~(nln-l), 

and one detection, z(n), is selected using the NNSF data association filter. The 

segmentation operation uses the detection centroid and the size prediction. From the 

segmentation a centroid, zs(n), and size, 6z(n), are measured. These measurements 

159 



6 The Performance of Tracking Qperations on the WPM 

are incorporated into the tracking filters to produce estimates of the object's location 

and size, and predictions for the next frame. 

Edge 
detection 

1\ 
~z(nln-l) 

1\ 
x(n-lIn-l) 

Object 

zen) 

Figure 6.4 - Processing flow showing image processing, size and position tracking. 

The measurement noise variances are also incorporated into the Kalman filters, but are 

not shown in Figure 6.4. The tracking models used for the size and position tracking 

are described below in Section 6.3.1. This is followed by the main stages of the image 

processing, that is, the object detection and object segmentation stages. 

6.3.1 Object tracking models 

The object tracking uses two separate filters, the first for the tracking of the object's 

position across the image plane and the second to track the object's size. The size 

tracking is used when the object changes its depth from the image plane as is the case 

when the camera is moving. The tracking models used are described below. 

6.3.1.1 Position tracking model 

The tracking of the objects consists of an image position and velocity model in both x 

and y dimensions. Image plane co-ordinates are used for the models. The position 

tracking model here, was given in Section 6.2.1, but is enlarged to incorporate both x 

and y dimensions within a single model. 

160 



6 The Perfonnance of Tracking Operations on the WPM 

The initialisation of the position tracking filter is performed using the centroids of the 

object segmentation in the first two images. The first centroid is used as the state 

estimate of the position, and the difference between the two centroids, divided by the 

frame time, is used as the estimate of velocity. The initial covariance matrix, P(O), 

uses the centroid measurement variance, CJvx2 (from the image processing) :-

[ 2] 2 crvx 
crvx T 

P(O) = crvx2 2crvx2 

T T2 

6.3.1.2 Size tracking model 

The tracking of an object's size is central to both the object detection and object 

segmentation algorithms used in the image processing. The tracking of size has been 

applied to a number of image sequences [WSTL90, Atherton91], and its formulation 

is described below. The relationship between the image size of an object and its 

physical size can be seen in Figure 6.5. Note that size of an object here, refers to its 

width, or height, for instance. 

f 

image plane 

Xl 1 
X2 

----------------OPtical-AxIs 
Z(n) 

-Direction of travel 

Figure 6.5 - The Imager showing the relationship between the size of an object and its 

depth from a camera. 

U sing similar triangles the size of the object on the image plane is related to its 

physical size by :-

~ ~ 
~(n) = Zen) fk = Z(O) _ S(n) fk 

where the distance between the object and camera plane in frame n is Zen) metres, or 

the initial range, Z(O), minus the distance travelled towards the object, S(n). The 

161 



6 The Perfonnance of Tracking Operations on the WPM 

physical size of the object is MC metres, the object size on the image plane is .1x(n) 

pixels, k is a constant relating pixel distances to metres, and f is the focal length of the 

camera in metres. 

The use of relative position (size) removes the need to find the focus of expansion, 

making the technique immune to small random rotations of the camera. The variation 

in depth of the object is assumed small with respect to the distance from the camera. A 

similar formulation was used by Williams [Williams88] but considers only two 

successive frames at a time. 

The relationship between the image size measurements and the range to the object is 

non-linear and requires the use of the Extended Kalman filter for recursive estimation. 

By using the inverse size, the tracking becomes linear but requires a transformation of 

each measurement. The state-space representation of this requires two states, a and b :-

yen) = 1 Zo S(n) 
.1x(n) = kfMC - kfMC = a + bS(n) 

The system is modelled by the two states, a(n) and ben), with a single measurement of 

the inverse image size :-

where 

[ 
a(n) ] [0 ] xs(n) = = As xs(n-l) + vy(n) 
ben) 1 

_ [1 0 ] [ a( n-l)] [ 0 ] - + vy(n) 
o 1 b(n-l) 1 

zen) = h(xs(n» + ws(n) 

1 
h(xs(n» = a(n) + S(n)b(n) 

The additive plant noise process, vy(n), is approximated by zero mean Gaussian noise 

with variance (J2 (n) representing the noise in the inverse image size due to vs 

uncertainties in the forward camera motion. The additive measurement noise process, 

ws(n), has variance (i (n) and varies with true image size. Ws 

162 



6 The Performance of Tracking OPerations on the WPM 

The size Kalman filter requires an initial estimate of both the states, xs(O), and the 

covariance matrix, P(O). The state is a vector function of the estimates of the initial 

distance between the object and camera, Zo, and the object's physical size, ~X. The 

covariance matrix for x is: 

where Pb is the covariance matrix of z = [Zo, ~] : 

Pb = 
[ 

p L\X 

o 

Jf is the Jacobian of the vector function with respect to z, and Pl1X, PZQ are the 

variances in the initial estimates of the object physical size and range respectively. 

The initial covariance matrix for the size Kalman filter is given by :-

P(O) = 
(kifS(~~ + p~J 

Zo Pl1X 

Zo Pl1X 
(kf~X)2 ~X2 

1 PL\X 

(kf~)2 ~X2 (kf~X)2 ~X2 

The size tracking model described has been given in terms of a single size parameter 

such as an object's width or an object's height. However, the model could be enlarged 

so as to incorporate two or more size measures. 

6.3.2 Object detection and segmentation processing 

The object image processing flow used here consists of the following stages. Initially, 

a Sobel edge detection is performed to produce edge orientation and magnitude 

information. This is used in a size based detection operation. The output of the 

detection undergoes a component labelling [Cypher90], a centroid calculation and an 

NNSF data association operation. The associated centroid is used by the segmentation 

operation. The output of the segmentation is a measurement of the objects position and 

size, which are then used to update the tracking filters. The sized based image 

processing for object detection and object segmentation are described below. 

163 



6 The Performance of Trackin~ Operations on the WPM 

6.3.2.1 Object Detection 

The object detection method used in this application is based upon the Hough 

Transform. Although this is a method for line detection, it can be extended to find 

more complex geometric shapes as shown by Duda and Hart [Duda72]. They gave a 

parametric representation of circles such that peaks in the resulting parameter space 

represented the centre of circles. This is commonly referred to as the Circular Hough 

Transform, and the parametric representation is given by :-

where (Xi, Yi) are image edge points, (aI, a2) is the centre of the circle, and r is the 

radius of the circle. The resulting parameter space is three dimensional. Each edge 

point contributes a circle of a radius r into each two dimensional plane of (aI, a2). 

The parameter space of the circular Hough transform remains local to each edge point, 

thus simplifying parallel implementations. However, it is computationally expensive 

since the operation is performed for each edge point at all radii. A modification is to 

limit the contribution of each edge point in the parameter space to an arc around its 

orientation [Kimme75]. Although this modification reduces the complexity, the 

algorithm still has to be repeated for different values of the radius, r. 

An example of the circular Hough transform, at a single radius, is shown in Figure 

6.6a, and the modification using edge orientation is shown in Figure 6.6b. Eight edge 

points are highlighted on both circles. In both cases, a peak in the parameter space 

occurs at the centre of the circles. This peak represents a maximum of intersections of 

the circles drawn from each edge point. The modified circular Hough Transform 

shown in Figure 6.6b uses both the edge orientation and the orientation + 1t. This 

enables an object which is either lighter, or darker, than the background to produce the 

same peak in the parameter space. 

Further modifications can be made to the Circular Hough transform to reduce its 

complexity. The method of Minor and Sklansky [Minor81] reduces the three 

dimensional parameter space to two dimensions while also quantising the orientations 

to eight directions. This method is known as the Spoke filter. It makes much use of 

bit-operations and is suited to bit-serial SIMD arrays [Atherton90]. 

164 



6 The Performance of Trackin g Operations on the WPM 

a) Circular Hough Transfonn 

Circle 
Boundary 

............ (al'~) parameter ( 
space \ 

[J Edge Pixel 

/ --
b) Using edge orientation 

Figure 6.6 - Example detection of circles using the circular Hough transform. 

The Spoke filter propagates a spoke out into the parameter space (a], a2) in the 

direction of the edge point (and the orientation + 1t) between a minimum radius, Rmin, 

and a maximum radius, Rmax. A peak in the Spoke parameter space represents the 

centre of an object, which is approximately circular, and has a size within the range of 

sizes specified by the spoke radii. The values of Rmin and Rmax can be taken to be a 

function of the size tracking filter. In the processing used here, it was assumed that 

Rmin = (size es timate)/4 and Rmax = 1.2*(size estimate)/2. 

The spoke filter is shown in Figure 6.7, where the centre point in the parameter space 

can be contributed to from any of the edge points within the shaded region. 

• Centre of object in 
parameter space 

ITJ Area of possible 
object boundary 

Example object 
boundary 

Figure 6.7 - Edge points which contribute to a single parameter space location in the 

Spoke filter. 

165 

\ 
J 



6 The Performance of Tracking Operations on the WPM 

The Spoke fil ter as implemented by Minor [Minor81] uses an edge detected image 

which undergoes a threshold operation to retain the top T percent of edge points 

(typically T = 10%). A maximum of eight spoke intersections can occur in the 

parameter space, one for each of the quantised orientations. The regions within the 

parameter space, containing a seven or eight spoke intersections, can be used as 

detected object positions. When the contrast of the object is not solely lighter (nor 

darker) than its background, spokes can be radiated in both the direction of their edge 

orientation, and their edge orientation + 1t. 

a) Original image b) Output from the Spoke filter 

Figure 6.8 - Example of the Spokejilter. 

An example of the Spoke filter is shown in Figure 6.8. The image shown in Figure 

6.8a i the original image and the image in Figure 6.8b is the output from the Spoke 

fi lter. Eight Spoke intersections are shown as white and zero intersections are shown 

a black. It can be seen that there are eight Spoke intersections at the centre of the car 

and al 0 at the tree in the background. 

Approximations in the orientation output from the edge detector can be made to 

simpli fy the computation requirements. The city block method of I~xl + I~yl can be 

used for the approximate edge magnitude. The quanti sed edge orientation ideally 

represents 45 degrees of the total orientation range requiring an arctan calculation. 

However, an approximation can be made requiring six comparisons and twelve 

condi tional statements, shown below. Note that the variables u p , dn, ri , le, yp, xp 

166 



6 The Performance of Tracking Operations on the WPM 

are logicals and tlx, tly, ax and ay are byte values. The resulting quantisations 

represent a range in e of either 53.2 or 36.8 degrees depending upon the orientation. 

up 
ax 

(tlx 2= 0), 
abs (tlx) , 

dn = (£lx < 0), 
ay = abs (tly) , 

if (ri and up) 
if (yp) 
else if (xp) 
else 

if (ri and dn) 
if (yp) 
else if (xp) 
else 

if (le and up) 
if (yp) 
else if (xp) 
else 

if (le and dn) 
if (yp) 
else if (xp) 
else 

6.3.2.2 0 bject Segmentation 

ri (tly2=O), 
yp = (ay 2= 2ax), 

then 9 = 1 
then 9 3 

9 - 2 

then 9 = 5 
then 9 3 

9 4 

then 9 5 
then 9 7 

9 = 6 

then 9 = 1 
then 9 7 

9 = 8 

le 
xp 

(tly < 0) 
(ax 2= 2ay) 

A segmentation operation follows the detection, and is localised to the regions in the 

image in which an object has been detected. The segmentation algorithm used has 

many similarities to the spoke detection filter above. It uses edge magnitude and 

orientation information and is able to segment objects which are approximately convex 

in shape within a given range of size. This segmentation technique is tenned the 

Spoke Segmentor [Atherton90]. A similar technique has been reported by Golston and 

Moss [Golston90]. 

The centroid of the detection, produced by the Spoke filter, is used as the starting 

point of the spoke segmentor. From this point a number of spokes are radiated out at 

angles of 21[/Ns across the edge image (where Ns = number of segmentation spokes). 

These spokes are active only from a distance rmin to rmax from the detection centroid. 

The maximum edge magnitude, along the active region of the spoke, is taken as an 

object boundary point. 

The orientation of the boundary point within a segmentation spoke angle is expected 

to be either in the same direction, or different by 1[, from the angle of the spoke. The 

two angles are possible so that objects lighter, or darker, than the background can be 

segmented. 

167 



6 The Performance of Trackini Operations on the WPM 

A set of boundary points result from this segmentation process, at most one for each 

of the segmentation spokes. In high clutter situations some of these points may not lie 

on the object boundary but instead on other edge features which may be close to, or 

within, the object. Post processing can reduce these effects, in the form of a 3xl 

median mter [Oolston90] which removes spike differences on the boundary points. 

The median mter can be performed by collating the boundary points into a ID array, 

indexed by spoke segmentation angle. These values represent the distance between the 

centroid and the most likely boundary at each angle. The median filter is performed on 

this array, assuming that the array is circular i.e. that the Nsth value is adjacent to the 

first value. This operation can be performed using the Vector mode of the M-SIMD 

array within the WPM. 

A convex hull operation on the resulting boundary points produces an approximate 

boundary contour. The convex hull can be thought of as stretching an elastic band 

around the set of points. Only those points which lie on the contour of the band are 

part of the convex hull. The convex hull of the boundary points can be used to extract 

features of the object for classification purposes, or to extract the object's pixels from 

the background. 

A simplified convex hull algorithm may be used since the ordering of the points from 

the segmentation is known, i.e. they are indexed in theta. A suitable algorithm is given 

by [Chen89] which considers every boundary point along with its two neighbouring 

points in the clockwise direction. For a candidate convex hull point, the gradient of the 

line between the previous point and itself must be greater than that between itself and 

the next point. That is :-

Y I - YO > Y 2 - Y I 
x I - xo x2 - XI 

or 

where (XO, YO) is the previous point, (XI, YI) is the candidate point and (X2, yz) is the 

next point. Points which do not satisfy this are eliminated from the list. The algorithm 

iterates until all points remaining lie upon the convex hull, i.e. no points are eliminated 

in an iteration. 

168 



B C 

6 The Performance of Tracking Operations on the WPM 

D • Boundary points 

o Centre point 

Convex hull 

Figure 6.9 - Example of the Convex hull algorithm. 

An example is shown in Figure 6.9 for 6 boundary points - A .. F. On the first 

iteration, the gradient of AB is larger than that of BC, so point B is not eliminated. 

However, the gradient of EF is less (more negative) than that of FA and so point F is 

eliminated. Only two iterations of the algorithm is required in this example. 

The image from Figure 6.8a is used to illustrate the Spoke segmentation and the 

convex hull operation in Figure 6.10. Figure 6.1Oa shows the position of 16 

boundary points using the centroid of the detected position of the car from Figure 

6.8b. The convex hull of these boundary points is shown in Figure 6.1 Ob. 

a) Boundary point output b) Convex hull of boundary points 

Figure 6.10 - Example outputfrom the object segmentation. 

169 



6 The Performance of Tracking Operations on the WPM 

6.4 Tracking Application 2 - Generic Target Tracking 

The second tracking application can be considered as representative of a generic 

multiple target tracking application. It considers the situation where the targets being 

tracked are viewed as small regions on the image plane, e.g. from space-based 

platforms, in defence applications, or in air traffic control situations. The number of 

targets can range from lO's to 1O,000's and more, especially in the space based 

systems when background events are also considered. The processing flow follows 

that shown in Figure 6.11. The image processing applied to each input image is 

application specific, producing point measurements which represent the positions of 

possible targets. 

Previous 
~a£e~ Data 

Initialisation 

Current 
1 

Image Image - Validation .. 
Processin,g Gates 

Predictions 

Data 
Association 

Check 
For Valid 

Track 

New Filters 

1 

Tracking .. Filter 
(KaJrnan) 

Velocity 
Esti 

/ Position 
mates 

Figure 6.11 - Processing flow in a generic multiple-target tracking environment. 

This situation differs from the first example application, in that an increase in 

complexity occurs for the tracking operations, but the image processing requirements 

are typically less. One tracking filter is required for the position of each of the targets 

being tracked. Each has a data association operation between the predictions (output 

from the tracking filters) and the measurements in each new image frame. 

The tracking models, used in this example application for the position tracking, are the 

same as those used in the first application. That is, a position and velocity tracker, in 

both x and y dimensions combined within a single model. The PDAF filter was used 

for the data association between the measurements and the predictions from each filter. 

However, other models of tracking and data association methods are equally 

applicable. Example image processing operations, which can be applied to input 

imagery to produce point measurements, are described below. 

170 



6 The Performance of Tracking Operations on the WPM 

6.4.1 Image processing operations 

The first is a simple thresholding technique which can be used when a uniform 

background exists, which is darker than any object in the image (e.g. space based 

systems). The second classifies each image pixel dependent upon its relative value in 

comparison to its neighbours in order to find local maximums. The third detects 

corner features within images. The output from each method produces point positions 

which may be incorporated into tracking filters. 

6.4.1.1 Image thresholding 

A simple threshold of the image may be undertaken if the objects contained within it 

are solely lighter or darker than the background, thus segmenting the objects. Each 

isolated object may then be uniquely labelled and the centroid of each calculated. The 

resultant image contains pixels which are set at the centroid of each object found, 

forming point measurements. An example is shown in Figure 6.12 and depicts a 

single image from a simulated sequence of a camera passing through a meteor shower. 

The original image is shown in Figure 6.12a and the processed image with point 

measurements is shown in Figure 6.12b. 

a) Original image b) Processed image 

Figure 6.12 - Example image from a meteor sequence. 

6.4.1.2 Monotonicity operator 

The point extraction method used by Kories [Kories86], finds the local maxima of 

image pixel values and has been used to estimate displacement vector fields between 

171 



6 The Performance of Tracking Operations on the WPM 

frames. It uses an operator, termed a 'monotonicity operator', which is invariant 

under grey-scale transformations. The operator classifies each pixel into one of eight 

categories dependent upon the number of neighbouring pixels (8-way connected) 

which have a lower grey-scale value. The eight neighbouring pixels are chosen by the 

mask, shown in Figure 6.13. Each neighbouring pixel used is separated from the 

centre pixel by a distance L horizontally and/or vertically. 

Wt"-'-W!I' ·········-Wt-]·· 
I I 

I ! I L 

l$t-tt,t---wr-
i i I 
I I : w--m--Wt 

I I 
i-4 -..! , L ! 

N - Neighbouring pixel 

C - Centre pixel 

L - Manhattan distance between 
Centre and Neighbours 

Figure 6.13 - The monotonic operator of Kories. 

A pixel which is a local maximum receives a classification of eight under this scheme. 

Adjacent pixels in the same category undergo a component labelling process and 

centroid calculation. Regions which are of size less than 10 pixels are eliminated. The 

resultant centroids are matched between frames using their classification, area, and 

position as feature descriptors. Although the method of Kories only considers two 

consecutive frame for the displacement calculation, the method could easily be 

extended to image sequences and, using appropriate Kalman filter models, an 

estimation of the image displacements made. 

6.4.1.3 Corner detection 

Corners are convenient image features whose position is invariant to both image grey

scale and image rotation. A combined edge and corner detector has been described by 

Harris [Harris88] and also by Noble [Noble87]. Harris calculates the image gradients 

at each pixellocation in both the horizontal and vertical directions, denoted by Ix and 

Iy, using the simple convolution masks of [-1 0 1] and [-1 0 I]T respectively. The 

172 



6 The Perfonnance of Tracking Ooerations on the WPM 

values of Ix2 and Iy2 and IxIy are calculated and smoothed using an nxn Gaussian 

convolution kernel. The values are used to from a 2x2 matrix, M :-

The matrix M effectively describes the shape of the auto-correlation function, about 

each pixel within the image, with the eigenvalues of the maoix being proportional to 

the principal axis of the auto-correlation function. A corner is found if both the 

eigenvalues are large, thus indicating that the auto-correlation function is sharply 

peaked. A measure, R, is used by Harris to give a cornerness and an edgeness factor: 

R = Det(M) - k Trace(M) 

Note that the Det(M) is the product of the two eigenvalues of M and the Trace(M) is 

the summation of them. A corner is indicated if the value of R is positive and an eight

way local maximum (in a 3*3 search). An edge is indicated if the value of R is 

negative and is a local minima in horizontal or vertical directions depending upon the 

largest of the local edge gradients (Ix, Iy) respectively. An example output from the 

Harris corner detector is shown in Figure 6.14. The black regions indicate both 

corners (black points) and lines (black lines). The coloured regions indicate locations 

of possible corners (dark grey) or possible lines (light grey). 

Figure 6.14 - Example image showing the categories o/the Harris Corner detector. 

173 



6 The Perfonnance of Trackin~ Operations on the WPM 

The extraction of corners by Harris has been used to estimate camera ego-motion 

[Harris87] and also to extract 3D information from images using corner and edge 

information [Stephens89]. 

6.5 Performance on the WPM 

The performance of the example tracking applications on the WPM is considered in 

two parts: firstly, the image processing, which is required to produce the features that 

are tracked; followed by the data association and the implementation of the tracking 

Kalman filters. The communication bandwidths within the WPM are such that it is 

impracticable to move image data between the M-SIMD and MIMD processor arrays 

and as such imposes the restriction that the images may only be processed on the 

SIMD array. The data association and tracking may be performed on either the M

SIMD or the MIMD arrays. 

6.5.1 The image processing 

The image processing used in both the tracking applications is listed in Table 6.1. All 

the operations listed are performed at each pixellocation, in a data parallel fashion. 

The Spoke segmentation takes advantage of the WPM's M-SIMD operational 

autonomy and count capability to calculate peak edge magnitude along each of its 

radiating spokes. The convex hull calculation uses the output of the peak edge 

locations, arranged in vector mode on the SIMD array, within a WPM Cluster. 

The image processing time, for the object tracking application, is the summation of the 

Sobel filter, the Spoke filter, the Spoke segmentor, the component labelling, the 

convex hull, and the centroid calculations. The image processing time for the generic 

tracking application is taken as the summation of the threshold, the component 

labelling and the centroid calculation. Note however, that the local processing of the 

spoke segmentation, component labelling, convex hull and centroid calculation are 

performed per object within a Cluster. Thus in the second application, where many 

centroids may need to be calculated within a Cluster, the time must be scaled by the 

expected number of targets within that Cluster. 

174 



6 The Perfonnance of Trackin!: Operations on the wpM 

I Operation Time o.1S) Comments 

Sobel filter 44 City-block magnitude, and approximate 

orientation estimate 

Spoke filter 65 Rrnin=5, Rrnax=8 [Atherton90] 

Spoke segmentation 220 rrnin=5, Rrnax=8, Ns=16 [Nudd92a] 

Connected Component labelling 20 Regions size 12 pixels rAtherton90l 

Convex hull 71 three iterations of the point elimination 

Centroid Calculation 11 See Section 5.4.2.3 

Threshold 3 

Monotonicity Oocrator 71 L=4 

Corner detection 1200 assuming 16-bit intermediates 

Table 6.1 -Image processing operations on the M-SIMD level o/the WPM. 

The time taken for the image processing operations on the M-SIMD array, within the 

WPM, is 431J.ls for the first application, and between 14J.ls and 1211J.ls for the 

second. In the first application it is assumed that there is at most one object, which fits 

fully, within a Cluster. In the second application it is assumed that the processing 

consists of either a threshold operation, or a corner detection operation, followed by, 

at most, a single centroid calculation within each Cluster. 

6.5.2 Tracking operations 

One tracking filter is required per target under track. This can potentially lead to a large 

number of filters. Each filter also requires a data association operation between the 

predictions and the measurements found on the image plane. The data association 

operation and the tracking filters are described below. 

The data association used in the first application is the NNSF where a small number of 

objects are tracked, and the PDAF in the second application where many targets are 

tracked. However, the data association requires the prediction, ~ (nln-l) and the 

prediction error covariance, S(n), from the Kalman filter. The NNSF returns the 

innovation term, v(k), which is incorporated into the Kalman filter. The PDAF returns 

175 



6 The Perfounance of Tracking Operations on the WPM 

a weighted innovation term, vCk), an associated error covariance term, PaCk), and the 

probability of in-correct data association, 130. The data-flow of these parameters is 

shown in Figure 6.15. It is not clear where the processing of the Kalman filters should 

take place. This in itself is a data parallel problem since many filters are processing in 

parallel. The processing of the Kalman fIlters is discussed later. 

Kalman 
Filter 

Prediction 
Validation 

Gating 

Data Association 

PDAF 

NNSF 

vCn), ~, ~ (n) 

Kalman 
Filter 

Update 

Figure 6.15 - The parameters passed between the Validation gating, PDAF or NNSF 

data association, and the tracking Kalmanfilters. 

6.5.2.1 The data association 

Both the NNSF and PDAF data association filters are used to associate the point 

measurements in the current frame with the targets already under track. The 

association is limited to the validation gate of the target, as discussed in Section 6.2.2. 

Note that the validation gate for each target under track is different. The validation of 

the measurements may be performed on the M-SIMD array. 

If it is assumed that all SIMD PEs are labelled with their (x,y) position within the 

image, then the test to validate measurements may be performed in parallel across the 

array. This is done by simply broadcasting the predicted position and covariance from 

the tracking filters across the array. PEs which contain a point measurement, and lie 

within the validation gate, are validated measurements for the track under 

consideration. Subsequently, the association innovation, v(k), and the innovation 

variance can be calculated. 

On a conventional SIMD array, only one validation/association operation can be 

performed at once and so the operation is performed sequentially for all targets under 

176 



6 The Performance of Tracking Operations on the WPM 

track. However, the M-SIMD partition within the WPM, enables each operation to be 

limited to a small region of the whole measurement data. This enables the speed of the 

validation/association operation to be increased, by a factor equal to the number of 

Clusters within the WPM. This situation is shown in Figure 6.16a for four such 

validation regions. 

a) Four in parallel b) one over four Clusters 

Figure 6.16 - Validation gates mapped onto four Clusters within the WPM. 

The number of calculations operating in parallel across the M-SIMD array depends 

upon the size of the validation gate (defined by the chi-squared number and the 

covariance output from the tracking filter) and its position relative to the Cluster 

boundaries. The example shown in Figure 6.16b shows a validation gate across four 

Clusters. In such situations, all four Clusters may be synchronised so that they 

perform the same operation in parallel using the same validation gate parameters. The 

maximum speed up of M-SIMD partitioning over that of the SIMD will rarely be 

achieved, but would typically lie within the maximum and a quarter of this maximum. 

The maximum is the number of Clusters in the M-SIMD machine. 

The innovation for the NNSF directly follows from the validation test by taking the 

minimum validation measure (see Section 6.2.2.1). The weighted innovation and 

variance term for the PDAF (see Section 6.2.3) can be calculated on the Transputer 

after the extraction of the validated measurements from the M-SIMD array. 

177 



6 The Perfonnance of Tracking Operations on the WPM 

6.5.2.2 The processing of the Kalman filters 

The second major computational task required for target tracking is that of the Kalman 

filter processing, one per target under track and one iteration per time frame. Each 

Kalman filter calculation involves matrix/vector computations as shown in Appendix 

C. The largest matrix is of size nxn, where n is the number of states within the model. 

Each matrix operation requires the use of floating point arithmetic. 

An analysis of the number of floating point operations required for one iteration of a 

tracking filter has been given by Pattipatti [Pattipatti90]. The total number of 

calculations required are repeated below, where n is the number of states within the 

model, and m is the number of measurements within the measurement model. For 

this, it was assumed that a subtraction takes the same amount of time as an addition, 

and a division takes the same amount of time as a multiplication (all in floating point). 

Multiplications: ~(n3 + n2)+m(3~2 + 9~ + 4) 

Additions: ~(n3 - n)+~(3n2+5n+ 1) 

Further operations are required to incorporate the output of the PDAF with the update 

of the covariance matrix. 

Although it is useful to know the number of operations to be performed at the floating 

point level, it does not illustrate any under-lying structure in the data which could be 

exploited by parallel operations. The Kalman filter equations form a set of matrix 

vector operations. The data parallelism, contained within the matrices, can be exploited 

on an array processor using matrix techniques as shown in Section 5.5. The number, 

type, and dimensions of matrix operations required on a single iteration of a Kalman 

filter are shown in Table 6.2. The operations are split into separate matrix addition, 

subtraction, multiplication and inversion operations, and include such operations as 

matrix outer products. The number of PEs required for each operation, such that one 

PE is used for a single matrix element is shown, along with the complexity of the 

operation, i.e. the number of iterations required for the matrix multiplication and 

inversion. 

178 



6 The Perfonnance oeTracting Ouerations on the WPM 

Matrix sizes PEs <ili subtract multiply invert 
(1st 2nd) TPll11imi 

n2 , n2 n2 1 1 2 

n2 nl n2 1 

n2 nm n2 2 

nm, mn n2 I 

mn, nm n2 1 

mn, nl n2 I 

nm m2 nm 2 

nm ml nm 1 

m2 m2 m2 1 I 

nl nl nl 1 

ml, ml ml I 

Table 6.2 - Matrix/vector operations required on a single iteration of a Kalmanfilter 

with n states and m measurements. 

In addition, two matrix transpositions are also required, on matrices of sizes n2 and 

nm. To simplify the analysis it is assumed that the number of system states, n, is 

larger than the number of measurements, m, and that each matrix operation utilises 

either a single PE or a patch of n2 PEs. This means that operations such as the 

transpose of a nm matrix is the same as the transpose of an n2 matrix, and a 

multiplication between an n2 and nm matrix is the same as that between two n2 

matrices. It is further assumed that there is an operational dependency upon the 

individual matrix operations such that no more than one matrix operation may take 

place in parallel for a single filter. Thus, the total time taken to perfonn one iteration of 

a Kalman filter is the summation of the individual times for each operation given in 

Table 6.2. 

The time taken to perfonn a number of Kalman filter operations on a linear system 

with four system states (n=4), and two measurements (m=2), is shown in Figure 

6.17, for both the Transputer and the SIMD array within a Cluster. The time taken on 

the SIMD array of the WPM is shown for two data mappings, the one per PE mapping 

and the Sheet mapping, both are discussed in Section 5.5. The time for the calculation 

of the filter on the SIMD array is based on the matrix perfonnance figures from 

179 



6 The Performance of Tracking Operations on the WPM 

Section 5.5. The use of the EKF with its linearisation operation, or the use of the 

PDAF data association requiring a modified co-variance term, will add to the 

processing requirements shown in Figure 6.17. 

100 

80 

8 40 
~ 

20 

o 

SIMD (one per PE) ... __ ................. -.... __ .•...•....••. _-_ ........ -_. __ .-

T800 --' ----- SIMD horizontal -----+---~---~ 
...-.,....,..,.-' 

10 20 30 40 50 60 

Number of filters per Cluster 

Figure 6.17 - Time taken to perform a number of Kalmanfilter operations, n=4, m=2, 

on a WPM Cluster and a T800 Transputer. 

The time taken for the first 16 filter operations is a constant on the WPM, since the full 

utilisation of the SIMD array occurs when 16 filters, each using 16 PEs, are being 

calculated. The time taken to perform the same operation on the Transputer increases 

linearly with the number of filters to be calculated. It is interesting also to note that the 

time taken on either the WPM Cluster or the T800 Transputer is approximately the 

same over the numbers of filters considered. However, as the number of filters 

approaches full utilisation in the one PE per filter mode, the PE array achieves 

approximately twice the speed of the Transputer. 

The two example applications, considered previously, had different requirements for 

the number of tracking filters. In the first example, only a couple of filters where 

required for each object being tracked. In the second, a single filter was required for 

each target under track. Typically, there are only a few objects in the entire image in 

the first example, but in the second, anything between 0 and 16 filters per Cluster can 

be typically required. Thus, for the first application it is clear that the filter calculations 

should be performed on the Transputers within the WPM. For the second application 

however, it is not clear where the filters should be processed. 

180 



6 The Performance of Tracking Operations on the WPM 

It is quite probable that in a real tracking environment, some sort of manoeuvre 

tracking capability may be required, altering the tracking models from 1st order to a 

2nd order, and vice-versa. An example of this can be seen in the tracking performed 

by Pfeiffer [Pfeiffer89] where different models are used dependent upon the distance 

of the targets from the imager. In such cases, the processing of the Kalman filter 

becomes a control parallel, rather than data parallel, problem with each filter requiring 

differing processing due to the different filter models. For instance, if two different 

models are required within N filters, the time taken on the SIMD array would double. 

For the Transputer it would remain the same if extra computation, due to the different 

dimensionalities of the tracking models, is ignored. 

The processing required in the tracking applications is thus divided between the SIMD 

and MIMD levels of the WPM. The image processing and data validation operations 

are performed on the Multiple-SIMD array, and the data association and tracking fIlters 

are performed on the MIMD array. The operations on the two processor arrays are 

performed simultaneously. A filter produces predictions which are passed to the SIMD 

array for data validation. The results are then passed back to the Transputer. While the 

data validation is taking place on the SIMD array, the Transputer can calculate the 

predictions for the next target, after updating the previous targets filter with the 

previous data association results. 

'Operation WPM level Application 1 (Ils) Application 2 (Ils) 

Image processing. global M-SIMD 109 3 to 1200 

Image processing. local. per target M-SIMD 322 11 

Validation Gating per target M-SI MD 512 496 

data association per target MIMD 0 31 

Kalman filters per target MIMD 912 1182 

Table 6.3 - Timings/or the image processing and tracking operations in the two 

tracking applications. 

The times for the image processing and tracking operations are shown in Table 6.3. 

The M-SIMD array has a clock speed of lOMHz and the MIMD processor used was a 

181 



6 The Performance of Tracking Operations on the WPM 

T800 Transputer with a clock speed of 25MHz. The data association and Kalman filter 

computations on the Transputer, occur concurrently with the data validation on the M

SIMD array. Note that the time given for the tracking operations is per target. When 

used in a system with a frame time of 4Oms, the number of targets that can be tracked, 

within each Cluster, is 44 using the NNSF data association, or 33 using the PDAF. 

6.6 Summary 

The two tracking applications considered have illustrated the requirement for three 

different forms of processing, namely global data parallel, local data parallel and 

numeric. The global processing of the image data takes place in an application specific 

manor to produce image features which can then be tracked. A data association 

operation is undertaken on the processed image features and the predictions from 

targets under track, and requires local data parallel processing. The tracking filters for 

each target require precision numeric calculations on small data sets. Control parallel 

processing is well suited to this operation. Each of these processing types can be 

matched to the processing levels within the WPM, on the M-SIMD level operating in 

its 'synchronised' mode, on the M-SIMD level operating in its local autonomous 

mode, or on the MIMD level. 

The extraction of image features typically leads to areas of the image requiring funher 

processing. In the first example application, a local region of the image required 

further processing after the object detection, for segmentation and feature extraction. 

In the second example, image features consisted of points which where typically 

sparse and unevenly distributed across the image plane. Both examples leads to 

different intermediate data forms on the M-SIMD array of the WPM. 

For the efficient processing, each of the intermediate data forms would ideally be 

evenly distributed across the whole M-SIMD array. Even distribution of the data 

across a processing resource is commonly referred to as load-balancing. This is the 

subject of the next chapter where two data forms are considered for load-balancing 

across the WPM, that of small regions of iconic data or sub-images and that of sparse 

data. 

182 



Chapter 7 

Load-Balancing on the WPM 

7.1 Introduction 

The efficient utilisation of resources is of prime importance in real-time processing 

systems and even more so in vision systems which involve high bandwidths of data. 

In parallel processor systems there are in general six sources of overhead which can 

affect the speed up of a parallel application implementation [Singh92]. These are :-

• inherently serial sections (Amdahl's law [AmdahI67]) 

• redundant work 

• overhead of managing the parallelism 

• synchronisation overhead 

• load imbalance 

• communication. 

All these factors affect the perfonnance of applications to varying degrees. A parallel 

architecture can influence the degree to which these factors are important through 

suitable hardware support, although the first factor is solely a feature of the 

application. However, a general programmable architecture is not designed for any 

specific application and so each of the factors should be minimised as much as 

possible. In data-parallel applications, including image analysis, the main factors are 

the load imbalance and the communication overheads. 

For example, load imbalance can occur when part of the image contains a clustering of 

relevant features. These features may require separate processing, as was the case 

with the object segmentation processing of Section 6.3, and the data association 

183 



7 Load-Balancin& on the WPM 

process of Section 6.5. In such situations, the processing time taken can be much 

greater than if the processing were partitioned such that each Cluster, in the WPM, is 

required to perform the same amount of processing, i.e. load balanced. The load 

imbalance can occur dynamically, i.e. at run-time, within the processing of a particular 

algorithm (e.g. the data association). It can also result at an algorithmic level, for 

example through the processing of different objects in an image using different 

algorithms. 

The communication overheads may be kept to a minimum by the preservation of data 

locality within the parallel processor. The time taken to perform communication 

between data elements is assumed proportional to the distance between them in terms 

of processors. In the iconic sense this would require adjacent pixels to remain adjacent 

after the load-balancing, thus preserving spatial locality. Similarly, with sparse data 

local relationships need to be preserved, although in this case spatial locality is not 

necessarily needed. 

An important factor in the design and use of a load balancing algorithm is the cost, or 

time, that the algorithm takes to be performed. The cost of the load balancing has to be 

outweighed by the benefit, or improvement in processing time, achievable. The load

balancing condition to be satisfied is 

max [ Tj(norm) ] - max [ Tj(balanced) ] > Tload 

where Tj(balanced) is the time taken by the load-balanced processes on processor j, 

Tj(norm) is the time taken for the unbalanced processes on processor j, and Tload is 

the time taken for the load-balancing process. 

Techniques for load-balancing on the M-SIMD array within the WPM are discussed in 

this chapter by the illustration of two different types of applications which require 

quite different load-balancing algorithms. The first is an iconic situation involving 

sub-images which are required to be tessellated across the whole processor array for 

efficient processing. The second deals with the rearrangement of sparse data which 

can occur in the target tracking domain as described in Section 6.5. Although the load

balancing operations are described in terms of the M-SIMD array within the WPM, 

they are equally applicable to the MIMD Transputer array. 

184 



7 Load-Balancing on the WPM 

The load-balancing of sub-images results in a two phase process, the first of which 

ensures that the minimum number of processors are used to process a particular 

shaped sub-image - this is described in Section 7.2. The second phase is to assign the 

sub-images to Clusters, within the processor array, minimising any unused areas. 

This conforms to the classical bin-packing problem with has a known complexity of 

Non-Polynomial (NP). The methodologies generally applied to this type of problem 

are described in Section 7.3 and the suitability for use on the WPM described. A 

method for the compression of sparse data, while preserving local data relationships, 

is examined in Section 7.4. This leads to the formulation of a modified algorithm for 

the greater preservation of locality between sparse data elements. 

7.2 Minimising Clusters Used for Processing 

For the efficient processing of sub-images on a fixed computation topology, such as 

the WPM, each sub-image area must be optimised such that the number of occupied 

Clusters for each and everyone is kept to a minimum. An example sub-image of a 

synthetic aeroplane is shown in Figure 7.1. Each of the smaller squares represents the 

SlMD patch of a WPM Cluster (forming an 8x8 patch M-SIMD machine). 

(a) Original area (b) Area after optirnisation 

Figure 7.1 - The area of an aeroplane on an M-SIMD machine. 

The number of occupied SIMD patches, used for the aeroplane, is reduced to 8 in the 

optimised case against 16 in the original. The benefits of this optimisation are two 

185 



7 Load-Balancing on the wpM 

fold: a greater number of idle SIMD patches can be used for the processing of other 

objects, and the communication overhead in the active areas is reduced. 

The minimum number of SIMD patches used for processing such an object can be 

found by a naive method of masking the sub-image region, repeatedly shifting and 

perfonning a count of the number of occupied SIMD patches on each shift. The shift 

occupying the least number of patches would thus be chosen. However, a total of 162 

shifts and counts are required - one for each possible position of the sub-image area. 

This is computationally expensive. A vote algorithm, with much lower computational 

overhead can be used and is described below. 

The vote algorithm consists of two stages -

1) Each SIMD patch calculates a set of shifts, that can be performed on the sub

image area, to free itself of it This is done for each of the directions of North, 

South, East, West, and each diagonal although only if such a shift exists. 

2) The shifts calculated from step 1 are broadcast to the other SIMD patches 

allowing them to vote on the effects that each shift would produce on the 

image region. A count of the number of patches that would be freed, and the 

number of new patches that would be occupied, is performed. The difference 

between the two is the effective number of SIMD patches freed, the maximum 

represents the optimum mapping of the object across the M-SIMD array. 

Most of the operations required, for the vote algorithm, use information from 

neighbouring SIMD patches thus keeping necessary communication to a minimum. 

7.2.1 Calculation of Image Shifts 

An SIMD patch may be either partially or fully covered with a sub-image, as can be 

seen in Figure 7.1. The patches which are only partially covered can be transformed to 

a free patch, available for the processing of another sub-image, by a suitable shift of 

the object in one of the eight directions. The calculation of the shift required to free an 

SIMD patch is as follows. 

Each of the sub-image boundary PEs are labelled as being on the North, if the PE is 

on the northern boundary of the object and is in the bottom half of the SIMD patch, or 

186 



7 Load-Balancing on the wPM 

South if the PE is on the southern boundary of the object and is in the top half of the 

PE, and so on for east and west. Similarly, concave corner PEs are labelled with their 

respective corners if for instance a NE boundary PE is in the SW quadrant of the 

SIMD patch and there is no other occupied PE to the right and above it. 

Consider the north edge PEs. The maximum of these, i.e. the top of the object within 

the bottom half of the SIMD patch, represents the required shift south to free the 

SIMD patch. If the image contains concavities, the South shift may result in part of the 

sub-image being shifted in from the north Cluster. A check is required on adjacent 

Clusters to see if any part of the sub-image will be shifted in. Similar operations are 

repeated for each of the remaining directions. 

For example, part of a sub-image region is shown in Figure 7.2 mapped across six 

Clusters, A to F. The shift directions which free each Cluster from the image region 

are also shown. Note that, after the checking of neighbouring Clusters, the south shift 

from Cluster E would no longer be valid. This is because part of the sub-image from 

Cluster B would be shifted into E, and therefore would not be freed. 

A B C Shifts Cluster 

N 
S A,B,E,F 
E 

W 
F N&E 

N&W 
S&W F 
S&E A 

Figure 7.2 - An object across five Clusters showing the possible shift directions that 

can take place to free each Cluster of it. 

The result of these calculations is a table of shifts, calculated within each Cluster, 

which will move the sub-image out of its SIMD boundary. The calculations of these 

shifts can be performed on each of the SIMD patches in parallel using their M-SIMD 

operational capability. Each of the shifts are then broadcast to the other SIMD patches 

187 



7 Load-Balancing on the WPM 

covered by the object so that a voting process may be performed to determine whether 

or not the shift will free further Clusters. 

7.2.2 Voting on an image shift 

Consider the voting for one requested shift (Sx, Sy), from one of the list of calculated 

shifts within each of the other sub-image SIMD patches. Sx and Sy represent the 

requested shifts in the horizontal and vertical directions respectively. For a diagonal 

shift they are both non-zero. Each sub-image SIMD patch then votes on this, the result 

being either a CLEAR, NO_CHANGE or OCCUPY; meaning that the shift will either 

free up the patch, neither frees or occupies another patch, or will occupy another patch 

in addition to itself respectively. 

The vote algorithm uses a notation of '0' and '1' to denote the state of an unoccupied 

and occupied SIMD patch respectively, and a subscript of '-' and '+' to denote the 

situation before and after the requested shift. Each SIMD patch is addressed as (X, Y) 

within the M-SIMD machine, with the origin being the top-left patch. The algorithm is 

illustrated below for a requested shift in the North-East direction but it can easily be 

changed for other directions. 

For a North-East shift the patch (X,Y-l) could be occupied by part of the object 

shifted from the patches (X,Y), (X-I,Y) and (X-I,Y-I). The possible occupancy can 

easily be found by a masking operation and an associative response within each of 

these neighbouring patches. If a neighbouring patch contains part of the object which 

will occupy the patch (X, Y-l) after the shift, a 1+ is sent to the patch (X, Y-l), 

otherwise a 0+ is sent. The masking required is:-

where 

For patch (X, Y) 

For patch (X-l,Y -1) 

For patch (X-l,Y) 

1 SaS (l6-S x), 

(l6-S x) Se S 16, 

If PE(a, b) is occupied then send a '1+' 

If PE(c, d) is occupied then send a'I+' 

If PE(c, b) is occupied then send a'l+' 

(I6-S y) S b S 16, 

1 S d S (16-S y ) 

An example is shown in Figure 7.3 with part of a sub-image initially mapped across 

three SIMD patches. The shift shown is in a North-East direction with Sy > Sx. 

188 



~ 
. Sl(' 

7 Load-Balancing on the WPM 

~ Boundary (before shift) 

/ Boundary (after shift) 

Checked PEs for Patch (X, y) 
in Patch: 

nm 
[] 

(X-I, Y) 

eX, Y-I) 

~ (X-I, Y-I) 

Figure 7.3 - Example of a North-East shift on part of a region mapped across four 

Clusters. 

The voting of patch (X,Y-1) is dependent upon the values received from its 

neighbours and its own occupied status accorcling to the following: 

If the patch had status '0_' and only '0+' are received then vote NO_CHANGE 

If the patch had status 'L' and a '1+' is received then vote NO _CHANGE 

If the patch had status '0_' and a '1+' is received then vote OCCUpy 

If the patch had status' L' and a '0+' is received and at least one of the 

requested shifts (Sx, Sy) is contained within one of the calculated shifts 

for the patch then vote CLEAR 

The votes are calculated for each SIMD patch in parallel using their M-SIMD 

capability, and then sent to a single Cluster, such as the upper-left Cluster containing 

the sub-image, for accumulation. The difference between the CLEAR and OCCUPY 

votes is the effective number of patches freed on that shift. The maximum of this, over 

all requested shifts, gives the shift for the optimum sub-image mapping which can 

then used to shift the sub-image. 

189 



----..--"- ---

7 Load-Balancing on the WPM 

In the example shown in Figure 7.3, three SIMD patches are initially occupied. After 

the shift, SIMD patch eX, Y) becomes freed but patch (X, Y-l) becomes occupied. 

These two patches vote CLEAR and OCCUpy respectively, as shown in Table 7.1. 

The shift results in an equal number of CLEAR and OCCUpy votes for the part of the 

sub-image shown, i.e. there is no change in the number of occupied patches. 

Occupied status 

Patch Before After Vote 

eX, Y-I) 0_ 1+ OCCUpy 

eX-I, Y-l) L 1+ NO CHANGE 

ex, Y) L 0+ CLEAR 

(X-I, Y) L 1+ NO CHANGE 

Table 7.1 - Voting of the SIMD patches shown in Figure 7.3. 

The main requirements of the vote algorithm is concerned with the broadcasting of the 

requested shifts and receiving the resultant votes. However, requested shifts only 

occur on the boundary SIMD patches, typically one or two per Cluster containing part 

of the sub-image boundary. Thus, the complexity of the voting algorithm is O(.JN) 

where N is the number of SIMD patches occupied by the sub-image. It is estimated 

that the calculation of the requested shifts and the voting on a single shift is 160 cycles 

and 40 cycles respectively on the WPM. 

The possible decrease in the number of Clusters required for anyone sub-image can 

be a factor of 4. This is the case when a single 16x16 sub-image is mapped, initially 

across four Clusters, but after a suitable shift is mapped across only one. The actual 

decrease obtained is dependent upon the application. The decrease in the required 

number of Clusters is effectively the same as the speedup that can be obtained after the 

load-balancing operation. 

190 



7 Load-Balancing on the WPM 

7.3 The Bin Packing of Clusters 

The problems associated with the scheduling of jobs in a parallel system is a variant of 

the classical bin-packing problem with known complexity of NP. Therefore, optimal 

solutions are expensive to calculate, if at all feasible. Approximations and heuristics 

have been employed for the solution of such problems over the past decade and have 

had performances approaching that of the optimum packing as the number of jobs 

increases [Dowsland92]. The scheduling of image patches across the M-SIMD array 

of the WPM conforms to the same problem. 

Each of the jobs that arises within the WPM is a sub-image, assumed to be of size 

(p, q) horizontally and vertically and each with a processing time of 1. Thus each job is 

represented by a three part identifier, Ji = (Pi, qi, ti) where i E {l .. n} and n is the 

number of such jobs. These sub-images can arise at any location across the WPM 

array, and if the input image is larger than the SIMD array of the WPM, or many 

images are mapped across the array at anyone time, many sub-images can arise in the 

same Cluster. An example of the distribution of the sub-images is shown in Figure 

7.4 for four images, or four tiles, mapped across an 8x8 Cluster WPM. 

2 

3 

: 4 
I 
I 

III Sub-image areas 

ltill Other image areas 

I I 

1 .i~ Cluster array 
I~ _____ -

Figure 7.4 - Example distribution of sub-images across the WPM,fromfour images. 

191 



7 Load-Balancing on the wpM 

7.3.1 Three-dimensional bin packing 

Examples of 3-dimensional packing includes those of container loading [Gehring90], 

where the goal is to maximise the load of the container, or conversely to minimise the 

volume wastage. The load-balancing problem here can be stated as the scheduling of 

Jobs Ji across the array such that the total processing time from start to finish is 

minimised. Generalising this into a packing problem, the jobs (Pi. qj, tj) can be treated 

as 3-dimensional boxes which are required to be packed into a three dimensional space 

representing the processor array dimensions and time [Li89]. The jobs are packed so 

as to minimise the height in the 3rd dimension, i.e. to minimise the processing time. 

An example of 3-dimensional packing is shown in Figure 7.5 for a set of jobs mapped 

onto an array processor. The overall processing time is represented by the dotted line -

the volume difference between this and the individual jobs is wasted processor time 

which, ideally, should amount to zero. Each processor in the array is the smallest 

functional block with can perfonn independent processing - in the case of the WPM 

the processors represent a Cluster, both a 16x16 SIMD array and an MIMD 

processor. 

....-----~--..,. 
" I 

" I 
" I ", : 

" I 

" .. -=---

n Procesor array 

Figure 75 - Example of a set of jobs mapped onto an array processor, where each job 

requires (Pi, qi) processors and ti time. 

The complexity of the packing problem is further increased when each of the jobs are 

considered as being malleable [Turek92]. For example, each sub-image of processor 

size (Pi. qi) with time requirements, ti, can be rearranged to fit into a single M-SIMD 

192 



7 Load-Balancing on the wpM 

array of size 16x16 PEs using tiling operations. The resulting blocks would then be of 

size (16, 16) with an associated increase in processing time of-ftJf6ti. Note that 

this is approximately correct if the differences in communication time between the two 

data mappings is ignored - see Section 5.3. 

An example of this is shown in Figure 7.6 for a 4x4 Cluster processor array with a 

total of sixteen jobs. In Figure 7.6a each of the jobs have been arranged such that they 

are all the size of a single Cluster, but with the time required proportional to the 

number of image tiles contained within each Cluster. In Figure 7.6b each of the jobs 

are arranged such that they utilise the maximum number of PEs possible, i.e. a single 

pixel per PE. In this example, the sub-images range from a size of 2x2 Clusters to 4x4 

Clusters, in steps of 2x2 Clusters. 

a) each mapped to a 16x16 SIMD patch b) each SIMD PE contains one pixel 

Figure 7.6 - Example of the malleability of the mapping of sub-images. 

The time required for both mappings shown is the same, but as can be seen, the 

mapping in Figure 7.6b, could be further load-balanced by placing the top few square 

tiles in the hole to the lower right. This would reduce the overall time taken in 

comparison to Figure 7.6a. However, the easiest data mapping that can be load

balanced occurs when the jobs are of the same size, such as is the case in Figure 7.6a. 

In this case each job is the size of a single Cluster, and tessellation is easy. But, it 

requires at least the same number of jobs as the number of Clusters, and ideally each 

would have the same time requirements. 

193 



7 Load-BaJancin& on the wpM 

A further factor, not considered above, is the possibility of time dependency between 

processes. One process may only be able to be performed after the completion of 

another. This factor further adds to the complexity of the packing problem and has not 

been considered here. 

In a typical application, the third dimension of time cannot always be assumed to be 

known at the start of any job. Thus, the bin packing degrades from a 3-dimensional to 

a 2-dimensional problem. The dimensions now represent only the size of the sub

image, i.e. the number of PEs (Pi, qi) required for each job and the malleability of the 

sub-image sizes is no longer a consideration. 

7.3.2 Two-dimensional bin packing 

The optimum solution of the packing problem can be found be using an exhaustive 

search procedure which tries each of the possible combinations of the sub-images, 

keeping the combination which minimises any wasted processors. This leads to an NP 

complexity. Since the number of sub-images within anyone frame can enter double 

figures, a combinatorial solution can not be calculated within the required processing 

time of one frame period. 

A formulation of the two dimensional packing problem has been described by Kroger 

[Kroger91] using a graph-theoretical model. The algorithm used is an iterative one and 

has been implemented on an array of 32 T800 Transputers. The time for each iteration 

of the algorithm, for the test cases considered by Kroger, ranged from 0.16s to 2.3s. 

The number of iterations required was typically 5000 - a worst time requirement of 

11500s (3 hours). Such an algorithm cannot be applied within the time constraints of 

an image analysis system with a typical frame time of 4Oms. 

Approximations to the optimal solution are thus required. One common approximation 

is that of shelf-packing. Shelf packing considers the blocks to be placed in strips 

across the width of the area being packed. Each shelf is given a height equal to the 

height of the tallest block placed on that shelf. Subsequent shelves start above the first 

shelf. One shelf algorithm is the Next-Fit rule (NFL) [Baker83] in which the blocks 

are placed on the bottom shelf left-justified until the next block cannot fit on it. A new 

shelf is then begun and the process continues for this new shelf. 

194 



7 Load-Balancing on the WPM 

An example of the NFL shelf algorithm is shown in Figure 7.7a. Hofri [Hofri80] 

showed that the efficiency of this algorithm approaches 66% of the optimum packing 

as the number of blocks -> 00. If the blocks are initially sorted into height order, an 

algorithm such as the First Fit Decreasing Height (FFDH) [Coffman80] can be used. 

The efficiency of this algorithm approaches 100% of the optimum packing as the 

number of blocks -> 00 [Coffman90]. An example of the FFDH is shown in Figure 

7.7b with the same blocks as those in Figure 7.7a. The FFDH algorithm is more 

efficient than the NFS algorithm in this and most other cases. 

Shelf 3 

Shelf 3 

~~--+~~ Shelf 2 r-r •• EEE. Shelf 2 

Shelf 1 __ ............. ___ .......... Shelf 1 

a) NFS algorithm b) FFDH algorithm 

Figure 7.7 - Example of the shelfpacking of eight blocks. 

The shelf algorithms shown above can be directly applied to the mapping of the two 

dimensional sub-images onto the M-SIMD array within the WPM. The shape of the 

sub-images need not be rectangular. However, if they are 'padded out' to become 

rectangular, the efficiencies of the shelf algorithms will be reduced since the padded 

areas would lead to inefficiencies. The number and size of sub-images, to be mapped 

across the WPM array, can be such that they cannot all be fitted onto the array at once. 

In such cases, the initial mapping should minimise the wasted processor space so as to 

process as many sub-images as possible. When a job finishes, a remaining job of a 

sui table size can then take its place. 

The movement of any data around a processor array is costly in terms of 

communication time. For the WPM, the communication times between Clusters was 

di cussed in Section 5.2 where it was shown that by using the Clusters M-SIMD 

195 



7 Load-Balancing on the wpM 

array internal wrap-around facility, the communication for large distances is greatly 

reduced over that of a conventional SIMD array. The cost is approximately 24 cycles 

for each Cluster shifted across, and 272 cycles for the final Cluster. Thus, the cost in 

moving a sub-image with top left corner in Cluster (x, y) to a Cluster (x', y') is :-

«x'-x) + (y'-y»*24 + 544 cycles 

The maximum distance any sub-image would move is the distance from one corner of 

the Cluster array to the centre, when using the torus structure of the WPM as a whole. 

This is a distance of (P+Q)/2 Clusters, where (P, Q) are the number of Clusters 

forming the WPM. 

Thus, it is advantageous to minimise the image communication overhead whilst load

balancing on the WPM. Such a constraint on a packing problem was recently 

described by Dowsland [Dowsland90] for a robot arm. The objective of the packing 

performed by the robot arm, was to make as few moves as possible. However, the 

application was limited to only four different sized blocks, which were initially 

assumed to be physically separated from the area to be packed. 

A novel heuristic algorithm has been developed here for the packing of sub-images 

which are initially within the processor array to be packed. The algorithm uses an 

ordered list of the sub-images, similar to the FFDH shelf algorithm above, but ordered 

in terms of area rather than height. This is termed the Fit in Place Decreasing Size 

algorithm (FPDS) below. The algorithm is as follows. 

Order the sub_images so that the area of sub_image(i) >= sub_image(i+ 1) 

FOR (i = 0, i < number of sub_images) do 

IF the processors that contain sub_image(i) are free TIIEN 

assign sub_image(i) to these processors 

ELSE_IF there is a set of processors that can contain sub_image(i) THEN 

assign sub_image(i) to these processors 

The algorithm will assign each sub-image to the processors over which it lies, if they 

are free. Otherwise, the sub-image will be assigned to a spare set of processors, 

closest to the current position of the sub-image, which could accommodate it. This 

first spare set is found by spiralling out from the position of the top-left corner of the 

196 



7 Load-Balancing on the wpM 

sub-image. Shifting of the image data, in the FPDS, is then only performed if 

necessary. 

7.3.3 Comparison between the FFDH and FPDS algorithms 

Both the FFDH and the FPDS algorithms have been used on a set of test data which 

was generated using a pseudo-random generator. It was assumed, for the simulation, 

that there were up to eight separate images mapped across a WPM processor array of 

8x8 Clusters, similar to that shown in Figure 7.4. This mapping is effectively a sub

set of the mapping that could arise when an image is mapped onto a smaller processor 

array, although in this case the image is eight times larger. In addition, it was assumed 

that the sub-images were rectangular, with each side having a uniform distribution 

between 16 and 48 pixels in steps of 16 pixels. The comparisons shown use averages 

from a Monte-Carlo trial of 100 runs. 

The number of Clusters utilised, within the WPM array after the use of both the 

FFDH and the FPDS packing algorithms, is shown in Figure 7.8. The average size of 

a sub-image is 2x2 Clusters (32x32 pixels) which results in the possible full utilisation 

of the array occurring when the number of sub-images is larger or equal to 16. When 

full utilisation is not possible, the number of utilised Clusters is linear. The utilisation 

of the WPM array when no load-balancing takes place is also shown in Figure 7.8. In 

this case, sub-images are only assigned to a set of Clusters if there is no shifting 

involved, and the Clusters have not already been assigned. 

100 /._ .. _. __ ...... _ ...................................•.. 

~ - FPDS ...... 80 
FFDHShelf 

c: 60 o 
'0 

CI:S 

~ 40 ..... 
:5 

20 

_.- Maximwn 

No Load Balancing 

O~----~-------r------~----~~----~------~ 
o 10 20 30 

Number of sub-images 

Figure 7.8 - The utilisation a/the WPM using the FFDH shelf and FPDS load

balancing algorithms. 

197 



7 Load-Balancin/l on the WPM 

The resulting utilisation of the FPDS algorithm is very similar to that of the FFDH 

algorithm over the range of sub-images considered, out perfonning it by 5% in places. 

The utilisation without any load-balancing taking place is typically 50% of that with 

either of the load-balancing algorithms. Similarly, the number of sub-images assigned 

across the array, as shown in Figure 7.9, is similar for the two algorithms. However, 

the actual sub-images assigned, in both algorithms, are not necessarily the same ones 

for a given trial. 

20 

FPDS 
FFDH Shelf 

o~------~----~~----~------~------~----__ ~_ 
o 10 20 30 

Number of sub-images 

Figure 7.9 - The number of sub-images assigned across the WPM using the FFDH 

shelf and FPDS algorithms. 

The FFDH and the FPDS algorithms have been shown to result in similar utilisation 

of the WPM above. However, the amount of data communications required for each 

algorithm is of prime importance. The communication requirements are shown in 

Figure 7.10. It can be seen that the FFDH algorithm typically requires twice as many 

data communications as the FPDS algorithm. This is as expected, since the FPDS 

algorithm was designed to reduce the amount of data communications required. 

Two types of communications can take place: a type 2 shift is the last shift over any 

Cluster, required for communication in anyone direction, and a type 1 shift is the 

preceding shifts in the same direction. These are separated due to the differing costs 

associated with each. A type 1 shift costs 24 cycles, and a type 2 shift costs 272 

cycles (see Section 5.2). Note that the necessary synchronisation time between 

Clusters has been ignored. This would inflate the overall costs for any inter-Cluster 

shifting. 

198 



7 Load-Balancing on the wpM 

40 
tn 

.;:: 
FFDH Shelf (shiftl) 

..... 

..c: 
Cl) 

30 I-< 
Q) .... 
en 
==' - 20 U 

c..... 

._-----..E!:mi Shelf (shift2) 
FPDS (shift2) 

0 
I-< 

~ 10 e 
::s 
Z 

0 
0 10 20 30 

Number of sub-images 

Figure 7.10 - The communications required using the FFDH shelf and FPDS 

algorithms. 

The cost of the data communications, for both algorithms, is shown in Figure 7.11. 

The curves in Figure 7.11 are simply the summation of those in Figure 7.10 for each 

algorithm, weighted by the cycle counts required for each type of shift. It can be seen 

that the FPDS algorithm can be performed in less time than the FFDH algorithm. This 

reduction in time required for the data communications, resulting from the load

balancing operation means that increased time is available for the sub-image 

processing. However, the cost of the load balancing algorithm itself must also be 

added to this overall figure. This cost is analysed in the next section. 

.... 
en 

8 
c: 
,9 -.. 

80()( 

60()( 

~ ~ 
,~u 40()( 
c: ~ 
=='~ e 
e 200( 
8 

FPDS 
FFDH Shelf 

o~~~--~----~------~ ______ ~ ______ ------~-
o 10 20 30 

Number of sub-images 

Figure 7.11 - The time cost/or the communications required within the FFDH Shelf 

and FPDS algorithms. 

199 



7 Load-Balancing on the WPM 

7.3.4 Implementation of the load-balancing algorithms 

Both the FFDH and the FPDS algorithms require the sub-image parameters of 

position (Xi,Yi), and width, height (Wi,hi) in Clusters, i.e. pixels!16, to be 

communicated to a single Cluster in which the algorithm is to be performed. For 

simplicity, this is assumed to be the top-left Cluster. Similarly, the Cluster 

communicating each of the sub-image parameters will be the top-left one containing 

that sub-image. 

Each algorithm requires a sorted ordering of these parameters. The FFDH requires the 

list to be sorted into height order, and the FPDS requires a size, (width*height), 

ordering. Such an ordering can be obtained by the use of a bin-sort, in O(n) time. The 

number of bins is known and is small. For the FFDH, the number of bins is the 

height of the input image, and in the FPDS the number of bins is the size that a sub

image can take. The height of a sub-image has to be less than or equal to the height of 

the input image and similarly for the size. For a 128x128 image, (8x8 Clusters), a 

total of 8 bins are required for the FFDH and 64 for the FPDS. 

Once all the parameters have been received from each sub-image, and the bin-sort 

performed, the largest sub-image for either algorithm can be found as the fIrst entry in 

the bins. An assignment message is sent to the Clusters that contain this largest sub

image, either in-place for the FPDS algorithm or in the bottom left corner for the 

FFDH algorithm. If the sub-image is not already in the place specified by this message 

then a shifting process begins as described earlier. While the shifting takes place, the 

next assignment can be calculated. Hence, for the FFDH algorithm, the latency time, 

to perform the algorithm is simply that taken to fInd the tallest sub-image. The 

remaining assignments can then be overlapped with the required shifting time. 

The situation is somewhat different for the FPDS algorithm due to the fIrst assignment 

requiring no shifting. In fact, the first sub-image required to be shifted is that which 

overlaps a Cluster in which an assignment has already taken place. Subsequent 

iterations of the algorithm can be overlapped with this shifting. 

The time taken to perform both the load-balancing algorithms is shown in Table 7.2 

for a total of 16 sub-images. The time taken on a single T800 Transputer, and a 

200 



7 Load-Balancing on the wpM 

Transputer with 16x16 SIMD array, is shown. It can be seen that both algorithms take 

less using both the Transputer and SIMD array. This is due to the bit operations, in 

the form of masks, used by both algorithms. However, the FFDH algorithm may be 

performed on a single Transputer, within the time taken for the resulting 

communications on the M-SIMD array (Figure 7.11). The FPDS cannot, it requires 

use of both processors if little overhead is required when compared to the M-SIMD 

communication time. The main overhead of the FPDS algorithm occurs on a clash, 

when the Clusters for a region have already been assigned to a previous sub-image. 

Transputer 1'800 (25MHz) Transputer T800 + SIMD array 

Algorithm 1 iteration (JJ.s) Totalfu& 1 iteration(jJ.s) Total~ 

FFDH shelf 40 640 2.5 40 

45 (if no clash) 2414 2 (if no clash) 110 
FPDS heuristic 

160 (if clash) 15 (if clash) 

Table 7.2 - Time taken/or the load-balancing algorithms. 

The times in Table 7.2 do not include the communication times for transmission of the 

required sub-image parameters across the array prior to the bin-sorting, nor does it 

include the transmission times of the assignment messages. Such timings can only be 

obtained when the algorithms have been implemented on a full sized working 

prototype of the WPM. 

7.4 Load-Balancing of Sparse Data 

For applications which contain sparse data sets during their computation, a different 

kind of load-balancing can be applied. Such situations arise in the target tracking 

domain, as described in Section 6.5 and in other many-body computations. In 

tracking applications, the data can remain 'in place' across the processor array and 

thus preserving the spatial arrangement between data elements. The position of the 

data elements is specified by the position of the PE containing it. However, unless the 

distribution of the data is bordering upon that which occurs in image processing, i.e. 

dense data, there will be a low utilisation of the processor array. For example, if one 

201 



7 Load-Balancing on the wpM 

in ten PEs contain a data element in the sparse set then the maximum utilisation of the 

processor array that can occur is 10%. 

The utilisation of the processor array can be increased however, by re-arranging the 

data or effectively compressing the area in which they are located across the processor 

array. This compression may result in only part of the processor array needing to be 

used on that part of the application, the rest freed for other processing. Alternatively, it 

may be the case that it is no longer necessary to tile the data set across the array, 

enabling the compressed data set to be fully processed. 

When re-arranging the sparse data it may be required to preserve data-locality and 

inter-relationships. For example, this is required in the problem of finding near

neighbours of each data point. If the data remains in place, on the processor array, the 

search space required simply spirals out from the data point in a similar way to a 

convolution operation. A maximum distance is typically given which defines the size, 

S, of the search space, thus giving the algorithm a complexity O(S), i.e. independent 

of the number of data elements in the set. If, however, the data has lost all spatial 

locality information, all points must be checked with all other points resulting in a 

complexity of 0(N2), where N is the number of data elements. 

A data re-arrangement algorithm is required which effectively compresses the data set 

while preserving the locality between data points. An algorithm designed for this 

purpose is the Monotonic Lagrangian Grid (MLG) [Boris86]. An investigation into 

this algorithm has lead to a new partitioned version described in the next section. 

7.4.1 The Monotonic Lagrangian Grid 

The Monotonic Lagrangian Grid was designed for the compression of a sparse data 

set while preserving local relationships between data elements. It was originally called 

the Monotonic Logical Grid and later renamed the Monotonic Lagrangian Grid (MLG) 

[picone90]. The scenario assumed, for the application of this data mapping, was that 

of a dynamical system, in which the data points within the data set could move to 

slightly different locations over one time frame. The method has been applied to the 

target tracking domain, within a simulation environment, using the BEAST (Battle 

Engagement Area Simulatorffracker), on a Connection Machine, CM2 [Kolbe90]. 

202 



7 Load-Balancini on the WPM 

The mapping of the data set is aimed at ensuring that the elements which are adjacent 

before the mapping are close within the MLG. The indexing in the MLG for two 

dimensions requires two conditions :-

xCi, j) ~ xCi + 1, j) 

y(i, j) ~ y(i, j + 1) 

1 ~ i ~ nx - 1 

1 ~ j ~ ny - 1 

where xCi, j) and y(i, j) denotes the x and y coordinates of the data points in the MLG 

location (i, j), and nx, ny is the size of the MLG in the x and y dimensions 

respectively. The latter can be equal to the square root of the total number of data 

points. The data stored in each location within the MLG is the (x, y) position of the 

data point in the original data space, in addition to any other parameters associated 

with each data point. The construction of the MLG can be extended to further 

dimensions, depending upon the dimensionality of the data being considered. 

An MLG of N2 data elements can be constructed in the following steps: 

a) order the data in terms of their y-coordinate from the lowest to the highest 

b) partition this ordering into N equal sets, indexing the first with j = 1, the 

second with j = 2 etc. 

c) order the data within each partition in terms of their x-coordinate, indexing 

the first with i = 1, the second with i = 2 etc. 

An example MLG ordering, on a set of 16 randomly distributed data points, is shown 

in Figure 7.12. The original space in which the data existed is shown on the left, the 

relationships that the MLG algorithm produces is shown in the middle, and the 

resulting 4-connected MLG is shown on the right. Note that the resulting neighbours 

in the MLG are the same as those in the original data. 

A .c • B D • G • 
E F • H • • J ~ 

I • • L • N 0 • • • P 
M • • 

Original Data MLG transformation MLGspace 

Figure 7.12 - Example of the MW mapping on a set of 16 data elements. 

203 



7 Load-BaIancjn~ on the wpM 

The example shown in Figure 7.12 considers data which is ideally distributed for the 

MLG algorithm, the resultant MLG contains the relationships between the data 

elements that were required. A further example for a distribution of 16 data points is 

shown in Figure 7.13. This time however, the resulting MLG mapping does not 

preserve all local relationships. For example, the data elements C and E are adjacent in 

the original data but are at opposite ends in the MLG . 

• A /A B .B 

~C~D .c .D 

.F .0 
.E "E .H 

i ,F [ G~~J j 
.1 

.K .L .M :? 0 K~M .N .0 

.p , ~"""P 

le A B D 
F G H E 
I K L J 
N 0 P M . 

I 

Original Data MLG transformation MLG space 

Figure 7.13 - Further example of the MLG mapping resulting in poor locality between 

data elements. 

One of the worst data sets that could be encountered for the MLG mapping is that of 

N2 data points along a diagonal line from one corner of the original data space to the 

other [Patterson91]. The ftrst N elements would be placed in the ftrst line of the MLG, 

the second N in the second line etc. A dis-continuity would occur between the last 

element in each row and the ftrst element of the next row within the MLG. Thus, the 

maximum separation between any two data elements, e.g. the nth and nth + 1 elements, 

would be a distance of N apart in the MLG. 

The MLG mapping was used on three different densities of data points for images of 

size 256x256. These images were generated from pseudo-random number generators 

giving an approximately even distribution of data points across the image. The number 

of data points placed within the images, for three test cases, was 500, 1000 and 5000 

respectively. The distribution of distances between any two points on the image, 

compared to the distances between any two points within the MLG, is shown in 

Figure 7.14. These comparisons were drawn from a Monte-Carlo run of twenty 

images for each of the three densities. 

204 



7 Load-Balancing on the WPM 

30 

Average 
~ 

99% region ::J 
Maximum :.a 

CIj 20 1-0 

..c:: 

~ 
0 
~ 

Cl 10 

~ 

0 
0 20 40 60 80 lOO 

Data element separation (pixels) 

Ca) 500 data points on a 256x256 image 

30 

~ 

::J :.a 
~ 20 

..c:: 
() 

8 
0 
~ 

Cl 10 
~ 

0 
0 20 40 60 80 100 

Data element separation Cpixels) 

Cb) 1000 data points on a 256x256 image 

60 

~ 

::J :.a 
~ 40 

..c:: 

~ 
Q) 
~ 

Cl 20 

~ 

0 
0 20 40 60 80 lOO 

Data element separation (pixels) 

Cc) 5000 data points on a 256x256 image 

Figure 7.14 - Original vs. MLG separation on randomly distributed data. 

205 



7 Load-Balancing on the WPM 

The maximum and minimum curves on the graphs denote the bound on the search 

radius within the MLG, required in order to guarantee finding all data points for a 

given separation. The shaded region shows the search radius needed to find 99% of 

the data points for a given separation. For example, if all points within a physical 

distance of 16 pixels where required to be found in the 500 point case then the search 

radius in the MLG would be 14, (or 9 for the 99% region) vs. 16 in the original data. 

Note that the actual number of data elements required to be searched is the square 

around each data point. If s is the search radius, then (25+ 1 )2-1 elements need to be 

searched up to a maximum of the number of data elements within the data grids. It can 

be seen that the average MLG separation increases linearly with the physical 

separation. The upper bound however, tends towards the size of the MLG data array, 

i.e. the square root of the total number of data elements, i.e. 23, 32 and 71 for the 

three cases respectively. 

It can be seen that as the density of the data elements increases, between Figures 7.14a 

to 7.14c, the average and maximum separations between the elements in the MLG also 

increases, for a given physical separation in pixels. This is expected since these 

distances are related to the size of the MLG which in turn is related to the number of 

data points within the original data set. 

The results indicate that a large area of the MLG must be searched if all data elements, 

separated by a certain distance, are required. The 99% region shown may be used to 

limit the search area when only approximate results are required. The region denoted 

by the minimum, maximum bounds and the 99% region are statistics for the evenly 

distributed data that was used here. For other distributions of data, similar statistics 

can be obtained as long as the data is available off-line. 

The MLG has been shown to require a large search space within the resulting data grid 

to guarantee finding all points within a certain physical separation. A modified 

algorithm was thus developed to preserve the locality of the data elements to a greater 

extent, while also performing a similar compression of the sparse data. 

206 



7 Load-Balancinl: on the WPM 

7.4.2 The Partitioned Monotonic Lagrangian Grid 

The solution used was to partition the original data space into a set of square regions, 

perform the MLG algorithm on each region and then join the resulting MLG blocks 

together to form the whole MLG. This algorithm is termed the Partitioned Monotonic 

Lagrangian Grid (PMLG). The size of the PMLG blocks, BxB, is chosen such that 

the distance between any two data elements separated by R in the original data space 

will be separated by a maximum distance of (2B-1) in the resulting PMLG. This is 

achieved by making the block size equal to the maximum of the number of data 

elements contained in anyone of the RxR regions in the original data space. A further 

advantage of this partitioning is to localise the computation required for the formation 

of the PMLG. By making the boundaries of each of the partitioned regions to be the 

boundaries of the Clusters within the WPM, each block may be formed within each 

Cluster in parallel, thus making the value of R to be 16. 

The PMLG was constructed using the same data sets as for the MLG above. The 

resulting separation between data points, compared with their image separations, is 

shown in Figure 7.15 for the three different densities of data points. It can be seen that 

the separation between data points, within the PMLG, are now within tighter bounds 

compared to the MLG separations shown in Figure 7.14. In fact, the maximum and 

minimum separations are defined by the block sizes. For instance all the data elements 

separated by a distance of R in the original data set (16 in this case) are now contained 

within the same or neighbouring blocks. Similarly if the separation required is 

between 16 and 32 only every second neighbouring block need be searched. 

A further impact of this approach is that the PMLG blocks from neighbouring Clusters 

can be copied between Clusters, as shown in Figure 7.16. Such a capability is 

advantageous when optimisation of the number of processors is not important. The 

copying of data between Clusters allows the same data to be used within different 

operations on each of these Clusters. This process is very easily performed, only 

requiring shifting when the size of each PMLG block is 25 or less. In this case, all 

nine blocks can be placed within the 256 element SIMD array within a Cluster. 

207 



30 

Vl 
;::l 

:a 
ro 20 I-< 

...c:: 

~ 
d) 
Vl 

0 10 
~ 

0 
0 

30 

Vl 
;::l 

:a 
ro 20 I-< 

...c:: 
(.) 

~ 
d) 
Vl 

0 10 
.....J 
:E 

0 
0 

60 

7 Load-Balancing on the wpM 

Average 

99% region 

20 40 60 
Data element separation (pixels) 

(a) 500 data points on a 256x256 image 

Average 

99% region 

20 40 60 
Data element separation (pixels) 

(b) 1000 data points on a 256x256 image 

Average 

99% region 

Maximum 

80 100 

80 100 

~ 20 

O+---~----~--~----~--~----~--~----,---~--~ 
o 20 40 60 80 100 

Data element separation (pixels) 

(c) 5000 data points on a 256x256 image 

Figure 7.15 - Original vs. PMLG separation on randomly distributed data . 

208 



7 Load-Balancing on the wpM 

5n.'.: ..... 
~ 

urn.,.··.>.'. LQj 

Data copied into 
neighbouring clusters .... 

Figure 7.16 - Mapping nine compressed data sets to a single Cluster. 

In the target tracking application considered in Section 6.5, the data association took 

place with measurements lying within the validation gate. The validation gate can lie 

within a Cluster, or across Clusters, depending upon the centre of the gate and its 

size. By copying the data from all neighbouring Clusters, there would be no need for 

the synchronisation of four Clusters, all the data required would now be contained 

within a single Cluster (assuming that the maximum radius of the validation region is 

less than 16 pixels). The localisation of the data association operation to a single 

Cluster increases the throughput of these operations that can be performed across the 

WPM array. A factor of four increase can be obtained, when the data association 

operations required four Clusters before the PMLG mapping and only one after. 

7.4.3 Comparison between the MLG and the PMLG 

The disadvantage of the PMLG compared to the MLG is that the compression of the 

data points is reduced. The data remains sparse, to some extent, due to the size of the 

PMLG blocks and the fact that the overall PMLG is specified by the maximum 

number of data elements within anyone block region (in this case within anyone 

Cluster). The PMLG block sizes required for the three data densities considered were 

(9,16), 16 and (36,49) respectively. Note that where two sizes appear, both occurred 

within the Monte-Carlo testing for that particular data density. The total number of 

such blocks for a 256x256 image in all cases was (2561R)2 = 256 for R = 16, thus 

making the total size of the PMLG to be : (2304, 4096), 4096 and (9216, 12544) 

respectively. In comparison, the size of the MLG remains the same as the number of 

data elements, making a square data array, to give sizes of 529, 1024 and 5041 for the 

three data densities. 

209 



7 Load-Balancing on the WPM 

Since the size of the PMLG is governed by the peak number of data points occurring 

within anyone Cluster, when uneven distribution of the data occurs the size of the 

resulting PMLG will be larger than that for the evenly distributed data. A set of 

simulated images where generated with an uneven distribution of data. Two parts of 

the image had a density three times greater than the rest of the image. An example 

image is shown in Figure 7.17. 

Figure 7.17 - Example o/unevenly distributed data, the lighter regions are three times 

as dense as the darker regions. 

The MLG and PMLG were used to form the compressed data arrays on data 

di tributed as shown in Figure 7.17, with 1000 and 5000 data points. The distance 

distributions were obtained as before, for the evenly distributed data above, from a 

Monte-Carlo run of ten images. These are not included here since they were found to 

be very imilar to the previous results for the evenly distributed data of Figures 7.14 

and Figure 7.15. The size of the PMLG increased, due to the block size increasing to 

25 and 64 for the two data densities respectively. 

210 



7 Load-Balancing on the WPM 

A comparison can be made between the MLG and the PMLG in one of two ways. The 

first compares the search spaces required to find the all data elements within a certain 

image distance, e.g. 16 pixels. The time taken to perform such an algorithm is 

proportional to this search space. The second compares the effective processor 

operations required to find neighbours within the same image distance. The search 

performed is across a total of (2s+ 1 )2-1 data elements, where s is the search radius 

from Figures 7.14 and 7.15 for the MLG and PMLG respectively. The number of 

processors needed for this search is assumed to be the same as the size of the MLG 

grids. Thus the effective number of processor operations is given by :-

(search area * MLG grid size). 

The MLG required that all the elements within its grid need to be searched for a search 

radius of 16, resulting in (MLG grid size)2 processor operations required. The PMLG 

required the search of adjacent blocks only - a search radius of s = (2B-l). The size of 

the PMLG grid was 256B2 hence the total number of processor operations required is: 

«4B - 1)2 - 1)*256B2 = 2048B3*(2B - 1) 

A comparison of the size of the PMLG and the MLG is given in Table 7.3 for the 

three densities of points. Also given is the search space required for each to find all 

data points within an image distance of 16 pixels, and the resultant number of 

processor operations required for this, in units of 105 operations. The last two 

columns give the ratios of the search space size and the processor operations between 

the MLG and the PMLG. 

In most cases, the PMLG needs less processor operations than the MLG, except in the 

low data density situations. If the number of processors is not a concern, i.e. when 

there are sufficient to process the entire MLG data grids, then the computation time is 

most important. This is proportional to the search space. The ratio of the search space 

between the MLG and the PMLG shows that the search on the PMLG is between 9.5 

and 2.3 quicker than on the MLG. In the original image, without any compression, 

the same search operation would use 256x256 processors with a search size of 312-1 

= 960 to give an overall count of 629.1 (*105) operations. Both the search space and 

operation counts for the MLG and the PMLG are lower than this. 

211 



7 Load-Balancing on the wpM 

PMLG MLG Ratio: MLG / PMLG 

~ points !grid (block) search space ops grid size search space ops search space ops 

size (PEs) (xloS) (PEs) (xloS) 

500 2304 (9) 120 2.8 523 523 2.8 4.4 1.0 

40% (16) 224 9.2 523 523 2.8 2.3 0.3 

1000 40% (16) 224 9.2 1024 1024 10.5 4.6 1.1 

6400 (25) 360 23.0 1024 1024 10.5 2.8 0.5 

Is 000 9216 (36) 528 48.7 5041 5041 254.1 9.5 5.2 

12544 (49) 728 91.3 5041 5041 254.1 6.9 2.8 

16384 (64) 960 157.3 5041 5041 254.1 5.3 1.6 

Table 73 - Processor operations to find all data points within a distance of 16 pixeis 

from each other. 

7.4.4 Construction of an MLG on an SIMD array 

The MLG algorithm was implemented on a single Cluster within the WPM, which 

allows a PMLG block to be constructed for any number of data points contained 

within a 16x 16 space. The construction of the MLG scales linearly with the number of 

data points within the SIMD array. When an MLG block is required to be constructed 

over more than one Cluster, such as is the case in the construction of the MLG for the 

entire data set across an image, there will be communication and associative response 

combination overheads as discussed in Chapter 5. 

The time taken to construct a PMLG block within a Cluster is shown in Table 7.4 -

note that blocks can be constructed within each Cluster in parallel. The time taken to 

construct the MLG is small when compared to the total processing time available 

within the frame period. A speedup of four can be achieved by the use of the PMLG 

for the data association operation in the target tracking detailed in Section 6.5. 

212 



7 Load-Balancin~ on the WPM 

Block size 4 5 6 

Time (Ils) 238 257 276 

Table 7.4 - Time taken/or the construction o/a PMLG block on the SIMD array 

within a WPM Cluster. 

7.5 Summary 

The load balancing techniques described in Sections 7.2, 7.3 and 7.4 can each be 

performed within the frame period of an image analysis system. The time taken for the 

three methods, the optimisation of the number of patches required for the processing 

of a sub-image, the packing of rectangular sub-image patches across the WPM array 

using the FPDS algorithm, and the compression of a sparse data set using the PMLG 

algorithms are given in Table 7.5. The performance advantages gained by the use of 

each load-balancing technique is also shown in this table. The iconic techniques enable 

an increase in the utilisation of the Clusters within the WPM. The sparse method 

enables a decrease in the search space required to find nearest neighbours. This 

technique also allows the replication of data between Clusters which improves the 

throughput of algorithms such as data association in target tracking. 

Technique Time Advantages 

Patch minimisation O.lms 4 * reduction in the number of SIMD patches used 

FPDS Bin packing O.5ms 2 * improvement on utilisation of PE array 

PMLG O.3ms less PEs required for the compressed data set, 

Speedup of 4 on data association operations 

Table 75 - Time taken, and advantages of, the load-balancing techniques on the WPM 

The time taken for each method is a small percentage of the overall time available for 

processing, but the advantages gained from such techniques enable a greater utilisation 

213 



7 Load-Balancing on the wpM 

of the array. This can also be viewed, for both image or sparse data operation, as a 

decrease in the processing time per operation. 

The performance of the load-balancing operations have been described in terms of the 

M-SIMD array within the WPM. It is likely that the data on the Transputer MIMD 

array may also need to be load-balanced in some applications. Load-balancing could 

equally be applied in such cases. Additionally, there could be a dependency between 

the MIMD array and the M-SIMD array, thus increase the complexity of the load

balancing operation. This has not been considered here. 

The methods described can also be applied to non-image based applications. In fact 

such load-balancing techniques could form part of a library which the programmer 

could call upon when a certain structure within the data is known to exist, or arises 

from the processing that is to be performed on that data. Such algorithms can be 

further optimised if further information on the structure of the data can be assumed. 

The most convenient way in which to use the load-balancing techniques described 

here would be for the compiler, or the run-time operating system, to automatically 

invoke them, and not by the applications programmer. Thus, when the structure of the 

data deems it necessary and it is detected by the run-time system, a load-balancing 

technique could be automatically brought into use and dispensed with afterwards. 

Such automatic capabilities of a parallel compiler/run-time system do not exist at the 

present time. 

214 



Chapter 8 

Conclusions 

This thesis describes, a novel heterogeneous architecture, the Warwick Pyramid 

Machine (WPM). The design of this machine arose from an examination of the 

requirements of image analysis. The processing requirements include the need for 

data-parallel computation at a low level (for raw pixel processing), and for more 

flexible independent processing of small data sets (at a higher, or symbolic, level). 

Furthermore, a typical image analysis processing flow requires, within the low-level 

processing, both global and local data parallelism. Local data parallelism enables 

regions of the image to be addressed in an object dependant way. 

The WPM contains separate processor configurations for the different processing 

requirements. It consists of a massively parallel Multiple-SIMD (M-SIMD) processor 

array, for low-level operations, and an MIMD processor, for high level operations. 

The M-SIMD array can operate in a synchronised SIMD mode, mimicking the action 

of a conventional SIMD array, or in a local autonomous mode where each SIMD patch 

can perform its own operation. Thus, the WPM supports both global and local data

parallel operations. 

The two arrays within the WPM are tightly coupled, with each MIMD processor being 

associated with a single SIMD patch. Communications between the two levels takes 

place through the use of shared memory, and associative response mechanisms within 

the SIMD patch. The partitioning of the associative mechanisms, to each SIMD patch, 

results in multiple data-paths between the M-SIMD and MIMD arrays. 

215 



-- --- - -------~::----

8 Conclusions 

In the review contained within Chapter 2, the various options available in the 

construction of a parallel architecture were described. These included memory 

structure, processor interconnection topologies and control structure. Existing parallel 

machines were described, and each generally conformed to one of the two control 

structures, either SIMD or MIMD. Several research machines, combining SIMD and 

MIMD processor types were described in Chapter 3. These architectures enabled only 

global data-parallel and control-parallel operation. 

The design and implementation of the prototype WPM is described in Chapter 4. 

Commercial processors were used, for both the SIMD and the MIMD arrays, in its 

implementation. The architecture is modular, based around the concept of a Cluster. A 

Cluster represents a vertical slice through the machine. Two prototype Clusters have 

been built enabling the communication and synchronisation mechanisms. between 

SIMD patches, to be tested. 

The performance of the WPM, in terms of its constituent components is also described 

in Chapter 4. Although the peak performances enable a comparison to be made 

between different machines, they are not necessarily representative of the performance 

achievable in real applications. The peak figures can be thought of as an upper bound 

on the performance of the machine. 

A comparison of the performance of the M-SIMD array, within the WPM, with that of 

a conventional SIMD architecture is given in Chapter 5. This was examined for both 

the possible peak advantages obtainable in specific operations and those achievable in 

example numerical matrix operations. It was found that the M-SIMD array performed 

better than a conventional SIMD array, in many instances, for the specific operations 

of local object processing, associative responses, and data communications. Further, 

the performance of matrix operations was found to be greater on the WPM M-SIMD 

array for specific sizes of matrices. 

The mapping of an application across the multiple processing levels of the WPM is 

illustrated using example tracking operations in Chapter 6. Two different types of 

tracking applications were considered, namely that of object tracking and the tracking 

of feature points. The two applications differed in the density of objects across the 

image and resulted in the use of different algorithms in the tracking processing flow. 

216 



8 Conclusjons 

In the fIrst tracking application, image processing operations where used to detect, 

segment, and extract information about objects form the image plane. This information 

was incorporated into two tracking fIlters, one for position and the other for size. The 

second application considered only the position tracking of points which resulted from 

a global image processing operation. 

The efficient utilisation of a parallel machine is a prime factor in achieving near-peak 

performances. In the WPM, the utilisation of the Clusters needs to be considered at 

two levels. The first is to ensure that the component arrays within Clusters are being 

utilised. This requires the efficient partitioning of the application, between the SIMD 

and MIMD processors, as is seen in the tracking applications in Chapter 6. The second 

is to ensure that all Clusters are being utilised. This second case leads to a load

balancing problem as discussed in Chapter 7. 

A comparison between the performance of machines should not be looked at in 

isolation. Other factors, such as gate count and clock speeds, should also be taken into 

account. The prototype WPM uses a low level of integration being based on the AMT 

Distributed Array Processor [AMT88] for the SIMD array, and Transputers for the 

MIMD array. The former dates back to 1973, and the latter back to 1987. The Cluster 

controller is also implemented using a low level of integration, and represents 10% 

overhead in hardware complexity when compared to a combination of SIMD and 

MIMD arrays [Nudd92b]. Thus, the performance improvements achieved are a direct 

result from this slight increase in hardware complexity. 

The use of both SIMD and MIMD arrays, within the Warwick Pyramid Machine, 

results in increased performance on applications including target tracking. The target 

tracking required both image processing and the numeric processing involved in the 

update of Kalman filters. These operations require both data parallel and control 

parallel processing. 

The partitioning of the SIMD array, in terms of its local autonomy and associative 

responses, to form an M-SIMD array results in better performance in a number of 

algorithms. The target tracking applications benefited from the local autonomy, and the 

matrix operations benefited from the associative response mechanisms for routing. 

217 



8 Conclusions 

The effect of the local autonomy, within an M-SIMD machine for local data parallel 

processing, becomes increasingly important when compared to SIMD arrays as they 

scale in size. Additionally, the routing performance increase, such as that in matrix 

operations, will become more predominant as the computational time decreases. This 

could be a result of using multiple-bit processing elements. Thus, the use of M-SIMD 

arrays will achieve greater performance increases if the processor array size is scaled, 

or if the computational performance of the SIMD processors improves, compared to 

those within the WPM. 

The size of the SIMD patch within a Cluster is a major factor in the performance 

improvements achievable on local data-parallel processing. The best performance 

improvements occur when the size of the data set is equal to, or a multiple of, this 

SIMD patch size. For a general purpose image/numerical analysis machine, no 

optimum SIMD patch size exists. An appropriate SIMD patch size can be chosen 

however, if the machine is to be dedicated to a particular subset of problems, a result 

of apriori knowledge about the local data parallel processing required. 

The load-balancing algorithms resulted in an improvement between a factor of two and 

four for the utilisation of the WPM Cluster array, whilst also requiring little overhead. 

The use of a vote algorithm, a heuristic packing algorithm, and a partitioned 

Monotonic Lagrangian Grid have all resulted in improved load-balancing operation 

over conventional algorithms. These techniques might be equally applicable to other 

parallel machines. 

A novel parallel architecture has thus been designed, implemented, and performance 

measurements obtained. The Warwick Pyramid Machine supports several styles of 

processing, both local and global data-parallel operation, and control parallel. The 

structure of the machine outperforms architectures from which it is derived. The 

analysis, contained within this thesis, adds to the ever increasing field of parallel 

processing. 

Suggestions for further work 

The WPM could be designed into an integrated form, it is feasible to consider that all 

the components of a Cluster may be incorporated into a single chip. This chip would 

218 



8 Conclusions 

form the basic building block for the whole machine. The use of a more sophisticated 

SIMD processor, for example a multiple-bit PE, would increase the performance of 

the SIMD processor array. Additionally, the use of current technology would result 

with a faster clock speed, funher increasing the performance of a Cluster. 

The SIMD patch size within the Cluster is a factor in the performance improvements 

achievable on the M-SIMD array. The control structure, between the Cluster 

controllers and the SIMD arrays, could be reconfigureable. This would mean that the 

controllers would not provide the instruction stream for same PEs throughout an 

operation, but be reconfigured depending upon the size of the objects being processed. 

This is similar in some respects to the design of P ASM, detailed in Chapter 3, but on a 

larger scale. 

Further complexities in the hardware system should not propagate through to the 

software system, which needs to be designed to be as easy as possible to use. Ideally 

one would like a software system which would automatically parallelise code, and in 

the case of the WPM, partition parts of the code across the different processor levels. 

At run-time, techniques for load-balancing could automatically be used when feasible. 

Automatic parallelisation of the software will probably result in the greater usage of 

parallel machines. 

219 



Bibliography 

Almasi89 Almasi, O.S., and Oottlieb, A., Highy Parallel Computing, 
Addison-Wesley, 1989. 

AMD86 Advanced Micro Devices, AM29116 High-Performance 16-Bit 
Bipolar Microprocessors, October 1986. 

AMD87 Advanced Micro Devices, Am29C331 CMOS 16-Bit Microprogram 
Sequencer, September 1987. 

Amdahl67 Amdahl, O.M., "Validity of the single processor approach to 
achieving large scale computing capabilities", In Proc. AFIPS 
Spring Joint Computer Conf., Atlantic City, NI, 1967, pp. 483-
485. 

AMT88 Active Memory Technology Ltd., DAP Series Technical Overview, 
March 1988. 

AMT90 Active Memory Technology Ltd., Introducing the DAP/CP8 range, 
April 1990. 

Anandan87 Anandan, P., Measuring Visual Motion From Image Sequences, 
Ph.D. dissertation, University of Massachusetts at Amherst, May 
1987. 

Asthana89 Asthana, A., Iagadish, H.V., and Mathews, B.T., "Impact of 
Advanced VLSI Packaging on the Design of a Large Parallel 
Computer", In Proc. of the International Conf. on Parallel 
Processsing, Pensylvania, August 1989, pp. 323-327. 

Atherton90 Atherton, T.J., Nudd, O.R., Clippingdale, S.C., Francis, N.D., 
Kerbyson, DJ., Packwood, R.A., and Vaudin, 0.1., "Detection 
and Segmentation of Blobs using the Warwick Multiple-SIMD 
Architecture", In Parallel Architectures for Image Processing, SPIE, 
February 1990, pp. 96-104. 

Atherton91 Atherton, T.J., Kerbyson, D.J., and Nudd, O.R., "Passive 
Estimation of Range to Objects From Image Sequences", In British 
Machine Vision Conference 1991, Mowforth, P. (Ed), Spinger
Verlag, Glasgow, September 1991, pp. 343-346. 

220 



Baker83 

Ballard82 

Bihlio&Iaphy 

Baker, B.S., and Schwarz, I.S., "Shelf Algorithms for Two
Dimensional Packing Problems", SIAM 1. Comput., Vol. 12, No. 
3, 1983, pp. 508-525. 

BaIIard, D.H., and Brown, C.M., Computer Vision, Prentice Hall, 
1982. 

Bar-Shalom7S Bar-Shalom, Y., and Tse, E., "Tracking in a Cluttered Environment 
with Probabilistic Data Association", Automatica, Vol. 11, 
September 1975, pp. 451-460. 

Bar-Shalom88 Bar-Shalom, Y., and Fortmann, T.E., Tracking and Data 
Association, Academic Press, Mathematics in Science and 
Engineering, Vol. 179, 1988. 

Barnes68 Barnes, G.H., Brown, R.M., Kato, M., Kuck, D.I., Slotnick, 
D.L., and Stokes, R.A., "The IlIiac IV Computer", IEEE Trans. on 
Computers, Vol. 17, No. 8, August 1968, pp. 746-757. 

Barr89 Barr, D.C., "Computing Surface", In Proceedings in 
Supercomputing, Vol. 1, ASFRA, February 1989, pp. 37-43. 

Batcher80 Batcher, K.E., "Design of a Massively ParaIIel Processor", IEEE 
Trans. on Comput., Vol. 29, No. 9, September 1980, pp. 836-840. 

Beal90 Beal, D., and Lambrinoudakis, C., "Floating Point Support for 
SIMD Array Processors", Tech. Rept 511, Queen Mary and 
Westfield College, Depl of Computer Science, November 1990. 

Blevins90 Blevins, D.W., Davies, E.W., Heaton, R.A., and Reif, I.H., 
"BLITZEN: A Highly Integrated Massively Parallel Machine", J. of 
Parallel and Distributed Computing, February 1990. 

Boris86 Boris, J., "A Vectorized 'Near Neighbours' Algorithm of Order N 
Using a Monotonic Logical Grid", I. of Computational Physics, 
Vol. 66, 1986, pp. 1-20. 

Bowen82 Bowen, B.A., and Brown, W.R., VLSI Systems Design for Digital 
Systems Processing, Prentice-Hall, Englewood Cliffs, NJ, 1982. 

Broomell83 Broomell, G., and Heath, J.R., "Classification Categories and 
Historical Development of Circuit Switching Topologies", ACM 
Computing Surveys, Vol. 15, No. 2, June 1983, pp. 95-133. 

Broida86 Broida, T.J., and Chellappa, R., "Kinematics and Structure of a 
Rigid Object from a Sequence of Noisy Images", In. Proc. of 
Workshop on Motion: Representation and Analysis, IEEE, 
Charleston, South Carolina, May 1986, pp. 95-101. 

221 



Bibliography 

Burt91 Burt, P.l., "Image Motion Analysis Made Simple and Fast, One 
Component ata Time", In British Machine Vision Conference 1991, 
Mowforth, P. (Ed), Springer-Verlag, 1991, pp. 1-8. 

Cantoni86 Cantoni, V., "I.P. Hierarchical Systems: Architectural Features", 
In Pyramidal Systems for Computer Vision, Springer-Verlag, 
Cantoni, V., and Levialdi, S. (Eds), 1986, pp. 21-39. 

Cantoni87 Cantoni, V., and Levialdi, S., "PAPIA: A Case History", Parallel 
Computer Vision, Academic Press, Uhr, L. (Ed), 1987, pp. 3-13. 

Chambers92 Chambers, T., "Parallel Computers: The Performance Quest", In 
Computer Performance Evaluation '92, Pooley, R., and Hillston, J. 
(Eds), 1992, pp. 131-135. 

Chen89 Chen, C., "Computing the Convex Hull of a simple Polygon", 
Pattern Recognition, Vol. 22, No. 5, 1989, pp. 561-565. 

Choudhary92 Choudhary, A., and Ranka, S., "Parallel Processing for Computer 
Vision and Image Understanding", IEEE Computer, Vol. 25, No. 
2, February 1992, pp. 7-10. 

Christy90 Christy, P., "Software to Support Massively Parallal Computing on 
the MA SPAR MP-l ", In Proc. of COMPCON, IEEE, San 
Francisco, February 1990, pp. 29-33. 

Clermont87 Clermont, P., and Merigot, A., "Real-time synchronization in a 
multi-SIMD massively parallel machine", In Proc. Workshop on 
Computer Architectures for Pattern Analysis & Machine 
Intelligence, IEEE, October 1987, pp. 131-136. 

Coffman80 Coffman, E.G., Garey, M.R., Johnson, D.S., and Tarjan, R.E., 
"Performance bounds for Level-oriented Two-Dimensional Packing 
Problems", SIAM J. Comput., Vol 9, No. 4, 1980, pp. 808-826. 

Coffman90 Coffman, E.G., and Shor, P.W., "Average-case analysis of cutting 
and packing in two dimensions", European J. of Operational 
Research, Vol. 44, 1990, pp. 134-144. 

Cypher90 Cypher, R., Sanz, J., and Snyder, L., "Algorithms for image 
component labelling on SIMD mesh-connected computers", IEEE 
Trans. on Computers, Vol. 39, No. 2, February 1990, pp.276-281. 

Danielsson81 Danielsson, P.E., "Getting the Median Faster", CGIP, Vol. 17, 
1981, pp. 71-78. 

Danielsson90 Danielsson, P., and Seger, 0., "Generalized and Separable Sobel 
Operators" In Machine Vision for Three-Dimensional Scenes, 
Academic Press, 1990, pp. 347-379. 

222 



Deriche90 

Bibliography 

Deriche, R., and Faugeras, 0., "Tracking Line Segments", Image 
and Vision Computing, Vol. 8, No. 4, November 1990, pp. 261-
270. 

Diefendorff92 Diefendorff, K., and AlIen, M., "Organization of the Motorola 
88110 Superscalar RISC Microprocessor", IEEE Micro, Vol. 12, 
No. 2, April 1992, pp. 40-63. 

Dowsland90 Dowsland, K.A., "Efficient automated pallet loading", European 
Journal of Operational Research, Vol. 44, 1990, pp. 232-238. 

Dowsland92 Dowsland, K.A., and Dowsland, W.B., "Packing Problems", 
European J. Operational Research, Vol. 56, 1992, pp. 2-14. 

Du91 Du, L., Sullivan, G.D., and Baker, K.D., "3D Grouping by 
Viewpoint Consistency Ascent", In British Machine Vision 
Conference 1991, Mowforth, P. (Ed), Springer-Verlag, 1991, pp. 
45-53. 

Duda72 Duda, R.O., and Hart, P.E., "Use of the Hough Transformation To 
Detect Lines and Curves in Pictures", Communications of the ACM, 
Vol. 15, No. 1, January 1972, pp. 11-15. 

Duff88 Duff, M.lB., "Some Considerations on the Limitations of Image 
Processing Computer Architectures", In Proc. IAPR Workshop on 
Computer Vision, Tokyo, Japan, October 1988, pp. 1-5. 

Duller89 Duller, A.W., Storer, R.H., Thomson, A.R., Dagless, E.L., Pout, 
M.R., Marriot, A.P., and Goldfinch, J., "Design of an Associative 
Processor Array", lEE Proceedings, Pt. E, Vol. 136, No. 5, 
September 1989, pp. 374-382. 

Duncan90 Duncan, R., "A Survey of Parallel Computer Architectures", IEEE 
Computer, Vol. 23, No. 2, February 1990, pp. 5-16. 

Faddeev59 Faddeev, V.N., Computational Methods of Linear Aliebra, Dover 
Publications, 1959. 

Feng81 Feng, T., "A Survey of Interconnection Networks", IEEE 
Computer, December 1981, pp. 12-27. 

Flynn66 Flynn, MJ., "Very High-Speed Computing Systems", Proc. of the 
IEEE, Vol. 34, No. 12, December 1966, pp. 1901-1909. 

Foster7. Foster, C.C., and Stockton, F.D., "Counting Responders in an 
Associative Memory", IEEE Trans. on Computers, December 1972, 
pp. 1580-1583. 

Fountain87 Fountain, TJ., Processor Arrays, Academic Press, 1987. 

223 



BibliolWlVhy 

Fountain88a Fountain, T.J., "Introducing Autonomy to Processor Arrays", In 
Machine Vision, Academic Press, 1988, pp. 31-58. 

Fountain88b Fountain, T.J., Matthews, K.N., and Duff, M.J.B., "The CLIP7 A 
Image Processor", IEEE Trans. on PAMI, Vol. 10, No. 3, May 
1988, pp. 310-319. 

Francis89 Francis, N., "PSIM", VLSI Group Memo, Computer Science 
Department, University of Warwick, August 1989. 

Francis91 Francis, N.D., Parallel Architectures for Image Analysis, Ph.D. 
dissertation, Department of Computer Science, University of 
Warwick, September 1991. 

Gehring90 Gehring, H., Menschner, K., and Meyer, M., "A Computer-based 
heuristic for packing pooled shipment containers", European J. 
Operational Research, Vol. 44, 1990, pp. 277-288. 

Gehringer88 Gehringer, E.F., AbuUarade, J., and Gulyn, M.H., "A Survey of 
Commercial Parallel Processors", Computer Architecture News, 
Vol. 16, No. 4, September 1988, pp. 75-107. 

Gibbons88 Gibbons, A., and Wojciech, R., Efficient Parallel Algorithms, 
Cambridge University Press, 1988. 

GoIston90 Golston, J.E., Moss, R.H., and Stoecker, W.V., "Boundary 
detection in skin tumour images: an overall approach and a radial 
search algorithm", Pattern Recognition, Vol. 23, No. 11, 
November 1990, pp. 1235-1247. 

Grand93 Grand Challenges 1993 : High Performance Computing and 
Communications. The FY 1993 U.S. Research and Development 
Program, National Science Foundation, Washington DC. 

Grinberg84 Grinberg, 1., Nudd, G.R., and Etchells, R.D., "A Cellular VLSI 
Architecture", IEEE Computer, Vol. 17, No. 1, January 1984, pp. 
69-81. 

Harris87 Harris, C.G., "Determination of Ego-motion from Matched Points", 
In Proc. of the Third Alvey Vision Conf., Cambridge, September 
1987, pp. 189-192. 

Harris88 Harris, C., and Stephens, M., "A Combined Corner and Edge 
Detector", In Proc. of the Fourth Alvey Vision Conf., University of 
Manchester, 1988, pp. 147-151. 

Harris92 Harris, A., "Putting the right numbers into HDTV', Electronics 
world + wireless world, No. 1675, June 1992, pp. 481-485. 

224 



Bibliography 

Heel88 Heel, I., "Dynamical systems and Motion Vision", Tech. Rept 
1037, A.I. memo, MIT, April 1988. 

Hennessy90 Hennessy, I.L., and Patterson, D.A., Computer Architecture a 
Ouantitative Approach, Morgan Kaufmann, 1990. 

Hennessy91 Hennessy, J.L., "Computer Technology and Architecture: An 
Evolving Interaction", IEEE Computer, Vo!. 24, No. 9, September 
1991, pp. 18-29. 

Hillis85 Hillis, W.D., The Connection Machine, MIT Press, Cambridge, 
1985. 

Hofri80 Hofri, M., "Two-dimensional packing: Expected performance of 
simple level algorithms", Information and Control, Vol. 45, 1980, 
pp. 1-17. 

Hord90 Hord, R.M., Parallel Supercomputing in SIMD Architectures, CRC 
Press, 1990. 

Horn81 Horn, B.K.P., and Schunck, B.G., "Determining optical flow", 
Artificial Intelligence, Vo!. 17, 1981, pp. 185-203. 

Howarth88 Howarth, R.M., and Francis, N.D., "Cluster Programming 
Language: Definition and user manual", Tech. Rept RR 125, 
Department of Computer Science, University of Warwick, 1988. 

Hwang80 Hwang, K., and Ni, L.M., "Resource Optimization of a Parallel 
Computer for Multiple Vector Processing", IEEE Trans. on 
Computers, Vol. 29, No. 9, September 1980, pp. 831-836. 

Hwang85 Hwang, K., and Briggs, EA., Computer Architecture and Parallel 
Processing, McGraw-Hill Int., 1985. 

Hwang90 Hwang, K., Panda, D.K., and Haddadi, N., "The USC orthogonal 
multiprocessor for image processing with neural networks", In 
Parallel Architectures for Image Processing, SPIE, San Diego, 
February 1990, pp. 70-85. 

Hwang91 

Inmos8S 

Inmos91 

Hwang, K., Alnuweiri, H.M., Kumar, V.K.P., and Kim, D., 
"Orthogonal Multiprocessor Sharing Memory with an Enhanced 
Mesh for Integrated Image Understanding", CVGIP: Image 
Understanding, Vol. 53, No. 1, Ianuary 1991, pp. 31-45. 

Inmos Ltd., Transputer Reference Manual, 1985. 

Inmos Ltd., The T9000 Transputer, 1991. 

225 



BibliQlUaDhy 

Jesshope87 Jesshope, C., Rushton, A., Cruz, A., and Stewart, J., "The 
Structure and Application of RPA - A Highly Parallel Adaptive 
Architecture". In Highly Parallel Computers. Elsvier Science, 
Reijns, G.L., and Barton, M.H. (Eds), 1987, pp. 81-92. 

Jesshope89 Jesshope, C.R., O'Gorman, R, and Stewart, J.M., "Design of 
SIMD microprocessor array", lEE Proceedings, Pt. E, Vol. 136, 
No. 3, May 1989, pp. 197-204. 

Judge92 Judge, T.R, Andonov, D., Kerbyson, D.J., and Bryanston-Cross, 
P.J., "Parallel Two Dimensional Phase Unwrapping", To be 
published. 

Kalata84 Kalata, P.R., "The Tracking Index: A Generalized Parameter for 
Alpha-Beta-Gamma Target Trackers", IEEE Trans. AES, Vol. 20, 
March 1984, pp. 174-182. 

Kalman60 Kalman, RE., "A New Approach to Linear Filtering and Prediction 
Problems", Trans. ASME, J. Basic Engineering, Vol. 82, March 
1960, pp. 34-45. 

Kaplan63 Kaplan, A., "A search memory subsystem for a general purpose 
computer", In AFIPS Conf. Proc., Baltimore, Md, 1963, pp. 193-
200. 

Kerbyson92 Kerbyson, DJ., Atherton, T.J., and Nudd, G.R, "An MSIMD 
Architecture for Feature Tracking", In lEE Colloquium on Medium 
Grain Distributed Computing, London, March 1992. 

Kimme7S Kimme, C., Ballard, D., and Slansky, J., "Finding Circles by an 
Array of Accumulators", Communications of the ACM, Vol. 18, 
No. 2, February 1975, pp. 120-122. 

Kodak90 Kodak Ltd, Kodak EKTAPRO Motion Analyzers, 1990. 

Kolbe90 Kolbe, R.L., Boris, I.P., and Picone, I.M., "Battle Engagement 
Area Simulatorffracker", Tech. Rept 6705, Naval Research Lab, 
Washington DC, October 1990. 

Kories86 Kories, R., and Zimmermann, G., "A Versatile Method for the 
Estimation of Displacement Vector Fields from Image Sequences", 
In Proc. Workshop on Motion: Representation and Analysis, IEEE, 
Kiawah Island, May 1986, pp. 101-106. 

Kroger91 Kroger, B., Schwenderling, P., and Vornberger, 0., "Genetic 
Packing of Rectangles on Transputers", In Transputing '91, Welch, 
P., Stiles, D., Kunii, T.L., and Bakkers, A. (Eds), IOS Press, 
1991, pp. 593-608. 

226 



Kuehn85 

Bibliography 

Kuehn, I.T., Siegel, H.I., Tuomenoksa, D.L., and Adams, G.B., 
"The Use and Design of PASM", In Integrated Technology for 
Parallel Image Processing, Academic Press, Levialdi, S. (Bd), 
1985, pp. 133-153. 

Lambrinoudakis91 Lambrinoudakis, C., A Cost-Effective Architectural 
Progressionfor Enhancing the Numeric Performance and General 
Purpose Capability of SIMD arrays, Ph.D. dissertation, Queen 
Mary and Westfield College, September 1991. 

Lawrie75 

Lea88 

Lea91 

Lee87 

Lenoski92 

Levialdi88 

Levitan87 

Li89 

Liddell87 

Lawrie, D.H., "Access and alignment of data in an array 
processor", IEEE Trans. on Computers, Vol. 24, No. 12, 
December 1975, pp. 1145-1155. 

Lea, R.M., and Bolouri, H.S., "Fault tolerance: step towards 
WSI", lEE Proc. Pt. E, Vo!. 135, No. 6, November 1988, pp. 
289-297. 

Lea, R.M., and Jalowiecki, LP., "Associative Massively Parallel 
Computers", Proceedings of the IEEE, Vo!. 79, No. 4, April 1991, 
pp. 469-479. 

Lee, S.Y., and Aggarwal, J.K., "Parallel 2-D Convolution on a 
Mesh Connected Array Processor", IEEE Trans. on PAMI, Vo!. 9, 
No. 4, July 1987, pp. 590-594. 

Lenoski, D., Laudon, 1., loe, T., Nakahira, D., Stevens, L., 
Gupta, A., and Hennessy, I., "The DASH Prototype: 
Implementation and Performance", In Proc. 19th Int. Sym. on 
Computer Architecture, 1992, pp. 92-103. 

Levialdi, S., "Computer Architectures for Image Analysis", In 
Proc. 9th Int. Conf. on Pattern Recognition, Rome, Italy, 
November 1988, pp. 1148-1158. 

Levitan, S.P., Weems, C.C., Hanson, A.R., and Riseman, E.M., 
"The UMass Image Understanding Architecture", In Parallel 
Computer Vision, Academic Press, Uhr, L. (Ed), 1987, pp. 215-
248. 

Li, K., and Cheng, K.H., "Job-Scheduling in Partionable Mesh 
Connected Systems", In Int. Conf. on Parallel Processing, 1989, 
pp. 65-72. 

Liddell, H.M., and Parkinson, D., "Mapping Large Scale 
Computational Problems on a Highly Parallel SIMD Computer", In 
Proc. Third SIAM Conf. on Parallel Processing for Scientific 
Applications, Los Angeles, December 1987. 

227 



Lim87 

LSI89 

Maresca88 

Marr82 

Marslin91 

Matthies89 

Bibliography 

Lim, H.S., and Binford, T.O., "Survey of Parallel Computers", In 
Proc. Image Understanding Workshop, Los Angeles, Califonia, 
February 1987, pp. 644-654. 

LSI Logic, Short/orm Catalog, November 1989. 

Maresca, M., Lavin, M.A., and Li, H., "Parallel Architectures for 
Vision", Proc. of the IEEE, Vol. 76, No. 8, August 1988, pp. 970-
981. 

Marr, D., Vision, W.H. Freeman, 1982. 

Marslin, R., Sullivan, G.D., and Baker, K.D., "Kalman Filters in 
Constrained Model Based Tracking", In British Machine Vision 
Conference 1991, Mowforth, P. (Ed), Springer-Verlag, 1991, pp. 
371-374 

Matthies, L., Kanade, T., and Szeliski, R., "Kalman filter-based 
algorithms for estimating depth from image sequences", 
International Journal of Computer Vision, Vol. 3, 1989, pp. 209-
236. 

Maybeck79 Maybeck, P.S., Stochastic models. estimation and control, Vol. 1, 
Academic Press, 1979. 

Minor81 Minor, L.G., and Sklansky, 1., "The Detection and Segmentation 
of blobs in infrared images", IEEE Trans. SMC, Vol. 11, No. 3, 
March 1981, pp. 194-201. 

Nass92 Nass, R., "Massively Parallel System Delivers 68,500 MIPS", 
Electronic Design, Vol. 40, No. 21, October 1992, pp. 89-90. 

Nevatia82 Nevatia, R., Machine Perception, Prentice-Hall, 1982. 

Ni c k 0 11 s 90 Nickolls, J .R., "The Design of the MasPar MP-I: A Cost Effective 
Massively Parallel Computer", In Proc. of COMPCON, IEEE, San 
Francisco, February 1990, pp. 399-402. 

Nicolc88 Nicole, D.A., "ESPRIT Project 1085 Reconfigurable Transputer 
Processor Architecture", In Proc. CONPAR, Manchester, 
September 1988, pp. 12-39. 

Noblc87 Noble, 1.A., "Finding Corners", In Proceedings of the Third Alvey 
Vision Conference, Cambridge, September 1987, pp. 267-274. 

Nudd88 Nudd, G.R., Howarth, R.M., Atherton, T.J., Francis, N.D., 
Vaudin, G.J., and Walton, D.W., "A Heterogeneous Architecture 
for Parallel Image Processing", In UK Information Technology, 
Swansea, July 1988, pp. 495-499. 

228 



Bibliography 

Nudd89 Nudd, G.R., Atherton, T.J., Howarth, R.M., Clippingdale, S.C., 
Francis, N.D., Kerbyson, D.J., and Packwood, R.A., "WPM: A 
Multiple-SIMD architecture for image processing", In Proc. 3rd lEE 
Conf. on Image Processing and Its Applications, Warwick 1989, 
pp. 161-165. 

Nudd91 Nudd, G.R., Kerbyson, D.J., Atherton, T.J., Francis, N.D., 
Packwood, R.A., and Vaudin, G.J., "A Massively Parallel 
Heterogeneous VLSI Architecture for MSIMD Processing", In 
Algorithms and Parallel VLSI Architectures, Elsevier North 
Holland, 1991. 

Nudd92a Nudd, G.R., Francis, N.D., Atherton, T.J., Kerbyson, D.J., 
Packwood, R.A., and Vaudin, G.J., "A Hierarchical Multiple
SIMD Architecture for Image Analysis", Machine Vision and 
applications, Vol. 5, No. 2, May 1992, pp. 85-103. 

Nudd92b Nudd, G.R., Atherton, T.J., and Kerbyson, D.J., "An 
Heterogeneous M-SIMD Architecture for the Kalman Filter 
Controllerd Processing of Image Sequences", In Proc. CVPR, 
IEEE, Champaign, Illinois, June 1992, pp. 842-845. 

Nudd92c Nudd, G.R., Kerbyson, D.J., and Atherton, T.J., "Pyramid 
Architectures for SDI Sensor Processing". In Signal Processing 
Monograph, B-K Dynamics, Palmer, P. (Ed), Chapter 7.2, 1992. 

O'Gorman89 O'Gorman, R, Design and Application of the RPA 1I, Ph.D. 
dissertation, University of Southampton, Department of Electronics 
and Computer Science, 1989. 

Page89 Page, I., "Graphics + Vision = SIMD + MIMD (A novel dual
paradigm approach)", In Parallel Processing for Computer Vision 
and Display, Addison-Wesley, Dew, P.M., Earnshaw, R.A., and 
Heywood, T.R. (Eds), 1989, pp. 89-103. 

Parsytec88 Parsytec GmbH, Parallel processing in industry, Aachen, Germany, 
1988. 

Parsytec91 Parsytec GmbH, Beyond the Supercomputer - Parsytec GC, 
Aachen, Germany, 1991. 

Pass85 Pass, S., "A VLSI Array Processor for Image and Signal 
Processing". In Advanced Signal Processing, Peter Peregrinus, 
1985, pp. 218-20. 

Patterson80 Patterson, D.A., and Ditzel, D.R., "The case for the reduced 
instruction set computer", Computer Architecture News, Vol. 8, 
No. 6, October 1980, pp. 23-33. 

229 



Bibli°&rnDhy 

Patterson91 Patterson, M., Personal Communication, University of Warwick, 
February 1991. 

Pattipatti90 Pattipatti, K.R., Kurien, T., Lee, R., and Luh, P.B., "On Mapping 
a Tracking Algorithm Onto Parallel Processors", IEEE Trans. on 
AES, Vol. 26, No. 5, September 1990, pp. 774-790. 

Peterson91 Peterson, C., Sutton, J., and WHey, P., "iWarp: A lOO-MOPS 
LIW Microprocessor for Multicomputers", IEEE Micro, Vol. 11, 
No. 3, June 1991, pp. 26-29 and 81-87. 

Pfeiffer89 Pfeiffer, C., and Ciplickas, "A Conceptual Design of the MSX On
Board Signal and Data Processor", Tech. Rept 10045-1, Internal 
Document, Hughes Aircraft Company, July 1989. 

Pfister87 Pfister, G.F., Brantley, W.C., George, D.A., Harvey, S.L., 
Kleinfelder, W.J., McAuliffe, K.P., Melton, E.A., Norton, V.A., 
and Weiss, J., "An Introduction to the IBM Research Parallel 
Processor Prototype (RP3)", In Experimental Parallel Computing 
Architectures, Elseveir, Dongarra, J.J. (Ed), 1987, pp. 123-140. 

Picone90 Picone, J.M., Lambrakos, S.G., and Boris, J.P., "Timing Analysis 
of the Monotonic Logical Grid for Many-Body Dynamics", SIAM 
1. Sci. Stat. Comput., Vol. 11, No. 2, March 1990, pp. 368-388. 

Pratt78 Pratt, W., Di~ital Ima~e Processin~, Wiley, 1978. 

Procter91 Procter, B., "Technology and Market Trends", In Proc. of Parallel 
Computing workshop, University of Newcastle, September 1991, 
pp. IX.l - IX.7. 

Rattner91 Rattner, J., "The New Age of Supercomputing", In Distributed 
Memory Computing, Bode, A. (Ed), Spinger Verlag, 1991, pp.I-6. 

Reddaway73 Reddaway, S.F., "DAP - a Distributed Array Processor", In 1st 
Annual Symposium on Computer Architecture, Gainsville, Florida, 
December 1973, pp. 61-65. 

Reddaway79 Reddaway, S.F., "The DAP Approach", Infotech State of the Art 
Report, Vol. 2, 1979, pp. 185-205. 

Reddaway85 Reddaway, S.F., "Median Filtering on the DAP", Tech. Rept 
CM98, Active Memory Technology, Reading, England, October 
1985. 

Reddaway88 Reddaway, S.F., "Mapping Images onto Processor Array 
Hardware", In Parallel Architectures and Computer Vision, 
Clarendon Press, Page, I. (Ed), 1988, pp. 299-314. 

230 



Bibliography 

Reddaway90 Reddaway, S.F., "Signal Processing on a Processor Array", In 
Massively Parallel Computing with the DAP, Pitman, Parkinson, 
D., and Litt, J. (Eds), 1990, Chapter 4, pp. 55-75. 

Reeves80 Reeves, A.P., "On Efficient Global Infonnation Extraction Methods 
for Parallel Processors", CVGIP, Vol. 14, 1980, pp. 159-169. 

Reeves84 Reeves, A.P., "Parallel Computer Architectures for Image 
Processing", CVGIP, Vol. 25, 1984, pp. 68-88. 

Rosenfeld82 Rosenfeld, A., and Kak, A.C., Di&ial Picture Processin&, Vol. 1, 
Academic Press, 1982. 

Rosenfeld88 Rosenfeld, A., Ornelas, J., and Hung, Y., "Hough Transform 
Algorithms for Mesh-Connected SIMD Parallel Processors", 
CVGIP, Vol. 41, 1988, pp. 293-305. 

Rushton89 Rushton, A., Reconfi&urable Processor-Array: a bit-sliced Parallel 
computer, Pitman, 1989. 

Schaefer87 Schaefer, D.H., Ho, P., Boyd, J., and Vallejos, C., "The GAM 
Pyramid", In Parallel Computer Vision, Academic Press, Uhr, L. 
(Ed), 1987, pp. 15-42. 

Schalkoff89 Schalkoff, R.J., Di&ital Ima&e Processin& and Computer Vision, 
Wiley & Sons, 1989. 

Segal90 Segal, A., "Heterogeneous Parallel Processor for a Model-Based 
Vision System", In Applications of Optical Engineering: Proc. of 
OE/Midwest, SPIE, 1990, pp. 601-614. 

Seitz85 Seitz, C.L., "The Cosmic Cube", Communications of the ACM, 
Vo!. 28, No. 1, January 1985, pp. 22-33. 

Shu88 Shu, D.B., and Nash, J.G., "Minimum spanning tree algorithm on 
an image understanding architecture", In Hybrid Image and Signal 
Processing, SPIE, 1988, pp. 212-228. 

Siegel81 Siegel, H.J., Siegel, L.J., Kemmerer, F.C., Mueller, P.T., 
Smalley, H.E., and Smith, S.D., "PASM : A Partionable 
SIMD/MIMD System for Image Processing and Pattern 
Recognition''. IEEE Trans. on Computers, Vo!. 30, No. 12, 
December 1981, pp. 934-947. 

Simmons89 Simmons, M., Koskela, R., and Bucher, I., Instrumentation for 
Future Parallel Computin& Systems, Addison Wesley, ACM 
Frontier Series, 1989. 

231 



Singh91 

Singh92 

SIorach88 

Bibliography 

Singh, A., "Incremental Estimation of Image-Flow Using a Kalman 
Filter", In IEEE Workshop on Visual Motion, Princeton, New 
Jersey, October 1991, pp. 36-43. 

Singh, I.P., Holt, C., Totsuka, T., Gupta, A., and Hennessy, 
I.L., "Load Balancing and Data Locality in Hierarchical N-body 
Methods", Tech. Rept CSL-TR-92-505, Stanford University, 
Computer Systems Lab, 1992. 

Slorach, F., and Alsford, I.R., "A RAM Based CMOS 
Histogrammer Integrated-Circuit", IEEE Trans. on Nuclear Science, 
Vol. 35, No. 1, 1988, pp. 209-212. 

Sorenson85 Sorenson, H.W., Kalman Filtering: TheOI)' and Applications, 
IEEE Press, 1985. 

Stephens89 Stephens, M., and Harris, C., "3D Wire-Frame Integration from 
Image Sequences", Image and Vision Computing, Vol. 7, No. 1, 
February 1989, pp. 24-30. 

Stokar92 Stokar, D., "A Heterogeneous Multiprocessor System for Real 
Time Image Processing", In Proc. WOTUG 15th Technical 
meeting, IOS Press, August 1992. 

Suetens92 Suetens, P., Fua, P., and Hanson, A.I., "Computational Strategies 
for Object Recognition", ACM Computing Surveys, Vol. 24, No. 
1, March 1992, pp. 5-61. 

Tanimoto85 Tanimoto, S.L., "Architectural Issues for Intermediate-Level 
Vision", Tech. Rept 85-08-11, Dept. of Computer Science, 
University of Washington, Seattle, August 1985. 

Tanimoto86 Tanimoto, S.L., "Paradigms for Pyramid Machine Algorithms", In 
Pyramidal Systems for Computer Vision, Springer-Verlag, Cantoni, 
V., and Levialdi, S. (Eds), 1986, pp. 173-194. 

Tanimoto87 Tanimoto, S.L., Ligocki, T.I., and Ling, R., "A Prototype 
Pyramid Machine for Hierarchical Cellular Logic", In Parallel 
Computer Vision, Academic Press, Uhr, L. (Ed), 1987, pp. 43-85. 

TMC89 Thinking Machines Corporation, Connection Machine Model CM-2 
Technical Swnmary, May 1989. 

TMC92 Thinking Machines Corporation, The Connection Machine CM-5 
Technical Summary, Ianuary 1992. 

Trew91 Trew, A., and Wilson, G., Past. Present. Parallel, Springer-Verlag, 
1991. 

232 



BiblioWlPhy 

Turek92 Turek, I., Wolf, I.L., and Yu, P.S., "Approximate Algorithms for 
Scheduling Parallelizable Tasks", In Proc. Perfonnance Evaluation 
Review, ACM, Rhode Island, Iune 1992, pp. 225-236. 

Uhr82 Uhr, L., "Comparing Serial Computers, Arrays, and Networks 
Using Measures of 'Active Resources"', IEEE Trans. on 
Computers, Vol. 31, No. 10, October 1982, pp. 1022-1025. 

Vaudin89 Vaudin, G.I., Nudd, G.R., Atherton, T.J., Clippingdale, S.C., 
Francis, N.D., Howarth, R.M., Kerbyson, D.J., Packwood, R.A., 
and Walton, D.W., "A Generalised Parallel Architecture for Image 
Based Algorithms", In Proc. Eurographics, Hamburg, September 
1989. 

Vaudin91 Vaudin, J., A Unified programming system for a mUlti-paradigm 
Parallel architecture, Ph.D. dissertation, Department of Computer 
Science, University of Warwick, September 1991. 

Vega89 Vega-Riveros, I.F., and Iabbour, K., "Review of motion analysis 
techniques" lEE Proc. Pt. I, Vol. 136, No. 6, December 1989, pp. 
397-404. 

Walton89 Walton, D.W., "The WPM Count Chip", VLSI Group Memo, 
Computer Science Dept, University of Warwick, 1989. 

Weems89 Weems, C.C., Levitan, S.P., Hanson, A.R., and Riseman, E.M., 
"The Image Understanding Architecture", International Journal of 
Computer Vision, Vol. 2, 1989, pp. 251-282. 

Weems91 Weems, C.C., Hanson, A.R., and Riseman, E.M., "The 
Architectural Requirements of Image Understanding with Respect to 
Parallel Processing", Proc. of the IEEE, Vol. 79, No. 4, April 
1991, pp. 537-548. 

Williams88 Williams, L.R., and Hanson, A.R., "Depth from Looming 
Structure", In Image Understanding Workshop, DARPA, April 
1988, pp. 1047-1051. 

WSTL90 Warwick Strategic Technology Laboratories Ltd., Image Processing 
Algorithms from 2D Image Arrays for Fuzes, Report for RARDE 
Contract MGW31B/2150, University of Warwick Science Park, 
England, 1990. 

233 



Appendix A 

Cluster Bus Ports 

The following is a full list of all ports, and their function, that exist on the Cluster bus. 

The names used for each port are those used by the Cluster assembler (CLASS) and 

the number in brackets indicate the number of the port, out of the possible 32. Each 

port is indicate as either being a source port, able to write data onto the Cluster bus, a 

destination port, able to read data from the Cluster bus, or both. Example use of each 

of the ports is given using CLASS. 

ALU (0) 

(src) The internal Y-bus of the ALU appears on the Cluster bus. Note the Y-bus is 

used in operations such at SORR as well as SORY. A special case exists when 

the immediate operand is placed on the Cluster bus in the fIrst half cycle and 

latched at the mid point into the D-Iatch of the ALU. The Y-bus of the ALU is 

selected as source for the second half cycle. Note that the D-Iatch is transparent 

in all other cases. These two cases are shown in the following CLASS code. 

/* ALU as source only */ 

; MOVE SORY ROO ; ; EDGE = ALU 

/* immediate ALU cycle where EDGE takes the value of ROO+16 */ 

; ADD TODRR ROO i OxlO EDGE a ALU 

IMMED (2) 

(src) Places the immediate operand on the Cluster bus. 

/* source a value of Ox1232 (hex) on the Cluster bus */ 

; Ox1232 

234 



Ammdix A - Cluster Bus Ports 

SEQ (3) 

(src) Places the value of the D outputs from the sequencer onto the Cluster bus. 

(dest) The sequencer may read its D inputs at any time except when selected as 

source. Note, due to timing constraints, when the sequencer is performing an 

instruction using the D inputs to calculate the next address, only the immediate 

operand can be used as source, e.g. in a BRA_D instruction. If the value is to 

come from another source then it should be placed on the sequencers stack and 

used in the next cycle. However, other instructions, such as FOR_D, can be 

used with any source. 

/* push value from ALU onto the stack and use in next cycle */ 

PUSH_Dj MOVE SORY ROO 

BRA S 

PEINV (4) 

; 

; SEQ = ALU 

; 

(dest) This Performs a logical AND between the invert bit of the DAP control word 

and the LSB of the latched data bus. This provides a broadcast facility to the 

SIMD array. A DAP instruction, such as QT, can be used in conjunction with 

PEINV. When PEINV is zero, the DAP instruction effectively becomes QF. 

Note that the PEINV latch has to be written to the cycle before being used, and 

is automatically set the cycle after. 

/* PEINV - bitO of ROO */ 

; MOVE SORY ROO ; PEINV = ALU 

/* AND function performed */ 

; QT 

/* PEINV is now set and can be used again */ 

COND (5) 

(src) Sets up the condition code that is selected by the sequencer for condition 

branching operations. Valid condition codes are : C (Carry), N (Negative), V 

(Overflow), Z (Zero), ULEB (unsigned less than or equal borrow mode), 

ULE (unsigned less than or equal), SLT (signed less than), SLE (signed less 

than or equal), ANY (any output from count), SN (synchronise on north), SS 

(synchronise on south), SE (synchronise on east), SW (synchronise on west). 

235 



Appendix A - Cluster Bus Ports 

start: 

/* set up condition code register on ALU operation */ 

; MOVE SORY ROO ; COND = Z 

BRCC_D; ; SEQ = $start 

EDGE (8) 

(src) Places the value of the DAP Edge Register onto the Cluster bus. Note there is a 

one cycle delay when the between the DAP array writing to the Edge Register 

and it being able to be used on the Cluster bus. 

/* 2 cycles to read column to edge */ 

RXO ; 

RXO ; 

/* One cycle delay */ 

; 

/* the Edge Register can now be used on the Cluster bus */ 

; ; ALU = EDGE 

(dest) The value on the Cluster bus is written into the Edge Register. Note that it is 

possible to write to the Edge Register from the Cluster bus and the DAP array 

simultaneously. This actually results in the Edge Register taking the value from 

the Cluster bus, but also sets an error bit - see PERR. 

; ; EDGE - ALU 

PEADDR (9) 

(dest) Sets the memory address for the DAP RAM. The prototype Clusters have 

8Kbits of memory per PE starting at address Ox2000. PSIM, the Cluster 

simulator, has lKbits of memory per PE starting at O. Note that the address 

written to the PEADDR destination can be used by the DAP instruction in the 

same cycle. This is due to the one cycle pipelined operation of the DAP PEs. 

; PEADDR - Ox200 

RCSEL (10) 

(dest) This selects which column/row (0-15) is to be read in a DAP associative 

response operation (DAP group 2 instruction). It must be written to one cycle 

before the DAP instruction is specified. 

236 



t\pJ)endix A - Cluster Bus Pons 

/* select row/column 4 */ 

; RCSEL = 4 

RXO ; 

RXO 

; ; ; 

/* the Edge register now contains the associative response */ 

SHFTCTL (11) 

(dest) Specifies what happens when data is shifted on the array. It is used to zero 

inputs on the edges of a Cluster, or on the edge of the whole SIMD array. It 

uses the lowest six bits from the Cluster bus, each with a specific use: 

bit 0 - Cluster mode. 

o = Cluster mode, 1 = array mode. In Cluster mode the edges of the 

16x16 OAP array within a Cluster are wrapped around to the opposite 

edge. In array mode, the edges are connected to adjacent Clusters. 

bit 1 - cyclic mode 

o = edges zeroed on shifting, 1 = data wrapped around. Has no effect 

in array mode. 

bit 2 - 0 = south edge zeroed on a shift north, 

bit 3 - 0 = west edge zeroed on a shift east, 

bit 4 - 0 = north edge zeroed on a shift south, 

bit 5 - 0 = east edge zeroed on a shift west, 

DCTRL (12) 

1 = passes data through 

1 = passes data through 

1 = passes data through 

1 = passes data through 

(dest) The D-plane control. When Bit 0 of this latch is set, the O-plane will either be 

loaded from, or in the OAP PEs, depending upon OAP instruction. Note, this 

bit must be reset immediately after use. The D-plane has not been used within 

the prototype Cluster. 

/* write 0 ANDed with D to memory */ 

; SO DCTRL = 1 

/* reset D-plane control bit */ 

; DCTRL = 0 

237 



Almendix A - Cluster Bus Ports 

PERR (13) 

(src) Indicates if an error has occurred, since reset on the SIMD array. Two error 

conditions exist, these are : 

1) if the edge register has been updated from both the Cluster bus and 

the DAP array in the same cycle 

2) if shifting on the array took place while in array mode and the 

adjacent Cluster was not shifting in the same direction. Note, the shift direction 

that caused the error is also stored. 

A total of 6-bits are used to store the error bits : 

bit 0- if set indicates shift error occurred when shifting north 

bit 1 - if set indicates shift error occurred when shifting south 

bit 2 - if set indicates shift error occurred when shifting east 

bit 3 - if set indicates shift error occurred when shifting west 

bit 4 - if zero indicates an error when shifting in array mode 

bit 5 - if zero indicates an error with the Edge Register has occurred 

(dest) Clears the error flags when written to. 

COUNT (16) 

(src) This port reads the number of bits set from the SIMD array. It is active three 

cycles after the data was active on the SIMD memory lines. 

/* make DAP memory line active */ 

PEADDR .., Ox2102 

; 

; 

/* Can now read the value from the COUNT */ 

; ALU .., COUNT 

RAM (24) 

(src) Places the value of the shared memory RAM latch onto the Cluster bus. Note, 

reading the shared memory takes three cycles. 

/* set up address to be read by writing to ADDR */ 

; ADDR = 0 

/* data read from RAM into RAM latch */ 

238 



Al!penclix A - Cluster Bus Ports 

; ; 

/* data read from the RAM latch across the Cluster bus */ 

; EDGE = RAM 

(dest) Used in conjunction with ADDR to write a value into the shared memory. This 

is a three cycle operation, but appears as two cycles in CLASS and can be 

overlapped The two instructions have to be performed immediately following 

each other. 

/* put value to be written into the RAM latch */ 

; ; ; RAM = 10 

/* write shared memory address for the data to ADDR */ 

; ;; ADDR = 200 

/* data is now written into the shared memory */ 

; ; ; 

COMMS (25) 

(src) Places the value from the Transputer latch onto the Cluster bus. Used for 

debugging only. 

(dest) Places the value of the Cluster bus into a latch which can be read by the 

Transputer. Used for debugging only. 

ADDR (26) 

(dest) This is the shared memory address port. For an explanation of its use see 

RAM above. 

LEDS (30) 

(dest) Displays a value from the Cluster bus on a set of sixteen leds, one for each bit 

of the Cluster bus. Note that this is implemented in the hardware only and not 

the simulator, PSIM. 

239 



Appendix B 

The Cluster Assembler 

An overview of the Cluster Assembler, CLASS, with example routines is given here. 

Each CLASS instruction contains four fields for the sequencer, the ALU, the DAP, 

and the Cluster bus control. Each field is separated by a semi-colon, thus a single 

instruction has the form : 

Sequenceri ALU i DAP i Cluster bus control 

The assembler makes explicit the memory space used for program variables and code. 

Three memory spaces exist within a Cluster, those of the instruction memory. the 

controller's shared memory and the PE memory. Three labels are used to denote the 

different memory spaces, CSEG, DSEG and PSEG respectively. Further, labels are 

used to denote either the address of variables, within the DSEG and PSEG memory 

spaces, or code in the CSEG memory space. Labels are denoted by a character string 

followed by a colon. 

The assembler also uses the C Pre-Processor, thus enabling C constructs, such as 

fdefine, to be used for macro definitions. The sequencer, ALU and DAP instruction 

formats are described below. The Cluster bus ports are detailed in Appendix A. 

The Sequencer 

Only a subset of the functionality of the sequencer is used within the controller. 

Functions not used are: its multi way branching, 'C' style case statements which can be 

achieved by using 'if then else' structures; master/slave operation; stack extension, for 

240 



APpendix B - The Cluster Assembler 

adding a deeper stack more than 33 words; and interrupts. Full details on the 

sequencer can be found in its data sheet [AMD87]. 

The sequencer has a total of 64 instructions. The following is a list of mnemonics 

which are used within the build up of each instruction. 

1) The data elements 

D - the cluster bus connection 

S - the internal stack 

C - the internal counter 

2) Instructions, with abbreviations in brackets 

- goto BRA (B) 

CALL (C) 

EXIT (XT) 

DJMP (DJ) 

- subroutine call, pushing current address+ 1 onto the stack 

- goto, popping the stack 

- if C= 1 then C=C-l and goto, else C=C-l 

RE T - pop address from the stack 

FOR - initialise a for loop, pushing address+ 1 on stack and loading counter 

POP - pop the stack 

PUSH - push onto the stack 

LOOP - initialise a loop, pushing address+ 1 onto the stack 

CONT - no-operation 

The abbreviated instructions are used in conditional operations, by using the 

abbreviations appended by CC, for condition code being true, and NC, for condition 

code being false. They are also combined with one of the data elements, either D or S. 

The FOR loop can use only the D value, and POP /PUSH can use D or C values. Thus 

an instruction such as XTNC_D means 'if condition code is false then exit using the 

value from the D bus input'. 

The ALV 

The instruction to the ALU is complex and a careful understanding of the data sheet 

[AMD86] is required if the programmer wishes to use this part to its full advantage. 

The main operations, in the form of single and two operand instructions are explained 

below, some of which are used in subsequent examples. 

241 



Appendix B - The Cluster ASsembler 

The opcode for single and two operand instructions is made up of three parts. Firstly 

the operation is specified :-

Single operand 

MOVE (copy) 

COMP (complement) 

INC (increment) 

NEG (logical negation + 1) 

Two operand 

SUBR (subtract operand 1 from 2) 

SUBS (subtract operand 2 from 1) 

ADD (addition) 

SUBRC, SUBSC, ADDC (with carry) 

AND,NAND,EXOR,NOR,OR,EXNOR 

(bitwise logical) 

The second part is a composite formed from either SO (single operand), or TO (Two 

Operand), the source operand(s), and then the destination operand. These operands 

can be either: D, the input D latch value from the Cluster bus; R, a register from the 

internal register file; A, the accumulator; or Z, a zero. 

If an internal register is used then its number must also be specified as the third part of 

the ALU opcode. If no register is used, then the third part denotes the destination 

operand, which is dropped from the second part of the opcode. This is either A, or Y 

(the internal bus), preceded by 'NR'. 

Example include:-

'INC SOA NRY' meaning increment the single operand A and place the 

result on the Y internal bus; 

'ADD TODRR R06' meaning add the two operands D and R06 putting the 

result in R06. 

N.B. the internal Y bus is used to transfer the result of both these operations to 

their destinations and can be made to source the Cluster bus with the resultant value. 

The DAP PEs 

The DAP is programmed using the same the APAL mnemonics as defined in the DAP 

series Technical overview [AMT88]. All function groups except 6, 14 and 15 have 

been implemented as discussed in Section 4.4. The mnemonic of a DAP instruction is 

a composite of: the destination operand(s); the operation to be performed; and the 

source operand(s), in that order. 

242 



Am;>eodjx B - The Cluster Assembler 

The PE one-bit registers are referred to as Q, C, A and S, the Edge Register, across 

the rows of the array, as R, which is modified with to OR when it broadcasts down 

the columns of the array. A logic one is indicated by T and zero by F. Operations 

which may be performed are: addition, indicated by P; and a logical AND, indicated 

by M. An optional N may be used to invert the source, and I makes the instruction 

activity controlled by the A register. A suffix to the instruction indicates the direction 

of shifts, and addition in vector operations, in the form .N, .E, .W, .S, for North, 

East, West and South communications respectively. 

Examples of the DAP instructions include :-

ASN A = inverted store plane 

CQPQS Q = Q + S, C = carry from this operation 

QRO 

AMQ.N 

Q = Edge Register across columns 

A = A and (Q shifted N) 

The DAP instruction set is highly irregular, in that the functions that apply to one flag 

may not necessarily be perfonned to the other flags. The activity controlled operations 

take two cycle and the vector additions, four. For these operations, the instruction is 

repeated in all required cycles, and if not supplied is treated as an error at compilation. 

Example CLASS code 

Two example CLASS operations are included below. The first is the calculation of the 

Sobel filter, which uses macro definitions of functions for addition and copy etc. The 

second is a code segment for the calculation of the median across the Cluster SIMD 

array using the SIMD associative count. 

243 



Awendix B - The Cluster Assembler 

Sobel Filter CLASS code 

/* Macro definitions */ 

'define rl RlO 

'define r2 Rll 

'define r3 Rl2 

/* abs : srcdest <- (0 - srcdest) if C clear */ 

'define abs(nbits,srcdest) 

; QCN 

; AQ 

MOVE SODR rl QT srcdest-l 

FOR D CQ nbits 

INC SORR rl CQPCSN PEADDR=ALU 

SIQ 

DJMP_S; SIQ 

/* add : dest <- (srcl + src2), Leaves carry in C */ 

'define add(nbits,dest,srcl,src2) 

MOVE SODR rl dest-l 

MOVE SODR r2 srcl-l 

MOVE SODR r3 . src2-l , 

FOR D CF nbits 

INC SORR r2 QS PEADDR=ALU 

INC SORR r3 ; CQPCQS PEADDR=ALU 

DJMP_S; INC SORR rl SQ PEADDR=ALU 

/* addn : dest <- (srcl + src2.dir) */ 

'define addn(nbits,dest,srcl,src2,dir) 

FOR D MOVE SOZR rl ; CF ; nbits 

ADD TODRY rl ; QS ; src2 PEADDR=ALU 

INC SORR rl QQ.dir 

ADD TODRY rl CQPCQS srcl-l PEADDR=ALU 

DJMP_S; ADD TODRY rl SQ dest-l PEADDR=ALU 

/* copyn : dest <- src.dir */ 

'define copyn(nbits,dest,src,dir) 

FOR D MOVE SOZR rl i nbits 

ADD TODRY rl QS src PEADDR=ALU 
. INC SORR rl i QQ.dir , 

DJMP_Si ADD TODRY rl SQ dest-l PEADDR=ALU 

/* storecan - store c in store */ 

'define storecan(dest) 

i QC i 

i ADD TODRY rl i SQ i dest PEADDR=ALU 

\ 
\ 
\ 
\ 
\ 
\ 
\ 

\ 
\ 
\ 
\ 

\ 
\ 
\ 

\ 
\ 
\ 
\ 
\ 

\ 
\ 
\ 
\ 

\ 

\ 

244 



Appendix B - The Cluster Assembler 

/* subn : dest <- (srcl - src2.dir) */ 

#define subn(nbits,dest,srcl,src2,dir) 

QT 

FOR D ; 

; 

; 

DJMP S; -

/* Start 

image2: 

image: 

MOVE SOZR rl 

ADD TODRY rl 

INC SORR rl 

ADD TODRY rl 

ADD TODRY rl 

of main Sobel 

PSEG 

DEFW 0 

DEFS 8 

CQ 

QSN 

QQ.dir 

CQPCQS 

SQ 

code */ 

nbits 

src2 PEADDR=ALU 

srcl-l PEADDR=ALU 

dest-l PEADDR=ALU 

/* Cluster SIMD memory */ 

/* image2 = 2 * image */ 

\ 
\ 
\ 
\ 
\ 
\ 

DEFW 0,0 /* pad image to 10 bits, same size as temp*/ 

temp: DEFS 10 

tempx: DEFS 11 

result: DEFS 11 

sobel: 

CSEG /* Cluster instruction memory */ 

/* Calculate vertical Gradient */ 

addn(9,$temp,$image2,$image,E) 

storecan($temp) 

addn(lO,$temp,$temp,$image,W) /*temp=2*image+image.E+image.W*/ 

copyn(lO,$tempx,$temp,S) 

subn(lO,$tempx,$tempx,$temp,N) 

abs (10, $tempx) 

/* tempx=temp.N-temp.S */ 

/* negate if tempx < 0 */ 

/* Calculate horizontal gradient */ 

addn(9,$temp,$image2,$image,N) 

storecan($temp) 

addn(lO,$temp,$temp,$image,S) 

copyn(lO,$result,$temp,E) 

subn(lO,$result,$result,$temp,W) 

abs(lO,$result) 

add(lO,$result,$result,$tempx) 

storecan($result) /* result-Itempxl+lresultl */ 

HALT;; ; 

245 



Rank Order Filter CLASS code 

fdefine nbits 

fdefine RANK 

PSEG 

image:DEFS 8 

mask: DEFS 1 

tmp: DEFS 1 

Ox8 

112 

Awendix B - The Cluster Assembler 

/* number of bits in data word */ 

/* Rank-I required */ 

/* image data */ 

/* resultant mask */ 

CSEG /* Cluster Code */ 

i AR i EDGE OxFFFF 

AMRO i 

i QA i 

SQ PEADDR $mask 

/* main loop */ 

MOVE SODR R03 i ALU ... RANK 

FOR D MOVE SOZR ROI i SEQ = nbits 

INC SORR ROI i AS ; PEADDR .. $mask 

SUBS TODRY ROI AMS $image+8 PEADDR = ALU 

i ; QA i COND = N 

SQ PEADDR .. $tmp 

MOVE SODR R02 ALU ""' COUNT 

AS i PEADDR = $mask 

SUBS TODRY ROI AMSN $image+8 PEADDR - ALU 

MOVE SOD NRA i ALU ... COUNT 

SUBR TORAY R03 ; 

BRCC _Di SUBS TORAA R02 SEQ .. $zero 

DJMP_Si SQ PEADDR .. $mask 

BRA D SEQ - Send 

zero: 

SUBR TORAY R03 

BRCC_Di . QA SEQ - $next , 
; ; SQ PEADDR .. $mask 

next: 

DJMP Si -
end: 

AS PEADDR - $mask 

MOVE SODR R04 ALU .. COUNT 

HALT 

246 



Appendix C 

The Kalman Filter 

The Kalman filter [Kalman60] uses a state-space representation for a linear random 

system being mcx:lelled. The evolution of the state from one time point to the next in a 

discrete system is written as :-

where 

x(n+l) = F(n)x(n) + G(n)u(n) + v(n) 

x(n) is the system state at time n 

u(n) is a known control input 

v(n) is white, zero-mean Gaussian, additive noise with covariance Q(n) 

F(n) is the state transitional matrix dictating how each state evolves from one 

time pericx:l to the next 

G(n) is the control input gain which dictates how much of the control input 

enters the system. 

The white noise v(n) is used to model the uncertainty of the system, i.e. if the system 

model is accurate then v(n) is small, or if it contains uncertainties then v(n) large. 

Associated with the system states is its covariance, Pen), and is a measure of the 

amount of noise within the system. For simplification it is assumed that the control 

input u(n) is zero in the following formulation of the Kalman filter. 

The output of the system, sometimes described as the observation or measurement 

model, is a linear combination of the observable state and the measurement noise. It 

can be written as :-

247 



ApL?endix C - The Kalman Filter 

zen) = H (n)x(n) + w(n) 

where 

z(n) is the measurement vector 

w(n) is white, zero-mean Gaussian, additive noise with covariance R(n) 

H(n) is the measurement matrix relating the measurements to the system states 

The white noise w(n) is the amount of noise contained within the measurements. 

One iteration of the Kalman filter is performed for each new set of measurements, 

z(n). It has the effect of updating the estimates of the system being modelled along 

with its covariance P(n). The sequence of operations performed for one iteration of a 

Kalman filter is :-

• the one step prediction of the system 

• the observation prediction 

• the update of the predictions with the new measurements 

The operations required are listed below. 

The one step prediction of the system states, ~(n+ Iln), and associated error covariance 

matrix, P(n+ 1In), is given by :-

" " x (n+ Iln) = F(n)x(nln) 

P(n+lln) = F(n)P(nln)F'(n) + Q(n) 

The predicted measurement, ~(nln-I), and associated error covariance, S(n), is given 

by:-

" " z (nln-I) = H(n)x(nln-I) 

S(n) = H(n)P(nln-l)H'(n) + R(n) 

The update of the system state estimates and error covariance is given by :-

"" ["] x(nln) = x(nln-I) + K(n) zen) - z(nln-I) 

P(nln) = [I - K(n)H(n)] P(nln-I) 

248 



A12pendix C - The Ka1man Filter 

where 

I is the identity matrix 

K(n) is known as the Kalman Gain matrix 

The Kalman gain matrix is given by :-

K(n) = P(nln-l)H'(n)S(n)-l 

The Kalman gain matrix detennines how much of the innovation, the difference 

between the observation and the predicted observation, zen) - ~ (nln-l), is to be 

incorporated into the current estimate of the system. 

An initial value for the system states, ~(O), is require along with its error covariance, 

P(O), before the Kalman filter can be initiated. The initial value of the states depends 

heavily upon the system being modelled but in some instances, when there is a one to 

one mapping between modelled states and observations, the flrst observation may be 

taken as the initial state. 

The Extended Kalman Filter 

The extended Kalman filter (EKF) is used when the system being modelled is non

linear. This filter linearises the non-linear system around the predicted state at each 

time point. This can lead to a sub-optimal estimation process, but can be implemented 

if a linearisation function is available for the system and the observation models. The 

operations involved in the EKF are very similar to that of the linear Kalman fllter. The 

system model and measurement models given by : 

x(n+l) = f(x, n) + v(n) 

zen) = hex, n) + wen) 

where 

r() is the state linearisation equation 

h() is the measurement linearisation equation. 

x(n), zen), Yen), and wen) are the same as in the linear Kalman filter. 

249 



Appendix C - The Kalman Filter 

The Jacobians of the state linearisation equation, ~I x=~' and observation linearisation 

model, ~ I x=~' the used in the fIrst order EKF. 

The EKF state prediction equations are given by : 

It. 
X (n+ lln) = f(x(nln), n) 

afl arl P(nln-I) = dx x=~ P(n-Iln-I) dx x=~ + Q(n) 

The EKF measurement prediction equations are given by: 

A A 
Z (nln-I) = h(x(nln-l) 

ahl ahl S(n) = dx x=~' P(nln-I) dx x=~' + R (n) 

The EKF update equations are the same as those for the linear Kalman fIlter. The 

description, for both the Kalman filter and the EKF above, have been kept general and 

no specific system or measurement models have been used. 

250 


	WRAP_Theses_Kerbyson_1992.pdf

