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Abstract

The research presented in this thesis is about the design and implementation of Naira, a parallel, 

parallelising compiler for a rich, purely functional programming language. The source language of 

the compiler is a subset of Haskell 1.2. The front end of Naira is written entirely in the Haskell 

subset being compiled. Naira has been successfully parallelised and it is the largest successfully 

parallelised Haskell program having achieved good absolute speedups on a network of SUN work­

stations. Having the same basic structure as other production compilers of functional languages, 

Naira’s parallelisation technology should carry forward to other functional language compilers.

The back end of Naira is written in C and generates parallel code in the C language which is 

envisioned to be run on distributed-memory machines. The code generator is based on a novel com­

pilation scheme specified using a restricted form of Milner’s ir-calculus which achieves asynchronous 

communication. We present the first working implementation of this scheme on distributed-memory 

message-passing multicomputers with split-phase transactions. Simulated assessment of the gen­

erated parallel code indicates good parallel behaviour.

Parallelism is introduced using explicit, advisory user annotations in the source' program and 

there are two major aspects of the use of annotations in the compiler. First, the front end of the 

compiler is parallelised so as to improve its efficiency at compilation time when it is compiling 

input programs. Secondly, the input programs to the compiler can themselves contain annotations 

based on which the compiler generates the multi-threaded parallel code. These, therefore, make 

Naira, unusually and uniquely, both a parallel and a parallelising compiler.

We adopt a medium-grained approach to granularity where function applications form the unit 

of parallelism and load distribution. We have experimented with two different task distribution 

strategies, deterministic and random, and have also experimented with thread-based and quantum- 

based scheduling policies. Our experiments show that there is little efficiency difference for regular 

programs but the quantum-based scheduler is the best in programs with irregular parallelism.

The compiler has been successfully built, parallelised and assessed using both idealised and 

realistic measurement tools: we obtained significant compilation speed-ups on a variety of simulated 

parallel architectures. The simulated results are supported by the best results obtained on real 

hardware for such a large program: we measured an absolute speedup of 2.5 on a network of 5 

SUN workstations.

The compiler has also been shown to have good parallelising potential, based on popular test 

programs. Results of assessing Naira’s generated unoptimised parallel code are comparable to 

those produced by other successful parallel implementation projects.
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Chapter 1

Thesis overview

1.1 Goals and contributions

The work reported in this thesis is part of an SERC-funded research project on the development 

of a parallel compiler technology for functional programming languages. The two broad aims of 

the project are to:

1. Develop compiler technology to generate scalable, topology-independent parallel code from 

functional programs.

2. Apply this technology to our implementation of compilers themselves and investigate a lay­

ered methodology of compiler building which will supply large amounts of data parallelism 

in addition to the process parallelism normally expected.

In his PhD thesis, Ostheimer [Osth93] proposed a framework for evaluating implicitly parallel 

functional programs, a software-based load bounding scheme and a processor architecture model 

which supports the evaluation model efficiently.

Part of the research presented in this thesis builds on Ostheimer’s work and part of it is focussed 

towards realising the second goal of the project. The aim of the thesis was therefore to develop a 

pilot compiler for the project, parallelise it and implement the back end to generate multi-threaded 

parallel code using the ideas espoused by Ostheimer as a basis. Accordingly, the research starts by 

developing and implementing a sequential compiler, from scratch, called Naira, for a rich functional 

language. The main contributions of the thesis are itemised below. .



1.1. GOALS AND CONTRIBUTIONS

• Design and implementation of a parallel functional language compiler, Naira. A complete 

sequential compiler was first crafted (Chapter 4) including stream I/O and runtime system 

support (Chapters 5, 6) before the parallelisation proceeded as mentioned in the other contri­

butions enumerated in this section. Naira is the second largest parallel Haskell program ever 

written, about 6K lines compared with Lolita with 47K lines, and the largest to be written 

explicitly with parallelism in mind.

• Extension and implementation of many compile-time program 'analyses. After lexical and 

syntax analyses, the research extended, implemented and parallelised four main other com­

piler phases—pattern matching, lambda lifting, type inference and intermediate language 

optimisations (Chapter 4).

• Extensive application of the parallel programming technology of Trinder et al [THLP98]. A 

wealth of experience has been built from using evaluation strategies in small-sized programs 

where the actual workings of the technology has been explored, in the parallelisation of the 

benchmark programs of Chapter 8, and in applying the technology to parallelise Naira itself 

(Chapter 7).

• Design and implementation of a parallel name-server. Allied to the use of evaluation strate­

gies to exploit parallelism is the use of a parallel name-server which creates unique names to 

enable otherwise data-dependent computations to proceed in parallel (Chapter 4).

• Compiling a lazy, purely functional language via w-calculus. Naira is the first parallel compiler 

(for lazy functional languages) that generates parallel code using compilation rules specified 

using an asynchronous v-calculus (Chapter 5).

• Design and implementation of the process and value annotations. The design, implemen­

tation and demonstration of the use of the process and value annotations, as a vehicle for 

specifying parallelism and strictness in user programs, have successfully been realised in this 

research (Chapters 5, 8).

• Extension of Ostheimer’s x-calculus-based compilation scheme for a first-order functional 

language to cover an expressive higher-order functional language. Ostheimer’s work was 

first extended to cover a complete first-order language by adding compilation rules for code­

generating case-expressions, individual modules and complete programs. It was then signif­

icantly enhanced by adding rules for higher-order functions. A working implementation of 

the complete rules is first provided in this thesis (Chapters 1, 2, 5, 8).
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• Generating multi-threaded parallel code based on the extended compilation scheme. Based 

on Naira’s sequential code generator, multi-threaded parallel code is generated using the 

annotation information in the intermediate language and the quality of the generated code 

assessed (Chapters 5, 8).

• Achieved good absolute speedups on both simulated and real hardware. The parallel compiler 

is successfully assessed using the latest technology both on simulators and on real hardware.
i

A wall-clock speedup of 2.5, and a relative speedup of 2.7 have been measured on a network 

of five SUN workstations. To our knowledge, this absolute speedup has not been achieved 

for a similarly large, irregular, parallel lazy functional program as Naira.

1.2 Source language

The language base of our compiler is a subset of standard Haskell 1.2 [HPW92]1, a strongly-typed,

higher-order, non-strict purely functional language. The features of standard Haskell omitted in 

this implementation are the following

• Type classes.

• Fixity declarations.

• The renaming clause in import declarations.

• We assume modules are not mutually recursive.

• I/O requests on binary files1 2 and channels (see Chapter 6) because they are not used by our 

compiler; they can be added (in similar way as I/O on text files is handled) if required.

Clearly, the most significant syntactic omission is type classes which are essentially used to im­

plement ad hoc polymorphism uniformly. These omissions are made solely to simplify the im­

plementation (of overloading) and do not affect the main concern of the thesis—exploitation of 

parallelism. We discuss our implementation of some ad hoc operations on structured objects in 

Chapter 6 so as to make up for the omission of type classes.

We find it convenient to refer to this language simply as Haskell. References to Haskell without 

qualification will, therefore, henceforth refer to the subset under consideration in the implementa­

tion. The standard Haskell language will be referred to as full Haskell.

1The latest edition of Haskell, version 1.4 [PeHa+97], is not used because the implementation was well underway 

before the birth of Haskell 1.4.
2 As a matter of fact, we are not aware of any released Haskell compiler which supports binary files.
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The front end of the compiler is written entirely in Haskell which is the language we compile. 

The compile time transformations implemented (see Section 1.4 below) eventually produce an 

intermediate language ‘middle end’ which is quite suitable for code generation. The back end is 

written in C and our principal target is, following the tradition of, for example [Peyt92, LaHa92], 

to generate code in the C language which can then be handled in the usual way by a C compiler.

1.3 Annotations for parallelism

Following the example set by Burton and others, e.g., [Burt84, Huda91, THLP98, Acht91], our 

approach to parallel programming is to annotate the source program to indicate our intention for 

parallelism explicitly. Accordingly, the programmer assigns explicit parallelism (and strictness) 

annotations to components of tuples, arguments to function/constructor applications, and to the 

expression right-hand sides in non-combinator definitions. Basic arithmetic and Boolean operators 

are strict by default and so their arguments need not be annotated.

Ws make use of two built-in single-argument combinators, process and value, to partition 

programs statically. These combinators correspond, to a certain degree, to the P and I annotations 

in [Kess96], the par and seq strategies in [THLP98] and the FORK and SUSP abstract instructions 

in [Chak94], etc. The operational semantics of these combinators is that an application of process 
to an expression provides a hint to the compiler that the expression may be evaluated concurrently 

with an enclosing expression while the application of value to an expression indicates that the 

expression must be evaluated before passing it to an enclosing expression. An expression without 

either of these tags is evaluated when, and only when, its value is demanded by an enclosing 

expression (i.e., by need). ,

We define a Haskell data type, Mexp, for modal expressions (i.e., expressions that have annota­

tions attached to them),

data Mexp = Need Exp

I Process Exp 

I Value Exp

which is used to reflect the programmer-inserted source annotations in our intermediate language. 

The code generator makes use of this information to generate the appropriate code for a given 

expression.

In order to give a more concrete flavour of our annotations, consider the two function calls (f 

(process g) (process h)) and (f (value x) (value y)). First, g and h must both be function
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applications in order for the effect of process to apply. In the call (1 (process g) (process 1) )), 

the calls for g and h will be created and distributed to different processors of te e machine and all 

three calls for f, g and h can proceed in parallel (see Section 5.5.4 for a more detailed example). 

For the call (f (value x) (value y) ), however, x and y can be any expression forms (but not 

annotated, see the Mexp type)—they will be evaluated on the same processor on which f is called 

before the call is made (Section 8.3.1 gives a detailed explanation of these annotations and their 

implications). An important point to note is that, process causes the evaluation of its argument to 

weak head normal norm (WHNF) while value causes the evaluation of its argument hyper-strictly 

to full normal form.

With this introduction to the process and value annotations, we can now consider the runtime 

behaviour of our compiler on the following realistic but simple program:

Example 1.1 

parmap / [] = []

parmap f {h:t) = process{f h) :valne{parmap f t)

take 1 {parmap g [3, 1/0, 7])

The value annotation in the recursive call to parmap forces the evaluation of the spine of the 

entire list and the use of process causes the operation f to be applied to all the elements of the 

list in parallel. This particular encoding of parmap, therefore, essentially realises data-parallelism. 

The value of this program depends on the strictness of g: if g is a strict function the program 

returns undefined otherwise the singleton list [3] is returned as expected. If the value annotation 

is replaced by process, however, the program terminates regardless of the strictness of g since 

the latter annotation does not force evaluation of its argument (beyond weak head normal form) 

before the argument is demanded.

With these annotations, we create a more flexible parallel programming environment as in GpH, 

Glasgow Parallel Haskell, than for example using the letpar construct3 of [LKID89, Chak94] since 

we use the standard let expression and simply annotate those bindings in the let that we wish to 

be parallel tasks.

Notice also that process and value annotations are used to maximise exploitable parallelism 

while need, the default, is used to maximise safety. We also point out that we make use of 

annotation strategies at two levels in the implementation. First, we use them in the compiler’s 

source code, to parallelise the compiler itself (Chapter 7) and, secondly, they are used in the source

3The letpar construct is added as a new construct in the language. It has similar syntax to the ordinary let

except that its definitions are all parallel tasks [LKID89, Chak94].



1.4. COMPILER STRUCTURE

programs to be compiled using the compiler. These annotations do not specify process mapping 

decisions, in contrast to, for instance, those in [Huda91, Acht91], so that task placement is implicit 

and is handled dynamically.

1.4 Compiler structure

The overall structure of the Naira compiler is depicted in Figure 1.1. The front end of the compiler 

consists of five phases namely, lexical/syntax (the analysis phase), pattern matching, lambda lifting, 

type checking and abstract syntax tree (AST) optimisation phases. The analysis phase inputs the 

(possibly annotated) source program and produces an AST representation for it.

C Source )

▼
[ Laxer / Parser

▼
C AST J

▼
| Pattern Matcher |

V
( AST )

▼
j Lambda Lifter ;

▼
( AST •)

V
Type Checker j-

AST

| AST Optimiser |

▼
( Parser Interface)

T
| Code Generator ~|

▼
( C Code )

▼
Q Compiler j

f Executable )

Figure 1.1: Structure of the Naira compiler

The pattern matching compiler takes the AST input, compiles the syntactic sugar inside pat­

terns and produces an AST closer to the underlying computation model. The lambda lifter then 

inputs the resulting AST and turns functions into supercombinators [Hugh82, John87, PeLe91]. 

Lambda lifting is particularly beneficial in a parallel implementation since supercombinator invo­

cations can be distributed across the processors of the parallel machine without worrying about 

access to free variables. The AST is then type checked and further simplified to produce an 

optimised intermediate language.

The intermediate language, which is given in the form of a Haskell data type (Section 4.3), is
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transformed to a corresponding C structure by the C parser interface (Section 5.5.2) for input to 

the C code generator. The code generator (Section 5.5) generates multi-threaded G code to be 

handled by a C compiler. Generating C has the benefits of enhancing portability because C is 

implemented on a wide variety of platforms [Peyt92]. Another benefit is that of getting a good 

code generator which is important for RISC machines.

In comparison to the highly optimised functional language -• • • 'ers that are widely avail­

able, like the GHC, Glasgow Haskell compiler [PHH+93] and HBC, the - • ■ ML com­

piler [AuJo89b], our research compiler performs a smaller number of compile Lime transformations 

as depicted in Figure 1.1 (see also Section 4.2).

1.5 Runtime organisation

Efficient graph reduction requires a good node representation with modest memory requirements. 

Although the most compact representation of the graph nodes is *’• bes: ideal node design

should aim for efficiency with respect to space usage, node acces- .m«: , ■ • ■ ■■ ■ ion while

remaining flexible for future development without requiring substantial changes to the node layout.

We represent graph nodes by three kinds of heap-allocated objects—function frames, con­

structed cells and suspension objects. Function frames have a simple flat structure (as recom­

mended by Appel in [Appe92]). Constructed cells, which represent aggregate data values, are 

associated with family tags which distinguish them from their siblings. Data constructors also 

contain layout information4 used by the evaluator and the garbage collector. A suspension object, 

which can be viewed as a thread descriptor, contains a status flag indicating its evaluation status 

(cf. [^92, BHY88, FaWr87]).

As mentioned in Section 1.3, parallelism is introduced explicitly using annotations. We support 

a medium grain of parallelism where function calls form the units of granularity based on which 

tasks are created and distributed. This is based on the expectation that the underlying target 

architecture has an integrated network interface (along the lines of STAR:DUST [Osth91]) which 

supports very fast thread switching to tolerate high communication latencies. Parallel tasks are 

distributed across the machine processors using an active distribution scheme. That is, a processor 

does not have to request work before it is given any; a random task distributor, similar to that 

in [Kess96], sends tasks to processors where these tasks may be buffered before they are eventually 

evaluated (cf., [HMP94, Kess96, Chak94]).

Requests for data values are always issued by sending messages and the amount of information

4All three types of object contain house-keeping information for use by the evaluator and garbage collector.
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carried in a request message is exactly what is required for the evaluation of the target object 

and communicating the result—i.e., it consists of a frame pointer, a code pointer inside the frame, 

pointers to the function’s argument values and the return addresses of the requesting processes. 

We employ the notification model of inter-thread communication and synchronisation: using the 

tags in objects’ cells to act as locks to ensure mutual exclusion and to avoid evaluating an object 

repeatedly (cf., [Peyt92, Iann88, NiAr89, CSS+91]).

Our target architecture is that of a distributed memory MIMD multiprocessor (the results re­

ported here include those obtained on other machine architectures as well). We therefore adopt a 

message-passing communication interface between the machine’s processors, the usual communi­

cation mechanism in multiprocessors that have no shared memory. Since message-passing is very 

pervasive in the implementation, our compiler generates a very large number of threads for an 

input program to provide each processor of the machine with many threads to execute so that a 

processor can switch very rapidly between them (rather than possibly staying idle) in response to 

remote memory reference latencies or synchronisation. Therefore the architectural requirements 

for a machine to support our model efficiently are that, it should support fast dynamic thread 

scheduling, provide tolerance to long-range communication latencies and support cheap and rapid 

switching between multiple executable threads (cf., [NiAr89, Arla87, CSS+91]).

1.6 Thesis structure

The remainder of this thesis is structured as follows:

Chapter 2 Presents a short history of computers and the evolution of methodologies for pro­

gramming them—leading to discussion of functional languages: their computational basis, 

sequential implementation methods and their costs.

Chapter 3 Discusses the motivation behind parallel computers, outlines the main issues addressed 

in a parallel programming system and surveys parallel functional language implementations 

related to our research.

Chapter 4 Presents the design and implementation of the front end of the compiler: symbol 

tables, lexer/parser, pattern matcher, lambda lifter, type checker and resulting intermediate 

language.

Chapter 5 Presents the design and implementation of the back end of the compiler: concrete 

representation of data in the heap, messages and message-passing, compilation rules and the 

code generation process.
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Chapter 6 Describes our implementation of a stream I/O mechanism used by our compiler to 

communicate with the outside world. This chapter also covers the implementation of com­

parison operations on structured objects (since type classes are omitted) as well as scheduling

issues.

Chapter 7 Describes the parallelisation of four main phases of our compiler namely, the pattern 

matcher, lambda lifter, type checker and the AST optimiser aimed at improving the efficiency 

with which Naira compiles input programs.

Chapter 8 Presents the second part of the compiler assessment, based on typical popular bench­

mark programs that serve as the basis for appraising many other parallel functional language 

implementations, like [AuJo89a, Mara91, Huda91, KLB91].

Chapter 9 Summarises the thesis, its main contributions and the limitations of work resented. 

The chapter also suggests future optimisations, further research directions nnd concludes.

1.7 Authorship

The work reported in this thesis can be broadly classified into three parts: the development of a 

sequential compiler which pilots the research, making the compiler run in parallel and making it a 

parallelising compiler for input programs.

The development of the compiler (front end) was successfully realised with the support of Tony 

Davie, Gerald Ostheimer and Norman Paterson at St Andrews with whom many fruitful discussions 

were held.

For parallelising the compiler, we made use of the tools and adopted the parallelisation method­

ology developed by researchers on Glasgow Parallel Haskell [HLT95, THLP98, Loid96]. In partie- 

ular, we made heavy use of GrAnSim [HLP95, Loid96], a highly tunable state-of-the-art simulator 

developed at Glasgow and St Andrews Universities, in the performance measurements and evalu­

ation of the compiler.

In chapter four of his PhD thesis, Ostheimer [Osth93] considered a first-order functional lan­

guage described by the syntax shown in Figure 1.2. Based on this language Ostheimer presented a 

compilation scheme specified using Milner’s 7-calculus and wrote an initial sequential code genera­

tor based on these compilation schemes. Ostheimer also described two restrictions imposed on the 

general synchronous 7-cuIcuIus required to ensure asynchronous message passing communication. 

He outlined and gave a draft code for a runtime system to be used by our compiler and suggested 

the use of the process and value annotations.
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Prog : ;= Defi • ■ • Def„ Exp

Def : := f idi • • • id„ = Exp

Exp : := id

Exp : := apply f Expi • • ■ Exp„

Exp ; := let idi = Expi, •• - , id„ = Expn in Exp

Exp : := if Expi then Exp2 else Expa

Exp : := cons Expi Exp 2

Exp : := Expi 4- Exp2

Figure 1.2; Ostheimer’s first-order language.

Building on Ostheimer’s work, we started by debugging his sequential code generator and runtime 

system to bring them to a reasonable working status. We then extended these adding I/O and 

module facilities and finally generated multi-threaded parallel code based on the process and 

value annotations. As described in Section 6.4, we wrote a parallel simulator which takes snapshots 

of the compiler’s execution activities and generate graphical profiles from the collected statistical 

data. The programs used to generate the PostScript graphs are adapted (and used to cater for our 

data form) from a collection of Perl scripts in the GrAnSim Toolbox [Loid96].

The actual experiments described in Chapters 7 and 8 were done by myself, acknowledging the 

support of Kevin Hammond for straightening my thoughts and providing useful clues round the 

many software engineering hurdles encountered. All of the text in the thesis is written by me and 

is a record of my own research in the light of the aforementioned contributions by others.



Chapter 2

Background

The purpose of this chapter is to first give a brief historical overview of programming computers so 

as to put into perspective and to motivate the development of functional programming languages. 

Having exposed the ever increasing demands for an effective means of human computer interaction 

and the need for functional languages, we highlight the basic philosophy of functional programming 

side-by-side with programming in conventional imperative languages. •

The chapter also gives a brief outline of the computational theory, the A-calculus, on top of 

which functional languages are built. We also find this a convenient place to discuss the computa­

tional model, Milner’s ir-calculus, which underlies our compilation scheme. Finally we review the 

various proposals for implementing functional languages as well as highlighting their costs.

2.1 Introduction

The history of the development of computing goes as far back as the times when efforts were first 

made to develop the concept of numbers and counting. However, the era of modern computers 

is said to have begun in the late 1940s with the advent of the von Neumann computers which 

internally store programs that control their operations.

The art of programming these machines has, since then, been growing from strength to strength 

in order to meet the increasing demands of programmers to communicate with them effectively. 

The first most efficient, but most cumbersome, programming technique was to program directly 

in (binary) machine language. This soon became impracticable, because it was unmnemonic, un­

readable and extremely tedious. The next step forward was the development of symbolic assembly 

languages in which the instructions could be represented by (mnemonic) symbols and decimal 

notation. Programming at this level was also found to be unsatisfactory because programmers’
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demands like the ability to use code written by other programmers were not always met due to 

the differences in notation and lack of an efficient way to link program pieces together [Samm69, 

Maye88].

As the cost of software production began to escalate, contributed by the tedium of assembly 

language programming, the need to develop new programming techniques became more acute. 

This necessitated and led to the development of high level programming languages which abstract 

away from the peculiarities of a particular machine and which enable the programmer to express 

complex instruction sequences and data structures directly. Although high level languages did not 

initially receive wide spread acceptance, good performance by early optimising compilers, notably 

the Backus’ Fortran compiler [Back8l], reversed the trend in favour of these languages. In fact, 

the interest in high level languages led to an explosion in their development by the late 1960s with 

many languages simply incorporating their designer’s particular interests or concerns.

In spite of the tremendous success of high-level programming languages, there was still the quest 

for programming at a higher level of abstraction. Programmers were looking for simpler and more 

natural ways to express their algorithms with minimum bearing on the underlying computational 

model, trading program execution speed for simplicity.

In 1978 John Backus, the author of the first optimising compiler of Fortran, expressed a dis­

satisfaction with the conventional programming languages in his Turing award lecture [Back78]. 

He pointed out that with the explosive growth in the number of programming languages and 

the associated claims of improvements of the subsequent languages over their predecessors, these 

languages still retain the major language features which contribute to their weaknesses. These 

languages are criticised for their word-at-a-time style of programming, close coupling of semantics 

to state transition and lack of useful mathematical properties.

An important observation on the design of imperative languages is their intimate relationship 

with the underlying machines, the von Neumann computers, on which they run. For example, 

one of the design requirements of Fortran was to map to machine language with minimal loss of 

efficiency. The von Neumann computer has a profound influence on the nature of these languages 

and they are sometimes called von Neumann languages to emphasise their close marriage. In fact, 

imperative languages are essentially an abstraction of the von Neumann computer using variables 

to simulate the computer’s storage cells, control statements to mimic its jump and test instructions, 

and assignments to act as the machine’s fetch, store and arithmetic 'operations.

An alternative solution to the problems associated with conventional imperative languages re­

quires the discovery of a new kind of language framework which supports a powerful methodology 

that helps programmers to think about programs. This framework should support a clear sep­
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aration of concerns; the art of programming should be a distinct activity from that of handling 

administrative tasks like prescribing to the machine how a given problem is to be solved and how 

the machine’s memory is to be managed [Read89]. The languages should be simple, expressive, 

extensible, less error-prone, elegant and susceptible to program transformations and optimisations. 

Functional programming languages, which have succeeded in breaking out of the mould of im­

perative programming, are claimed to have a wealth of these properties salient in them [Read89, 

FiHa88].

The following sections introduce functional languages, the theory underlying them, the strate­

gies for implementing them and finally highlights their strength and weaknesses.

2.2 Functional languages

Functional languages are general purpose, high level programming languages supporting program­

ming at a higher level of abstraction than conventional imperative languages like Fortran and C. 

Programming in functional languages is usually a descriptive or declarative activity which involves 

specifying ‘only’ what is to be computed while imperative programming is prescriptive, specifying 

also the how of the computation steps.

According to Sarkar [Sark91], program execution issues could be broadly classified as low level 

and high level. Low level execution issues involve register usage, low order versus high order byte 

ordering, instruction selection etc. and high level issues involve the specification of algorithms 

and data structures. With this classification, it is obvious that the functional programmer must 

specify only the high level issues of how programs are executed. On the other hand, imperative 

programming requires specifying the details of both low level and high level issues of program 

execution. Hence, the imperative programmer is forced to overspecify the control flow and data 

flow in the computation.

A major distinction between modern functional languages and their imperative counterparts 

is that the former do not allow assignments (i.e., destructive updates) to memory locations. Al­

ternatively, functional languages only use declarations (which are technically different from single 

assignments) whereby a variable’s value in a program once declared, does not change. The lack 

of assignments facilitates higher level programming since the concern of programming are sep­

arated from that of low level housekeeping of recycling memory locations enforced by repeated 

assignments. The absence of assignments in functional languages serves as an important prerequi­

site which confers these languages with a useful mathematical property, referential transparency1. *

imperative languages are sometimes referred to as being referentially opaque because they support functions



2.3. COMPUTATIONAL FOUNDATION 14

This property ensures that since there are no side-effects, the value of an expression in a program 

depends only on the values of its syntactically correct constituent expressions and not, for example, 

on the order in which the expressions are evaluated.

Functional languages are often classified, on the basis of their semantics, into strict, non-strict 

and lenient. Eager evaluation is usually used to implement .strict semantics while lazy evaluation 

is the implementation technique often used to implement non-strict semantics. Lenient evaluation 

combines non-strictness with eager evaluation.

A function is strict in an argument x if, whenever the value of x is undefined, the result of the 

function is also undefined. A strict function is a partial function which is strict in at least one of 

its arguments. A non-strict function is a partial function that may be defined even when one of 

its arguments is not defined. Strict functional languages are therefore those that support strict 

functions while non-strict languages are those that support non-strict functions. Lenient languages 

combine the features of both strict and non-strict languages: they support functions which can 

return results even when their computation may not terminate. In other words, given a function 

application, eager evaluation first evaluates all the argument expressions and then evaluates the 

function’s body.

Lazy evaluation starts evaluating the function body, evaluating the function’s arguments as 

and only when they are used. Lenient evaluation starts the evaluation of the function in parallel 

with the evaluation of all the arguments of the function.

Lazy evaluation enables functional languages to express algorithms involving potentially infinite 

data structures succinctly. Such algorithms are awkward to express in a language without lazy 

evaluation. This is an important language feature although debate on whether its virtues outweigh 

its costs (due to associated space overheads) has been lively.

2.3 Computational foundation

In this section we briefly describe the theory which underlies the implementation of our pilot 

compiler in particular as well as the implementation of functional languages generally. This theory 

is Church’s lambda calculus. After reviewing the main features of this calculus, we also touch on 

two other formalisms—term rewriting and graph rewriting systems—which could be adopted as 

the basis for implementing functional languages.

Lambda calculus is a simple mathematical theory developed by Alonzo Church [Chur41]. It

which refer to global data and make destructive updates on the data. Such side-effecting operations can cause the 

value returned by a function (making the destructive updates) to change even though its arguments may be the 

same each time it is called. This is demonstrated by a simple example in [FiHaSS].
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was initially intended to be a foundation of mathematics in the 1930s before the advent of digital 

computers. The A-calculus is well studied and, although it is an austere language containing only 

a few syntactic constructs with clean semantics, it is powerful enough to express all functional 

programs. In fact, the expressive power of this simple language is shown to be the same as the 

expressive power of any computing engine. In other words, the A-calculus is Turing complete: it 

can express any function that can be computed by a computing device.

The A-calculus underlies the computational model of functional programming languages. The 

efficient implementation of modern functional languages on today’s computer architectures depends 

on how efficiently the operations in the A-calculus can be implemented on these machines. That is, 

given an implementation of the A-calculus, a functional language can be implemented by translating 

it into the A-calculus. This is why functional languages are often considered as mere syntactic sugar 

coating the A-calculus. Chapter 4 of this thesis describes the translation of Haskell into an enriched 

A-calculus and Chapter 7 presents the parallelisation of the translation process.

A A-calculus expression is ‘executed’ by reducing it. There are three basic reduction rules in this 

calculus: a-reduction, /3-reduction and 77-reduction. /3-reduction is the most important operation 

in the A-calculus and the efficient implementation of functional languages depends on the efficient 

implementation of this operation. The reduction process proceeds by continuously selecting and 

reducing a redex (reducible expression). (We shall return to this point in Section 2.5). A good 

introduction to A-calculus can be found in many books including [FiHa88, Bare84, Peyt87].

A redex can be reduced to weak head normal form (WHNF), in which only the topmost redex 

is reduced, or to normal form, in which the resulting expression is canonical and contains no 

further redexes. The main modes of evaluating an expression involve performing reductions until 

either normal form or WHNF is reached, depending on the semantics of the language (see the next 

section). Since a A-expression can have multiple redexes, it is often useful to arrange a consistent 

way of selecting the redexes. This is because the efficiency and the termination property of the 

reduction process can be affected by the choice.

There are two most common strategies for performing reductions: normal order and applicative 

order. Normal order selects and reduces the leftmost outermost redex while applicative order 

always selects and reduces the leftmost innermost redex. Normal order reduction strategy is more 

expressive than applicative order because a sequence of reductions in the former may terminate with 

an answer (i.e., a reduced expression) while the sequence of reductions, for the same A-expression, 

• using the latter strategy may diverge without returning an answer. Examples of these cases can 

be found in [Read89, Peyt87, FiHa88, Loud93]. Conversely, there are no A-expressions for which 

applicative order reduction may terminate while normal order diverges. This is why normal order
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is considered as an ‘optimal’ reduction strategy although it may be less efficient in some cases.

If the sequence of reductions for a A-expression is known to terminate with an answer, the 

choice of reduction order for its evaluation is immaterial and the Church-Rosser theorem [ChRo36] 

guarantees the uniqueness of the result using either strategy. The eeferentiallp transparent nature 

of functional languages, which is so beneficial for simultaneous evaluation of expressions and which 

we alluded to above, is a consequence of this important result.

Some implementations of functional languages are based on normal order reduction strategy 

and some are based on applicative order reduction. There are also implementations which are 

based on a hybrid of both strategies as we expatiate in Section 2.5 below.

While recognising that the A-calculus is very suitable for studying the basic semantics of func­

tional languages, some researchers like [PlEe93], are of the opinion that the A-calculus is not 

very suitable for studying implementation aspects of functional languages. Two other models 

that can serve as the computational basis for functional languages and their implementation are 

Term Rewriting Systems (TRSs) [HuOp80, Klop92] and Graph Rewriting Systems (GRSs) [Stap80, 

BvEG*87a,b]. TRSs form a computational model based on pattern matching (i.e., syntactic equal­

ity test) on terms that do not contain variables. GRSs extend TRSs with the notion of sharing 

and in which the terms (trees) are replaced by directed graphs. TRS are related to the A-calculus 

and can be regarded as an extension of combinatory logic. However, TRSs have more declarative 

power than both the A-calculus and combinatory logic since, for example, non-determinism can be 

expressed in TRSs but not in A-calculus or combinatory logic [PlEe93].

Computation in a TRS is specified by a set of rewrite (or reduction) rules. These rules are 

similar to function definitions in a functional language except that they are only defined globally. 

Plasmeijer and van Eekelen [PlEe93] claimed that it is easier to translate functional languages into 

the rewrite rules of TRSs than into the A-calculus. This is why they said functional languages are 

closer to TRSs and that TRSs may be a more suitable basis for implementing these languages.

In contrast to functional languages, there is no ordering in the reduction rules of TRSs and 

also no reduction order is specified explicitly that determines how a given term is to be evaluated. 

However, and although TRSs can express non-deterministic computations, the lack of these impor­

tant constraints mean that general TRSs are non-confluent (i.e., lack the Church-Rosser property) 

and hence lose the guarantee of uniqueness of normal forms. Furthermore, general TRSs do not 

have a decidable normalising strategy1 which will terminate with the normal form of any term 

that is known to have a normal form. This can be recovered from by restricting general TRSs *

2In fact the left-most outer-most (or normal order) strategy that is normalising in A-calculus is not normalising 

even for orthogonal TRSs.
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to obtain orthogonal TRSs that guarantee confluency and for which normalising strategies exist. 

Unfortunately, normalising strategies for general orthogonal TRSs are hard3 to find and are not 

efficiently implement able. The only practical solution is to extend TRSs with priorities for selecting 

the rewrite rules, which then become very close to the usual top-down, left-to-right semantics of 

pattern matching in functional languages. The language Concurrent Clean [NSvEP91] (see Section 

3.3) is based on rewriting systems of this form.

2.4 Milner’ s 7-calculus

The motivation behind this section is to mention briefly the theory which underlies our compilation 

scheme (see Section 5.5) in a similar way as we described the A-calculus which underlies functional 

languages. We therefore outline the basic concepts of the ^calculus, how it relates to both the 

A-calculus and TRSs outlined above, and finally how it is used to specify our compilation rules.

The ^calculus [Miln92] is the result of a search for an algebraic framework which would capture 

the essence of the notion of concurrent processes. It can be seen as an extension of the theory of 

the Calculus of Communicating Systems (CCS) [MilnSO] and other similar process algebras in that 

channel names (references) are the subject of communication. This calculus is designed to allow 

the direct description of systems, at a higher level of explanation, which change their configuration 

dynamically. Processes and Channels are the basic entities of ir-calculus. Processes are the ‘terms’ 

or ‘expressions’ of the calculus and channels are the media through which the processes interact 

by sending values through and receiving values from.

Like the A-calculus, the T-calculus is computationally complete and has only a few more syn­

tactic rules than the A-calculus. Therefore the vrcalculus approaches A-calculus in economy of 

expression. There are six syntactic rules in the Troalculus as shown in Figure 2.1 (in which P, Q 

are processes and x, y are channels).

The send operation describes the action of transmitting the value y along the channel x to the 

process P. The receive process in turn specifies the action of reading y from the channel x and 

then performs the action P. The empty process, O, is required to ground the syntactic rules. P\Q 

specifies the parallel combination of two processes, P and Q, which act side by side to each and 

interact in whatever way they are designed to. The replication process, kP, is a short hand for 

P|!P, which means as many parallel composition of the process P as are desired. The restriction 

combinator restricts channels for use only by specific processes. Restriction is, in fact, just a

3Maranget [Mara92] showed that there is an optimising reduction leading to normal form for labelled orthogonal 

term rewriting systems, T'RSs. Kennaway et al [KKSdV90] obtained this result for term graph rewriting systems 

via translation between term graph rewriting and infinitary term rewriting [KKSdV93].
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P ::= Xy.P send action .

1 x{y).P receive action

1 0 empty process

1 P\Q parallel composition(has the lowest syntactic precedence)

1 \p replication

1 MP restriction

Figure 2.1: Syntax of Milner’s T-calculus.

distillation of the notion of local variable declaration in programming languages. This process 

can be used to model security issues in computer systems [Miln96]. There is no separate rule for 

sequential composition in the calculus since it is, indeed, a special case of parallel composition. 

That is, since P and Q act side by side to each other in P|Q, sequential composition is a special 

case in which the only interaction occurs when P finishes and Q starts4.

Tr-alcutas terms are divided into three classes: guarded terms, terms that express concurrent 

behaviour and restricted terms. Guarded terms (the first two in the syntax of Figure 2.1) have the 

form g.P, where g is a guard and P is a term. Process composition, P|Q, is the principal term 

expressing concurrent behaviour with replication and empty process (the degenerate composition 

of no processes) being allied to it. The third class of terms has only one form: the last term in the 

syntax above [Miln92].

Reduction is possible in the Tr-n^nlus when there is a pair of a receive and a send action ready 

to communicate via a common channel. Communication takes place by cancelling receive and send 

actions substituting the value to be sent for any free occurrences in the receiving process of the 

variable to be received. Consider the term

Xzlx{y).xy

with matching send and receive actions. Notice that the receive action x[y) is followed by a send 

action, Xy, containing a single occurrence of y, of the variable being received. Reduction on this

term yields

0\Xz

which is equivalent to Xz. In contrast, the term £z|(z)x’(y) has no reduction because the send and

4This can be likened to the synchronisation behaviour in the A-expression (Aa.JF)Q where Q remains passive 

until P activates it by passing control to it (i.e., assuming normal-order evaluation).
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receive actions operate on different channels (the restriction (z)((y) creates a new channel name 

x and makes it private to (or whose scope is) z(y)). See [OsDa93, Miln92] for more examples.

The send and receive actions, as specified above, both represent synchronous operations where 

the process P cannot proceed until another process is ready to, respectively, receive or send a 

value along the channel x. In order to adapt the general synchronous behaviour of the t--^c^1c^u1us 

to asynchronous message-passing architectures, the send and replication actions can be restricted 

as follows. Ensure that send actions do not guard non-empty processes and permit replication only 

of those processes guarded by receive actions. Thus the two syntactic rules are specialised to xy 

and \x[y).P respectively [BrOs95].

Both the A- and T-calculi can be regarded as specialised term rewriting systems. While the 

A-calculus is well studied with an agreed mathematical interpretation, research is still relatively 

more active in the study of the t-0c^1(^i^]^-us. In terms of their dynamic behaviour, the A-calculus 

has sequential, hierarchical control while t-oe^Ii^uIus has a concurrent, heterarchical control be­

haviour [Miln93, p. 83]. The basic rule of computation in the former is function application (or 

/3-reduction) and that in the latter is process interaction which passes a single datum between 

processes. While function application is neither commutative nor associative, parallel composition 

is both commutative and associative. This property coupled with the concurrent, heterarchical 

control behaviour of the ^calculus gives the main difference between these two term rewriting 

systems, namely that A-calculus is deterministic and the ^calculus is non-deterministic.

Wo de/

[®]o de]

[Ax.Mljo
de]

[MN]o de]

iMN]o de]

iMAlo de]

'iM.VA de]

bind(x, N) de]

store{x, v) de/

de

(r)((r | t’('u).dv) (alternatively : xo)

(f)(of |!/(®,y).[M]]^)

(m)(z)([Mjm 1 m(/).(/(z,o) | bind(^{c, N))) 

(m)(n](®(([Ml|fu j ra(/).([iW]]n | n(v).^(x io)-store(x,v))) 

(m)(n)l:r)(|[M]u 1 [iVjn | m(f).n(v).f(a:o>)^^'t^o>re(x,v^)) 

(n'^))(^e(a^()[^M]]m ) [,N]|n | m(f).(f(x, o) | n(v).store(x, v))) 

a(r).(n)(JN]n | n{v).{rv | store{x,v)))

]x(r).fv

Figure 2.2: Ostheimer’s encoding of A-calculus into Tr-alculus.

Milner [Miln92] gave two different translations of the A-calculus in the Tr-alcu^s. One of these 

is sequential and the other is parallel. Ostheimer, in [Osth93], gave another encoding of the A- 

calculus in the Tr-alculus which combines both sequential and parallel behaviour within a single
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framework. In addition Ostheimer’s scheme faithfully represents call-by-need with sharing, whereas 

Milner’s ‘lazy’ scheme does not. These encodings are faithful to the computational behaviour of 

the A-calculus in the sense that if the A-calculus term being simulated terminates with a value, the 

corresponding t-€c1cu1us term delivers a representation of this value at the designated channel. 

Figure 2.2 shows the Ostheimer’s encoding which serves as the basis of our compilation scheme.

A A-calculus term M is encoded as a function, [MJ, which maps A-calculus names directly 

to names of •^^^1^ channels. In order to be able to represent call-by-need reduction strategy, 

these names will not stand for values, rather they provide access to values upon request [BrOs95]. 

The TT-dl^ulus term [Mjo uses the argument channel o as a link where [MJ is to deposit its 

value. The first three rules in Figure 2.2 are, respectively, for constants, identifier reference and 

A-abstractions. The next four encodings are for call-by-need, call-by-value, parallel call-by-value 

and call-by-process respectively. The last two rules are used to specify environment operations.

The rule for constants is obvious: to deposit the value of a constant into a channel, we simply 

put it there via a send operation. The value of an identifier x is obtained by sending a request r 

(i.e., a sendEval message to ensure that x is evaluated, see Section 5.4) along x. The value v of 

x will eventually be received on r. The same effect can be achieved more succinctly, perhaps less 

intuitively, in a continuation-passing style manner by sending o directly to x.

The encoding for abstraction shows that the representation of the function value, /, is immedi­

ately available at o. The replicated term (note that the replication is necessary because a function 

may be applied more than once) represents an ‘activation server’ which allows a function value to 

be applied to an argument. A process needing to apply a function sends an ‘activation’ (i.e., a 

pair of channels) consisting of (access to) the argument x and and the place where the result is 

required.

The rule for lazy function application specifies the evaluation of the function M and then 

applying it (i.e., sends a pair of channels, a request channel x and a destination channel o where 

the result is required, along /) to a suspended form of the argument N. When the value of N 

is required, a request for it is sent along x. The rule for bind therefore receives the (expected) 

request, evaluates N, satisfy the original request and store the value for future requests. Future 

requests for N (which are potentially many as indicated by the replication in the rule for store) 

are serviced by sending the stored value immediately along the request channels.

The rules for call-by-value, parallel call-by-value and call-by-process are substantially similar. 

For call-by-value, two concurrent processes are started (which are serialised via synchronisation on 

m) one computing M and the other receiving its value and then (i.e., when M’s value is available) 

two similar subprocesses are started to compute N. When the values of M and N are available
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(on f and v, respectively), the function is activated and the environment entry binding x to u is 

established. In the parallel call-by-value rule, the computation of the argument N is not guarded 

by a receive action for / and the computations of M and N are started concurrently instead. When 

both values are received computation proceeds as in the call-by-value case. The difference between 

the parallel call-bp-value and caee-by-pedcess encodings is that the activation f(x, o) is not guarded 

by the input action receiving the argument value v in the latter. Thus in the call-by-process case 

the function can be applied while the argument computation is still going on.

With this brief introduction to the theories which underlie our implementation, we now focus 

on and review the different approaches taken when implementing functional languages.

2.5 Implementation techniques

As the A-calculus underlies functional programming languages, implementing the reduction oper­

ations outlined in the preceding section amounts to the implementation of functional languages. 

Functional languages usually introduce additional syntactic constructs to embellish the basic A- 

calculus for the programmers’ convenience. These extensions could be ‘pure’ or ‘impure’; they are 

pure if they can be viewed as abbreviations of some A-calculus constructs and impure otherwise 

[Gord88].

Lazy evaluation is one of several techniques that can be used to implement non-strict semantics. 

Normal order evaluation is an alternative technique. In a pure functional language, though, lazy 

and normal order evaluation will usually implement the same non-strict semantics, except that lazy 

evaluation will be more efficient in some cases. Similarly, eager evaluation, of which applicative 

order evaluation can be considered a restricted form, is one of several techniques that can be used 

to implement strict semantics [Cling95]. Lenient languages are non-strict but non-lazy. Eager 

evaluation can also be used to implement a non-strict semantics, which is essentially what happens 

in parallel implementations of lazy functional languages exploiting speculative parallelism..

There are two widely used implementation techniques for functional languages; one based on the 

use of environments and the other based on graph reduction. An environment is a data structure 

which holds variable-value associations. In the context of A-calculus reductions, the environment 

holds the associations between bound variables in A-abstractions and their corresponding argument 

expressions. An advantage of using an environment is that when implementing /l-reduction or 

function application, the function body is left unchanged as late as possible, by storing the bound 

variable with its associated value in the environment. The value of a bound variable is remembered 

by looking it up from the environment when needed. Delaying substitution in this way, as opposed
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to the direct substitution naturally suggested by the A-calculus, is potentially useful since the graph 

of the function’s body may become significantly bigger after the substitution.

Environment-based implementations are those that use explicit environments of this form to 

evaluate A-expressions. The first environment-based reduction machine, the SECD machine, was 

proposed by Landin [Land64]. The SECD machine is an abstract machine which has a simple 

definition as a set of four data structures and a set of rules describing how the data structures 

are transformed, a step at a time, based on their contents. The original SECD machine was most 

naturally suited as an applicative order reducer but can be adapted to support lazy evaluation with 

suspensions as in [HendSO, DaMc89]. Cardelli’s FAM [Card83] is an optimised version of the SECD 

machine used to implement standard ML and allows very fast function application and the use of 

true stack [Card84]. Abramsky [Abra82] extends the SECD machine to handle multi-programming 

with concurrent processes.

A major disadvantage with environment-based implementations is the overhead of maintaining 

the environment and looking up variables’ values from it. The environment could also contain 

associations which may not be required. Davie and McNally [DaMc89] describe an abstract ma­

chine, called CASE, which is an optimised version of the SECD machine, in which the environment 

is flattened to minimise the cost of environment accesses and which removes unwanted associa­

tions. For parallel implementations, the environment-based approach may not be desirable since 

the environment will form a bottleneck inhibiting parallel accesses to variable values.

Copy-based or graph reduction is an alternative implementation technique for functional Ian- 

guages. Expressions to be reduced in this model are represented by directed graphs. The leaves 

of the graph hold constant values, built-in functions and variables while nodes hold applications 

and A-abstractions. Reduction proceeds by performing successive transformations of the graph 

replacing apply nodes with the corresponding values of their function applications. The graph 

structure, in contrast to an environment, makes sharing common subexpressions easier to express 

by simply using pointers. It also enables a relatively more efficient way of implementing normal 

order reduction and more natural way of parallel evaluations since communication is completely 

mediated by the graph [FiHa88, Peyt87].

Interpreters based on graph reduction work by continuously applying the A-calculus reduction 

rules to transform the graph until it reaches WHNF. Non-trivial interpreters like Gofer [Jone94] 

introduce many optimisations to improve the efficiency of the naive reduction process. For example, 

argument expressions are evaluated once (as opposed to the number of times they occur in the 

abstraction’s body when ordinary reductions are used) and all occurrences of a bound variable 

share the computed value. However, in order to understand the performance of an implementation
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better, the reduction process has to be compiled since compilers expose weaknesses much better 

than interpreters.

Implementations based on compiled graph reduction, however, are faced with the problem of 

handling free variables which occur inside local functions. For a function f the compilation process 

aims at compiling a sequence of instructions for f which, when executed, constructs an instance of 

f’s body. However, if f is locally defined and contains free variables its body does not only depend 

on its arguments but also on the values of its free variables. Thus, it is not possible, for such locally 

defined functions, to statically generate the sequence of instructions required to implement them. 

Another major problem with graph reduction systems is to do with graph copying costs: function 

bodies need to be copied each time they are applied.

Maintaining an explicit environment as discussed above, is one way of coping with this problem. 

One other solution is to adopt a variable naming convention which avoids the problem [Bare84] or 

to use a calculus which does not contain variables at all [Turn79b]. Another approach is to use a 

program transformation technique, called lambda lifting [John87, FiHa88, Peyt87, PeLe91] so that 

the free variables of each local function definition are passed as extra parameters to the function.

The approach which abstracts away variables is based on a result in mathematical logic which 

says that variables as they are used in logic and ordinary mathematics are not strictly necessary. 

Combinatory logic [CFC58] is the theory which underlies the implementations based on this tech­

nique of abstracting all variables from a program. Any A-expression can be expressed in terms 

of applications of a fixed set of combinators of the logic, e.g., the S, K, I combinators. In real 

implementations, this fixed set of combinators is enlarged by adding a few others for efficiency 

considerations. Turner [Turn79b] first proposed the use of these combinators for implementing 

functional languages. The coimputation technique is simple since it has a fixed set of graph trans­

formation rules and the combinators have relatively simple form. Its disadvantage is that the 

combinator forms get complex even for simple A-expressions and the execution steps are very 

small.

Instead of using a fixed set of combinators the program can be transformed to obtain a gen­

eralised set of combinators based on the programmers’ functions defined in the source program. 

Johnsson [John87] introduced a lambda lifting algorithm which transforms a program into a set 

of combinator definitions. Hughes, in [Hugh83], independently described an optimised A-lifting 

process which maintains laziness properties and also coined the term supercombinators to describe 

the resulting variable-free definitions. A supercombinator is a function whose free variables have 

been added as extra arguments to it.

With A-lifting, the problem posed by free variables in local function definitions is solved and
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the resulting supercombinators give relatively bigger units of computation compared to the SKI 

combinators. It is therefore possible after A-llfting (since the problem of free variables is then 

solved) to compile a sequence of code which constructs an instance of the supercombinator’s body 

when executed. This technique is often used as a basis for efficient implementations of functional 

languages, notably [AuJo89].

A similar program transformation technique is lambda hoisting [Take88] which transforms a 

program into a fully lazy normal form (FLNF) suitable for fully lazy evaluation. Functions in the 

FLNF program may contain local definitions and the functions are in a more general form than 

supercombinators generated by Johnsson’s style A-llfting. In lambda hoisting, each maximal free 

subexpression is treated as a local definition and all local definitions in a function are collected 

into a single whererec-clause [KaTa92]. That is, in a FLNF program, maximal free subexpressions 

are not passed as extra parameters to functions thereby reducing the cost of parameter passing 

operations. Ordinary lazy evaluation of the FLNF program results in the implementation of full 

laziness of the original program. FLNF programs are compiled into an intermediate code for the 

fully lazy functional machine which is then transformed into code for conventional machines.

Yet another way of tackling this problem of access to non-local names inside functions, which 

is similar but different from preceding proposals, was introduced and implemented by Peyton 

Jones [Peyt92]. In this proposal, which is one of the characteristics that makes the STG machine 

design different from existing machines, the free variables of a local function are identified, but the 

function is left in place without floating it to the top level. When a closure for a function with free 

variables is entered (by making a particular register, the Node register, points to the closure), the 

code for the closure can access the free variables by indexing directly from the Node register. The 

advantage of this approach is that the movement of values from the heap to the stack is minimised 

since the free variables of a function are not pushed onto the argument stack during function call. 

This function call mechanism turns out to be very similar to the optimised environment lookup 

operations implemented in the CASE machine of Davie and McNally [DaMc89].

2.6 Costs of functional languages

The flexibility and user-friendliness offered by functional languages, by supporting programming 

at a higher level of abstraction and divorcing their design from exploiting hardware peculiarities, 

place a significant burden on the compiler and the run time system. The high level language fea­

tures introduced by these languages, to extend the computational model underlying them, for user 

convenience, must be compiled out in order to achieve good performance. Imperative languages
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run more favourably than functional languages on today’s von Neumann computers due to the 

mismatch between functional languages and these machines, although fast and competitive imple­

mentations of functional languages now exist and are rapidly offsetting this advantage [PHH+93, 

AuJo89b, NSvEP91, Hart94].

Although lazy evaluation offers tremendous expressive power (for instance the convenient ex­

pression of circular computations and manipulation of potentially infinite data structures) that is 

impossible to achieve otherwise, it hinders efficient implementation in terms of memory usage and 

also requires program analyses (e.g., strictness analysis) to improve performance. Some programs 

(like schedulers and similar system programs) are sometimes required to be non-deterministic and, 

since non-determinism is more difficult to express in functional languages than in imperative lan­

guages, language extensions are usually introduced to express non-determinism. Finding language 

constructs to express the kind of non-determinism needed is quite easy, and several examples have 

been implemented and used successfully, such as the “merge” operator of [AbSy85, Jone84], and 

the resource managers of [ArBr84], The difficulty is rather with the maintenance of the language’s 

desirable algebraic properties [Kell89].

Other difficulties associated with functional languages concern the difficulty of expressing non­

trivial forms of 1/O and algorithms that are intuitively state-bound. Functional programs are also 

not susceptible to traditional debugging tools of imperative languages. Debugging lazy functional 

programs is generally more difficult because of their demand-driven evaluation mechanism which 

leads to a rather non-intuitive execution order.

2.7 Summary

In this chapter we have given a brief account of the emergence of stored-program computers and 

also described the various ways of programming them starting from the earliest machine language 

programming, assembly language, to the higher level programming languages. We touched on the 

fact that although the introduction of high level programming lead to tremendous improvements 

over assembly programming, the quest for simpler and cleaner ways of programming persisted 

leading to the development of functional languages. We have described some of the salient features 

of functional languages that make programming in them easier and more expressive. We have 

also described the computational basis and implementation techniques of these languages. We 

have also covered the computational model, Milner’s Tr-alculus, which serves as the basis for our 

compilation scheme described in Chapter 5. The chapter finally mentioned the costs usually paid 

by functional programmers in return for relieving them from prescriptive programming.



Chapter 3

Parallelism issues & related

research

3.1 Introduction

In the preceding chapter we have discussed the motivation for the development of better ways to 

program computers so that better performance can be achieved as well as saving precious pro­

grammer time. Our presentation so far has concentrated on the issues of programming sequential 

machines containing a single processor in which one instruction is executed at a time. The pro­

cessing speed on these machines depends on how fast data can be piped through the hardware. 

Although an instruction can be executed very fast in sequential machines, as fast as ten billionths 

of a second on some of them (at the time of writing in 1997), they are still judged to be not fast 

enough!

In this chapter we review the factors motivating the need and construction of new computer 

architectures and describe the critical issues in parallel computing and the main proposals for 

handling them (Section 3.2). In Section 3.3 we give a brief account of parallel functional pro­

gramming, our chosen paradigm, explaining why it is more promising than conventional parallel 

imperative programming. In Section 3.4 we survey research projects on parallel implementations 

of functional languages especially those closely related to the work presented in this thesis. Section 

3.5 summarises the material presented in this chapter.
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3.2 Parallel computing issues

Many application areas, such as databases, simulations, image and signal processing, have problems 

that heavily depend on large amounts of data and require the constant manipulation of that data. 

Traditional sequential computers, although powerful, cannot offer the best performance required for 

some of these applications. This suggests the need either for powerful special-purpose computers 

like database machines or for still faster general purpose computers which can perform large, 

complex tasks more speedily and more efficiently.

A possible approach to satisfying this need could be to reinforce the existing sequential ma­

chines, especially since their compilers and tools have been well developed over many years. Possible 

reinforcements may involve providing more memory to these machines, improving their computa­

tional power and making use of the latest component technology to make their communications 

pathways larger and faster [PSU95]. It turns out that there are fundamental limitations which 

will inhibit this. One of these is the cost factor because single high-performance processors are ex­

tremely expensive and it is increasingly expensive to make them faster. Another limitation is to do 

with the (internal) communications speed and computational power increases as single processor 

performance is reaching its asymptotic limit [MCC96].

One of the approaches taken is to construct parallel supercomputers '• .ati; -g ct many con­

ventional ‘off the shelf’ processors since these conventional processors are fairly fast and relatively 

inexpensive. With these sequential processors, which may be one or two generations older than the 

fastest, best available processors in the market, together with appropriate support for managing 

parallelism, it is possible to achieve good performance and also to work on problems which are 

impossible to handle with traditional sequential computers. An alternative approach taken by 

other researchers is to develop and implement computer architectures which are radically different 

from the traditional von Neumann computers and which can deliver the expected performances.

Since a parallel computer consists of a collection of many processors, there is a requirement 

that these processors be interconnected in some way in order to co-ordinate their activities for 

a desired performance. Other requirements include the development of parallel algorithms and 

suitable environments to manage parallel activities. That is, a parallel machine per se is not 

enough to guarantee performance improvement: the required efficiency can only be achieved with 

a combination of language, compiler and architectural provisions [ArNi89].

In the following six subsections we review the main issues of attention in a parallel programming 

environment namely, machine architecture, problem decomposition, granularity, work distribution, 

communication and parallelism control. As the possible alternatives solutions to these issues are 

discussed we point out our choices and justifying those decisions.
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3.2.1 Architectural support

Researchers in large scale scientific and engineering computations have consistently demanded an 

increase in the number of instructions executed per unit of time. Their demands have always 

exceeded what could be provided by the' most advanced computer architectures and therefore, new 

architectures which depart radically from von Neumann model were designed and constructed.

Although there are different methods used to classify computers, it seems there is no single char­

acterisation which fits all designs. Perhaps the most widely used classification is that described 

by Flynn [Flyn72] which uses the relationship of program instructions to program data. Flynn 

categorised computers into four types based on the instruction-data relationship. These are SISD 

(Single Instruction, Single Data), SIMD (Single Instruction, Multiple Data), MISD (Multiple In­

struction, Single Data) of which there are no practical examples, and MIMD (Multiple Instruction, 

Multiple data).

SISD is the most common conventional von Neumann computer that executes one instruction 

stream at a time. Most non-supercomputers fall under this category and their limitation is that 

the number of instructions that can be issued in a given unit of time is limited (performance on 

these architectures is frequently measured in MIPs—million of instructions per second).

SIMD is subdivided into vector or pipelined processors and array parallel processors. SIMD is 

also a von Neumann architecture with more powerful instructions that may operate on groups of 

data at the same time. A vector processor overlaps the operations on a vector of operands by means 

of a pipelining technique. An array processor duplicates the number of processors and applies them 

simultaneously to a vector of operands. These machines are usually used to exploit parallelism in 

data structures (i.e., data parallel algorithms). Debugging in this machine model is easier because 

of the single threading and the user does not have to think in terms of synchronisation. Another 

advantage is that given the cost of communication primitives, it is easy to understand the efficiency 

of the program. The disadvantage of SIMD designs lies in the difficulty of writing programs and 

in the limited compositionality due to the inherent limitation of single threadedness [Arvi92].

MIMD machines are divided into shared memory and distributed memory types. In shared 

memory machines the constituent processors (in addition to their local memories) share a common 

memory with each other while the processing elements are autonomous in a distributed system 

without shared memory. In other words, each processor acts independently from its peers in the 

MIMD architecture; executing its own instruction stream either sharing a common memory or 

with its own local memory [Perr87, MCC96]. In order to coordinate tasks for multiple processors 

working on the same problem, some form of inter-processor communication is required to convey 

information and data between processors and to synchronise node activities. In shared memory
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architectures only one processor can access the shared memory location at a time and in distributed 

memory architectures data is shared across a communications network using message passing. The 

advantage of MIMD machines is that multiple instructions sequences can execute simultaneously 

whereby each processor can perform any operation regardless of what the other processors are 

doing. However, unlike in the SIMD model, synchronisation is needed to co-ordinate the operation 

of the processors.

Another computer model is dataflow multiprocessors [NiAr89]. These machines are a radical 

departure from the von Neumann computers and may consist of multiple processors. Dataflow 

architectures are specialised MIMD machines tailored for the efficient exploitation of fine-grained 

parallelism. Program execution is driven by the availability of data rather than by control flow. 

When data for several instructions is available at a time, these instructions can potentially be 

executed in parallel provided there are no side-effects or multiple assignments to variables. Imple­

mentations based on these architectures [Trau91] recently seem to be shifting emphasis from the 

traditional view of exploiting instruction-level parallelism in dataflow architectures, in favour of a 

multi-threaded style where a collection of dataflow instructions is treated as a sequential thread 

[Well92].

The effective exploitation of parallelism requires the programmer to have a deep knowledge of 

both the program as well as the characteristics of the target architecture. Also, what constitutes 

useful parallelism depends on the hardware characteristics because moving a good parallel program 

to another platform may require the whole program to be revised, in order to get good perfor­

mance [Brat.94] on the new architecture. Therefore the issues of topology, processors and memory 

specification, which lead to an unfortunate binding between a program and the target platform, 

must be put into focus in a parallel programming system especially if portability is desired at low 

cost.

The compiler developed in this thesis is tailored towards distributed memory architectures 

with integrated network interface and without shared memory. This choice is influenced by the 

fact that Ostheimer’s encoding of A-calculus into the Tr-alculus (Section 2.4), which forms the 

basis of our compilation scheme, was aimed at such architectures (as in STAR:DUST [Osth91]). A 

given program is compiled into a large number of threads so that the high communications latency 

of our target architectures can be tolerated using fast context switches.

3.2.2 Extracting parallelism

One of the great challenges to parallel computing is the difficulty of programming parallel com­

puters. Some say this is the ‘only’ reason why parallel machines are not widely in use today
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[Arvi92]. Another important reason contributing to the difficulty of parallel programming is that 

the problems that need to be solved or the algorithms to solve them may not have any (inherent) 

parallelism and hence may not be parallelisable. One source of this difficulty is that existing code 

(for sequential machines) cannot be expected to run without change on a parallel machine and to 

expect better performance therefrom. Another issue in a parallel program is that the programmer 

has to be concerned about how the processing elements will compete for shared resources and how 

they co-operate with each other (see Section 3.2.4 below).

Therefore to realise the benefit of parallel machines, it is necessary to decide beforehand how 

parallelism is to be obtained. Two main strategies are usually adopted, namely implicit or au­

tomatic parallelisation and explicit techniques. In the implicit approach the programmer ignores 

the issues of specifying parallelism and relies on the compiler and the runtime system to decide 

on where and how to exploit parallelism. In the explicit approach, the programmer takes part in 

the parallelisation exercise where explicit knowledge about the parallelism within an algorithm is 

mapped to the implicitly parallel constructs of the programming language.

Automatic parallelisation is more widely used in those functional languages (which are implic­

itly parallel, see Section 2.2) although there are automatic parallelisers for imperative languages 

as well, like PTRAN [Sark91]. Implicit parallelism in functional languages does not actually mean 

parallelism ‘without tears’ or parallelism for free; some effort must still be invested to make paral­

lelism exploitation worthwhile and to make the parallelism explicit.

Automatic transformation of a functional program, written in a strict functional language, into 

a parallel program can be very simple [Hamm94, Schr93]. However, the resulting parallel program 

often contains a large number of very fine-grained tasks with high runtime overheads. Implicit par­

allelism in lazy functional languages is normally obtained by using a strictness analyser to identify 

expressions whose evaluation contribute to the final program value. Strictness analysis is usually 

implemented using abstract interpretation techniques [Peyt87, HGW89, Burn87a,b, Burn91], ab­

stract reduction [Nock93] or projection analysis [WaHu87, Burn90]. The basic idea is that, given an 

input program, a parallelising compiler uses a strictness analyser to determine statically the expres­

sions that are needed. The output program is automatically decorated with annotations to reflect 

this decision. This approach is very attractive and, if successful, it is a noble achievement since 

it provides useful parallelism while requiring minimum programmer involvement. Unfortunately, 

Schreiner [Schr93] observes that,

. the problem of selecting the useful parallelism in functional programs is (almost) as 

difficult as detecting the possible parallelism in imperative programs.

Finding needed expressions to achieve good parallel performance is also a difficult task especially
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in a language where functions are first class objects and neededness, or more broadly, optimal 

compilation strategies are generally undecidable [Hamm94, Szym91]. Automatic parallelisers can 

therefore only effectively handle simple cases where the parallel algorithm can be trivially ob­

tained from the sequential algorithm but the hard cases require the programmer to design parallel 

algorithms.

In functional languages, there is a variety of ways of explicitly specifying parallelism; some are 

extended with impure features which are capable of introducing side-effects and some are extended 

only with pure features. Some functional languages are extended with imperative features such as 

message passing primitives to obtain parallelism [Webe89, MoTo92]. The MIT dataflow project 

[ANP89, BNA91] extends the functional language Id with I-Structures and M-Structures with 

deterministic and non-deterministic semantics respectively. On the other hand, some researchers 

introduce semantics-preserving annotations in source programs to indicate where parallel compu­

tations are desirable [Huda91, AuJo89a, HaPe92, Acht91, Kess96].

Another interesting idea employed to guide compilers for better exploitation of parallelism is 

the concept of skeletons [Cole89]. Skeletons are essentially higher order functions which capture 

patterns of parallel computation like pipelining and divide-and-conquer algorithms. Research on 

algorithmic skeletons has focussed on functional languages [Darl93, Brat94, Kuch94, Kess96], where 

the higher order functional skeletons can be expressed most elegantly. A related approach is used 

by some researchers to exploit data parallelism. In contrast to the usual approach, however, this 

approach exploits parallelism in data structures rather than in control structures. It is achieved by 

performing an operation, possibly defined as a skeleton, on all elements of a large data structure 

at the same time. Projects employing this approach include POD comprehension of Hill [Hill94], 

the bi-directional fold and scan of O'Donnell [O'Don93] and the data parallel language, NESL, of 

Blelloch [Blel93].

Following a popular tradition e.g., [AuJo89a, HaPe92, Kess96], parallelism is extracted ex­

plicitly by the programmer in our compiler by the use of annotations which the compiler can 

ignore if there are no resources available to exploit the specified parallel behaviour. It is important 

that these annotations are advisory rather than mandatory since otherwise they can change the 

semantics of the program by generating too much parallelism for the machine to handle.

3.2.3 Granularity

We see from the last section that the programmer must play a role in the parallelisation exercise 

in order to obtain good parallel performance for non-trivial applications. One crucial aspect of 

decomposing a given problem into efficiently manageable sub-parts is granularity. Task granularity
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(or simply granularity) refers to the basic units of work into which a problem is broken down and 

which are candidates for execution by the various processing elements on a parallel machine. Three 

levels or ‘grains’ of parallelism, fine grain, medium grain and coarse grain, are usually identified 

and it is hard to say which is better in a given situation: the right level of granularity depends on 

the properties of the underlying architecture in an implementation.

The ideal situation is to decompose the problem into enough (possibly fine grained) tasks to keep 

the processors busy most of the time while at the same time keeping the cost of communication 

as low as possible. These are conflicting objectives for if the tasks are too small the cost of 

communication (required to co-ordinate the results) is bound to be high. In the worst case it may 

even dominate the computation. If the tasks are too large, however, parallelism may be lost since 

there may not be enough tasks to go round the processing elements. This may lead to a situation 

where some of the processors will lie idle, hence underutilising the machine capacity. Research 

[BuRa94] has shown that fine grained tasks allow greater flexibility in programs, and have better 

worst-case scheduling properties than coarse grained tasks, but carry much greater overhead on an 

architecture built from conventional processors [HMP94] with high communication costs.

There are two main strategies which are taken to address the problem of granularity. User 

annotations, in addition to specifying parallelism, can also be used to determine statically the sizes 

of the tasks (e.g., using cut-off values) which should be created at run time when there is spare 

capacity [HaPe92]. In some implementations the compiler performs some complexity analyses at 

compile time to determine how much work is involved to justify task creation. In general, however, 

complexity analyses cannot find the required information to make these decisions since the answers 

may depend on the input data [Peyt89].

The preceding discussions suggest that a medium grain of parallelism is desirable which min­

imises the cost of task creation and management, keeps all processors busy and in which more 

computation is performed than communication. Our function level task granularity, which lies 

somewhere between the two extremes of fine-grained tasks in traditional dataflow architectures 

and the coarse-grained tasks in skeleton-based approaches, has the potential of providing reason­

able balance between computation and communication,

3.2.4 Work distribution

When the problem has been partitioned into tasks, the next important decision is how to dis­

tribute the tasks onto the processing elements of the machine. This decision is also crucial because 

performance could suffer badly if poor distribution and scheduling strategies are used.

Work distribution decisions can be taken statically (i.e., automatically by the compiler or using
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explicit programmer annotations) or dynamically by some adaptive policies which make d ecisions 

based on the load status of the machine. Work distribution algorithms can be distinguished as 

passive, active or a hybrid of both [KuWa90]. In passive strategies, idle processor poll othhr 

processing elements for work to do while the distribution of tasks in active strategies is initiated 

by the processors creating the tasks. The algorithms used range from simple schemes like that 

proposed in [BuSlSl] to more sophisticated schemes like the gradient model presented in [LiKe87], 

the drafting algorithm suggested in [NXG85] and a version of the bidding algorithm discussed in 

[Hwan82]. Research [EaLa86, Gold88] has shown that the simplest scheduling strategies often 

perform very nearly as well as (and occasionally better than) more complex ones [Peyt89].

Hudak [Huda91] uses source-level annotations to statically specify task distribution and uses 

a diffusion scheduler in their Alfalfa implementation [HuGo85]. The use of annotations to create 

static “process networks” in Caliban [Kell89] amounts to some significant user control on process 

creation and distribution. Culler et al [CSS+91] describe an implementation in which program par­

titioning, scheduling and register management issues are left under compiler control. Hammond 

and Peyton Jones [HaPe92] have described several scheduling strategies and presented comprehen­

sive measurements based on their implementations.

The ability of a task placement strategy to distribute work to its immediate neighbours is 

an important consideration (on many distributed memory systems) since there is less overhead 

associated with transporting tasks between processors that are physically close to each other than 

between those remote to each other. Care must be taken to ensure that the exploitation of locality 

does not lead to an imbalance in load sharing among the processors of the machine. Thus, a middle 

course is also desirable here since locality and processor utilisation have a mutually repelling effect.

Going by the results of Eager and others referred to above, we adopt an active task distribution 

strategy which offloads parallel processes randomly to the processors of the machine. We have also 

experimented with another variant of eager distribution scheme which is deterministic as detailed 

in our experiments in Chapter 8.

3.2.5 Communication and synchronisation

Parallel tasks that are co-operating or competing with each other need to be properly managed 

to make them realise the presence and purpose of one another so that correct behaviour can 

be achieved and duplication of effort can be avoided. The issue of communication, like that of 

distribution, is influenced by the underlying physical machine architecture. In shared memory 

machines, the tasks selected for reduction are often placed in a centralised global store, usually 

called a task pool, from where idle processors request work. Mattson [Matt93] has shown that
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having a centralised task pool is a bad design decision which may lead to the creation of hot-spots. 

He therefore suggests the use of distributed task pools (like those maintained by the GRIP IMUs) 

since they avoid the problem of hot-spots. In distributed memory machines the tasks selected for 

reduction are distributed directly from one processor to another. In some implementations a task 

offloaded to another processor for reduction contains all the information required for its evaluation 

and for the distribution of its result.

There are two major ways of organising communication and synchronisation between tasks in a 

parallel programming system namely the notification model (i.e., fork and join) and the evaluate- 

and-die model [Peyt89] which may involve task coalescing. In both these modes, an object to be 

evaluated is held in memory either in evaluated or unevaluated form or it may be under evaluation. 

When the value of an evaluated object is requested, the value is fetched immediately but if the 

object is under evaluation, the requesting task becomes blocked, its continuation added to a record of 

blocked tasks associated with the requested object undergoing evaluation. When the computation 

of the object’s value completes, each blocked task is reawakened by notifying it with the value. 

While a task blocks, the processor on which it was executing can be employed to do some other 

useful work. The interesting difference between the two models concerns the relationship between 

a parent task and its unevaluated children: the notification model blocks after creating the child 

tasks while the evaluate-and-die model goes ahead and evaluates a child task when it needs the 

child’s value and finds it unevaluated. Evaluating a child task by its parent in this way has the 

benefit of increasing granularity and locality and avoids the overhead of communication due to 

task switching when the parent blocks.

The evaluate-and-die model is often used in architectures with low communication latencies 

although it is also suitable for distributed memory architectures. In our distributed memory 

model data and information is communicated amongst the processors using asynchronous message 

passing and synchronisation is achieved using the notification model. Notice that since we compile 

a program into multiple threads, the costs of high latency communication can be offset by the 

requesting processor context switching speedily to do some useful work, in the mean time, before 

receiving the reply to its long range request.

3.2.6 Controlling parallelism

In some programs so much parallelism can be generated that the processing power of a machine 

becomes overwhelmed or that the memory requirements of the program exceed what the machine 

can tolerate. In these circumstances, therefore, it is necessary to impose some control to inhibit 

the creation of spurious parallel tasks.
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The following program, based on the naive Fibonacci function (and which counts the number of 

calls to the Fibonacci function), is a classical example used to indicate the possibility of parallelism

explosion in a program.

nfib n = if n <= 1 then 1 else 1 + nfib(n — l) + nfib(n—2)

This function illustrates a divide-and-conquer algorithm in which the problem of computing nfilb, 
for n greater than 2, is divided into 2 independent simpler problems which can be solved and their 

results combined to form the overall result. However, if the two independent recursive calls in the 

definition are made in parallel, the number of tasks created will grow exponentially, the same as 

the value returned by nfi-h. This function can be hand-tuned to minimise the number of tasks 

created or the runtime system can use some control mechanism to throttle task creation.

Load control mechanisms can be implemented either in software or in hardware. Software 

solutions could be specified statically (using programmer annotations or compiler transformation) 

or dynamically by the runtime system. The Manchester Dataflow project [RuSa87] uses a hardware 

solution to control parallelism explosion. Hammond et al. [HMP94] described the effect of two 

dynamic spark control strategies on granularity and presented performance measurements of these 

methods. Ostheimer [Osth93] proposes a load bounding algorithm integrated into a compilation 

scheme for functional languages, k-bounded loops are used by researchers at MIT [CuAr88] to 

restrict the number of concurrent iterations of a loop.

For the experiments reported in Chapter 8 we use an ad hoc thresholding mechanism to increase 

granularity and minimise the number of parallel tasks created. This is achieved by varying the 

number of threads each virtual processor executes from its context store whenever the processor’s 

turn to run comes. We have, as a future research issue on this compiler, a plan to implement 

Ostheimer’s proposed algorithm so that we can provide a more systematic parallelism control 

mechanism.

3.3 Why parallel functional programming?

As discussed in Section 2.2, functional languages prohibit assignments (which cause side-eifects) 

and provide facilities which support higher-level control and data abstractions. Parallel functional 

programs are also comparatively easier to write than parallel imperative programs since functional 

programs are always determinate and the exploitation of conservative (i.e., non-speculative) par­

allelism does not change the semantics of a program [Peyt89]. Under this parallelism regime, an 

arbitrary subtask (like a function call) can always be assigned to a processor since the interleaved 

or parallel evaluation of expressions cannot change a program’s value.
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In conventional imperative languages, parallelism is often introduced explicitly using special 

constructs1 in the language. ■ Other systems exploit parallelism in an ad hoc way by making calls 

to parallel library routines. For example, PTRAN (parallel Fortran) extends Fortran with two 

control structures PARALLEL LOOP and PARALLEL CASES which can be added automatically by the 

compiler or explicitly by the programmer in the source code.

In contrast to imperative languages, parallel programming using functional languages is simpler 

because the elegant semantics of functional languages frees the programmer of the need to managei 

parallelism explicitly. For example, in parallel imperative programming communication and syn­

chronisation interfaces must be defined between parallel tasks to ensure that they interact correctly. 

The programmer is also responsible for enforcing protection on data and preventing deadlock. For 

example, parallel Fortran’s statements for parallelism, PARALLEL LOOP and PARALLEL CASES, need 

to contain PRIVATE declarations for scalar variables to avoid data conflicts in loop iterations and 

among parallel tasks [Sark91]. The new language features that must be introduced to specify and 

manage parallelism makes programming much harder and the parallel programs are also more 

difficult to understand.

Language features are required to regulate situations where processes are required to interact in 

conventional imperative languages. For instance Pascal can be extended with wait and signal oper­

ations [Hans75] to queue and resume processes on a monitor respectively. In functional languages 

however, the underlying lazy evaluation model ensures that process synchronisation is implicit and 

therefore special measures need be taken only for efficiency considerations.

Deadlock in functional programs can occur only in erroneous programs in which some expres­

sions strictly depend on their own results [Peyt89] while in imperative languages the programmer 

must ensure that tasks do not deadlock each other. Furthermore, since functional programs are 

determinate and new language constructs are not required to manage parallelism, parallel pro­

grams may be debugged on sequential hardware and it is no more difficult to reason about parallel 

programs than it is to reason about sequential ones.

In the next section we present a short review of parallel implementation projects on functional 

languages especially those that are closely related to our research.

3 We point out that annotations in parallel functional languages are not language features in this sense. This 

is because such annotations are usually hints to the compiler which can be ignored using some kind of throttling 

mechanism. For the case when annotations are directives to the functional compiler, however, the distinction 

becomes somewhat blurred.
3Although parallelism needs to be specified by the user as described above, no special measures (except for 

efficiency considerations) need be taken to protect data that is shared by concurrent tasks [Peyt89].
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3.4 Related work

As we have mentioned in Section 3.2.2, parallelism can be exploited in functional languages im­

plicitly with minimum programmer support or explicitly with more programmer involvement. The 

implicit and explicit approaches are actually two extremes and there is a continuum of ways of 

exploiting parallelism between these two extremes. Various forms of computation contain implicit 

parallelism of some sort; at the high level in the algorithm and/or at the instruction level. An ideal 

programming language for implicit parallel programming should preserve parallelism available in 

an algorithm and facilitate the subsequent extraction of the parallelism from the program. For­

tunately, functional languages satisfy these criteria and, by virtue of the Church-Rosser theorem 

referred to earlier, are used as a vehicle for implicit parallel programming.

There are three different approaches to exploiting implicit parallelism in functional languages 

namely, automatic parallelisation, use of programmer annotations and the use of skeletons. As 

pointed out in Section 3.2.2, automatic parallelisers are unable effectively to uncover and efficiently 

exploit the useful parallelism in a program. Programmer annotations are used to express varying 

degrees of control of a program execution. The annotations used by some implementations are 

mere hints to the compiler while others use annotations that are mandatory to the compiler in the 

sense that the compiler cannot choose to ignore the actions indicated by such annotations. The 

latter form of annotation leads to explicit parallel programming and, the former, although not 

totally implicit, is somewhere in the continuum between implicit and the explicit approaches. The 

skeleton approach is based on defining a fixed recipe of higher order functions which capture known 

patterns of parallel computation. The main disadvantage of this approach is that the fixed set of 

skeletons can hardly express all the parallelism in an application. Furthermore, the supported 

skeletons, which have to be implemented on every platform, may not be suitable for parallelising 

some problems.

In this section we present a review of previous and current research projects on parallel im­

plementation of functional languages. Our review concentrates more on implementations that 

resemble ours, i.e., those based on the exploitation of implicit parallelism using advisory anno­

tations. In Section 3.4.1 we review some implementations based on automatic parallelisers. In 

Section 3.4.2 we describe implementations based on programmer annotations including those im­

plementations based on a combination of automatic parallelisers and annotations. Section 3.4.3 

highlights other approaches.
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3.4.1 Automatic parallelisers

Alfalfa and Buckwheat

Hudak and Goldberg [HuGo85a,b, GoHu86] developed a parallelising compiler based on serial 

combinators in their Alfalfa project. A serial combinator is a refined supercombinator which has 

no concurrent substructure. Their language base, Alfl, is a weakly typed functional language which 

requires runtime type checking performed by the Alfalfa back end. Alfl contains no constructs for 

specifying parallelism or synchronisation by the programmer; the compiler uses first order strictness 

analysis to automatically decompose and dynamically distribute the user’s program for parallel 

execution. In contrast, Naira compiles a statically typed language and the task of specifying 

parallelism is left to the programmer using source annotations.

The Alfalfa implementation is based on a heterogeneous abstract machine model, borrowing 

ideas from dataflow and reduction machines research on the one hand and conventional compiler 

technology for sequential machines on the other [HuGo85b]. In order to support lazy evaluation, 

higher order functions and the creation of a function call on a remote processor by another function 

(which may require one call to suspend, due to data dependency, waiting for the value of another 

call), it is necessary to allocate closures on the heap rather than on the stack. Alfalfa performs 

collecting interpretation [Huda86] to detect function invocations which can be executed using se­

quential graph reduction. Two definitions are generated for each such function; one for sequential 

stack-based execution in which the function arguments are evaluated and one for sequential graph 

reduction in which some of the arguments may be ueevaluaned.

The target machine is the Intel iPSC (short for Personal Supercomputer), a distributed mem­

ory, hypercube-networked multiprocessor with very large communication overhead. All commu­

nication between processors is via message passing and tasks are offloaded dynamically using a 

heuristic diffusion scheduler. The scheduler runs on each processor and its operation is guided 

by the load information of neighbouring processors: each processor only sends work to its neigh­

bours. Serial combinators form the units of granularity and task distribution and since they do 

not have concurrent substructures it is ensured that no available parallelism in a program will be 

lost. Comparing Alfalfa to our own work, we adopt a function-level granularity except that we 

do not exploit parallelism inside function bodies and thus maintain coarser grains of parallelism 

than their serial combinators. We make use of two variations of an active task distribution regime 

which deterministically or randomly offloads tasks to processors.

The high communication overhead of the iPSC multiprocessor degraded the performance and



3.4.1 Automatic paralleli sers 39

Goldberg [Gold88] retargeted the compiler to the Encore Multimax, a shared memory multipro­

cessor in his Buckwheat project. In Buckwheat, a two-level task queue is maintained where each 

group of processors has a direct access to its primary queue with a secondary queue shared among 

all the processors. The secondary queue is accessed only when the primary queue is empty of full. 

Improved performance was measured in Buckwheat compared with Alfalfa.

The PAM project

Loogen et al [LKID89, HKL91] described a distributed implementation of programmed graph 

reduction on an OCCAM/transputer system. This research can be viewed as a continuation of 

Hudak’s and Goldberg’s work in which a functional program is automatically translated into a 

system of parallelised combinators. This introduces parallelism in PAM at two levels; statically and 

dynamically. This is implemented using a strictness analyser, based on the evaluation transformer 

method [Burn87a], to generate an intermediate program with an explicit letparcconstruct to 

indicate subexpressions to be executed in parallel. Because static parallelisation of applications 

of functional parameters is not feasible, since such functions are only ‘known’ at runtime, higher 

order functions are parallelised dynamically. There are two sources of generating parallel processes 

in this serial combinator system: those resulting from the execution of letpar-constructs and a 

parallel process will also be generated for the delayed execution of a combinator application in a 

non-strict argument position. As in Naira, a parallel process corresponds always to a combinator 

application which is completely specified by the cdmbinatdr name, the list of arguments and the 

return address. A parallel process in this case, however, contains two further descriptors; the 

evaluator with which the parallel task has to be evaluated and the kind of activation.

The implementation is based on a parallel abstract machine, PAM, which consists of a fi­

nite number of identical processors. Each processor has a modular structure, consisting of two 

independent communication and reduction units. The modular structure simplifies the formal 

specification of the parallel machine [Loog87, Loog88] and also decentralises the parallel execu­

tion of the program by separating the overhead of parallelism from the reduction process. Inter 

processor communication is achieved via message passing through the interconnection network. 

In order to minimise the communication costs, the compiler uses some heuristics to estimate the 

complexity of expressions to determine those that are worth parallelising. Their process, answer 

and request messages correspond to out-SendMessage, SendNotify and SendEval messages respec­

tively, described in (Section 5.4). Their graph representation consisting of task nodes, argument 

nodes and data nodes are correspondingly similar to our function frames, suspension objects and
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constructed objects. In contrast, they implement a simple passive task distribution mechanism in 

which idle processors send work-request messages to their neighbours.

Each combinator is compiled into a sequence of machine code with two different entry points 

and which incorporates the evaluation transformer information associated with the combinator. 

The two entry points correspond to the activation modes of the combinator; a potential parallel 

activation of the combinator’s arguments before the second entry point is passed which immediately 

leads to the evaluation of the combinator’s body. The first entry point can be short circuited 

when it is known that the evaluation of the combinator’s arguments has already been initiated. 

This implies that their implementation is not capable of exploiting vertical parallelism where the 

evaluation of a function body proceeds in parallel with the evaluation of the function’s arguments. 

In addition to this horizontal parallelism our compilation scheme of Chapter 5 nicely expresses the 

possibility of exploiting vertical parallelism.

Although the code for PAM is interpreted in the current preliminary implementation, their 

experiments on small programs show good speedup results. Their benchmark programs consist of 

those that manipulate data structures, like matrix multiplication, and those that work on simple 

integer values, like nfib. Speedup of up to 9 and up to 11 was measured on 12 processors in 

the two categories, respectively. However, as this is a preliminary stage in the implementation, 

it is too early to draw final conclusions before non-trivial benchmarks are considered and before 

optimisations are performed to reduce the cost of message passing overheads.

The disadvantage of this implementation is that a new combinator is introduced for each expres­

sion abstracted for parallel execution, unless the expression is already a combinator application. 

Oracle functions are used, in addition to the evaluation transformer information, to analyse ex­

pressions and determine those that are worth parallelising. Most of the time in this compiler is 

spent in computing the abstract interpretation of combinators.

The HDG-Machine project

Kingdon et al [KLB91] described the parallel implementation of functional languages on distributed 

memory machines. The implementation employs the evaluation transformer model of reduction 

[Burn87a] which uses the information about how functions use their arguments so that the function 

and their arguments could be evaluated in parallel — thereby saving the cost of building a data 

structure for the arguments in the heap. That is, parallelism is introduced via annotations for 

evaluation transformers only (without user annotations) and the granularity of tasks can be as 

small as possible. Source functional programs are compiled into code for an abstract machine
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which are then macro-expanded into Transputer assembly code.

The HDG-Machine [LeBu89] is a parallel abstract machine for the execution of functional 

programs. In contrast to conventional abstract machine designs, where the machine’s state is 

usually defined as a tuple and the operational semantics defined by means of state transitions, this 

machine is specified in a functional language. The resulting specification, apart from being much 

easier to write and read, has the added advantage that it is executable and can be debugged and 

proved for correctness formally.

As in the ZAPP [BuS182] and the GRIP systems (see Section 3.4.3), three dVfereet (heap- 

allocated) task pools are distinguished in the HDG-machine: migratable, which holds newly created 

tasks, active which holds tasks received from other processors and blocked task pool which stores 

tasks waiting for the results of other tasks. Only migratable tasks can be distributed to other 

processors and the distribution is carried out using a passive scheme; when the active task pool 

is empty, local migratable tasks are moved into it. If the migratable task pool is also empty, 

migratable tasks are requested from a neighbouring processor’s pool. In order to prevent tasks 

cycling around the machine, requested tasks from a remote processor are placed in the active task 

pool of the requesting processor which is entrusted with its execution. This is also very similar to 

the single steal rule adopted in ZAPP.

The HDG-machine was implemented on a fully connected network of four T800-25 Transputer 

nodes with each transputer emulating one processor from the abstract machine. Initial implemen­

tation of this machine with a naive code generator gave experimental results better than expected 

and which compare favourably with mature implementations like the LML compiler. However, the 

implementation has been tested only on small example programs and since the implementation 

lacks a garbage collector it cannot be tested using large programs. The large node layout used in 

the implementation is expected to introduce problems for “real” applications.

Other automatic parallelisers

Other parallelising compiler projects include the ADAM and EVE project [Loid92] and the FP 

compiler project [WaBa90]. The ADAM and EVE project compiles a non-strict functional language 

EVE to dataflow graphs which are then code generated into assembler code of an abstract hybrid 

dataflow/controlflow machine, ADAM. The target machine is a conventional machine extended 

with two constructs for the creation and synchronisation of parallel tasks. The FP compiler was 

targeted to a synchronous SIMD system and the compiler generates code capable of exploiting 

data-p arallelism.
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3.4.2 Annotation-based parallelisation

Chalmers LML project

Augustsson and Johnsson [AuJo89a] described the implementation of Lazy ML on a parallel graph 

reduction machine based on a parallel abstract machine, the < z,,G>-machine. This machine is 

based on an earlier sequential G-machine which underlies their lazy ML compiler [AuJo89b]. As in 

the GHC implementation on GRIP (see below), parallelism is introduced using spark annotations, 

inserted explicitly by the programmer in the source, which the runtime system may ignore if 

there are insufficient resources available. Also as in the GHC, the evaluate-and-die model of 

synchronisation is used where a parent process evaluates an expression itself when it needs the 

expression’s value and the evaluation of the expression has not been started by another process.

LML programs are compiled into a small intermediate language from which < f ,G>-machine 

code is generated. As in the HDG-machine project, native code is finally generated from the < i/, 

G>-code by macro expansion. The < i/,G>-machime was implemented on a commercial shared 

memory multiprocessor, the Sequent Symmetry™, a bus-based multiprocessor which supports 

multiple executing threads of control, and incorporates the stack frames associated with these 

threads in the heap-allocated graph structure. In contrast to GRIP the CPUs of the Sequent 

Symmetry™ do not have local memories attached (but do have caches) and a memory reference 

into the heap has the same cost as a reference into a stack, since they reside in the same shared 

memory [Augu91].

Representation of the graph nodes in this implementation is similar to ours, maintaining a tag 

to change the status of a node, except that they have to guarantee exclusive access to a node, when 

concurrently executing processes need to interact, in order to handle non-atomic instructions arising 

from atomic < u, G>-machine instructions. Although sparks are advisory and may therefore be 

lost without affecting the final result of the program, the spark pool, like in GRIP and unlike in 

GAML (see below), needs to be guarded by mutual exclusion, to avoid losing or duplicating sparks 

and in order to improve the runtime behaviour of the program.

An initial implementation of the < i/,G>-machine (which produces quite simple code that 

is far from optimal) presents measurements showing real speedup compared to a fast compiled 

implementation based on the conventional G-machine. The experiments, based on a few small 

benchmark programs, using 15 processors measured speedups ranging between 5 and 11. Better 

parallel performance is expected when the code generator is improved to use registers rather than 

stack locations to speed up both allocation and garbage collection times.
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The MaRS project

Researchers at Centre d’Etudes et de Recherches de Toulouse [CCC+89] developed a parallel graph 

reducer, MaRS (Machine a Reduction Symbolique), whose main design purpose is to minimise the 

cost of interprocessor communication and process creation by hardware means. The language 

base in this project is called MaRS_List, a pure Lisp type of language, that supports higher 

order functions and which has strictness annotation possibilities. Parallelism is made explicit 

in this language using a process-annotation similar to the future construct of MultiLisp [Hals85]. A 

MaRS-Lisp program is compiled into a combinatory object code for MaRS consisting of an enlarged 

set of the basic SKI combinator system called indexed combinators [CDL87, LCD+86] which are 

designed for reduction on special-purpose VLSI processors. The indexed combinators come in 

different flavours (some are used for optimisations only) including parallel versions generated based 

on the parallelism annotations from the source.

MaRS is a scalable (i.e., its power can be increased by adding more hardware resources without 

reprogramming), modular, specialised machine built around a special interconnection network and 

avoids any centralised mechanisms. The implementation aims to keep programming simple and 

relegates to hardware mechanisms the instantaneous regulation of processes and their distribution 

to processors. Therefore, task distribution and parallelism control are carried out by the inter­

connection network in this machine. MaRS is composed of five specific types of VLSI processors: 

Reduction Processors (RPs, supporting very fast context switches), Memory Processors (MPs, 

for managing the shared logical program graph), I/O Processors, Arithmetic Processors for float­

ing point computations and Communication Processors (CPs) which make up the interconnection 

network.

The representation of graph nodes in memory adopted by this implementation is very similar to 

ours: the default status of a graph node (i.e., for a non-basic value expression without parallelism 

annotations) passes successively, and in this order, through a Non-reduced, Under-reduction and 

Reduced states corresponding to our SUSPENDED, BUSY and READY states (see Section 5.3) respec­

tively. This default life-cycle of a node can be short-circuited by directly allocating nodes in BUSY 
or READY states as the case may be. Some of the indexed combinators may involve a Parallel ver­

sion (P-version) combinator whose reduction leads to the creation of a parallel process, provided 

the machine is not saturated. Creating a new parallel process (upon reduction of a P-version 

combinator) requires sending an allocation message from the current RP to an MP. When the new 

under-reduction graph node is allocated, the allocating MP then sends two messages. One mes­
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sage is sent to transmit the address of the newly allocated node to the requesting RP (to enhance 

sharing of the subgraph node) and a second message is sent to a free RP to reduce the new node. 

Node allocation messages from an RP to an MP and process allocation messages from an MP to an 

RP do not carry destination addresses; they are routed using a memory charge and an execution 

charge information, respectively, kept by each MP and RP. Evaluation of a subprocess created in 

non-reduced status (on reducing combinators other than the P-version) is entrusted to the parent 

process (i.e., evaluate-and-die synchronisation), which will otherwise have to wait for the result. 

This model of synchronisation is especially important in MaRS because waiting processes are very 

costly since they cannot leave the resources they occupy to other processes that would like to start 

[Vran90]. It is clear from the foregoing that, like our implementation, this implementation adopts 

an active process distribution policy.

Performance evaluations of the MaRS prototype have been conducted by using a simulator. 

The simulation exhibits good absolute performances on typical simple benchmarks. In particular, 

fine-grained simulations have shown that the distribution mechanism based on charge information 

is very effective and allows a uniform distribution of nodes and processes among MPs and RPs. 

A disadvantage of the MaRS implementation is that their use of a fixed set of combinators and 

their interpretation on special purpose hardware makes their approach not readily portable to 

traditional hardware. Although the cost of communication is small, based on results of their 

simulations, it remains to be seen whether interpreting the indexed combinators can compete with 

compiled supercombinator execution adopted by most functional language implementations.

Concurrent Clean on ZAPP and PABC

Koopman et al [KvEN+90] described the sequential implementation of a lazy functional language, 

Clean [BvEL+87], on a stack-based graph reduction abstract machine, the ABC machine. Clean is 

a subset of a general graph rewriting language LEAN (Language of East Anglia And Netherlands) 

[BvEG+88] which is aimed at being an intermediate language between functional languages with 

much richer syntax and various abstract machines. The Concurrent Clean language [NSvEP91] is 

an extension of Clean with process annotations for specifying parallelism in the source program. A 

parallel ABC machine [NPS91], based on the sequential ABC machine, is an abstract machine used 

for creating and describing the implementations of Concurrent Clean. In this section we describe 

two implementations of Concurrent Clean; one on a generalised version of ZAPP and the other on 

the PABC machine.

There are two classes of annotations in Concurrent Clean, local and global annotations. Local



3.4.2 Annotation-based parallelisation 45

annotations are the process annotations given explicitly by the programmer which are put on the 

right hand sides of rewrite rules. Global annotations are generated automatically by a strictness 

analyser and are placed in the definition of new types and in the type specifications of functions. 

A strictness annotation in the type specification of a function changes the reduction order of all 

applications of a function. Process annotations, on the other hand, are called local because they 

only change the evaluation order of a specific function application. Local annotations are of two 

forms, a parallel annotation and an interleaved annotation. An interleaved annotation creates a 

process on the current processor and executes in interleaved fashion with other processes on this 

processor. The parallel annotation creates a parallel process on a random remote processor unless 

this is not possible in which case it is treated as an interleaved process. There is also a version of 

the parallel annotation which specifies the destination processor, similar to Hudak’s annotations 

[Huda91]. Concurrent Clean is therefore, perhaps, the most complete annotation-based language.

Early implementations of ZAPP [McBS187] (see Section 3.4.3) required rewriting parts of the 

ZAPP kernel for each new application. In contrast, CCOZ, the implementation of Concurrent 

Clean on ZAPP [McBS190, GMS93], uses the language primitives provided by Concurrent Clean 

to annotate expressions so that no modifications to the ZAPP elements are required for new 

applications. If a process is to be evaluated on a remote processor the subgraph (rooted by the 

annotated node) representing it is copied to the remote processor where it will be evaluated (and 

the result graph is copied back to the original processor, when demanded). On the other hand, 

the graph of an interleaved process is not copied ’but is shared. The implementation adopts the 

evaluate- and-die model of synchronisation where a reducer can pre-empt task creation. That is, 

if a reducer requests the value of a subgraph to be reduced as a separate task which has not 

yet been scheduled for execution, the requesting reducer reduces the subgraph itself; Concurrent 

Clean programs are compiled directly into Transputer assembly code. As in the Burton and Sleep 

implementation, the CCOZ implementation also uses transputers to implement the ZAPP elements.

Dynamic control of parallelism in the CCOZ implementation is achieved at both hardware and 

software levels. The depth-first scheduling of tasks in the process tree, supported by the ZAPP 

architecture, restricts the number of parallel tasks created at any given instance and prevents the 

exponential growth of parallelism at runtime. Although the evaluate-and-die model of synchronisa­

tion does not avoid task creation, it can be viewed as playing a part in the parallelism control since 

it increases data locality, granularity and saves copying and communication costs. Two versions of 

code, one for parallel and the other for sequential execution, are generated for each group of rewrite 

rules (that define a function) which contains task annotations. The CCOZ system decides, based 

on a heuristic function, which performs a simple threshold test, whether to execute the parallel
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code sequence or the sequential code.

Although the CCOZ implementation was not complete, the early experimental results they 

presented for simple divide and conquer functions showed good relative and absolute performance, 

which is further enhanced by the use of programmable granularity control. However, for programs 

that require graph copying when sending a task to a remote reducer, like their matrix multiplication 

benchmark, the performance was not as good and needs to be improved.

Each processor in the PABC machine contains zero or more reducers running interleaved with 

each other. There are two more reducers in addition to these: an operating system and a communi­

cation process which collaborate to handle I/O and interaction between processors. The operating 

system schedules the interleaved reducers and manages communication requests coming from the 

reducers or the communication process. The communication process, with the help of the operat­

ing system, handles communication between parallel reductions executing on different processors 

[PlEe93]. If a process wishes to communicate with another which does not reside on a neighbouring 

transputer (i.e., which is not physically connected to the transputer hosting the first process), the 

message is routed to the destination via some other transputers. All communication is therefore 

via message passing and the PABC machine has instructions that enable an arbitrary graph to be 

sent to any processor in the network. In contrast to CCOZ (which directly generates transputer as­

sembly code), this implementation of Concurrent Clean on PABC generates the transputer object 

code via the PABC abstract machine code.

The PABC machine was implemented on a ParSyTec transputer architecture [Kess91, Kess93, 

PlEe93, Kess96] consisting of 32 T800 transputers connected in a grid topology. Each transputer 

supports primitives for starting and stopping processes, context switching and hardware support 

for a round robin scheduling mechanism. The scheduler automatically allocates reducers at two 

priority levels: low priority processes are automatically assigned slices of time within which to 

run, while high priority processes are not time-sliced so that the cost of context-switching can be 

minimised. Context-switches occur between basic blocks (e.g., after executing jump instructions 

or after I/O calls in some systems) and are avoided during garbage collection and within basic 

blocks otherwise the possibility of performing certain optimisations within the basic blocks will be 

destroyed.

Experiments in the Concurrent Clean implementation demonstrates that using a random pro­

cess allocation, compared to using the HDG load balancing heuristic, does not give significantly 

worse execution times [Kess96]. Compared to the sequential implementation of Clean on a Mo­

torola processor [SNvGP91]; stack handling in the transputer-based parallel implementation is 

less efficient. As in the < u, G>-machine, execution begins with heap-allocated initial stacks of
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size 0 bytes which are automatically reallocated and resized—which requires performing boundary 

checks on the stacks—as execution proceeds. In the sequential implementation, however, programs 

usually use more memory since all the three stacks are allocated outside the heap. Overall, their 

experiments based on popular benchmark programs showed a reasonable performance considering 

the fact that a random process distribution was used.

GHC on GRIP

The Glasgow research team provides, amongst other things, a parallel implementation of Standard 

Haskell on GRIP based on GHC, the Glasgow Haskell Compiler [PHH+93]. GHC is a state-of-the- 

art sequential compiler modified with support for parallel language primitives and a sophisticated 

runtime system to support parallelism. Standard Haskell programs are compiled into a small 

intermediate functional language from which C code is generated [Peyt92].

The GRIP (Graph Reduction in Parallel) machine [PCSH87] is a perp* • ^e-built, shared-memory 

machine designed to perform supercombinator graph reduction efficiently. of up to 20

printed circuit boards, each of which comprises of up to four processing elements, one Intelligent 

Memory Unit (IMU) and a fast communication subsystem. Each processor element consists of 

a Motorola 68020 CPU, a floating-point co-processor and 1Mbyte of local private memory. The 

GRIP boards are interconnected using a high bandwidth bus which provides a fast, low-cost, low- 

latency access path to the shared IMUs, The whole machine is connected to a UNIX host and 

one of the PEs is designated as the system manager which is responsible for resource allocation 

within GRIP, the other PEs behave like supercombinator reduction machines. The IMUs, the most 

innovative feature of GRIP, hold the program graph and are used to provide fast access to the large 

shared memory.

GRIP supports the implementation of standard Haskell whose subset we compile. The program 

to be executed is, as in Naira, expected to contain parallelism annotations informing the runtime 

system that certain expressions may be evaluated in parallel provided there is enough resources 

available. A task, which can be sparked by a PE based on the annotation information and the 

machine load status, forms the unit of parallelism in this machine and such a task is associated with 

a sub-graph node to be reduced later. Hammond et al [HMP94] presented strategies for controlling 

task creation in GRIP in order to improve task granularity and minimise communication overheads.

The implementation adopts the evaluate-and-die model of inter-thread communication and 

synchronisation which avoids context-switching costs and also dynamically increases granularity 

by absorbing a child task into its parent when the parent gets round to evaluate the child task.
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GRIP runs parallel Haskell programs with substantial absolute speedup over the same program 

running on a uniprocessor Sun with a comparable microprocessor [HaPe9O].

GAML project

Maranget [Mara91] describes a parallel implementation of GAML, a lazy functional language very 

close to LML, on a shared memory multiprocessor, the Sequent Balance. As in GHC, Chalmers 

LML and the Naira compiler, parallelism is introduced using programmer annotations. In addition 

to the user parallelism annotation, GAML incorporates a strictness analyser which automatically 

inserts complementary strictness annotations. This implementation has three different types of an­

notations: strictness annotations on function arguments, fork annotation given by the programmer 

and annotations on variables whose bound expressions have already been evaluated.

GAML is compiled into a small intermediate language (a subset of GAML) which is then 

compiled into G-code. As in the Chalmers compiler, function definitions occur only at the top 

level after lambda lifting while functions can occur at expressions level as well in our intermediate 

language as in Peyton Jones’ STG language. Two entry points are generated for a function, for 

instance like in Hogen et al [HKL91]. In this case one entry point assumes the strict arguments 

of the function are already reduced while the other must arrange to reduce its (possibly non­

canonical) strict arguments. The aim of the strictness analyser in GAML is to optimise the latter 

entry points whenever appropriate. In Hogen et al , the first entry point leads to a potentially 

parallel activation of the arguments before the second entry point is passed which leads to the 

evaluation of the combinator body.

The runtime organisation of GAML is quite similar to that of GRIP with both implementations 

identifying two pools of runnable tasks. These pools are called fork and RUN thread pools in GAML 

and, correspondingly, sparked and unblocked threads pools in GRIP. The fork/sparked thread pools 

contain newly created tasks that are not yet ‘stolen’ by an idle processor and the RUN/unblocked 

thread pools contain suspended threads waiting for the values of other threads. Whereas GRIP 

IMUs check sparked threads (to see whether WHNFs or locked closures are referred to by their 

thread descriptors) before adding them to the sparked pool, GAML allows a non-locked access 

mechanism to its forked task pool and like our compiler, evaluation tags are used (as locks) to 

prevent several machines from reducing the same subgraph.

The cost of the locking mechanism is avoided by distinguishing shared nodes, which are the only 

ones that really need updating, from unshared nodes. This non-locked access mechanism is crucial 

for the efficiency of the co-operating parallel G-machines. Storage for the forked threads pool is
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statically allocated and with the non-locked access makes its implementation very cheap. The 

RUN pool, however, needs exclusive access and that once started, a reduction must be completed 

to avoid the whole computation stopping before completion. GAML does not impose a scheduling 

policy to prefer either a sparked thread or a RUN thread (since both contribute to the final program 

result, assuming the usual conservative parallelism regime). However, the experiments in GAML 

indicate that the scheduler should look at the RUN pool first; to avoid creating new processes 

and to schedule existing runnable processes which waste stack and heap resources. Our multi­

threaded model of coimputation corresponds to a FIFO scheduling strategy, without differentiating 

between sparked and unblocked threads, since each PE stores incoming messages in a queue in 

its context store and consumes them in succession. Also as in GHC and LML implementations, 

a parent process in GAML evaluates its child task when it requests the child’s value and found it 

unevaluated.

GAML performs a source to source transformation, using a system variable which is set by the 

runtime system or by a processing element, to control the machine load at runtime. Experiments 

in the GAML implementation found that forked expressions should not be delayed too much. This 

helps to keep the number of suspended tasks low and avoid reducing forked tasks by their parents. 

Their implementation provides performance measurements, based on simple programs, comparable 

to those of [AuJo89b, HaPe90]

Id project at MIT

Id is a high level, non-strict but non-lazy functional language with fine-grained parallelism and 

determinacy implicit in its operational semantics [ArNi90]. A goal of the Id project is to have 

both parallelism and storage management issues implicit in the language. That is, Id programs 

are written free of any annotations which direct where to exploit parallelism and how to manage 

storage resources. This goal has not been realised yet in the current implementation and the 

compiler and the runtime system depend on user help for better efficiency. The language is, 

further, extended with two data structures, I-Structures and M-Structures, to increase its expressive 

power. I-Structures are an array-like, single assignment parallel data-structuring mechanism and 

M-Structures are updatable data structures with fine-grain synchronisation [ANP89, BNA91].

Id programs are compiled into dynamic dataflow graphs, a parallel machine language, directly 

executed on a novel multiprocessor architecture, the MIT Tagged-Token Dataflow Architecture 

(TTDA). TTDA consists of a number of dataflow processing elements and I-structure storage 

units interconnected by an n-cube packet network. This compiler was later retargeted to generate
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object code for TTDA’s successor, Monsoon [HCAA94] which is a small, experimental shared 

memory dataflow multiprocessor consisting of eight processing elements.

The implementation, as in [AuJo89a, KLB91], generalises the stack of activation frames of 

a sequential execution model into a tree of activation frames so that an arbitrary number of 

activations can run in parallel. The runtime system consists of a frame manager and a heap 

manager which allocates and deallocates activation frames and dynamic storage respectively. The 

frame manager partitions work on code-block (i.e., at function activation level of) granularity and 

distributes the work in a round-robin fashion. Each processor has its own round-robin counters 

and the work distribution decisions could therefore be made locally. As in Naira and in [CSS+91] 

and unlike [DaReSl, HaPe92], a task is distributed over the network together with the data it 

requires, thus removing the need for remote data accesses during the execution of a task.

Because Id attempts to exploit parallelism at all levels (i.e., at processor, thread and instruction 

levels), it tends to expose too much parallelism, often exhausting machine resources, especially 

frame memory if some measure of control is not taken. Thus the user can supply bounded loop 

annotations to specify the amount of parallelism needed in loops and the compiler generates code 

accordingly. The compiler also analyses programs to determine the lifetimes of objects and to 

insert storage deallocation commands to avoid the difficulty of explicit storage management and 

reduce the cost of runtime garbage collection [Hick93]. Performance measurements on Monsoon 

are quite encouraging: for their benchmark programs, up to seven-fold speedups recorded on eight 

processors with a naive frame management and work distribution strategy used by the runtime 

system.

3.4.3 Other approaches

ZAPP

ZAPP (Zero Assignment Parallel Processor) is an abstract machine originally proposed by Burton 

and Sleep [BuS182] as a work distribution mechanism on a distributed memory parallel architecture. 

The machine is specially tailored to exploit parallelism in divide and conquer algorithms and 

operates by creating a virtual tree of parallel processes. The effectiveness of the ZAPP mechanism 

was first demonstrated, using Transputer arrays, by McBurney and Sleep [McBSl87] for a number 

of simple applications. .

A general divide and conquer paradigm of problem solving can be captured by the following 

higher order function which, given a complex problem to solve, divides it into simpler subproblems
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which are solved and their results combined to obtain the overall result.

dc primitive split combine solve prob =

if primitive prob then solve prob else 

combine {map solve {split prob))

where primitive is a Boolean-valued function which tests whether a problem is ‘basic’ and can be 

solved without subdividing it into simpler subproblems, split decomposes a problem into simpler 

subproblems, solve solves a given problem and combine collects the solutions to subproblems and 

builds the composite solution to the initial problem.

For a particular application, the programmer defines the functions primitive, split, solve, 

and combine whose code is broadcast to all ZAPP elements before execution begins. The initial 

problem and data are then injected into a single ZAPP element from which the divide and conquer 

processes are offloaded to the other nodes as execution proceeds. The ZAPP elements communicate 

with each other via message passing and the load distribution process is balanced dynamically by 

all the elements using local information: each element sends processes to its immediate neighbours 

only. The system adopts the notification model of task communication and synchronisation: when 

a parent process divides a non-trivial task into simpler tasks and spawns the simpler tasks, it waits
4

for their results and when all results arrive, the parent combines them to obtain the result of the 

initial non-trivial task. The parent task then sends this result to its parent and so on until the 

result of the whole program is obtained.

A ZAPP system is made up of a number of processors, called ZAPP elements, connected 

together and each element consists of a conventional von Neumann processor with its private 

memory. ZAPP is a distributed system which does not support a physical shared memory and 

each element executes a ZAPP kernel. The kernel supports a virtual tree of processes and a parallel 

implementation of the dc function as a virtual tree generator. ZAPP maintains three different task 

pools: pending, fixed and blocked. Pending processes are those spawned by a dc call and which 

are not employed by some element yet and they are the only processes that can be offloaded to 

other processors. Fixed processes are those busy evaluating or offloaded and blocked processes are 

those suspended and waiting for some other process to return. The task pool organisation is very 

similar to ours except that in our implementation spawned tasks are distributed using an active 

scheme and we also ensure that only the newly spawned tasks can be offloaded and there is no 

task migration (of fixed and blocked processes).

The only source of parallelism in ZAPP is based on the parallel interpretation of the dc function 

as supported by the ZAPP kernels and all the individual codes for the user-defined functions operate



3.4.3 Other approaches 52

sequentially. In contrast to the HDG and < u, G>-machine implementations (which macro-expand 

abstract machine code into target machine code), the ZAPP implementation employs true code 

generation to obtain transputer code directly (without compiling via an abstract machine code).

Distributable processes (and thus the units of granularity) are always in the form of higher 

order function calls of the dc combinator and such processes are defined completely by the data 

alone. That is, messages distributing tasks for evaluation contain the complete data defining a 

subproblem for the dc function call and do not include associated state information which can add 

to the overhead of offloading processes. The implementation uses a simple passive distribution 

scheme where idle processors may steal a task from one of their immediate neighbours based on a 

single steal policy which ensures that a stolen task must not be stolen again.

The ZAPP virtual tree architecture has been implemented in OCCAM and run on a small 

variable-topology system of 5 transputers for specific applications. The overall result of the ap­

plications studied in the implementation showed that for suitably large process trees real absolute 

speedups where consistently observed, and poor results were nearly always associated with very 

small problem sizes. One of their experiments involved running a series of nfib benchmarks on a 

40 transputer network resulting in a relative speedup of 39.9. A disadvantage with ZAPP design 

is that there is at most one physical communication involved to send a parallel process. While this 

has the potential of minimising communications costs, it risks keeping the machine load unbalanced 

since it restricts possible diffusion of work throughout the physical network. It is unclear whether 

the benefits outweigh the disadvantages in general.

The FAST project

The FAST (Functional Programming for ArrayS and Transputers) project, was a collaborative re­

search between Southampton University, Imperial College and Meiko Ltd of Bristol. Its aim was to 

provide an implementation of a pure, lazy functional language on a transputer array. The project 

also involved researchers from the University of Amsterdam with whom the Southampton team 

developed sequential compiler technology [HGW89, GHW90] and performance analysis techniques 

[HGW91, HaLa92]. Researchers at Imperial college and Amsterdam used the Southampton com­

piler as a basis for investigating various parallel implementation techniques [CHK+92, CHK+93, 

VrHa92].

An important component of the FAST system is a highly optimising compiler for Haskell 

1.0 [HuWa90] on a single transputer [GHW90]. This compiler, which underlies the parallel im­

plementation (see below), contains a number of analyses and syntheses specified within a single
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formal framework called flow graphs. Source programs are compiled into flow graphs which are 

then translated by a flow graph compiler into a severely restricted, single assignment subset of C 

called functional C, with call by value semantics [LaHa92]. The functional C code is then com­

piled into code for an abstract machine, KOALA, that uses an explicit call stack, which brings 

all (heap) pointers under the control of the garbage collector. KOALA is then translated back 

to C; disassembling a complete KOALA program into a single (giant) C function. The resulting 

“globally” optimised C code supports efficient garbage collection algorithms like two-space copying 

and generation scavenging which require all pointers into the heap to be known. As in the Naira 

implementation as well as [Peyt92, ScGr91, TAL91], this implementation relies on a C compiler 

for the final native code generation.

Cox et al [CHK+92, CHK+93] described the implementation of Caliban [Kell89] on a Meiko 

Computing Surface, containing 32 Inmos T800 transputers. Caliban is an annotation language with 

annotations that allow explicit control over process placement and communication on a distributed 

memory machine: a moreover clause is used to partition a program into separate node expressions 

each of which is distributed and evaluated in parallel on separate processors. Nodes that need to 

communicate are determined using data dependency analysis and an Arc annotation is used for 

consistency checking of communicating nodes, Caliban can be built on different languages and this 

implementation is based on Haskell 1.0 [HuWa90].

The declarative annotation in Caliban is used to describe a “process network” showing processes 

evaluating named expressions, linked by arcs showing where communication occurs. Functions 

called network forming operators (NFOs) can be defined in the host functional language to generate 

these annotations. Programs containing NFOs are later simplified, by partial evaluation, to remove 

all NFO calls and to transform the program into annotation normal form describing which data is 

to be computed separately. A form of A-^lii^^fting is then performed to determine which placed streams 

need to communicate with each other. The implementation can make scheduling decisions based 

on the needs of the whole coimputation rather than on process basis since Caliban collects all the 

annotations controlling the parallel computation into the single moreover declarative description. 

A network extraction transformation is then performed to replace the moreover annotation with a 

call to a special system primitive, procnet, which implements the runtime parallelism. A standard 

functional program results after network extraction which is compiled using the Southampton 

compiler described in [GHW90].

In contrast to our implementation and many others, for instance [AuGo89a, Mara91], the 

annotation in Caliban is a directive (since it degenerates to a call to a system primitive) rather 

than advisory and the moreover annotation also provides the programmer with more control over
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parallel program execution; process partitioning, placement and communication. Programming 

with NFOs in Caliban is very much like that of using algorithmic skeletons [Cole89], except that 

Caliban allows the programmer to write new NFOs while skeletons are restricted to those provided 

by the system. The para-functional programming approach proposed by Hudak [Huda91] seems 

to implicitly embody the notion of a process network except that the decisions for mapping are 

explicit in the source and process interaction is not. In Caliban on the other hand, mapping the 

logical process network to actual processors is automatic (by a post-compilation phase) and process 

interaction is explicit in the source [Kell89].

Although generating a single C function from a complete KOALA program stresses most C 

compilers and a lot of extra code is generated to manipulate the tag bits present in each data 

value, the compiler showed better absolute performance than the (the parallel version of the) LML 

compiler [AuJo89b] on non-trivial benchmark programs. The results also show that better code 

results when compiling via C than in the native code generator (which had no garbage collector).

LISP derivatives

There are many projects dedicated to the implementation of parallel dialects of Lisp. A charac­

teristic feature of these implementations is that most of the functional languages they implement 

include some constructs that may cause side-effects to occur. They also usually use the traditional 

environment-based implementation method and are targeted at shared memory multiprocessors. 

These projects include the implementation of Multilisp on a Concert machine [Hals85], Portable 

Standard List on the BBN Butterfly [SKL88] and the implementation of Mul-T on an Encore 

Multimax shared-memory machine [KHM89].

3.5 Summary

In this chapter we have outlined the limitations of sequential computers and motivated the need 

for parallel computer architectures and parallel programming. We identified the major issues of 

parallel programming that characterise the efficiency of a parallel implementation. We discussed 

these issues, namely architectural parameters, program partitioning, grain size,- load distribution, 

communication and load management, mostly in the context of functional languages with different 

proposals for handling them.

We have reviewed several implementation projects (see Table 3.1) that exploit parallelism in 

implicitly parallel functional languages. In most of the work reviewed, parallelism is introduced
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using annotations added by the compiler or by the human programmer. The Concurrent Clean 

language (described in Section 3.4.3) has arguably the most comprehensive annotations that allow 

graph copying, graph sharing, task placement and scheduling. For a number of implementations, 

the program is first translated into an abstract machine code of some sort which is then code­

generated or macro-expanded to code for the underlying concrete machine. A popular trend 

recently is to compile into a high level imperative language (usually C) so that the best sequential 

compiler technology can be exploited. Most of the implementations adopt function-level granularity 

except that the functions may have a restricted structure in some cases (like the serial combinators 

of [HuGo85a] and the indexed combinators of [LCD+86]).

In some implementations, like the STG-machine [Peyt92], two different entry points are gener­

ated for functions to minimise the cost of function invocation. In our implementation, we generate 

a single entry point for each function since general function applications have already been spe­

cialised in the intermediate language for faster, cheaper function calls (see Section 4.3.2). Tasks 

are distributed lazily or actively in other implementations and, synchronisation is implemented by 

means of some locking or tagging mechanisms.

It is quite tricky to asses these issues in isolation of other implementation issues except to say 

that lazy task distribution and evaluate-and-die synchronisation model seem to be in wider use. 

Another observation from our review is that better performance seems to accrue, generally, from 

shared-memory than from distributed-memory implementations. Of the implementations reported 

here, only the GHC researchers [HMP94] gave a detailed description and measurements of their 

load control mechanisms.



Chapter 4

The compiler front end

4.1 Introduction

This chapter presents the design, organisation and implementation of the front end of our functional 

language compiler, Naira. The back end is discussed in chapter five. One of the main motivations 

for the development of this compiler is to explore the prospects and problems of parallelising a 

modern functional language compiler.

After giving an overview of the compiler structure, the next section starts by describing the 

basic data structures used to represent our various symbol tables and the abstract syntax tree for 

a program. The section then delves into some detail on the organisation and implementation of 

the main phases of the compiler. Section 4.3 describes the intermediate language resulting from 

the analyses of the preceding section. Section 4.4 describes the representation for modules and the 

chapter is summarised in Section 4.5. Parallelisation issues are addressed in Chapter 7.

4.2 Compiler structure

Recall from Section 1.4 that the front end of our compiler consists of five major phases—analysis, 

pattern-matching, lambda lifting, type checking and optimisation—as shown again in Figure 4.2. 

This structure is the same as the basic multi-level structure of other production compilers of lazy 

functional languages such as the Glasgow and Chalmers Haskell compilers [PHH+93, AuJo89b], 

and thus, the parallelisation technology we present in the following chapters should carry forward 

to these and other functional languages compilers.

The aim of this section is to elaborate in some details the organisation and implementation of
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Figure 4.1: Structure of the Naira compiler

each of these phases. These are described in the next five subsections. The design and implemen­

tation of the back end of the compiler is presented in Chapter 5. “

4.2.1 Symbol tables

One of the most substantial tasks of a compiler is to build and maintain symbol tables. This 

requires operations for updating a symbol table with information about a new entity, interrogating 

a symbol table for the attribute(s) of an entity and deleting entity/attribute(s) associations from 

a symbol table.

In order to make these operations moderately efficient, we maintain a binary tree representation 

for all the symbol tables in our compiler. Two general purpose binary tree types are defined that 

are used to structure the symbol tables in the compiler. AssocTree a b is used to represent symbol 

tables holding entity-attributes associations of entries.

data AssocTree a b — NL —a leaf

I ND a b (AssocTree a b)(AssocTree a b) —a branch point

The type variable a is identified with an entity’s name, usually a string, and b with the entity’s 

attribute(s). Since the binary trees are sorted, an ordering relation must be defined on values of 

the type a. We describe our built-in implementation of such an ordering relations in Section 6.2,
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since we do not support type classes.

data Tree a = Tip

J Node a (Tree a) {Tree a)

Tree a (which is also sorted) is used to -represent a collection of elements where there is no notion 

of entity-attribute association, like a list of definitions. Although AssocTree a b could be used 

to represent such values as well, the resulting representation will be less efficient because any 

information held in b (of AssocTree a b) is redundant.

We maintain the following symbol tables:

• Fixity symbol table. This associates each arithmetic operator with its associativity and 

fixity, as defined in Haskell. It has type AssocTree and is represented as follows

AssocTree Name (Fixity, Associativity) 

type Name — String

type Fixity = Int

data Associativity = Non | Lefl: - Right

The constructors Non, Left, and Right are used to represent non-associativity, left-associativity 

and right-associativity respectively while fixities range from 0 to 9. We do not support user- 

defined fixity declarations, so this symbol table contains only the information about the basic 

arithmetic operators we support (see Section 4.3.1). The fixity symbol table is only used in 

the parser and could be garbage collected after parsing.

• Pattern-matching symbol table. This symbol table associates each constructor with its 

arity and the names of its sibling constructors. It has the form

AssocTree Name (Arity, Siblings) 

type Arity = Int 

type Siblings = [String]

It initially contains information about the constructors NIL, :, True, False for the built-in 

types for lists and Booleans. It is extended with the information for the constructors of 

user-defined data types after parsing and before pattern matching compilation. This symbol 

table is used by the pattern-matching compiler after which it can safely be garbage collected.

• Renamer symbol table. Before lambda lifting (Section 4.2.4), there is a requirement to 

rename all identifiers bound locally so that there is no risk of name-clashes during A-lifting
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and in subsequent passes. Note that the renamer affects only locally defined identifiers since 

any inadvertent redefinition of top level identifiers, which is of course an error, is caught 

earlier during parsing.

In this symbol table each identifier is associated with a uniquely generated integer to be 

attached to its name to make it distinct (see Example 4.2 , Section 4.2.4). The binary tree 

for this association is described by the type AssocTree String Int. After lambda lifting 

the table becomes garbage.

• Constructor-tag symbol table. This is used to associate a constructor with a ‘family tag’

(a small integer) with which the constructor will be identified in the intermediate language. 

It is described by the form AssocTree Name Tag (where Tag is a synonym for Int) and it 

initially contains the required information for the constructors of our built-in types. It is 

used during the case expression optimisation of Section 4.3.4 and can be dropped thereafter.

• Type environment. This is used by the type checker to store the association between 

identifiers and their types. It has the type TExpList defined as follows

data TExpList = [TypeExp]

data TypeEnv — TEnv [(String, TypeExp)] TExpList

and is designed in such a way that it is easy to distinguish generic type variables from 

non-generic ones (in a similar way to [Read89]). The list [(String, TypeExp)] associates 

an identifier with its assumed type such that all type variables in the associated type are 

implicitly generic except those which occur in some type in TExpList as well. That is, to 

associate an identifier id with a generic type variable tv (as in let-bound variables), tv is 

not added to the list TExpList. Thus, TExpList essentially records non-generic variables. 

Type expressions are represented as follows:

data Mylnt ~ Nl —base case

I Cn Int MyInt —constructed integers

data TypeExp = Untyped —for ‘null’ t^yDce

j TVAR Mylnt --for type variable

I TCON Name [TypeExp] —for type constructors

Clearly, the type environment is potentially a verr large data structure and as tee type 

inference proceeds the type environment must be updated to ensure type consistency. Inetead 

of updating the type environment after every type deduction step, which is costly to do
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functionally [Read89, Paul91], we use a substitution environment, described below, to keep 

a separate record of the modifications to be made. Note that this does not avoid carrying 

out substitutions; they are applied lazily since they are expensive to perform.

The type environment initially holds type information for built-in identifiers (of built-in 

operators and constructors). It is later updated with the type information contained in user- 

defined data types. When type checking a binding, the type environment is also extended 

with the intermediate (assumed) types for identifiers in the definition.

• Exported bindings/type association. This symbol table is used to associate each ex­

ported top level binding with its inferred type and arity. It has the form AssocTree Name 
(TypeExp, Arity) and is used to write the interface files of modules. Notice that only the 

static information of these values (together with exported type definitions) should appear in 

interface files in accordance with the information hiding principle of Haskell.

• Substitution environment. A substitution, in our setting, is a function from type expres­

sions to type expressions. It can be represented as a finite collection of associations

in which the ti are distinct and no is the same as the corresponding U [ReCl90]. So we 

define a type for substitution as:

data Subst = OK {AssocTree TypeExp TypeExp )

I ERR String

The two constructors OK and ERR are used to build valid and invalid substitutions respectively. 

ERR String is used to force the propagation to the top level of an error occurring during 

type checking. String is the message written to alert the programmer of what has gone 

wrong. Notice that without Error String some errors may not be forced because of lazy 

evaluation.

Substitutions are used to record changes to be made to the type environment rather than 

updating it (by applying the substitution to each type in the type environment) whenever 

types are refined. When the type t of an identifier id is retrieved (from the type environment) 

the most recent substitution is applied to it to obtain a refined type t '. Generic type variables 

inside t ' must be instantiated (by generating unique type variables) so that these generic 

variables are unaffected by any constraints applied to the new type variable instances.
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Before any compile-time transformation can be performed on the bindings inside a module 

(after parsing), the static information in the interface files of all the modules imported by the 

current module must first be collected and the necessary symbol tables updated. We therefore 

parse the interface files corresponding to the imported modules to extend the symbol tables 

and to report any conflicting imports.

4.2.2 Lexer and parser

The lexical analyser is written in Haskell in conventional style, taking the input string, analysing it 

and breaking it down into a stream of tokens, recognising keywords, identifiers and literals. Each 

token is a substring of the source that takes one of the seven forms specified by the data declaration

Token.

type Row = Int

type Col = /n£

data Token = Null Row Col

Va'rld String Row Col

' Conid String Row Col

VarSym String Row Col

ConSym String Row Col

| Literal String Row Col

( Special String Row Col

The two type synonyms Row and Col are used to specify, respectively, the line number and the 

column at which the token starts on that line. Each token, except Null, is therefore completely 

described by its name and position; the line and column numbers on which it occurs. Token 

positions are used for error reporting as well as to ensure that programs containing the offside rule 

are correctly parsed.

Null is built from the empty string passed back as the last token in order to record the position 

of the end of the source text. Varld builds variable identifiers beginning with small letters (includ­

ing reserved identifiers), Conld constructs identifiers beginning with upper-case letters. VarSym 

builds variable symbols and ConSym builds constructor symbols beginning with a colon. Literal 

builds a representation for ground literals (integers, characters and strings) and Special for brack­

ets and commas.

Our top-down recursive descent parser, based on the principles in [DaMo81, ASU85, Hutt92], 

inputs the resulting tokens from the lexical analyser and produces an abstract syntax tree repre­
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sentation of the program. The syntax tree is then processed by subsequent passes of the compiler 

each of which transforms it into simpler form as outlined in the following sections.

4.2.3 Pattern matching compilation

Patterns are a notational convention employed by modern high level programming languages (es­

pecially functional languages) to increase their ease of use. Functional languages provide these 

high level facilities to define functions using equations and pattern matching. As with all good 

things, the convenience of programming using patterns is not completely free; they carry an im­

plementation cost as they have to be compiled out. Pattern matching compilation is the program 

transformation process whereby these embellishing features are removed. That is, functions defined 

using equations and pattern-matching are transformed into equivalent single-equation definitions 

containing case expressions with simple variable patterns. Although case expressions are also an 

embellishing feature, since they are not part of the basic A-calculus syntax, programs involving 

them are more efficient than those using the equational definitions instead. The transformed pro­

gram ensures that patterns are not evaluated more than once and that they are evaluated at most 

once, when required, in line with the spirit of full laziness of functional languages [Peyt87, PeLe91, 

Hugh83].

There are different algorithms proposed for compiling pattern matching in functional languages 

notably those by Augustsson [Augu85], Wadler in [Peyt87], Cardelli [Card84] and the ‘best-fit’ 

pattern matching algorithm of Field [FiHa88]. The algorithm on which our pattern matching 

compiler is based is an extension of the algorithm proposed by Wadler. Maranget [Mara94], as an 

extension of similar work [Lavi91, PuSu90, Mara92, SRR92, Kenn90], described two techniques for 

compiling lazy pattern matching. One of the schemes described is based on the pattern matching 

technique using backtracking automata adapted to the world of lazy pattern matching. These lazy 

pattern matching schemes, which adapt the evaluation order to each set of patterns and guarantee 

termination whenever possible, are incorporated into the GAML compiler [Mara91] for Lazy ML.

In our implementation of the pattern matching compilation algorithm, a number of ‘pre­

processing’ operations are applied to the patterns and expressions of a definition to simplify the 

AST before applying the algorithm. These tidying-up operations include the following:

• literal patterns (in left-hand sides of bindings and in user-given case expressions) are replaced 

with variable patterns using conditional expressions. This eliminates all literals from patterns 

and ensures that patterns are either variables or constructors only, as expected by our pattern 

matching compiler.
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• user-given cas e-expressions containing literal patterns at top-level are transformed into 

equivalent (possibly nested) conditional expressions.

• anonymous lambda-abstractions, which do not occur at top-level in the right-hand sides of 

bindings, are named using the let construct.

• partial applications of constructors and built-in functions are saturated.

• cooformality t ransformation [Peyt87] isperformed on r efutable pattern bindings.

• b£8ttesn matchnng trans^ormarifn is ppplied to ldat y yenyed tnocrifns.

Our aim is to produce a simple and optimised intermediate language so that the code generator and 

the runtime system are not made too complicated. The underlying pattern matching compilation 

algorithm we implement expects the patterns to consist of either variables or constructor patterns 

with variable subpbt8frns. It is also our aim that all patterns in the resulting AST after the pattern 

matching compilation to be of this form because we will eventually identify all constructors (in the 

patterns in case expressions) with small integers in the intermediate language (see Section 4.3.4). 

We therefore translate equations involving literal patterns into equivalent ones in which the literal 

patterns are replaced with variable patterns before invoking the pattern matching compiler. Since 

user-given case expressions may contain literal patterns, such expressions have to be transformed 

into equivalent ones without literal patterns.

Unnamed lambda-abstractions which occur as part of other expressions are uniquely named 

(using let expressions) so that they become subject to future transformations (e.g., lambda lifting 

since they may contain fm variables). The expressiveness of the program may also be increased 

as a rasr^ of thit in. tne hense sI at httlf)ObnU variabias meh cc i i n

let f = e in E

are attributed generic types while A-bound variables like i in the equivalent expression, (Ai.E)e , 

provided they both type check, are attributed non-nfnfric types. In similar fashion, auxiliary def­

initions are introduced using the let construct so as to saturate partial applications of constructor 

functions and built-in functions.

A conformality transformation (on pattern bindings) [Pfyt77] is also implemented so that ex­

plicit error messages are generated when pattern matching in a pattern binding fails. To minimise 

the cost of this transformation, it is only performed on the so called sum-constructor patterns; 

exactly those that can be refuted.
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As the patterns and expressions are tidied, pattern matching compilation for local definitions 

proceeds simultaneously with that for the top level definitions. A name-supply parameter to the 

compilation functions ensures that distinct names are generated for the auxiliary functions used 

to name anonymous A-abstractions, partial applications of constructors and built-in functions, 

variables introduced while translating literal patterns, etc. This name-supply is one facility we 

employ to aid our annotations for parallel evaluation, as described in Chapter 7.

4.2.4 Lambda lifting

Lambda lifting, a term coined by Johnsson [John87] (but earlier invented by Hughes in his super- 

combinator transformation [Hugh83]), is the process of transforming a program containing local 

functions with free variables into ones where these functions are turned into combinators (i.e., 

functions without free variables). This is done by transforming each function by passing in its free 

variables as extra parameters. Lambda lifting provides a convenient way of solving the problem 

of accessing the free variables occurring in the body of a local function definition. Lambda lifting 

is especially beneficial in a setting like ours, for parallel machines with distributed memory, since 

communication costs for accessing a function’s arguments will be minimised. This is because ac­

cesses to a combinator’s arguments will be local operations into its frame. Without lambda lifting, 

however, the free variables to the function may reside on arbitrary processors which may involve 

long-range communication to access the free variables thereby incurring higher communication 

costs. '

Many implementations of (lexically scoped) imperative languages compilers solve this problem 

of accessing non-local names in procedures by maintaining a display mechanism [ASU85, DaMo81] 

to access variables on the stack. Davie [Davi79] presents an alternative technique which keeps 

all variables on the heap and accesses them using a pair of registers (holding access to local and 

non-local variables) loaded from a data structure called a block descriptor.

Alternative solutions to lambda lifting in functional languages implementations include envi­

ronment based approaches, as in [DaMc89], the use of Turner’s combinators [Turn79b], Takeichi’s 

lambda hoisting [Take88] and so on, as described in Section 2.5.

Our implementation of lambda lifting is influenced by the algorithm of Johnsson in [John87] 

except that we do not lift the resulting combinators to the top level. This has the advantage 

of minimising the number of top level combinators and the overhead of handling them. It also 

provides scope for optimising the combinators if they are left local (e.g., inlining them) when the 

compiler can spot that they are used only once.

Our implementation of the lambda lifting phase consists of three sub-transformations:
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• scope analysis;

• dependency analysis;

• lambda lifter proper.

The scope analyser performs two functions: it computes a dependency ‘graph' and renames iden­

tifiers to make them distinct. The dependency graph is an association between a bound identifier 

and the identifiers on which it depends.

We demonstrate our lambda lifting process using the following example:

Example 4.1

let / a = x y

y = 5

in let y = 3 (1)

g z ~ f z A- y

in g if 7)

The definitions and occurrences of y in the outer and the inner let must be made distinct so that 

there is no ambiguity when turning g into a combinator.

The dependency analyser breaks the bindings in a let expressions into minimal dependency 

groups to simppify yuusequent passes. Dependenen ncy^an enhances efficicdcy aid pdymorphism 

since it allows only mutually recursive definitions to be grouped together and thereby enables the 

assignment of generic types to non-recursive let-bound variables. More seriously, a program may 

fail to type check if dependency analysis is not performed first [Peyt87].

let y2 ~ 5

in let fl x = x + y2

in let y3 =3 (2)

in let g4 z = fl z + yS

in g4 [fl 7)

Our implementation of a dependency analyser is based on the graph algorithms described in 

[Peyt87, Paul91, Sedg90]. It involves sorting the dependency graph (computed by the scope 

analyser) into mutual recursion groups or strongly-connected components and then sorting these 

components topologically into dependency order. Nested let expressions are built from the topo­

logically sorted classes. Equation (2) shows this example after scope and dependency analyses.
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Notice that the y bound by the inner and the outer lets in (1) are renamed to y2 and y3

respectively. The resulting expression is cascaded with each binding now standing on its own since 

none of them are mutually recursive.

let y2 =5

in let fl y2 x — x + y2

in let y3 =3 (3)

in let g4 y2 y3 z — fl y2 z + yS

in g4 y2 y3 [fl y2 7)

The final lambda lifting process gathers free variables for functions, forms and solves equations 

to obtain the solutions (i.e., the transitive closure of the relation that collects free variables) to 

these functions. A substitution is then performed to replace each reference of a function identifier 

f in an expression with the application of f to its free variables. After lambda lifting, our working 

example is transformed to the program in equation (3).

Notice here that since y2 was free in f 1 (2) it is passed as extra argument to f 1. Substituting 

f 1 y2 for the reference of f1 in the right-hand side of g4 in (2) exposes y2 as an additional free 

variable of g4. Accordingly, y2 and y3 are added as extra parameters to the reference of g4 in the 

body of the expression. Notice also that, as explained earlier, none of the definitions is lifted to 

the outer level. We discuss the parallelisation of the lambda lifting process in Section 7.5.

4.2.5 Type checking

A type is a family of values classified by a given rule. The classification technique of data values 

according to their usage and checking that no values are misused is known as typing the data 

[Read89]. Programming languages usually impose some notion of a type discipline ranging from 

weaker to stronger typing requirements which are checked either during compilation or during 

program execution.

Most modern functional languages support a strong, static, polymorphic type system, often an 

extension of Milner’s [Miln78], which automatically attributes types to program values. That is, 

types are inferred at compile-time (static type checking) with some functions capable of operating 

on values of different types (polymorphism) and ensuring that well-typed expressions cannot lead 

to erroneous computations. This is an invaluable feature and, in fact, can be indispensable in large 

software, since the types provide partial specification of the program ensuring that a number of 

errors can be found early during program development, thereby making programs more secure and 

reliable.
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Our implementation of a polymorphic type checker is based on algorithms and ideas expressed 

in [Miln78, Dama85, Card85, Read89, FiHa88, ReC191j. The implementation entails extending the 

basic Milner-Damas type system with constructs to facilitate type checking bindings which involve 

patterns and case expressions.

To type check a given module M, the compiler collects the static information (types and arities) 

of the values imported by M (from the interface files of the imported modules) and including any 

type and synonym definitions. The type and synonym definitions within M must also be parsed 

and the relevant symbol tables built before the type inferencing commences.

When this information is gathered Naira proceeds to infer the types for the definitions imple­

mented by M in such a way that parallelism can be exploited at both function and expression 

levels when annotations are added later (see Chapter 7). As the type of each definition is inferred, 

its user-given type signature (if any) is scrutinised to ensure that it is an instance of the compiler 

inferred type. Finally an interface file for M is written which contains the static information of 

the definitions it exports.

In comparison with the other transformations in the compiler, the type checking process is the 

most computationally expensive. We elaborate on the details of parallelising the type checker in 

Chapter 7.

4.3 Intermediate language

The transformations in the previous sections together with the AST optimisation described in this 

section culminate in the intermediate language representation for expressions shown in Figure 4.2. 

The intermediate representations for bindings are described in Section 4.3.6.

4.3.1 Ground types and primitive functions

We support integer, Boolean and character literals as the basic types. A type String is defined as 

an abbreviation for a list of characters. Integer, character and string literals are built, respectively,

by the constructors

IntLit Int

CharLit Char

StringLit String

Values of the basic types share a common concrete representation as heap objects containing two 

cells. One of the cells contains a tag which distinguishes literals from other (aggregate) values
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data Exp = IntLit Int

) CharLit Char

j Id String

| PrimMinInt Exp

I PrimMaxInt Exp

j PrimCharToInt Exp

j PrimlntToChar Exp

PrimNegInt Exp

PrimNotBool Exp

' PrimPlusInt Exp Exp 

| PrimMulInt Exx Exp 

| PrimDivInt Exp Exp 

| PrimEquals Exp Exp 

| PrimLEquals Exp Exp 

j PrimRemInt Exp Exp 

| PrimAndBool Exp Exp 

| PrimOrBool Exp Exp

Constr Family Tag [Mexp]

| Select Exp Index 

j Case Exp [(IntfExp)]

| If Exp Exp Exp 

| Define [De/] Exp 

I Close Name Arity [Mexp] 

| Call Name [Mexp]

Apply Exp [Mexp]

| Let [De/] Exp 

| Error Exp

type FamilyTag = Int

type Index ~ Int

Figure 4.2: Intermediate code for expressions.



4.3.2 Function application 70

and the other cell stores a pointer to the value of the literal. A garbage collector distinguishes 

constants from pointers by inspecting their family tags: basic values have a tag of 0 and other 

values have small positive integer tags.

PnmNegInt Exp

PrimNotBool Exp 

PrimlntToChar Exp 

PrimCharToInt Exp 

PrimPlusInt Exp Exp 

PrimMulInt Exp Exp 

PrimDivInt Exp Exp 

PrimEquals Exp Exp 

PrimLEqual Exp Exp 

PrimRemInt Exp Exp 

PrimAndBool Exp Exp 

PrimOrBool Exp Exp

Applications of primitive functions are distinguished from application of user-defined functions 

to improve the efficiency of the basic arithmetic operations since primitive function applications 

require strict semantics. This avoids building intermediate suspension objects for the argument 

expressions of these functions. Some of the primitive functions we support are shown above; 

others are defined in terms of these. Built-in functions are always fully applied in the intermediate 

language. Partial applications are transformed by the compiler using the let construct as mentioned 

in (Section 4.2.3) so that the code generation process is simplified. For example, the partial 

application of the binary addition function to one argument, (+) x, transforms to

let f y x — x + y 

in f y

where f and y are unique names that are generated by the compiler.

4.3.2 Function application

The intermediate language specialises a general function application into one of three forms de­

pending on the structure of the function being applied and the number of arguments available.

1 Naira does not (yet) support a full-fledged garbage collector. We currently use a simple storage manager which 

reclaims space for frames whose associated function invocation returns with a basic value or a HNF object (see 

Section 5.3.1).
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The three forms are represented by the intermediate forms;

Call Name [Mexp]

Close Name Arity [Mexp]

Apply Exp [Mexp]

Mexp is the data type for expressions with evaluation modes as described in Section 1.3. Name 

and Arity represent the name of the combinator being represented and its arity respectively. If 

the function expression is a known supercombinator applied to the exact number of arguments, 

Call is used to build the application. If the number of arguments supplied is less than the 

combinator’s arity, Close is used to represent the application recording the combinator’s arity. 

This arity information will be used to determine, at runtime, when the code of the combinator 

can be executed as more arguments are provided. When the function being applied is an arbitrary 

closure-valued expression or an unknown combinator identifier (e.g., a function argument of a higher 

order function) whose arity is not statically determinable, Apply is used to build a representation 

for such applications.

Specialising function applications in this way simplifies the runtime system by minimising the 

number of argument satisfaction checks [Peyt87] performed, at runtime, for every function which 

takes one or more arguments.

4.3.3 Constructed objects and selector functions

When type inference is performed, we no longer need to refer to constructors by their string names; 

we can instead identify them by family tags. A family tag is a small integer which distinguishes 

each constructor of a type from its siblings. Although tuple constructors have no tags, since every 

tuple type has exactly one constructor, we nevertheless assign each tuple a tag of 1 for uniform 

handling of constructors at runtime (see Sections 5.3.3 and 6.4). The intermediate representation 

for tuples and other constructors is

Constr FamilyTag [Mexp]

The compiler assigns tags to constructors in a data type beginning from 1. For example, given the

data definition

data Tree a — Tip

I Node a [Tree a) [Tree a)
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The compiler assigns the tag 1 to Tip and 2 to Node. Identifying constructors using small integers 

in this way makes the code generation easier and improves efficiency. This is discussed further in 

Section 4.3.4 where we present further transformations on case expressions.

Select Exp Index

A selector function is defined which selects the components of aggregate objects. The first compo­

nent of Select evaluates to a constructed object and strong typing ensures that only the ‘right;' 

values are passed to Select.

4.3.4 Case expressions

A transformation pass prior to the pattern matching compilation of Section 4.3.3 ensures fhat 

literal patterns in case expressions are compiled out. That is, after pattern matching compilation 

all patterns in case expressions are either simple variables or constructors whose subpatterns are 

variables. With this proviso, case expressions in the intermediate language are represented by the 

structure:

Case Exp [(IntExp)]

The first component of Case evaluates to a structured object and each expression in the alternatives 

list, [(Int,Exp)] is associated with a corresponding constructor tag. The value of the case 

expression is the value of the expression in the alternative list whose associated tag equals that of 

the case scrutinee expression. A default expression has a corresponding default tag of 0.

The transformation optimising the representation of case expressions is summarised thus:

case e of case (Select e 0) of

Cono voi .. • von ”> eo 0 -> e'o

=> . . .

Coif. Vfl .. • Vfcn -> ek k -> e't

Occurrences of the variables Vj of the constructor Con,- in the corresponding expression e, 

are replaced by selector expressions over the case-scrutinee expression, e. Consider the following

example:
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Example 4.2

data Tree a — Tip | Node a (Tree a)(Tree a)

f Tip = Tip

f (Node t I r) — Node t (f r)(f I)

The pattern matching compiler transforms this example roughly2 to

f u — case u of

Tip —> Tip

Node t I r —> Node t (f r) (/ 1)

and then after type checking Tip will be identified with 1 and Node with 2 to transform the case 

expression to

Case (Select (Id “u”) 0)

[(1, Constr 1 []),

(2, Constr 2 [Need(Select (Id “u”) 1),

Need(Call “f” (Need(Select (Id “u”) 3) ]),

Need(Call “f” [Need(Select (^ «u») 2) ])]

Notice how the whole pattern (Node t 1 r) is identified by the tag of Node, the integer 2, in the 

resulting intermediate code. Its subpatterns t, 1 and r are represented, respectively, by Select 

(Id V) 1,Select (Id '*u") 2 and Select (Id "u") 3 intheexpsessioncosrespondino th the 

pattern. Notice alls) that applications of i &re wrapped with the Call sonttuutSrr (as explained 

in Section 4.3.2) and its arguments as well as those of the constructor all have the default lazy 

evaluation tag since there were no annotations specifying otherwise.

The benefits of this transformation are that it:

• simplifies the code generator (e.g., fewer variables to deal with);

• avoids allocating the constructors Coni ;

• avoids the overhead of maintaining an environment (as in Peyton-Jones [Peyt92]) for the 

values of the variables Vij which may occur in the expressions a •

' • avoids the need to perform constructor re-use transformation of Santos [Sant95] while at the 

same time gaining the benefit of that transformation.

Details have been suppressed to maintain readability.
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4.3.5 Other expressions

The other expressions namely, conditional expressions, qualified expressions and the compiler­

generated Error expression (for error reporting) translate straightforwardly into the following 

intermediate representations.

If Exp Exp Exp 

Let [Def] Exp 

Define [Def] Exp 

Error Exp

Qualified expressions defined using let and where translate into a representation built by Let or 

Define or a cascade of the two. Just as top level bindings are distinguished into combinators and 

non-combinators across modules so are local bindings distinguished amongst themselves. Define 

contains only local combinator bindings while Let contains local variable bindings. This provides 

yet another simplification for straightforward code generation. Error is a representation for an 

error message to be reported at runtime; this may arise from error messages explicitly given by 

the user in the source (by calling the built-in error function) or automatically generated by the 

compiler for user definitions in which pattern matching fails. Code generated for Error simply 

displays the error message and terminates the execution of the program (without consuming the 

rest of the requests).

4.3.6 Bindings

Functions and patterns can be bound at top level as well as in nested scopes using the let and 

where constructs. The intermediate language distinguishes function bindings from non-function 

bindings and also distinguishes exported top level bindings from those used locally. The following 

data definition describes the intermediate language forms of these bindings.

data Def = Fundef Name [String] Exp 

j Efundef Name [String] Exp 

| Bind Name Mexp 

i Ebind Name Mexp

Fundef is used to build representations for local combinators and top level combinators which are 

not exported while Efundef builds representations for top level exported combinators. Similarly, 

Bind constructs unexported top level bindings and local bindings while Ebind constructs exported

bindings.
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Function definitions are transformed into combinators through lambda lifting (Section 4.2.4). 

Exported combinators are exported together with their arity information so that the importing 

modules can specialise applications of the combinators it imports (see Sections 4.3.2 and 4.4).

4.4 Modules

A complete program in Haskell consists of one or more modules. A module is a self-contained pro­

gram unit which can import/export entities from/to other modules in a program. Our implemen­

tation does not support mutual dependencies between modules; the import/export dependencies 

form only a directed acyclic graph.

Modules are compiled separately in the order specified by their import/export dependencies. 

Modules can only be defined at top level and no two modules may be defined in a single file. A 

module may implicitly or explicitly export the entities it imports or implements. Only a subset of 

the entities exported by a module need be imported and it is an error to import an entity through 

more than one route (we omit the renaming construct of the full Haskell language).

type Program ~

data Module = 

data Imports =

I

type Dialogue —

data Request =

I

I

I

1

I

I

data Response —

1

I

I

[Module]

Mod String [(String, [Imports])] [Def] 

Comb String Int 

Val String

[Response] -4 [Request] 

ReadFile String 

WriteFile String String 

AppendFile String String 

ReadChan String 

AppendChan String String 

GetArgs 

GetProgName 

Success

Str String 

StrList [String]

Failure String

The type Module above describes a module’s representation in the intermediate language. The com­

ponents of the Mod constructor correspond, respectively, to the module’s name, some information
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about the modules it imports and the names of the values it implements. The second component 

of Mod, [(String, [Imports] )], describes a data structure in which an imported module is asso­

ciated with the values imported from it. The type Imports distinguishes imported combinators 

from other values. Imported combinators include their arity information so that their applications 

in the importing module can be specialised (see Section 4.3.2) so as to simplify the runtime system.

Following the Haskell 1.2 standard, one of the modules constituting a program must be called 

Main and must implement and export the combinator main. The value of the program is the value 

of the main identifier and main must have type Dialogue. Chapter six presents the description of 

our implementation of stream I/O involving the Request and Response data types defined above.

4.5 Summary

In this chapter we have presented the design and implementation of the front end of our Naira 

compiler comprising the lexical analyser, parser, pattern matching compiler, lambda-lifter and type 

checker all of which are written in Haskell. We have also described our symbol table environment 

consisting of different symbol tables used at different stages of the compilation so that each can be 

dropped after the transformation in which it is used.

The abstract syntax tree initially produced by the parser is transformed by the subsequent 

phases of the compilation finally producing an intermediate language with simplified constructs 

suitable for efficient code generation. For example, function applications are statically specialised, 

where possible, into a form that allows code to be generated which causes many function calls to be 

performed directly, thereby avoiding the costs of argument satisfaction checks. Further literature 

survey revealed that this transformation which statically specialises general function applications 

is a reinvention of similar ideas proposed elsewhere [Hamm88, Nikh89].

Each pattern in the alternatives of a case expression is identified with a small integer (a family 

tag) and occurrences of its subpatterns in the corresponding expression are replaced by applications 

of a selector function on the case scrutinee, which can lead to a significant efficiency improvement.

The following chapter describes the design and implementation of the back end of the Naira 

compiler.



Chapter 5

The compiler back end

5.1 Introduction

The preceding chapter described the translation of the Haskell source program into the intermediate 

code of (Section 4,3). This chapter describes the design and implementation of the back end of 

the compiler. The compilation route we follow is summarised by (Figure 5.1).

The two main issues addressed by this chapter are: the design and implementation of a runtime 

support system and a code generator for the intermediate language produced by the front end. 

Following a growing popular trend which exploits conventional compiler technology, as in [Peyt92, 

GHW90] for instance, we generate code in the C language and a conventional C compiler is relied 

upon, as a “portable assembler”, for the final native machine code generation.

The following section describes the details of the design decisions and the assumptions we make 

in our implementation. Section 5.3 describes our representation of data structures in the heap and

Haskell source

Intermediate code

C code

Figure 5.1: Simplified compilation route
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Section 5.4 describes our messages and message-passing communication protocols. Sections 5.5 

presents the code generation process from the optimised intermediate code produced by the front 

end. In Section 5.6 and 5.7 we give some details about how the generated code is linked, its 

execution triggered and the value of the program printed.

5.2 Runtime design framework

The design theme underlying our implementation is efficient medium-grained, data-driven execu­

tion, which is widely believed to be essential for parallel processing on large-scale MIMD machines 

[Arla87, Nikh89, CSS+91, Osth93]. The architectural requirements needed to support our model 

efficiently is that of multi-threaded, distributed memory machines consisting of a network of (con­

ventional) processors which communicate with each other via asynchronous message-passing. Each 

of the processing elements in the network should have its own local memory, in the tradition of 

P-RISC [ArNi88] and STAR:DUST [Osth91], and there should be no global shared memory which 

can potentially create a bottleneck.

Simplicity of design (simple representation of heap objects, probabilistic load distribution, using 

environments rather than stacks, etc.) is an important consideration in our implementation since 

experimental results have indicated that extremely clever or very sophisticated designs may not 

have significant relative payoffs. For example, Appel’s measurements for SML of New Jersey 

suggest that clever closure-representation techniques gain little and potentially lose a lot (in space 

complexity) [Appe92, Peyt92].

In contrast to other implementations, like that based on the STG-machine [Pey192], all data 

objects/suspensions in our implementation are tagged and are allocated in the heap. Each sus­

pension consists of a frame pointer and an entry point. The entry point specifies the thread to 

execute next when the object’s value is required. The frame pointer, which should be viewed as a 

pair of a processor identifier and a local address in the processor, defines the context within which 

the thread is executed. Note therefore that pointers to suspensions are globally available to the 

machine.

As is usually the case in other implementations, the whole program is replicated on each pro­

cessor node which executes a copy of the program. To tolerate long, unpredictable communication 

latencies, a program is compiled into a very large number of small threads of execution, provided 

the application contains some parallelism, with the aim of keeping all the processors busy. Parallel 

tasks, each comprising of multiple threads, are distributed actively and randomly across the pro­

cessing agents. Since messages are passed asynchronously, each processor is expected to contain a
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message buffer to queue incoming messages. In the event of long range communication, therefore, 

the task waiting for the result of the communication can asynchronously transfer control to one 

of the runnable threads in the message buffer of the resident processor. Another requirement for 

an architecture to efficiently support our multi-threaded model of computation is support for fast 

context-switching between parallel threads of execution. .

The theoretical results of Eager et al in [Eage86] which assumes zero-cost communication, seem 

to indicate that a simple task distribution mechanism can be satisfactory and these results show 

that any algorithm is within a constant fraction of an optimal distribution strategy. It has also 

been known for more than two decades [Grah69] that a large collection of heuristics, the so-called 

list scheduling strategies, have a performance that is not far from optimal1.

The use of environments rather than stacks in our implementation (i.e., since we allocate all 

objects in the heap) has the advantage of providing a convenient way of transporting large amounts 

of data across processors and means that complicated analyses, like Lester’s stacklessness analysis 

[Lest89], which is used to determine maximum stack sizes, are avoided. Furthermore, in our 

implementation, the exact frame size of each function is automatically determined by the code 

generator as described below.

Function applications form the basis of program decomposition and grain of computation. In 

other words, function invocations form the unit of parallelism and load distribution. Each function 

invocation is associated with a unique function frame and the function calls for parallel computa­

tions are distributed using an active distribution scheme in the sense that work is distributed to 

the processors as it becomes available and without the processors needing to request work.

The code associated with a function invocation is executed on the processor which holds the 

frame of the function so that accesses to the locations in the function frame are local operations 

and therefore very fast.

Our execution model is completely data-driven in the sense that when a message is received 

the data packaged inside the message drives the execution of the handler thread specified by the 

message. A thread in our case refers to an ordinary sequence of C code and there could be an 

arbitrary number of threads within the context of a single function frame. Threads are executed 

sequentially until they terminate, without pre-emption. Our support for light-weight threads in 

this way increases the likelihood of creating useful parallelism in a program capable of exploiting 

the computing power of parallel machines effectively. *

J-These strategies, however, only work with a multiprocessor in which the cost of assigning a parallel task to any 

processor is zero [Hofm94].
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5.3 Data representation

All objects in this implementation are tagged and allocated in the heap. We identify three families 

of objects, namely function frames, constructed cells and suspension cells. A unique function frame 

is associated with each function invocation. Tuples and other constructors have a uniform concrete 

representation; tuples are also associated with integer tags to facilitate a uniform treatment of 

constructors (see Section 6.2). Suspension objects are tagged according to their state of evaluation. 

In the next section we describe our tagging system on heap objects followed by a description of 

the three families of heap objects.

5.3.1 Runtime tags

The purpose of this section is to distinguish the different kinds of ‘tags' that we associate with 

heap objects and to highlight the need and purpose of each of these tags.

We have already explained, during the intermediate language optimisation of Section 4.3.4 and 

elsewhere, that each constructor of a type is associated with a small integer tag which distinguishes 

it from the other constructors in its family. Notice that this family tag (called the structure tag in 

[Peyt87]) is only associated with constructors and different constructors from different types can 

have the same integer tag. In addition to the benefits enumerated in Section 4.3.4, family tags are 

used at runtime in the implementation of comparison operations over values of user-defined data 

types (see Section 6.2).

The next set of tags used in our implementation are those that signify the state of evaluation 

of heap values. There are three different evaluation tags corresponding to SUSPENDED (i.e., tag 

0), BUSY (i.e., tag 1), and READY (i.e., tag 2) evaluation states (see Section 5.3.4). Unlike family 

tags, each heap value (constructor or otherwise) is in one of these evaluation states at any given 

time. Notice that these evaluation states are closely related to but different from evaluation modes 

in the intermediate language (Section 5.5.3) arising from parallelism annotation in the source 

program. Evaluation modes specify what expression should be eagerly evaluated, resulting in such 

values short-circuiting the default SUSPENDED state and assuming the BUSY state first before finally 

(hopefully, given termination) entering the READY state.

Lastly, there is a pair of tags used to distinguish basic values from constructed values. We 

assign a tag of zero to all basic values (integers, characters and Booleans) while aggregate values 

have non-zero tags. By ensuring that family tags start from 1 within each type, this separation 

of values into two categories is realised. This provides a uniform treatment of values which is 

advantageous when implementing comparison operations on aggregate values of algebraic types.
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The classification is very similar to the pointer and non-pointer tags in Peyton Jones [Peyt87] but 

there are differences because all values are accessed by following pointers (i.e., values are boxed) 

in this implementation.

This classification of heap objects into basic values and aggregate values (cf. pointer stack 

and basic value stacks in stack-based implementations such as that of LML)) serves as a good aid 

for memory management: whenever the result of a function call returns with a basic value, the 

associated activation frame can safely be freed. The memory reuse enhanced by this representation 

leads to space savings of up to 25% in some benchmark programs. In fact we were unable to run 

to completion some of our benchmark programs from our benchmark suite (see Chapter 8) prior to 

the incorporation of this dynamic memory manager. Notice that it is incorrect to free an activation 

frame which returns with a WHNF value. This is because of the lazy semantics of Haskell; there 

may be some live data inside the returned value which may be needed later in the execution process 

after the return.

5.3.2 Function frames

A function frame is physically represented by a pointer to a contiguous block of heap-allocated 

storage. The first component of this frame contains the address of the destination to which the 

result of the function application will be sent when it becomes available. The next fields are 

pointers to the function’s arguments followed by space to store transient local data since the frame 

serves as a workspace for the function call. Each function invocation is associated with a unique 

function frame and frames are allocated by simply calling the UNIX malloc function, for example 

as in Hartel et al [HGW94] and Hicks et al [HCAA94]. Experiences from the implementation of the 

functional language KIR [Klug94] suggest that managing some program-specific heap from within 

the code can be expected to improve performance by 10% [Scho96]. Our implementation ensures 

that each request for space allocation is successful before continuing. Figure 5.2 shows the outline 

of a function frame in the heap.

-«— argument locations local data locations —#»-

result location

Figure 5.2: Structure of a function frame

Since all functions in the intermediate language have been transformed into combinators (i.e.,
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functions without free variables), the generated code does not have to be concerned with free 

variable accesses and since code for a function call is executed on the processor holding the frame, 

access to the function’s arguments are local operations. This is an important benefit of performing 

lambda lifting in a parallel implementation since the free variables may otherwise have to be 

accessed remotely.

The size (number of slot locations) of a frame is determined by the compiler at code generation 

time. The frame size of a combinator is obtained by adding 1 to the number of arguments of 

the associated function and the number of cells that will be required by the expression in the 

combinator’s body. We illustrate this using a simple example given below.

Example 5.1

f x y = x f y

In this example, a function frame of length 5 is allocated for f by the current version of the 

compiler. The five slots store: the continuation of the function calling f, one slot for each of the 

two arguments, a cell to hold a synchronisation count indicating whether both components of the 

division operation have arrived and a slot to store the operand which is first to arrive. When the 

second argument arrives, the division is performed immediately, and the result location written.

Notice that the continuation of the calling function, a pair of frame pointer and code label, 

must be deposited in the frame of the called function (along with the arguments) so that when the 

latter returns it knows the requester and therefore notifies it with the result.

Since communication is overlapped with computation in our set-up and in particular since a 

function does not block when it calls another, the dynamic call structure of the computation is, in 

general, described by a tree of activation frames, often called a cactus or seguara stack.

5.3.3 Constructed cells

Data structures are, by default, non-strict in Haskell. Therefore a suitable representation for 

their graph must be arranged. As outlined in Section 4.3.3, tuples and other constructed objects 

translate into the intermediate form

Constr n [MExp]

where n is a small integer used to distinguish a constructor from its siblings. [Mexp] is the list 

of. modal expressions representing the components of the constructor. Each tuple constructor is 

assigned a ‘family tag’ of 1 (see Section 6.2). Figure 5.3 shows the structure of all constructors in 

the heap.
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family arity
tag

Figure 5.3: Structure of a constructed object

As part of their layout information, the representation of structured objects includes a size 

information field for garbage collection and for equality and related tests.

5.3.4 Suspension cells

A suspension object lies in the heap in one of three evaluation states: as a suspended or uneval­

uated thunk, in a busy evaluating state or in a ready evaluated (WHNF) form. These states of 

computation are represented by small integers. A suspension is represented by a contiguous area 

of storage space containing three storage cells as depicted in (Figure 5.4).

1 SUSPENDED | | |
— continuation —►

(trame, label) .

| BUSY

| READY | —""H

suspension's value 
(in WHNF)

Figure 5.4; Structure of suspension objects

The first storage slot holds the status flag of the suspension; SUSPENDED, BUSY or READY. 

SUSPENDED is the default tag in a non-strict language since values are passed to functions, or stored 

in. data structures in unevaluated form. Any value which does not have a parallelism annotation 

passes through these evaluation states, if it ever needs to be evaluated, in the order SUSPENDED, 

BUSY and READY.
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The second and third fields of a SUSPENDED object contain a frame pointer and an entry point 

for the next sequence of code to be executed in the frame when the suspension’s value is re­

quested. A BUSY suspension contains a waiting list of the computations that requested the value 

of the suspension. The third cells in the BUSY and READY suspensions are shown to emphasise the 

metamorphosis of these suspensions from the SUSPENDED state.

A task in the BUSY state in this implementation corresponds to a black-holed2 process in the 

parallel implementations of the GHC and HBC runtime systems. When the value is computed, the 

BUSY suspension is physically overwritten with a pointer to the value and all the waiting processes 

are notified with a copy of the computed value. Overwriting the BUSY suspension also involves 

changing its evaluation tag to READY. A READY suspension contains the (WHNF) value of the 

suspension. In relation to the Running, Runnable and Blocked tasks described in the simulator of 

Sections 6.4, a value under evaluation by Running or Blocked task is in BUSY state and that to be 

evaluated by a Runnable task is in the SUSPENDED evaluation state.

Mutating a suspended object, upon execution of its code, into a BUSY object is the synchro­

nisation mechanism used to ensure that suspensions are evaluated by one process only and that 

other processes can always share the result. Note that changing the evaluation status of an object 

is accomplished in a single indivisible operation in order to achieve correct behaviour.

5.4 Messages and communication

All requests and responses for values in the heap are accomplished by sending messages. Different 

messages have different number of arguments and argument types. Following the classification 

of [GoHu86], we can identify three classes of messages, namely, dialog, evaluation and storage 

messages. Dialog messages are used to implement the stream I/O used in our system (see Chapter 

6). Evaluation messages are those dealing with computations and storage messages are those 

dealing with storage management in the system.

Corresponding to each message is a message handler which accesses the message’s data, per­

forms the operation required to accomplish the message and terminates. Notice that a message 

handler may spawn an arbitrary number of messages before its execution completes. Each message 

handler is a parameterless function, in the tradition of Peyton Jones [Peyt92].

To give a flavour of our messages and message-passing communication, we describe the standard

8ln a (sequential) unthreaded world, a black hole indicates a cyclic data dependency, which is an error resulting 

in deadlock and non-termination. In the threaded world, however, a black hole may simply indicate that the desired 

expression is being evaluated by another thread. In the latter case, therefore, the requesting thread simply blocks 

and waits for the black hole to be updated [Peyt94].
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messages involved during the computation of a suspension’s value. These messages are:

sendEvaKdest, context, label) 
sendUpdate(dest, value) 
sendMotify(dest, label, value) 
sendMessage(dest, label, msgData)

dest is the destination processor which holds the target object whose value is sought, context 

is the current working environment of the sender and label is the address of the next thread to 

execute, value is the computed value of the suspension. msgData is the data packaged with the 

message which is consumed by the handler specified by label.
sendMessage is the generic message form which all other messages take before they are sched­

uled. The others are specialised commonly used message forms. For example, sendUpdate(dest, 
value) first takes the form sen.dMessage(dest, MdoUpdate, b.value) and then the doUpdate 
handler is entered to perform the update, b.value is a single-celled heap object which boxes the 

pointer to the value as expected by the doUpdate handler.

When sendEval is sent to an unevaluated suspension (i.e., in SUSPENDED state), its status flag 

is flipped to BUSY, a waiting list set up to store the (dest,label) continuation of this requester 

and the code to evaluate the suspension’s value entered. Notice that because of our design re­

quirements of non-blocking transactions, the source processor should not block (assuming source 

and destination processors are distinct: the communication is non-local), rather, it should switch 

context to one of the several dormant threads in its context store. The same applies to subsequent 

requests of the suspension’s value before the computation of the value completes.

When the suspension’s value becomes available the status flag is flipped to READY, to avoid re­

evaluation when the value is requested in the future, and the computations that requested the value 

are all notified, by way of sendNotify. The handler for sendEval now immediately services any 

request for the suspension with (a pointer to) the value since the suspension would have physically 

been updated with a pointer to the value.

5.5 Code generation

This section discusses the compilation scheme which forms the basis of our code generator. The 

code generator takes as input the optimised intermediate code (after some preprocessing as de­

scribed in Section 5.5.2) described in Section 4.3 and outputs standard C code. The compilatiqn 

scheme presented here is an extension of the basic compilation rules given by Ostheimer in [Osth93]
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for a small first-order language. The main features added are therefore those dealing with general 

(higher order) function applications and modules.

In Section 5.5.1 we describe the symbol tables created and used during the code generation. 

Section 5.5.2 describes a parser which interfaces the compiler's front and back ends written in 

Haskell and C respectively. Section 5.5.3 through 5.5.6 describe the code generation process, 

respectively, for modal expressions, ordinary expressions, bindings and modules.

5.5.1 Code generator’s symbol tables

We maintain a symbol table (in addition to those described in Section 4.2.1) as part of the im­

plementation of the code generator. This symbol table associates identifiers with small non-zero 

integers and supports the managing of frames to aid the implementation of the let construct. It also 

provides support for ‘stacking' symbol tables (i.e., setting up a new symbol table that completely 

hides the current one until the new symbol table is released).

Global names (i.e., those which can be exported and which are either defined locally of im­

ported) are entered into the symbol table using negative integer entries. These entries specify the 

module in which the names are defined and each global name is attached to the name of the module 

which defines it, so as to aid the readability of the generated code (see symbol table for module 

names below). Argument identifiers for each function are numbered beginning at 1. These integers 

are used to refer to the suspensions corresponding to the associated names in the frame created 

by the function handler. Unique positive integers are generated for the names of local bindings 

during code generation (see Example 5.2).

The symbol table is currently organised as a linked-list of symbol table frames. In order to 

support the frame management mentioned earlier, each function definition (global or local, which 

can potentially have a block of local bindings) is associated with its own table frame which hides the 

argument variables in this function. When the code generation of the current function completes, 

the associated table frame is dropped. Notice that when the handler for a supercombinator is 

activated (see Section 5.5.5), the return address component of the message data is placed in the 

first location (location 0). Our symbol table then ensures that for each function frame, the ith 

frame location holds a pointer to the value of the ith argument expression. Furthermore, this 

systematic integer association with variables facilitates the determination of the exact frame size 

for each function by the code generator (see Example 5.2).

, An auxiliary symbol table is also maintained which stores the corresponding name/integer 

association for the current module and for the other modules it imports. For a module M with 

integer identifier i in the module names symbol table, each (value) identifier implemented by M is



5.5.2 A parser interface 87

associated with the negative integer ~i in the environment symbol table. When a global variable 

identifier is used in the current module—when it is looked up from the environment symbol table— 

the associated negative integer is used as the key to find its parent module name, in the modules 

table, which will be attached to the identifier's name , ik^e mainffoomMain for the global identffier 

main defined in the module Maun

Example 5.2

f x y — let g x = x I y 

z = x X 3

in g z

As explained above, the global name f is associated with a negative integer in the symbol table 

and its parameters x and y are associated with the integers 1 and 2 respectively. Note that our 

lambda lifter will pass y as additional argument to g and change the application (g z) to (g y 

z) in the intermediate code and so on. The code generation function for expressions is passed an 

integer parameter used to keep count of the frame size for the function in which the expression is 

part, z and g are therefore assigned the integers 3 and 4, the frame locations 5 and 6 are generated 

for the suspensions of y and z in the call (g y z). The frame size for f is therefore 7 while that 

for g is 5 (as explained in Example 5.1).

5.5.2 A parser interface

As discussed in Chapter 4 the front end of the compiler produces an intermediate code structured 

as a Haskell data type. A parser is written which processes this intermediate code and builds the 

corresponding C structures in a way that is suitable for input to the code generator. The runtime 

system manipulates tagged heap objects which are represented using different data structures, in a 

similar manner to the representation adopted by Hartel et al in [HGW94]. The C data structure, 

Exp, shown in Appendix A corresponds directly to the Haskell data type Exp of Section 4.3. 

Corresponding structures for programs, modules, bindings and import/export entities are given in 

the following subsections.

As part of the runtime support for our graph reduction model, an allocation function is defined 

for each substructure which reserves space for the structure in the heap. Each allocator initialises 

the fields of the structure and returns a pointer to the structure it allocates. Each structure is 

distinguished from its siblings using a small integer value.

The C function in Figure 5.5 shows a sample allocation routine which claims a node from the 

heap for conditional expressions.
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extern Exp *maieIfExp (Exp Condition,

Exp Consequent,

Exp *alternative)

{

Exp *e = (Exp *) safe^M^a.loc (sizeof (Exp));

e -> tag = IF; 

e -> fieids.ifExp 

e -> fieies.ifExE 

e -> fieies.itExp 

return e;

condition = condition; 
conoequent = consequent; 
altematave e alternative;

Figure 5.5: Sample allocator for conditional expressions

This completes our discussion for the basic run time support of the compiler and we now focus on 

the details of the code generation process.

5.5.3 Compiling modal expressions

Modal expressions are expressions in the intermediate language that contain Process and Value 

annotations (evaluation modes). Evaluation modes are associated with arguments to functions, 

constructors, components of data structures and to the expressions forming the right-hand sides of 

non-function bindings. These tags arise from the programmer’s annotations in the source program. 

As outlined in Section 1.3, the operational meaning of these modes is that (Process e) causes 

e to be evaluated in parallel with surrounding context, (Value e) forces e to be passed by value 

and the default (Need e) suspends the evaluation of e until its value is requested.

Accordingly, code is generated, using the C compilation function of the next section, to build 

suspensions for Need-annotated expressions. For each Value-annotated expression, which is sup­

posed to be passed by value, its code is immediately followed by termination (i.e., returning a 

NULL code pointer), thus forcing this code to be executed immediately to bring the value of the 

expression to normal form before passing it.

Notice that Process is normally attached to function applications since as we pointed out 

earlier, function applications form the basic units of work distribution. Annotating other forms of 

expressions with Process will behave as if the expression has the default Need annotation. Notice
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also that the primary effect of the Process annotation is to determine where (i.e., either on the 

current processor or on another one) a task is to be offloaded. It neither alters the evaluation order 

nor the evaluation degree of its argument expression.

Code is therefore generated for Process-annotated expressions which determine the processor 

on which the associated call frame is allocated and the code executed.

In the compilation schemes presented in the next section, the termination of an executing thread 

is indicated by a horizontal line at the bottom of the code sequence.

5.5.4 Compiling expressions

As mentioned at the start of this section, this implementation adopts the compilation scheme 

developed in [Osth93] for a first-order language and extends it to cover a higher-order language 

using the Call, dose and Apply mechanisms described below. Five compilation functions were 

developed, V for compiling programs, M for compiling modules, V for definitions, C for modal 

expressions and C for ordinary expressions.

Each of these compilation functions takes a piece of abstract syntax and produces a sequence of 

C statements. The C scheme normally invokes the C scheme to perform the bare code generation 

while the former wraps up this code with the necessary pieces of code reflecting the original 

programmer annotation from the source program.

Notice that the compilation rules for top level expressions in this section, using the C function, 

have no finishing horizontal line for termination. This is because such a termination has been 

‘factored’ and used at a single place instead; in the rule for compiling bindings (Section 5.5.5).

• Literals

All values, including literals, are boxed (i.e., their concrete representations in the heap contain 

two or more storage cells, see for example [Peyt87]) in our implementation. The compilation 

rule for literal values (integers, characters and Boolean) is given in Figure 5.6.

C I const ] result = 

up date (result, const)

Figure 5.6: Compilation rule for Literals.

This compilation rule corresponds to the 7r-calculus action which transmits the value of the 

constant on the designated channel. Therefore following the operational semantics of the
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• • d&f • • «T-cak:ulus specification, [c]o *= dc, this compilation rule simply expands to a sequence of 

code which boxes the literal and sends the boxed object back to the requesting process.

If the literal value is part of the computation of a bigger expression in the right-hand side 

of some binding, a sendNooify message is sent to restart the computation. If, on the other 

hand, the literal value is the entire right-hand side of a binding, like 3 in v = 3, then a 

sendUpdate message is generated. Recall that the handler for an update message dispatches 

a number of sendNooify messages to the computations waiting for the value of the suspension 

being updated,

• Identifiers

An identifier is referred to by first sending a sendEval message to it to ensure that it is 

evaluated as specified by the compilation rule of Figure 5.7.

C' I id I result =

eval(id, L)

L: update (result, msg.value)

Figure 5.7: Compilation rule for identifiers.

If the identifier being referenced is unevaluated, its evaluation is initiated and if it is eval­

uated its value is immediately sent back to the requesting process. This compilation rule
de fcorresponds to the 7-caLculus process for name reference, [rjo = (r)(£r | r(u).ou) in which 

x, v and o correspond to id, msg.value and result in the compilation rule. As explained in 

Section 2.4, a resuest for z is sent along the new channel r (corresponding to the eval mes­

sage to id). The value is eventually sent back along r and deposited on the output channel 

o. The direct correspondence can be seen in the compilation rule with the request via eval 

and the response via update.

• Function applications

The intermediate language specialises general function applications into one of Call, Close 
or Apply as described in Section 4.3. In what follows, we give the compilation rules for the 

three extreme cases of function application in which all argument expressions to the function 

application have the same kind of annotation.

Figure 5.8 shows the compilation rule for lazy function application. The identifier call
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C 1 call f Mexpi • • • Mexpn ] result = 

fp [si] :— suspended_node (Li)

fp [s„] := suspended-node (Ln)

go to L

Li: C 1 Mexpi 1 Si

Lfi : C 1 Mexpn 1 Sn

L: call (f, fp [result], fp [si], •••, fp [s„])

Figure 5.8: Compilation rule for lazy function call.

which surrounds the application corresponds to the constructor Call in the intermediate 

language of Section 4.3 and it is used in order to emphasise the correspondence between the 

compilation rule and the intermediate language representation. .

As explained in Section 5.2, each function invocation is associated with a unique function 

frame (the workspace for the call) and f p here is used to represent such a frame in which the 

argument suspensions are stored. The labels Li are the code addresses for the computation 

of the argument expressions.

Notice that as in the encoding for abstraction in Section 2.4, the function value is readily 

available and code is generated based on this rule which allocates a function frame, suspends 

the arguments and activates the function application. Recall from Section 2.4 that the 

corresponding T-callulus specification of call-by-need is

d= (m)(a))(\M]]m I m(f).(j\x,o) 1Wnd(s, iV)))

Comparing this with the compilation rule of Figure 5.8, we see that in the compilation rule 

the number of arguments is generalised and each of these arguments is a modal expression— 

expression containing annotation information. Notice that there is no prospect for parallelism 

in this rule between the evaluation of the function arguments and the function call or even 

among the computations for the argument expressions.
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The compilation scheme of Figure 5.9 specifies the rule for parallel call-by-value function 

application. As in the previous rule, the direct correspondence between the compilation rule 

of Figure 5.9 and the corresponding T'-alculus specification

[Ojo d== | [T/]n | m(J)).n(■t>)./(^c,o).xOode(;E, u))

is clear. Even though the function f value is available the function invocation is not started 

until the arguments are evaluated as indicated by the variable count in the rule.

C [ call f Mexpi • • • Mexpn J result =

courtf := n

fp [si] := busy_node (Li)

fp [sri] := busy_node (Li)

C [ Mexpi ] Si

C 1 Mexpn ] s„

Li: count := count - 1 .

if (count = 0) goto L 2

L2: call . (f, fp [result], fp [si], • • •, fp [ss*])

Figure 5.9: Compilation rule for parallel call-by-value.

In contrast to the previous rule for lazy function call, this rule provides scope for the parallel 

evaluation of the argument expressions. Notice, however, that since granularity is at the 

level of function application, the parallelism comes about only when some of the arguments 

involve function applications, leading to the creation of a parallel task on another processor.

The compilation rule of Figure 5.10 is used to generate code for a parallel function application. 

The main difference between this rule and that of Figure 5.9 (as is the difference in the 

corresponding v-calculus encodings) is that the function invocation is not ‘guarded’ by the 

completion of the computation of the function arguments. The name waiteng.eode is used 

in Figure 5.10 to indicate that each suspension is waiting to be updated with the result of a 

function call.
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C I call f Mexpi • • • Mexpn 1 result = 

fp [si] := waiting_node ()

fp [sn] := waiting_node

C I Mexpi I si

C I Mexpn 1 Sn

call (f, fp [result], fp [si], • fp [sn])

Figure 5.10; Compilation rule for parallel call-by-process.

This provides the most opportunity for parallelism: both horizontal parallelism (parallel 

evaluation of function arguments) and vertical parallelism (parallel execution of a function 

with the evaluation of its arguments) can be exploited.

Our compilation rules for dealing with general (i.e., mixed parameter mode) function appli­

cations, constructor applications and variable bindings combine aspects of the above three 

rules. However, because of the different possible ways3 a programmer may place annotations, 

it is not possible to capture the general combined effect of the above three rules without prior 

knowledge of which argument expressions take what annotations.

Compiling general annotated function application

Assuming some specific annotations3 for the argument expressions, we can express general 

function application as in Figure 5.11. Clearly, this is just one of many possibilities and, we 

therefore opt to use the compilation scheme for lazy function application to specify the rules 

for closure creation and closure application, while bearing in mind that they are compiled 

using all the three rules based on the annotations on the argument expressions.

, 3There are 3” different possible representations for annotations (including default ones) in a function with n 

arguments.
"The assumptions are: the first i arguments are call-by-need, the next i -b 1 to A arguments are call-by-value and 

the last collection of arguments (A + 1 to n) are call-by-process.
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C 1 call f Mexpi • • • Mexp„ ] result =

count := k - j + 1, (j = i + l,m = k + 1) 

fp [si] := suspendedmode (Li)

fp [sj] := suspendedmode (L*) 

fp [j := busymode (M)

fp [sj;] := busy mode (M) 

fp [sm]:= waitingmode ()

fp [s„] = waitingmode ()

C 1 Mexpj ] Sj

C 1 Mexpj. ] Sb 

C [ Mexp™ 1 sm

C 1 Mexpn i Sn

M: count := count - 1

if (count = 0) goto N

Li: C [ Mexpi 1 si

Le: C 1 Mexp; ] Si

N: call (f, fp [result], fp [si], • • - fp [sn])

Figure 5.11: Compilation rule for ‘general’ function call.
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Example 5.3. Consider the call of the Takeuchi function (Section 8.3.3).

iak {process{tak {x — 1) y 2)) {process{tak (y — 1) z x)) {process{tak {z — 1) x y))

Notice that since the three arguments are all process-annotated, this is a call by process 

application and code is generated for it using the compilation rule of Figure 5.10. Figures 5.12 

and 5.13 show a sketch of the code generated for this application.

From the complete definition of the Takeuchi function (Section 8.3.3) and the compilation rule 

for combinators (Section 5.5.5), we see that the code generated for the expression right-hand 

side of combinators is ended by a return NULL (as in the tak_from_Main in Figure 5.12) to 

trigger the evaluation of the combinator’s body immediately. When tak is called the thread 

labelled tak-fomm-Main is executed which allocates a function frame for the call, uses the 

frame pointer and the PID to make a global address, stores the pointers to the function’s 

arguments in the frame and finally terminates. This termination causes the two sendEval 

messages (requesting the values of x and y for the computation of x <= y) to be handled. 

Depending on which of these two messages is handled first, execution continues at L5 or 

Lq using the value in frame [4] for synchronisation since the operator '<=’ requires its 

arguments in the right order. When the value of the conditional is computed, execution 

continues at £-2 - '

The value of the conditional is received at L2 and if this value is TRUE a jump is made to 

L3 where the value of z is returned otherwise the rest of the code in L2 (for the call to tak 

in this example) is executed. With the aid of the compilation rule of Figure 5.10, the code 

generated for this call is straightforward: it creates three waiting suspensions (each waiting 

to be updated with the value of a function call) for the three parallel argument computations, 

suspends the three arguments of the first parallel call (the last three suspensions in L 2) and 

jumps to Lg. At X9, a message is built and sent to one of the machine’s PEs which will be 

responsible for the evaluation of the first child task. The suspensions for the three arguments 

to the second child task are constructed in Lg before jumping to L\s where the message for 

the call is built and sent. Notice that very similar operations are performed in Lis and L27 

for the second and third child tasks, respectively (see Figure 5.13), as done in Lg for the first 

child. The code in Ls creates the message for the parent tak call and terminates. Notice 

’that this is the first termination since starting from L2. By the time this termination occurs, 

the four calls to tak would have been distributed to four PEs of the machine (assuming the 

machine has >= 4 PEs) which will of course be invoked in parallel.
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extern void * tak_from_Main()

frme = makeFrama(tak_from_Main..siza_l) ; 

fp = (Global) MAAE.GLOBALAcurrentPE, frame); 

frame [0] = msg[0];

frame [1] = msg[l]; 

frame[2] = msg[2]; 

frame [3] = msg[3];

sendEval((Global) frame[1], fp, &L_1); 

sendEval((Global) frame[2], fp, &L_1); 

frame [4] = (Value) 1;

return NULL;

/* result location for the call */ 

/* first argument suspension */

/* second argument suspension */

/* third argument suspension */

/* terminate to execute the function body */

static void * L_2()

•C
Global tVal = (Global) msgCCO ;

if (tVal[l]) return UL_3;

frame [6] = (Value) ma(eeaittngSuupensSon(fp); 

frme[7] = (Value) makeWaininsSuspension(fp); 

frame[8] = (Value) makeeaittngSuspensson(fp); 

frame[9] = (Value) makeSuspensson(fp, &L_10); 

frme[10] = (Value) makeSuspens i on (fp, fL_H); 

frame[11] = (Value) makeSuspension(fp, fL_12) ; 

return L_9;

>

static void * L_9))

{

{

Message m = makeKeessgsH);

m[0] = frame [6];

m[l] = frema[9] ;

m[2] = frame [10] ;

m[3] = frame [11] ;

sendaessase( (Global) setNextPIDO , tak_rrom,

frame[15] = (Va(ue) makeSuspension(fp, &L.19); 

frame [16] = (VV(ue) makeSuspension(fp( &L_20); 

frame [17] = (VV(ue) oneeUuspnnsion(fp, 4L_21); 

return L_18;

/* suspenessn for- the first child task */ 

/* suspenessn for the second child task */ 

/* suspensssn .Cox' the third child */

.Main, m) ;

Figure 5.12: First code extract for the call of tak in Example 5.3

For the parallel call by value case (which is a restricted form of the parallel call by process 

just described, see Figure 5.9) the same execution pattern obtains except that there will be 

an additional termination after sending the message for the third child task to ensure that
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static void ♦ L_18()

Massage m = raakoMossage(4);
m[0] = frame C7]; 
m[l] = frame [15] ; 
m[2] = frame [16];
m[3] = frame [17];
sendMessaga( [ Global) getNextPID(), tak_from_Main, m ) ;

>

frama[21] = (Value) makeSuspension(fp, 

frame[22] = (Value) makeSuspension(fp, &L_29); 

frame[23] = (Valum) makeSuspension(fp, 6L_30);

return L.27;
>

static void * L.27()
{

<
Massage m = makeHessaga(4);

m[0] = frame [8] ; 
m[l] = frame [21]; 

m[2] » frame [22] ; 

m[3] = frame [23];

sendMessage((Global) getNextPIDO , tak.from.Main, m) ;

}
return L_8;

}
static void * L_S()

{
Meesage m = makaffesssae^);

m[0] = frame [0] ; 

m[l] = frame [6] ; 

m[2] = frame [7] )
m[3] = frame [8];

sendMe3sage((Global) currentPE, tak-focm-Main, m) ;

return NULL; /♦ teiminate after creating the four casks */

Figure 5.13: Second code extract for the call of tak in Example 5.3

the execution of the three child tasks is completed before the parent call starts. When the 

arguments are not explicitly annotated, a jump is made from L2 (immediately the three 

suspensions for the three argument calls are built) to Ls to make the parent call. Again, this 

is a direct translation of the compilation rule of Figure 5.8.
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♦ Closure creation The compilation rule specifying the code generated for a function pre­

sented with fewer arguments than its arity is given in Figure 5.14. In this rule the function 

/ has arity n but is supplied k arguments [k < n).

C [ close f Mexpi • • • Mexpfc] result =

Li:

fp [si] := suspended_node (Li)

fp [sjc] := suspended-node (L&)

go to L

C 1 Mexpi 1 si

Le C [ Mexpfc 1 Sf

L: c := make_close (f, n-k, k, fp [si], • • fp [sf]) 

update (fp [result], c)

Figure 5.14: Compilation rule for ‘closure creation’.

Code is generated to allocate a heap object for the closure storing the code label to jump to 

when the rest of the outstanding arguments arrive, the number of pending arguments, the 

number of arguments available (if any) and pointers to the available arguments. The result 

location is updated with this newly created closure which we further explain in the rule for 

closure application below. When the closure is later supplied with the remaining arguments, 

it is turned into a Call and the function call is performed. If the additional arguments 

supplied are fewer than the closure requires, the closure is replaced with a new extended 

closure with these additional arguments. If the additional arguments are more than closure 

needs to saturate it, an Apply structure is built. The Apply structure is a generalisation 

of the one compiled by the above compilation scheme where f could now be an arbitrary 

(closure-returning) expression. •
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• Closure application Code is generated for a structure built using Apply (i.e., higher-order 

function application/closure application) based on the rule given in Figure 5.15.

C [ apply Exp Mexpi • • • Mexpc ]] result =

Li:

fp [si] := suspended_node (Li)

fp j ;= suspended_node (L*)

go to L

C [ Mexpi ] si

Lt • C 1 Mexpj; 1 sfc

L: c :— make_apply (fp [result], k, fp [si], - - , fp [s*]) 

fp [t] := mk_apply_susp (c)

C 1 Exp 1t

Figure 5.15: Compilation rule for closure application.

Notice that Apply arises from an application of a functional argument, which the compiler 

does not know and whose exact arity is therefore unknown statically. In such cases, the 

function application cannot be specialised to one of the two forms covered earlier and therefore 

the function being applied is a closure-valued expression as opposed to a code entry point 

in the earlier two cases. Notice also that this is one of the costs paid for using higher-order 

functions because just like our optimisation fails here, similar analyses like strictness analysis, 

for example see Hogen et al [HKL91], are harder to handle in the presence of higher order 

functions.

Code is generated to allocate a heap object for this apply construct to store the pointer to 

the result location, the number k of the available arguments and the pointers to the values 

of the arguments of the closure application.

An apply suspension is built using the newly created object and the closure-valued expres­

sion is evaluated immediately. An apply suspension is essentially a specialised kind of BUSY
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suspension which is specified by an apply object and a doRestApply entry point (see Fig­

ure 5.16). The apply suspension is eventually updated with the closure value and, once 

updated, doRestApply turns the closure value into a Call, an extended dose or Apply. 

The doRestApply handler has enough information (from the closure and the apply object) 

to perform the process described above until a final Call is obtained that performs the 

function application and sends the result to the requesters.

result location

Figure 5.16: Structure of an Apply suspension

The operational semantics of the message handler doRestApply is similar to that of the DO 
instruction emitted by the < i/,G>-machine compilation rules for function applications in 

the LML compiler project [AuJo89aj.

Before considering an example, we remark that since built-in functions are strict in their 

arguments, in this implementation, code is compiled for calls to these functions to evaluate 

their arguments eagerly and to perform the arithmetic specified by the function.

Consider the definition of the function ap and the associated call in Example 5.4 below. 

Example 5.4

ap f x — f x

succ n = n d 1 

ap succ 3

Since the compiler cannot determine f statically and while ap has arity 2, it generates the 

intermediate language structures, respectively, for (f x) and (ap succ 3).

Apply (Id "f") [(Need (Id "x"))]
Call "ap" [(Need (Close "succ" 1 [])), (Need (IntLit 3))]
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The code generated for (f x) builds a heap structure which we depict in the graph of 

Figure 5.17. The number 0 and 1 in the figure respectively stand for the number of arguments 

carried inside the closure value and the number of pending arguments. The code for f is 

then entered and the apply suspension updated with the closure value.

result location suspenslofforthe
for function 'ap' aruumnnt 'x'

Figure 5.17: Apply suspension for the application (f x)

Therefore when ap is called the suspension of Figure 5.17 is updated with the closure for succ. 

The update handler will notify the ap continuation with the closure value and doRestApply 

will ‘see’ that the closure expects one argument as supplied by the environment and therefore 

Calls succ on the integer 3 and updates the result location of ap with the answer 4.

• Constructors

Like function applications, argument expressions to constructors can have parallelism an­

notations. Accordingly, the compilation scheme for constructors is very similar to that of 

function applications and it is specified as in Figure 5.18. Code generation for construc­

tors is much easier than that for function applications because the compiler has transformed 

partial applications of constructors into saturated oops (surrounded by an explicit function 

definition). The code therefore constructs the object (see Figure 5.3) and sends an update 

or notify message, as the case may be, to the result node with a pointer to this cell.

♦ Conditionals

Code generated for conditionals is based on the compilation scheme of Figure 5.19. Code 

is generated to force the evaluation of the conditional expression and the corresponding 

alternative is selected based on the value of the conditional. After executing the code for 

the alternative, execution continues at L3, the code label for the expression following the 

conditional.
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C 1 con t Mexpi • • • Mexp„ ] result = 

fp [si] := suspended_node (Li)

fp [sn] := suspended_node (L„)

Li:

go to L

C 1 Mexpi 1 si

L„: C 1 Mexpi J s„

L: c := make_con (t, n, fp [si], • - fp [sn]) 

update (fp [result], c)

Figure 5.18: Compilation rule for constructors.

C I if Expi then Exp2 else Exp3 J result = 

s := busy_node (Li)

' C [ Expi I s 

eval (s, Li)

Li: if (imsg.value) goto L2 

C I Exp2 I result 

goto L3

L2: C I Exp3 I result 

L3:

Figure 5.19: Compilation rule for conditionals.

♦ let expressions

The intermediate language transforms a let expression into one of two forms (built with 

either Let or Define, as explained in Section 4.3.5) or into a cascade of both. The Let
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form contains only variable bindings in its definition list while Define contains only function 

bindings. The compilation rule for the Let constructor is given in Figure 5.20.

C 1 let idi = Mexpi, - • idn = Mexp„ in Exp] result = 

fp [idi] := suspendedmode (Li)

fp [idn] := suspended-node (Ln)

go to L 

Li: C [[ Mexpi 1 idi

Ln : C [ Mexpn 1 idn

L: C 1 Exp ] result

Figure 5.20: Compilation rule for Let.

Note that the idk are identifiers in the source program while they are indices into the asso­

ciated activation frame of the function in the generated code.

This compilation rule is very similar to the code for first-order function application. In this 

case, however, each identifier of the let is used to bind the suspension of its corresponding 

expression. Notice that as we pointed out earlier, the right-hand side of some of these bind­

ings could contain parallelism annotations and may therefore be in similar mixed modes to 

function arguments and constructor arguments covered earlier. Code is therefore generated 

which creates suspensions and directly executes the code for explicitly annotated expres­

sions, bypasses the code for implicitly annotated expressions and executes the code for the 

expression in the Let body.

As we pointed out earlier, the code generator sets up a local environment (to hide an outer 

one for the outer enclosing block) for the identifiers in the let and eventually falls back to 

the outer environment on dropping the local one and returning from the let,

For the case of locally defined combinators, their compilation is governed by the rule in 

Figure 5.21.
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C I define Defi, • • Defn Exp]] result =

goto L

V I Def, I

V [ Del„ 1

L: C [ Exp 1 result

Figure 5.21: Compilation rule for Define.

Code is generated for define which directly jumps to the label L that addresses the code for 

the body, bypassing the code for the locally-defined supercombinators (see Section 5.5.5).

• case expressions

C 1 case Exp (1, Expi), • • -, (n, Exp„) ] result = 

fp [s] := busy_node(L)

C [ Exp]s 

eval(fp [s], L)

L: i := get_tag(msg.value)

goto Lj

Li: C I Expi 1 result

goto M

goto M

Ln : C 1 Expn 1 result

M:

Figure 5.22: Compilation rule for case.

Code generation for case expressions is also greatly simplified because of the compile-time 

transformation of Section 4.3.4 which compiled out constructor patterns in case alternatives. 

That is, since constructors in the intermediate language are identified by small integers and
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their subpatterns (which are all variables) expressed in terms of the case-scrutinee expression 

using a selection function, the generated code does not require maintaining an environment 

for variables in the patterns of case alternatives. The compilation rule for case expressions 

is shown in Figure 5.22.

This compilation scheme is an optimised generalisation of the compilation scheme for con­

ditional expressions. Code is generated which evaluates the discriminating expression of the 

case expression, extracts its tag, i, and takes a multi-way jump to the label L,, addressing 

the code sequence of the first expression whose associated tag equals i. When the execution 

of the code for the case expression completes, with the execution of the code at L*, the 

program execution continues at M, the code block following that of the case.

5.5.5 Compiling bindings

The compiler identifies and distinguishes those bindings in a module that are exported from those 

that are not exported. The code generator uses this information to generate the appropriate 

storage class declarations (extern or static) for the names of these bindings in the resulting C code. 

Combinator bindings are also distinguished from other value bindings and all this is reflected in 

the intermediate language.

P I f idi ■ • • id„ — Exp I result = 

frame := make_frame(f_size) 

fp := make_global(frame) 

frame [result] := msg.result 

frame [idi] := msg.idi

frame [id„] := msg.idn

C I Exp I result

Figure 5.23: Compilation rule for bindings.

For non-function bindings, code is generated in a similar way as for the same kind of bindings in 

let described above. A difference being that top level bindings may be exported. Code is generated 

for combinators as specified by the rule in Figure 5.23.
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Each combinator compiles into a sequence of code which when executed performs the computa­

tion specified by the combinator. In other words, each supercombinator is translated into a handler 

which is eventually activated by a message to perform the function application. Whenever acti­

vated, the handler first allocates a new frame of the exact size, f_size, to hold the data required 

for the call before executing the code for the supercombinator’s body. The function make .global 

combines the local frame pointer frame with the PID (of the machine on which the function is 

called) to make the global frame pointer fp which is inherited by all suspensions arising from the 

right-hand side expression of f. The code for the right-hand side expression of a combinator is 

followed by termination so that the computation specified by the function can be performed. This 

is why the compilation function C in the preceding cases is not ended by termination (putting 

which will be superflous). Notice that the creation of a unique frame for each activation is nec­

essary since the function may be called with different parameters and there may be an arbitrary 

number of parallel activations of the function. This directly corresponds to the T-calculus action 

!/(z, y).[M]y, except that the 7r-calculus specification contains a single argument function and also 

abstracts over the frame environment. The compilation rule on the other hand, generalises the 

number of arguments and makes the working environment explicit.

5.5.6 Compiling modules

A module may import entities from other modules as well as export the entities it defines of 

imports. The intermediate language representation of a module includes an association between 

each imported module with an explicit list of values imported from that module as specified by 

the Haskell source for the module. Each imported value is further specified according to whether 

it is a combinator or a non-combinator value. The structure representing an imported combinator 

includes the arity information of the combinator as specified by the Imports type in Figure 5.24.

type Program — [Module]

data Module = Mod String [(.5tnny, [Imports])] [Pe/] 

data Imports = Comb String Int 

| Val String

Figure 5.24: Intermediate representation for modules.

A 'Haskell source module gives rise to a corresponding C module together with an associated header 

file. The header file, as expected, contains the declarations for the parameterless entry points in 

the code and the frame size macros for the combinators all of which are generated automatically.
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The Haskell type in Figure 5.24 describes the intermediate code for modules (as presented in 

Section 4.4), The compilation scheme for a module is given by the rule in Figure 5.25.

M I mod M importList Defi • • • Def» J — 

mk_extern_decls(importList) 

mk_decl [ Defi, - • • Def„ ]

R i Defi I

V I Defn 1 

M_nit()

Figure 5.25: Compilation rule for modules.

This rule is used to generate code for a module separately from the code for the other modules in the 

program. The ‘macro’ mk__xtern_decls creates ‘extern’ declarations for the imported values from 

other modules. mc_decl generates similar declarations for the top level definitions implemented by 

the module. Code is then generated for the definitions in M and the module M initialised. Initialising 

a module consists of initialising its top level suspensions (i.e., for the top level non-function bindings 

defined by the module) as well as initialising the modules it imports. Notice that local definitions 

in the source are hoisted to the top level in the generated C code instead of embedding their code 

inside that of the let expression.

We now give our final compilation rule for complete programs. A complete program consists of 

a collection of modules as indicated by the type Program in Figure 5.24. The compilation scheme 

for programs is shown in Figure 5.26.

Notice that as our modules are not mutually recursive (see Section 4.4), the modules Mod, in 

the compilation scheme are in some import/export dependency order and that Mod„ is the Main 

module which must define the combinator main.

5.6 Starting program execution

In the previous section we have specified the compilation rules for modules and programs and we 

now focus on the issues of linking a compiled program and triggering its execution. Note that the 

intermediate representation generated for each of the constituent modules of a program contains 

enough information for that module to be code generated and compiled separately. The program
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V I prog Modi • • • Mod„ | ~

s := suspended-node (N) 

eval (main, L)

L: print (msg.value)

M I Modi I

N: M I Modn ]

Figure 5.26: Compilation rule for programs.

is therefore linked, in the standard way, using a C compiler.

In accordance with the Haskell syntax, the module Main defines the single-parameter combina­

tor main with type (see Section 6.1.1)

main :: [.Response] — [i?eguesf]

and which specifies the program’s value. The runtime system therefore prepares and sends the 

message

sendMessage(dest, main_from_Main, msgData)

to one of the machine’s processors to execute the code for main. What is the message data for 

this function application? It is clear from the type for main that when its code is executed, it will 

build and update its result location with a WHNF request list. We therefore need some specialised 

message handler will arrange that execution continues after this update.

Before sending the message for the function call above, we set-up two BUSY suspensions which 

serve as the data for the message. The first suspension called a waiting suspension, has one 

continuation in its waiting list while the second (which is a BUSY suspension for the request list to 

be built) is more specialised with an empty waiting list.

, The waiting suspension, which is a description of the next thread to be activated when the 

function call returns, is associated with an entry point, receiveRequests, which governs the main 

computation as described below. When the above message is sent, it activates the handler for the
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main combinator which creates the required frame, places the waiting suspension component of 

the data item (i.e., the second BUSY object) into the result location of the frame, places the other- 

message data in the next frame locations and enters the code for the body of main.

The waiting suspension is eventually updated with the lazy requests list leading to the activation 

of the associated continuation. In other words, receiveRequests receives the (WHNF) request 

list value, evaluates the first request and builds the corresponding response. If this is successful, 

receiveRequests then processes the next request, builds and updates the responses list and so 

on until all the requests are processed or an error message occurs to prematurely terminate the 

program execution.

Consuming and responding to the program’s requests may involve performing some I/O oper­

ations, like writing some data to or reading some data from some I/O media. We discuss the issue 

of printing program results in the next section. The details of I/O implementation are discussed 

in Chapter 6.

5.7 Printing program result

A program’s value can be a simple data item or an aggregate of such values. The programmer may 

require the value of the program to be displayed on the terminal or written to a file, for instance. 

To do this, the printing routine must ensure that each node it comes to handle is in evaluated 

form. The evaluator must therefore be called on each node before it is printed.

The current version of the compiler adopts a simple solution to the printing problem. As 

noted earlier the implementation of type classes may be necessary in order to obtain a systematic 

implementation of such overloaded functions as show. Our solution involves restricting the class 

of possible program values that can be printed as described by the following type signatures.

type Display a = a -> String

showlnt :: Display Int

showChar :: Display Char

showBool :: Display Bool

shows :: Display String

showList :: Display [a]

showTuple :: Display [a]

These six functions specify the only program values admissible for printing in the current state of 

Naira; integer, character and Boolean values and lists or tuples of these (i.e., the type variable a 

in showList and showTuple ranges over these basic types). The user must therefore specify the
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correct program value using one of these display functions. Values of user-defined types could be

included by (possibly) adding type tags to the data objects at runtime.

5.8 Summary

In this chapter we have presented the design and implementation of the back end of our Naira 

compiler. The design space distinguishes three classes of objects in the heap; function frames, 

constructor cells and suspension cells. All objects in the implementation reside in the heap and 

communication is achieved via message passing with tolerance for high-latency memory requests.

A new unique function frame is associated with each function invocation. Constructors (tuples 

and sum constructors) have a uniform concrete representation to facilitate their manipulation by 

the runtime system. We have described the code generator which translates the intermediate code 

into C. We have also described how the execution of a compiled program can be driven and the 

program result printed.

The main research contributions as implemented and described in this chapter are itemised as

follows:

• Extension and implementation of our compiler’s 7r-calculus-based compilation rules

• Design and implementation of our compiler’s sequential code generator

• Design and implementation of our compiler’s multi-threaded parallel code generator

Design and implementation of our compiler’s runtime support system



Chapter 6

I/O & simulation issues

In chapter five we presented a detailed description of the runtime system of our compiler; how 

objects are represented in the heap, how our message passing system works and how we generate 

multi-threaded parallel code from our Tr-calculus inspired compilation rules. In this chapter we 

describe our implementation of other aspects of the runtime system using the facilities described 

in the preceding chapter.

The rest of the chapter is organised as follows. In the next section we review the motivation for, 

and the various ways of, realising I/O in (mainly functional) programming languages pointing out 

the style we adopt in our compiler, presenting the operations we support and describing how we 

implement those operations. In Section 6.2 we describe how we implement comparison operations 

on values of user-defined types which have the same structure as our I/O constructors. Section 

6.3 covers scheduling issues and in Section 6.4 we describe a quasi-parallel simulator used in our 

experiments. A brief summary of the chapter follows in Section 6.5.

6.1 I/O in general

The essence of performing Input/Output operations in a programming language is to enable pro­

grams in the language to communicate with the outside world by manipulating I/O resources like 

files, keyboards, screens and so on. I/O commands, which input data from and output data to files 

and terminals, are a necessity in imperative programs. However, in an interactive environment, 

like that provided by an ML system, one can often do without these commands [Wiks87]. When 

programming ‘in the large’ or working with large data sets, however, the more traditional mode of 

working is preferred where data is stored in and retrieved from files.
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The notion of I/O usually conjures up an image of state, side-effects and sequencing because 

traditional implementations of I/O in imperative languages are usually state-based, side-effecting 

and sequential. Even in functional languages some implementations like those of ML [HMT88] 

and ALFL [Huda84], use I/O ‘functions’ which have or can lead to side-effects and hence violate 

referential transparency. However, since referential transparency is one of the most important 

generally accepted advantage of functional languages over imperative languages, purely functional 

I/O must be achieved, so as to preserve the semantic elegance of these languages. Such functional 

I/O will be required to be as universal, flexible and efficient as I/O in imperative languages.

There are two main styles of incorporating purely functional I/O in modern functional lan­

guages. Some I/O solutions are based on the notion of streams and others use some form of 

environments (these are also called side-effecting I/O systems [Gord93]). The name stream was 

coined by Landin [Land65] and since then stream-based I/O systems have been developed which 

essentially transform an input stream into an output stream. A stream is basically a lazy list 

of data objects and this approach has been proposed in two flavours; token stream styles like in 

Miranda1, Haskell and the FUDGETS system [Turn90, HPW92, CaHa93] and continuation style 

[Thom90, Perr 88 ].

Environment based approaches to I/O use functions which directly manipulate a special object, 

the environment, that represents the state of the world [AcHa95]. Implementations based on this 

approach include the monadic I/O of Peyton Jones and Wadler [PeWa93] and others [BWW90, 

AcHa95].

We adopt the lazy stream model for I/O in our implementation. This chapter is concerned 

with the discussion of the organisation and implementation of this I/O model in our compiler.

6.1.1 I/O operations supported

The stream model of implementing purely functional I/O is based on the view that a program 

communicates with the outside world by sending request messages to the operating system and 

consuming a stream of response messages from the operating system. Accordingly, a Haskell 

program has type Dialog which is defined in terms of the Request and Response types defined 

below.

Miranda is a trade mark of Research Software Limited.
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type Dialog = [^Response] -f [Request] 

data Request =

— file system requests:

| ReadFile String

. WriteFile String String 

I AppendFile String String

— channel system requests:

j ReadChan String 

I AppendChan String String

— environment requests:

I GetArgs 

I GetProgName

data Response =

I Success 

I Str String 

I StrList [.Strings]

I Failure String

Intuitively, [Response] is an ordered list of responses and [Request] is an ordered list of requests] 

the nth response is the operating system’s reply to the nth request [HPW92]. This ordered nature 

of requests and responses make I/O operations sequential and hard to parallelise. We highlight 

how file I/O affects our experimental results in Chapter 7.

As in standard Haskell, our implementation handles most of the requests dealing with the file 

and channel systems of the underlying operating system. The corresponding requests on binary 

files are, however, not supported as the compiler does not make use of them itself. Similarly for 

the environment requests we implement all those that we use in the code of our compiler. Note 

that all the remaining requests that we do not currently support have no hindrance on our main 

task of parallelisation and they can be added when needed.

As for the operating system responses defined by the type Response, we only omit the response 

on binary values although we simplify the form of the error response that we generate.

6.1.2 Implementing the operations

We maintain two I/O state structures which are used to hold the relevant information that is 

threaded during program execution as requests are issued and corresponding responses are gener-
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ated. The two state structures are called DialogState and RequestState. We now describe the 

need for and the use of each of these structures in turn.

The DialogState is used to maintain the lazy lists for requests and responses in a program. 

Elements of these lists must be built and maintained for the entire life-time of the program’s 

execution in order to achieve the correct operational behaviour of the program.

When a request is issued, the pending requests to be issued are saved in the DialogState state 

until the corresponding response is generated for the current request and the lazy response list 

updated. The processes of issuing requests and that of generating their corresponding responses 

are interleaved continuously (since the ith request may depend on the first i — 1 responses) until 

all the requests specified by the main combinator are issued and responded to.

The DialogState has the following shape:

typedef struct {
Global busyResp;
Global restRequests;

> DialogState;

The first member of this structure, busyResp, represents the lazy response list to be incrementally 

built. It is initially a BUSY suspension with an empty waiting list. restRequests represents the 

lazy request list which is first evaluated to WHNF when the code for the main combinator is 

executed. The evaluation of the individual requests is triggered by receiveRequests (see Section 

5.6) in order to build DialogState. The lifetime of DialogState is the execution of the program.

typedef struct { 
int counter; 
char name[256];
Global stringSusp;
Global restChars;

> RequestState;

RequestState is maintained to hold the data associated with the process of issuing and responding 

to a particular request. For instance, to handle the AppendFile request, we may first want to check 

whether the target file exists before starting to evaluate the string to be appended. RequestState 
is structured to cater for all possible requests and has the form shown above.

The counter member is an index used when building the array of characters name that stores 

a file or channel name in the request. stringSusp stores the lazy string to be written or appended
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(and it is empty in case of ReadFile and ReadChan.). restChars contains the remainder of the 

string which is gradually evaluated and written to the designated media.

A new RequeetState is created whenever a request is to be handled and this state is reclaimed 

immediately after the corresponding response is built—this is akin to the allocation and dealloca­

tion of table frames when generating code for supercombinators described in Section 5.5.4.

Notice that all the (String) arguments to our requests are represented as lazy lists of characters. 

Since responses are also constructors, the runtime system builds responses in such a way that 

their String components are represented as ‘evaluated’ lists of characters. For example, suppose 

a file ‘test;’ contains the two-character string "Hi", then the response Str "Hi" to the request 

ReadFile "test" will have the shape depicted in Figure 6.1. Our implementation of the stream of

ready | 1x1

I ST1B| 1 I i I

I READY | M

[ccrel 2 I ) h-i| READY I IX]

I ready I 11 joafi] 2 I ■ I I ready! M

' 0 1 w I J ___  InIl 'I 0 1
READY SZ!

° I U I

Figure 6.1: Structure of the response (Str "Hi")

messages issued by a program and the corresponding stream of messages emitted by the operating 

system is achieved by modelling these operations in our message-passing framework. Program 

requests are implemented as messages, each associated with a handler which enforces the ordering 

on the program’s requests and associated responses. That is, each message handler ensures the 

‘termination’ of the process of handling the request in question, in a continuation passing style, 

before the next request can be handled. When the computation involved with the handling of a 

request fails to complete, because of an error, the error is reported immediately and the execution 

terminated without consuming any pending requests.
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6.2 Comparing structured objects

As mentioned in Section 1.2 we do not support type classes, the facility in standard Haskell used 

for a systematic implementation of overloading. The purpose of this section is to provide a brief 

description of our implementation of some operations on aggregate values of user-defined types. 

Structured values have a long-winded representation in the heap (built from constructors as in 

Example 6.1 and Figure 6.1) and implementing operations on them can be tedious and delicate.

Haskell like other high-level functional languages encourages the programmer to define new 

types whose values could be subject to the same operations as the values of built-in types. One 

such operation, for instance, is an ordering relation over the constructors of a type. More mature 

compilers for the full Haskell language automatically derive a wealth of these operations for user- 

defined types whose definitions involve the deriving clause from the Haskell syntax. Although 

we do not support type classes, the mechanism used by the full Haskell compilers to implement 

the derived operations, our implementation supports some of these operations in a less systematic 

fashion. For example we implement comparison on (aggregate) data values as follows.

Recall that all data values in our implementation are boxed. That is, each data value is 

represented using a cell containing at least two fields with similar concrete layout to that described 

by Peyton Jones in [Peyt87]. To compare two values we start by evaluating them and inspecting 

their layout tags to find whether they are both atomic, in which case the values are compared 

immediately. If, however, the values are aggregates, their corresponding family tags and arities are 

compared, component-wise. If a decision cannot be reached based on the previous two tests, the 

two structures are traversed to evaluate and compare their corresponding components from left to 

right and in a depth-first manner. The result of the comparison is returned immediately a pair of 

subcomponents is encountered and on which the test criterion fails. Notice that the strong static 

typing of Haskell ensures that only compatible values (i.e., those of the same type) are compared. 

We illustrate the comparison operation using the program of Example 6.1:

Example 6.1

data Tree a = Leaf a | Node a {Tree a) {Tree a)

treel ~ Node [2..7] {Leaf []){Leaf [8,9]) 

tree2 — Node [2..7] {Leaf [8])(Tea/ [9])

Comparing treel and tree2 for equality, for instance, returns the answer False immediately the 

corresponding substructures [] and [8] are compared and without evaluating the last subcompo­

nent pair of the top level nodes in treel and tree 2. .
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Notice that our alternative implementation achieves the same effect (for the operations we 

implement) as that provided by other implementations of standard comparison techniques based 

on type classes as found, for instance, in the GHC and HBC compilers. In those implementations 

as well as in ours, constructors of a type are ordered according to their appearance in the defining 

type. For instance, in the type Tree a above, Leaf < Node.

6.3 Scheduling

6.3.1 Sequential scheduling

As mentioned in Section 5.2, communication in our message passing system as in Daily’s J-machine 

[DaCa89], for example, is completely data-driven in the sense that messages start handler threads. 

Handler threads are implemented as parameterless functions which access data from the associated 

message using global variables.

The multi-threaded code we generate is such that each parameterless function, which represents 

a handler thread, returns the code pointer, ep, of the next handler thread to which it would like 

to jump, rather than calling the function directly. When a thread is started it runs to completion 

without pre-emption and a thread wishing to terminate returns a NULL code pointer.

Our sequential scheduler is based on the tiny “interpreter” described by Peyton Jones in 

[Peyt92]. The interpreter, which is implemented as

while (TRUE) { ep = (*ep) ();}

nicely handles block-structured code of the form described above and we only needed to flesh it 

with code to enforce breaking of the interpreter loop to reflect thread termination. We achieve this 

by embedding the one-line interpreter inside another loop as in:

while (nextMessage(&fp, &ep, fmsgData)) { 
frame = GET_LOCAL(fp); 
while ((ep = (*ep) ()) != NULL) {};

}

There can be several messages within a single handler thread which are stored in a message (or 

context) store before the thread terminates causing the messages within the thread to be handled. 

nextMessage checks the context store for the availability of messages and its three arguments are, 

respectively, the frame pointer which determines the context within which the handler thread ep is 

executed using msgData to access the data required to execute ep. Recall that the frame pointer,
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fp, consists of a processor identifier and a local address on the processor. GETLOCAL is used to

extract the local address from fp.

Notice that ep is the thread to execute next. So when a thread terminates, i.e., when the last 

returned ep is NULL, the outer loop will attempt to ‘receive' a new message. If unsuccessful, i.e., 

if no more threads are available, then the program as a whole has terminated.

6.3.2 Parallel scheduling

The source annotations given by the user merely indicate the user’s intention of where parallel 

evaluation is desired and not how the annotated expressions are mapped onto processing agents. 

To execute the multi-threaded code on multiple processors, the expressed parallelism must be 

distributed appropriately.

As mentioned in Section 5.2, frame pointers and suspension pointers are global to the machine 

in our design, as in the GUM implementation [THM+96]. In order to achieve the desired parallel 

behaviour, each of these global pointers must contain a processor identifier (PID) component which 

is automatically passed down (to child suspensions) and which will be used to determine the target 

processor for a message.

We have implemented two variations of task distribution schemes which compute PIDs and 

make them explicit in the code for function calls. Notice that since suspensions inherit the PIDs of 

their parents and since function calls are the units of task distribution, the form starting function 

calls, sendMessage, is the only place where we need to make PIDs explicit.

The first version of our task distributor randomly determines the PID on which to channel 

a message, selected from a fixed collection of PIDs, and it is based on the algorithms described 

by Sedgewick in [Sedg90]. The second is deterministic and offloads work to the processors of the 

machine fairly, in a round-robin manner.

Our experiments (see Chapter 8) using these offloaders reveal that they lead to a similar load 

sharing property for applications in which the parallel tasks have relatively the same grain size. 

Even in such applications, however, the use of the deterministic distributor usually leads to a 

slightly better equilibrium in work sharing amongst the processors of the machine. This is due to 

the fact that the random selection of PIDs is more likely is disturb the balance of work sharing— 

especially when the machine load is low—than in the deterministic case.

For parallel applications where the granularity of the parallel tasks is substantially different 

(which is usually the case for most non-trivial applications), the random task distributor is still, 

generally, more likely to yield inferior performance, especially in multiprocessors where the cost of 

allocation to one processor is more expensive than to another.
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The next crucial issue is, what will be the best or optimal scheduling policy to use so that 

we can achieve the best performance—minimal completion time—from our parallelised program? 

Unfortunately, it has been shown that this is an intractable problem, in the sense that it is NP- 

Complete [Gare79], except if the application’s structure is extremely simple, for instance when the 

dependencies between the tasks constitute a tree and each task takes the same amount of time 

[Hofm94].

We have experimented with two main scheduling policies: one at a thread level and the other 

at function-invocation or quantum level. The thread-based scheduler ensures that within each 

machine cycle2, a single thread is removed (if any) from the context store of each virtual processor 

and executed. In the function-based scheduler, a quantum of threads are executed from each 

processor within a machine cycle. A quantum value in our experiments is taken to be the average 

number of threads per call in an application.

If the amount of work within the tasks of an application differ significantly, as highlighted 

above, the use of the thread-based scheduler leads to a badly skewed load sharing equilibrium. 

This led us to experiment with quantum schedulers by changing the quantum sizes as reported in 

our experiments of chapter eight.

6.4 A quasi-parallel simulator

As we have discussed in Section 6.3.1, the scheduler for our sequential compiler repeatedly removes 

and handles a message from a message store until the program terminates (i.e., until all messages 

in the message store have been handled.)

A natural way of building a simulator for a parallel machine is to extend the above represen­

tation to allow for multiple message stores each associated with a virtual processor. We use small 

integers, starting from zero, to represent the PIDs described in our parallel scheduler above. Since 

each global pointer is composed of a processor number paired with another integer specifying a 

local context, the processor number can be used to determine the right message store for each 

message.

In addition to the context store, each processor being simulated consists of three registers which 

hold information about its space usage, the number of function calls it has made and whether it is 

currently running or blocked (i.e., whether the task the processor was executing became blocked). 

The current PID, which is maintained as a global pointer, is used to determine the processor against

2 A machine cycle in our experiments is a unit of time a fraction of which the machine dedicates its resources to 

execute a number of threads from each processor being simulated.
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which the current allocation is costed. A processor is considered running provided its context store 

is non-empty and its PID is not held in the waiting list of some BUSY suspension (i.e., it is not 

currently blocked on communication), otherwise it is blocked or idle. Notice that some form of 

throttling mechanism will need to be adopted (see Section 3.2.6) to guard the potential overflow 

of context stores for applications with high amount of parallelism.

We have developed a quasi-parallel simulator, called Mizani, whose operation we now describe. 

As the program execution proceeds, Mizani takes a census of the computation activities of the 

constituent processors of the machine. As it visits each processor, it records the computation 

status of the processor (whether blocked on communication or busy running some task) as well as 

the number of tasks awaiting execution inside the processor’s context store.

When all the processors are visited the accumulated number of running, runnable and blocked 

tasks, at this census time, are written to a statistics file. The memory in use by each processor is 

also recorded. The census is taken typically after every one hundred machine cycles.

The data in the statistics file is used to plot parallelism profiles as shown in Chapter 8. The 

PostScript graph generator3 is based on Perl scripts which form part of the GranSim simulator 

[HLP95, Loid96] and which we adapt to conform to our data formats. The heap-usage data is not 

of much interest at the moment, as graphical representations are concerned, because it increases 

linearly with time due to our lacking a proper garbage collector.

The main simplifying assumption in our simulator, like in [Desc89, Roe91, RuWa95] for in­

stance, is that communication has zero costs. It is inevitable in our message-passing system that 

when communication is properly costed the performance reported in our experiments in Chapter 

8 will be affected. We strongly believe that the effect of costing communication on our figures will 

not be adverse provided quantum level scheduling is used together with efficient support for fast 

context switching.

6.5 Summary

In this chapter we have highlighted the fact that the I/O resources manipulated during I/O op­

erations are, in the real world, globally accessible and manipulating them is, in essence, making 

assignments. This implies that the I/O resources cannot be used in the same direct, unrestricted 

way as they are manipulated in imperative languages. This is why functional languages are often 

viewed as less powerful than their imperative cousins with regards to I/O [AcHa95]. Nevertheless,

iThanks to Kevin Hammond and H-W Loidl for pointing this out to me at a crucial time after several unsatis­

factory attempts to generate graphical profiles using gnuplot program on UNIX machines.
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there are two broad styles proposed for providing purely functional I/O in functional languages, 

which we have briefly reviewed in this chapter. We described in some detail our implementation 

of the model based on the notion of lazy streams. We have also described our alternative imple­

mentation of some comparison operations on values of user-defined algebraic types to compensate 

for our lack of support for standard Haskell type classes. Another aspect of the runtime system, 

scheduling of the decomposed program, is also covered here. Finally the chapter outlined the 

quasi-parallel simulator that we employed to evaluate our compiler.

The major research contributions, as this chapter is concerned, are two-fold. Firstly, we have 

designed and implemented a parallel scheduler (see analyses based on it in Section 8.3.7) which 

can schedule work at different levels of granularity—both at thread and at quantum levels. Fur­

thermore, the quantum variant of the scheduler has been used to perform some kind of ad hoc 

‘granularity analysis’ as a way of maximising locality and processor utilisation (Chapter 8). The 

other main contribution in this chapter is the development of an idealised simulator for the com­

piler.
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Parallelising the front end

As described in Chapter 1 and elsewhere, Naira is both a parallel compiler as well as a parallelising 

compiler. That is, we use semi-explicit parallelism and strictness annotations to parallelise the 

compiler itself and to parallelise input programs to the compiler.

The essence of parallelising the compiler front-end is to improve the efficiency with which Naira 

compiles programs (i.e., produce intermediate representations for the programs as described in 

Chapter 4). Annotations in the input programs on the other hand are used to generate parallel 

code the execution of which is simulated to test the effect of our annotations as well as to test 

our runtime system design parameters. This chapter is concerned with the issue of making the 

compiler execute in parallel and in the next chapter we consider the other parallelisation issue.

The front end of the compiler consists of 18 source modules with about 5K lines of Haskell 

code. The parallelisation process proceeds piecemeal, as expected, so that the effect of each 

parallelisation step can be analysed. In order to have a reasonable spread of input programs to 

test our parallelisation, we take the constituent compiler modules as our input since they implement 

different algorithms with varied computational costs.

There are two simulators used in our experiments to evaluate the compiler. The first simulator, 

Mizani, described in Section 6.4, is the one we wrote as part of this research work. The second is 

the GrAnSim simulator [HLP95, Loid96], which is available as part of the GHC compiler bundle.

As mentioned in Chapter 5 Naira is not supported by a garbage collector. For this reason it 

does not compile itself which means we cannot use it and its associated simulator to effectively 

evaluate the parallelisation of the front end. We therefore make use of the more robust GrAnSim 

simulator which can be tuned to simulate the execution of parallel Haskell programs on a variety 

of architectures. Naira and Mizani, on the other hand, are used extensively in the next chapter in
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the evaluation of the runtime system and the generated parallel code.

The rest of the chapter is organised as follows. In the next section we give a motivation for 

parallelising software while outlining our basic tools for parallelisation. Section 7.2 highlights the 

specific GrAnSim set-up used for our experiments. In Section 7.3 we report on the parallelisation of 

the compiler’s top level pipeline. Sections 7.4 to 7.7 present results of parallelising four main phases 

of the compiler. In Section 7.8 we report our experimental figures for the overall parallelisation. 

Section 7.9 considers further parallelisation after gaining more experience parallelising the compiler. 

The performance of Naira on real hardware is presented in Section 7.10 and we summarise the 

chapter in Section 7.11

7.1 Paralleli sation issues

Why do we need to parallelise software at all and what are the requirements for parallelising large 

software? This is a very important question and, in our opinion, a piece of software (small and 

large) is parallelised with the main aim of decreasing either its execution time or its resource usage 

or both. We set out to parallelise our compiler in this chapter with the purpose of reducing both 

its execution time and its resource usage.

Parallelising large-scale non-strict functional programs which have distinct stages of execution, 

like compilers, can be very hard. This is because parallelism in such applications may be highly 

irregular which makes understanding and controlling their dynamic behaviour hard. Furthermore, 

the distinct execution stages may not all be successfully parallelisable while this can be a precon­

dition for good speedup.

Our parallelisation process proceeds top-down, following the methodology outlined by Trinder et 

al in [THLP98], starting from the top level pipeline and then parallelising the successive components 

of the program. We concentrated on parallelising four main phases of the compiler — the pattern 

matcher, lambda lifter, type checker and the intermediate language optimiser. We parallelised these 

phases in a data-oriented fashion by attaching parallelism annotations to the complex intermediate 

data structures used between these phases. We experimented with two common data structures 

— lists and binary trees — which were used to hold the intermediate parse trees.

A notable aspect that hinders the effective exploitation of parallelism is data dependency. We 

make use of the unique name server of Section 4.2.1 to generate new variable names at relevant 

points in the computation thereby breaking or minimising data dependencies and therefore exposing 

more parallelism.

To generate these unique names, we are faced with a range of options for choosing a name server
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as a few different kinds were described by Augustsson et al in [ARS94] and Hankin in [Peyt87]. 

Sequential name servers were described which can be extremely efficient except that they may 

either be ‘impure’ or that they can lead to both loss of laziness and parallelism. The parallel name 

servers proposed by the above authors include simple but inefficient ones and a more efficient one 

but part of which needed to be written in assembly code [ARS94]. Our early experiences with 

some name supply mechanisms suggest that a name server similar to that of Hancock in [Peyt87] 

is acceptable.

7.2 Experimental set-up

As mentioned in the previous section, GrAnSim has a wealth of runtime system options and 

tools which can be used to simulate a wide range of different parallel machine architectures. One 

such set-up is GrAnSim-Light, an idealised machine with zero-cost communication and an infinite 

number of processors, which the authors recommend for use in the early stages of parallelising 

large software. We experimented with GrAnSim-Light to familiarise ourselves with the working of 

GrAnSim and to get an idea of how much parallelism we can generate from our compiler.

Since the parallel machine underlying the design of Naira is that of loosely connected distributed 

memory message passing computers, we use a GrAnSim set-up specific for these machines so as to 

have a fairly accurate simulation of the compiler’s behaviour. Such a GrAnSim set-up as given by 

Loidl in [Loid96] is:

. /nairaOnGrAnSim <ioput> +RTS -bP -bp32 -bl2000 -bG -by2 -b-M

oairaOnGrAoSim is the compiled program for the front end of our compiler and < input > is a 

place-holder for an input module name. The -j-RTS means that the options which follow are to be 

passed to the runtime system. The first three options respectively mean generate a full GrAnSim 

profile on a 32-node machine with a communication latency of 2,000 cycles. The last three options 

mean enable bulk fetching with asynchronous communication while turning off thread migration.

The full profile enables the generation of activity profiles so that every major event io the 

system can be visualised, see [Loid96] for further details. A bulk fetching scheme is used to pack 

multiple thunks (closures) into a message packet so as to make communication in these high latency 

machines cost-effective. Ao alternative scheme, incremental ( or ‘lazy’) fetching, io which only the 

immediately needed thunk is sent, is aimed for low latency systems and does not fit high latency 

oiachioes because of the enormity of messages io the latter [LoHa96]. Note that packing multiple 

threads into one packet amounts to eager work distribution, realising the active message offloading 

of Naira.
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Of the four rescheduling schemes described in [LoHa96], which decide what to do when a 

request is sent to another processor, we experimented with the two ‘local’ schemes (specified using ‘ 

the runtime options -byl and -by2) which involve task switching to execute a runnable thread 

or to turn a local spark into a thread, if no runnable thread is available locally. We did not 

experiment with the other pair, of ‘global’ rescheduling schemes which involve additional remote 

communication to get new work after context switching. We recorded no significant difference 

between using either of the local rescheduling schemes. Because task migration is expensive in 

distributed memory machines, it is often not supported at all [Loid96] and that is why it is turned 

off in the above set-up.

Our experimental results reported in this chapter as well as in chapter eight are presented both 

in tabular and graphical forms. At each step in the experiment the tabular information shows the 

average parallelism and speedup obtained for each of the eighteen input modules of the compiler. 

The graphical information gives sample parallelism profiles for some input modules showing the 

number of tasks that were running, runnable and blocked during the program’s execution life-span. 

The average parallelism and speedup figures are calculated using the following relations:

average parallelism = 

speedup =

where

n — total number of paralleltasks

Ti = time for executing task i (including overheads)

Tseq = sequential execution time

Tpar = parallel execution time

Notice that the calculated speedup is actually relative speedup since T,e? is based on the parallel 

compilation of the program (absolute speedup results if the sequential execution is based on the 

(optimised) sequential compilation of the program). The relationship between speedup and average 

parallelism is that they should be equal when the speedup is ideal1.

7.3 Parallelising the top-level pipeline

As mentioned in Section 7.1, we follow the top-down methodology of parallelising large software 

as proposed by Trinder et al. [THLP98]. In this section we concentrate on the parallelisation

xThat is, average parallelism = ideal speedup when all the parallelism exploited was actually needed (i.e., 

conservative with no superflous speculative work done) and there was no overhead due to communication and 

computation.
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of the top level pipeline of our compiler before considering the parallelisation of the successive 

components. The overall top level pipeline of the compiler is depicted in Figure 7.1.

Figure 7.1: The Structure of Naira’s Top-Level Pipeline.

The analysis phase consists of the lexical analyser and the parser. The next four phases respectively 

implement the pattern matching compiler, the lambda lifter, the type checker and the intermediate 

language optimiser. The splitting in the diagram after the lambda lifter indicates that the type 

checker and the optimiser can potentially proceed in parallel. The detailed organisation and 

implementation of these phases are described in chapter four. The back end is described in chapter 

five.

Each of these phases, starting from the analysis phase, produces a complex intermediate data 

structure which is input by the next phase, transformed and output for input in the next phase and 

so on. We parallelise this pipeline in a data-oriented fashion by defining evaluation strategies on the 

intermediate data structures produced by the phases. This facilitates the top-down parallelisation 

since the strategies define which parts of the data structures should be evaluated in parallel and 

without looking into the algorithms that produced the data structures. The algorithms producing 

the data structures are themselves parallelised in the following sections.

Notice that the choice of the ‘best;’ combination of strategies to use in order to determine 

what parts of the data structures to evaluate can be quite delicate because of laziness in Haskell. 

This is because we have to ensure that we do not introduce too many speculative computations 

(created using annotations) which will result in the creation of superflous data structures. Although 

speculation may increase parallelism, it can adversely affect the overall performance since the 

response time of the program may be increased due to additional overhead.

The function, analyseModule, defined in Figure 7.2 implements the top level pipeline. It is 

called after the necessary symbol tables are built and when the compile-time analyses are ready to 

begin. It takes six arguments which it passes down to the functions implementing the individual 

transformations.
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analyseModule fileName modName imports exports symbTabs defs — 

result ‘using1 strat

where

{stPM ,stTE ,stOpt) = symbTabs 

{dats ,syns Jans) = defs

{alnfo,tlnfo,imp Vais) — imports 

pMatchedDefs — mkDefs fileName stPM fans 

liftedDefs = ILift fileName stPM pMatchedDefs 

typeList = tcModale fileName stTE exports tlnfo syns liftedDefs

intermCode — optimiseParseTree fileName exports stOpt alnfo liftedDefs 

result = showModule modName imp Vais dats exports {intermCodefypeList)

strat res — parForceList funs ‘par‘

parForceList pMatchedDefs ‘par'

parForceList liftedDefs 

parForceList typeList 

parForceList intermCode

par

‘par1

‘par‘

parForceList
0

parList rnf

Figure 7.2: The Top-Level Compiler Function: analyseModule

The first two arguments are the name of the file containing the module being analysed and the 

module identifier. The next two arguments imports and exports contain the required information 

for the analyses from the imported and exported entities, respectively. The last two arguments 

are, respectively, the structure which holds the initial symbol table information (which is extended 

when the module is parsed) and the value definitions in the module on which to perform the 

different analyses.

The function strat defines the strategic code used in the parallelisation, giving a clear separa­

tion between algorithmic and parallelisation code. It sparks five parallel tasks using par (c ‘par ‘ 

r creates a task to evaluate c, then continues executing r), one for each of the pipeline phases 

shown in Figure 7.1. The parList strategy applies its first argument (the rnf strategy in this 

case, which reduces its argument to normal form) to each element of its second (list) argument 

in parallel thereby creating new tasks to reduce each element of the list to normal form in paral-
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lei. Therefore, parForceList forces the parallel evaluation to normal form of elements of a list. 

Trinder and others [THLP98] have given more detailed explanations of the strategies used in this

chapter.

A disadvantage of using strategies in this form (consisting of the using combinator) is that 

every intermediate structure must be named. To avoid this, the researchers on GpH defined two 

binary combinators, ($|) and ($j|), for sequential and parallel function application, respectively. 

The second argument in each case is a strategy to be applied, before or in parallel with the function 

application respectively.

Using these combinators, the code for analyseModule can be written more concisely, but 

perhaps less intuitively, as shown in Figure 7.3. Notice that the textual separation of algorithmic 

code and strategic code (specifying dynamic behaviour) is preserved.

analyseModule fileName modName imports exports symbTabs defs ~ 

showModule modName imp Vais dats exports $||

parPair parForceList parForceList $ 

fork (optimiseParseTree fileName exports stOpt alnfo,

tcModule fileName stTE exports tInfo syns) $|| parForceList $

ILift fileName stPM 

mkDefs fileName stPM 

where (stPM ,stTE, stOpt) = symbTabs

(dats, syns,funs) = defs

(alnfo, tlnfo,imp Vais) = imports 

fork (f, g) inp = (f inp, g inp)

($||) :: (a -4 6) -4 Strategy a -4 a —tb 

f $|| s = \ x -4 f x ‘sparking1 s x

$|| parForceList $

$|| parForceList $ funs

Figure 7.3: analyseModule rewritten using Pipeline Strategies

Our experiments revealed that as well as being less concise, the original version of analyseModule 
is also less efficient than the second version. For our 18 sample input modules, we found that the 

second version was up to 20% more efficient than the first. We note, however, that there were a 

couple of cases where the version using ($j|) was inferior.

With the parallelisation code added to the second argument of ($||) in Figure 7.3, we measured 

parallelism ranging from 1.2 to 4.0 and speedups from 1.23 to 3.95 using the compiler’s source 

modules as input. Table 7.1 summarises our experimental results for this parallelisation stage.
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Input

Module

Before parallelisation After parallelisation

Average parallelism Speedup Average parallelism Speedup

MyPrelude 1.0 1.00 3.6 3.46

DataTypes 1.0 1.00 4.0 3.95

Tables 1.0 1.00 3.5 3.42

PrintUtils 1.0 1.00 1.4 1.41

Printer 1.0 1.00 2.1 2.03

LexUtils 1.0 1.00 2.7 2.61

Lexer 1.0 1.00 1.5 1.46

SyntaxUtils 1.0 1.00 3.2 3.15

Syntax 1.0 1.00 1.3 1.24

MatchUtils 1.0 1.00 3.3 3.22

Matcher 1.0 1.00 2.6 2.52

LambdaUtils 1.0 1.00 2.0 1.91

LambdaLift 1.0 1.00 2.4 2.31

TCheckUtils 1.0 1.00 3.0 3.31

TChecker 1.0 1.00 1.9 1.82

OptimiseUtils 1.0 1.00 1.5 1.46

Optimiser 1.0 1.00 1.2 1.23

Main 1.0 1.00 1.6 1.61

Table 7.1: Top-Level Pipeline: Parallelism and Speedup.

As mentioned in Section 7.2, we also generate (in addition to the tabular information) graphical 

representations called parallelism profiles for our experimental data. These profiles show the num­

ber of parallel tasks and their execution status throughout the program’s runtime. The vertical 

axes on these profiles record the number of parallel tasks and the horizontal axes record the sim­

ulated execution time. Our profiles show three different execution status—running, runnable and 

blocked—for the parallel tasks in the program over time as depicted by three different shades in 

the profiles (see, for example, Figures 7.4 and 7.5).

The parallelism profiles we obtained for the eighteen input modules divide into two categories 

as we now describe. Each profile in one of the two groups has very similar shape with those in the 

same category and Figures 7.4 and 7.5 describe representative profiles from these two groups.

Recall that as we explained earlier, symbol tables have to be built from type and synonym
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[ front MyPrelude.hs +RTS -H45M -Z -F2s -bP -bp32 -bl2000 -bG -by2 -b-M Average Parallelism = 3.6)
„ 87

[ a running □ runnable ■ blocked Runtime = 92519079]

Figure 7.4: Top-Level Pipeline Compiling MyPrelude.

definitions (those imported as well as those defined locally) and the static information of all im­

ported value bindings before any of the major transformations can begin. Building these symbol 

tables (see Section 4.2.1) can require a lot of file I/O especially if the module imports many other 

modules since information about imported entities has to be read from the interface files of the 

imported modules.

Notice the initial segments of the GrAnSim activity profiles of Figures 7.4 and 7.5. The first 

profile is for our standard prelude, MyPrelude, which does not import any other module and the 

second profile (i.e., Figure 7.5) is for a module which imports a few other modules in addition. 

Although interpreting activity profiles such as these is very difficult without the aid of specialised 

tools [HHLT97], we speculate, armed with experience and knowledge of our source code, that the 

initial sequential segments in these profiles are due to the I/O overheads.

In Figure 7.4, therefore, there is comparatively less amount of I/O (about half as much) at the 

start of the computation and so the five threads executing the first, five phases attempted to start 

executing immediately. These threads blocked immediately because no initial parse tree on which 

they will operate has been produced yet. This blocking is depicted by the black-shaded portion in 

the initial segment of the profile in Figure 7.4.

In Figure 7.5 on the other hand, the initial long sequential segment, which occupies about 

80% of the runtime, probably represents the I/O thread which reads information about imported
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front TChecker.hs +RTS -H45M -Z -F2s -bP -bp32 -bl2000 -bG -by2 -b-M Average Parallelism = 1.9)

24893398 49786796 74680192 99673592 124468W2 , 49360384 174263776 199147168 22.

# running □ runnable

Figure 7.5: Top-Level Pipeline Compiling TChecker.

entities from interface files. The last portions of both the profiles of Figures 7.4 and 7.5 are similar. 

They both depict a raggedly-declining parallelism signifying that vast amount of parallelism is 

available immediately after the sequential I/O thread completed and which reduces as the results 

are combined in the final stages. The last sequential segment in both cases is again due to the I/O 

task which now writes the result of the module’s analysis into two files: an intermediate language 

file and an interface file.

We can see from the parallelism profile of Figure 7.4 that only about half the tasks that can 

execute are actually running. We can also see that the number of running tasks is less than 

thirty two, the number of processors we are simulating. This means that not all of the virtual 

processors are fully utilised throughout the execution life-time of this program. This lack of 

processor utilisation is caused by the fact that the threads that were dormant are on busy or 

blocked processors and that these threads were not allowed to migrate to idle processors.

One alternative way of ensuring full processor utilisation is to run the simulations with migration 

enabled or on a GrAnSim-Light set-up which allows task migration and cost-free communication. 

Table 7.2 summarises our experimental measurements for both of these possibilities. The corre­

sponding parallelism profile obtained when compiling MyPrelude using GrAnSim-Light is shown 

in Figure 7.6 (compare with Figure 7.4).

Comparing the values in the second and third columns of this table with the last two columns
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Input

Module

Migration enabled GrAnSim-Light set-up

Average parallelism Speedup Average parallelism Speedup

MyPrelude 4.0 3.83 4.2 4.00

DataTypes 4.0 3.97 4.2 4.10

Tables 3.5 3.42 3.5 3.46

PrintUtils 1.4 1.41 1.4 1.42

Printer 2.1 2.03 2.1 2.04

LexUtils 2.7 2.61 2.7 2.62

Lexer 1.5 1.46 1.5 1.46

SyntaxUtils 3.2 3.15 3.2 3.17

Syntax 1.3 1.24 1.3 1.24

MatchUtils 3.3 3.22 3.3 3.25

Matcher 2.6 2.51 2.6 2.54

LambdaUtils 2.0 1.91 2.0 1.93

LambdaLift 2.4 2.31 2.4 2.32

TCheckUtils 3.4 3.35 3.5 3.42

TChecker 1.9 1.82 1.9 1.83

OptimiseUtils 1.5 1.46 1.5 1.46

Optimiser 1.2 1.23 1.2 1.23

Main 1.6 1.61 1.7 1.61

Table 7.2: Top-Level Pipeline: Migration enabled and GrAnSim-Light.

of Table 7.1, we see that although the average parallelism increased only for two modules (i.e., in 

MyPrelude and TCheckUtils, while the values remained unchanged for the others) when migration 

is enabled, the runtime improved in ten out of the eighteen input modules. These runtime increases 

were only high enough to affect the speedup figures for MyPredule, DataTypes and TCheckUtils 
and with a slight decrease in Matcher due to some runtime overheads. Comparing the values in the 

second and third columns with those in the last two columns of Table 7.2, however, reveals that 

the experimental results with GrAnSim Light have, as expected, better runtime for all our inputs 

and that while the average parallelism increased in only four modules, the speedup increased in 

thirteen cases.

Compared with the experimental figures recorded by Trinder and others in their parallelisation a 

data-intensive transportation problem (called Accidents Blackspots) and Lolita (a natural language
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Figure 7.6: Top-Level Pipeline Compiling MyPrelude using GrAnSim-Light.

parser), our measured average parallelism figures are quite encouraging. Trinder reported average 

parallelism of 1.2 on accident black-spots [THL+96] and about 2.5 on Lolita [THLP98], at the 

same top level parallelisation stage.

We now turn our focus on the parallelisation of the subalgorithms of the compiler, starting from 

the pattern matching compiler. In each of the following subsections we analyse the parallelism 

extracted within a single phase in isolation and in Section 7.8 we analyse the overall parallelisation 

of the subalgorithms put together.

7.4 Parallelising the pattern matcher

The pattern matching compiler transforms function definitions made using equational patterns into 

equivalent ones involving case expressions with simple variable patterns. This transformation is 

primarily performed for efficiency purposes and without which patterns may be multiply evaluated.

When the definitions within a module are parsed, the pattern matching transformation can be 

applied to these definitions in a data-pa,rallel fashion since there is no top level data dependencies 

to inhibit this. The pattern matching compiler is implemented using the function mkDefs defined 

in Figure 7.7.

The three arguments to mkDefs are the file name, the pattern matching symbol table (see
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mkDefs :: Name -4 {AssocTree [Char] [Int, [StWnc/])) -1 [De/] -4 [De/] 

mkDefs fileName env [] = [] 

mkDefs fileName env I —

mkAppend $|| parallelPair parForceList $ 

fork2 [checkAdjDefs fileName env,

mkDefs fileName env) $|| parallelPair parForceList $ 

partition [sameDef [head I)) $|| sparkList $ I 

fork2 [f, g)[x,y) ~ [f x, g y) 

sparkList ~ parList rwhnf

Figure 7.7: The Pattern Matching Compiler: mkDDfs

Section 4.2.1) and the list of definitions output from the parser. Note that a single function 

definition may be characterised by more than one element (i.e., equation) in the third argument 

of mrDefs. checkAdjDefs is used to ensure that adjacent bindings (defining a single function) are 

correctly grouped together and any errorneous redefinitions of identifiers reported immediately.

The transformation is parallelised at different levels in order to determine a reasonable granular­

ity level in the parallelisation. This definition of mkDfs introduces coarse-grained parallelism which 

allows the analysis of each binding to proceed in parallel with that of the others. parallelPair 

simultaneously applies parForceList to both components of a 2-tuple. sparkList causes the 

parallel evaluation to weak head normal form of elements of a list.

We attempted to extract parallelism further at three places within the top level functions. The 

first step makes the pattern matching compilation of the local definitions within a function proceed 

in parallel with that of the top level function. The second step parallelises heavily used auxiliary 

functions which perform some reasonable amount of computation. The third step changes the data 

structure used to represent the pattern matching symbol table.

In step one, we make use of a parallel name server to avoid data dependencies and to provide 

the opportunity that the transformation can proceed at different levels (determined by the depth 

of the nesting of local definitions in a function). The function localmkDef s in Figure 7.8 is used 

to implement this.

Notice that this code differs from that of mcDDfs in the additional name-supply argument used 

to facilitate parallelisation.

The second and third columns of Table 7.3 summarise the runtime and average parallelism ob­

tained at the initial stage of the parallelisation and the last two columns represent those figures for
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Input

Module

Initial parallelisation Step one

Average parallelism Speedup Average parallelism Speedup

MyPrelude 1.1 1.07 1.1 1.12

DataTypes 1.1 1.08 1.1 1.11

Tables 1.1 1.08 1.1 1.10

PrintUtils 1.1 1.03 1.1 1.05

Printer 1.1 1.06 1.1 1.07

LexUtils 1.3 1.18 1.3 1.22

Lexer 1.1 1.09 1.1 1.12

SyntaxUtils 1.1 1.04 1.1 1.05

Syntax 1.1 1.05 1.1 1.06

MatchUtils 1.1 1.07 1.1 1.09

Matcher 1.2 1.12 1.2 1.15

LambdaUtils 1.2 1.12 1.2 1.18

LambdaLift 1.2 1.12 1.2 1.15

TCheckUtils 1.1 1.06 1.1 1.07

TChecker 1.2 1.18 1.2 1.22

OptmiseUtils 1.0 1.00 1.1 1.05

Optimiser 1.1 0.79 1.1 1.06

Main 1.1 1.10 1.1 1.12

Table 7.3: Parallelising the pattern matcher: Initial step and step 1.

step one. Comparing these two sets of results we see that introducing parallelism in localjmkDefs 
leads to some improvement in both average parallelism and speedup. While the average parallelism 

increased only for OptimiseUtils (and remaining the same for other input modules), the speedup 

increased for all input modules with a difference of upto about 30% for Optimiser. This paralleli­

sation step therefore gives rise to a clean performance improvement over the preceding step with 

zero overhead for all our input modules.

Recall from Section 4.2.3 that we perform some tidying up operations on the patterns of a 

function before calling the pattern compiler. This is one place that we attempted to extract paral­

lelism. Another highly used auxiliary function is that which repeatedly replaces pattern variables 

in the source program with compiler-generated ones during the transformation. Parallelising the 

functions performing these tasks gave the results in columns two and three of Table 7.4.
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locaLmkDefs :: Name -4 Mylnt — {AssocTree [Char] {Int, [String])) -> [Def] —> [De/] 

locaLmkDefs fileNm ns env [] = [] 

locaLmkDefs fileNm ns env I =

mkAppend $|| parallelPair parForceList $

fork2 [checkAdjSymbDefsl fileNm nsO env,

locaLmkDefs fileNm nsl env) 5|| parallelPair sparkList $ 

partition [sameDef [head I)) $|| sparkList $ I

where (nsO,nsl) = split ns

Figure 7.8: Pattern Matcher for Local Definitions :localmkDefs.

Compared with the performance figures of step one (in the last two columns of Table 7.3), we record 

a slightly better overall performance although we incur some overhead in some cases. Although the 

average parallelism and speedup figures remained unchanged for most input modules, the runtimes 

of these modules show that we obtained better runtimes in step two.

In step three we used a list data structure, with type [(String, (Int, [String]))], instead 

of the binary tree of association AssocTree String (Int, [String] ), to represent the pattern 

matching symbol table. With this modification our experimental figures show that there is a 

slight improvement over the previous step. As in the 'previous analysis and although the average 

parallelism and speedup values change only in a few cases, we can see that the runtimes in step 

three are slightly better.

Notice from the above parallelisation steps that although we always improved the average 

parallelism figures, we also paid some runtime overhead for some input modules. This is because 

the finer the granularity of the parallel tasks that we generate the more expensive their management 

especially in our distributed memory set-up.

As explained earlier, we can run our simulations under GrAnSim-Light so as to find some 

of the sources of overhead and to find the maximum parallelism that we can extract. The last 

two columns of Table 7.4 summarise our experimental results on GrAnSim-Light. These results 

are only slightly better than those obtained using standard GrAnSim, with a maximum speedup 

improvement of 2%, and that this signifies that we paid very little overhead in this parallelisation.

, The activity profiles generated during this parallelisation steps do not contain much useful 

visual information because the other phases of the compiler are running sequentially and there 

is not much parallelism in this phase either. For example, Figure 7.9 shows a typical parallelism
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Input

Module

Step two Step three GrA n Sim-Light

Avg.

paral.

Speedup Avg.

paral.

Speedup Avg.

paral.

Speedup

MyPrelude 1.1 1.12 1.2 1.14 1.2 1.16

DataTypes 1.1 1.11 1.1 1.11 1.2 1.13

Tables 1.1 1.10 1.1 1.10 1.1 1.10

PrintUtils 1.1 1.05 1.1 1.05 1.1 1.05

Printer 1.1 1.07 1.1 1.07 1.1 1.07

LexUtils 1.3 1.21 1.3 1.22 1.3 1.22

Lexer 1.1 1.13 1.1 1.12 1.1 1.13

SyntaxUtils 1.1 1.05 1.1 1.05 1.1 1.05

Syntax 1.1 1.07 1.1 1.06 1.1 1.08

MatchUtils 1.1 1.09 1.1 1.09 1.1 1.09

Matcher 1.2 1.15 1.2 1.15 1.2 1.15

LambdaUtils 1.2 1.17 1.2 1.17 1.2 1.18

LambdaLift 1.2 1.14 1.2 1.14 1.2 1.15

TCheckUtils 1.1 1.07 1.1 1.07 1.1 1.07

TChecker 1.2 1.22 1.2 1.22 1.3 1.23

OptmiseUtils 1.1 1.05 1.1 1.05 1.1 L05

Optimiser 1.1 1.06 1.1 1.06 1.1 1.06

Main 1.0 1.01 1.1 1.11 1.1 1.12

Table 7.4: Parallelising the pattern matcher: Steps 2, 3 & GrAnSim-Light.

profile obtained during the parallelisation of the pattern matcher. Notice from this figure that 

immediately after the sequential file I/O there was a sharp thin rise of running parallel tasks 

created in the pattern matching phase. This is followed by a band of about three-thread high 

running for about 20% of the overall execution time. The remaining long sequential tail represents 

the execution span of the other phases which run sequentially.

7.5 Parallelising the lambda lifter

In this section we present our parallelisation of the lambda lifter. As introduced in Section 4.2.4, 

the lambda lifter consists of a scope analyser, a renamer, a dependency analyser and the final
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Figure 7.9: Pattern Matching Stage Compiling LexUtils.

‘lifting’ operation. Recall that this transformation is relevant only in top level recursive bindings 

and in function definitions which have local definitions that may take some of the arguments of 

the functions in the enclosing scopes as free variables.

We implement the lambda lifting transformation using the function ILift as defined in Fig­

ure 7.10. Notice the use of the identity function id which ensures that sparkList is applied to 

the result of lifter before being returned. parallelTriple simultaneously applies sparkList to 

a 3-tuple of lists.

ILift :: String — AssocTree String [Int,[String]) -> [Def] —> [De/]

ILift fileName stPM defs = 

id $1 sparkList $

lifter.triplet 1 $|| parallelTriple sparkList $

scopeAnalysis fileName stPM [] [] initNS 1 $|| sparkList $ defs 

where tripletl [x, y, z) = x

Figure 7.10: The Lambda Lifter: ILift

There is a two-level pipeline formed by the two main functions, scopeAnalysis and lifter, which 

perform the meat of the computation in the lambda lifting process. The first part of the pipeline
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performs scope analysis and incorporates the renamer and the dependency analyser. The second 

part is the lifter which computes the transitive closure of the free variables of a function and 

then performs substitutions as exemplified in Section 4.2.4.

The experimental results obtained when running our compiler with the above code as the 

only source of parallelism are summarised in the second and third columns of Table 7.5. This 

parallelisation leads to a modest performance improvement: the average parallelism has improved 

to 1.1 for eight input modules and the runtime is improved in all the input modules over the 

non-parallelised version of the program. These runtime improvements lead to speedup increases of 

upto 6% in the initial parallelisation.

Input

Module

Initial step Final step Using GRIP set-up

Avg.

paral.

Speedup Avg.

paral.

Speedup Avg.

paral.

Speedup

MyPrelude 1.1 1.01 1.1 1.01 1.1 1.02

DataTypes 1.0 1.01 1.0 1.01 1.0 1.02

Tables 1.0 1.01 1.0 1.01 1.0 1.01

PrintUtils 1.0 1.00 1.0 1.00 1.0 1.00

Printer 1.0 1.01 1.0 1.01 1.0 1.01

LexUtils 1.1 1.03 1.1 1.03 1.1 1.04

Lexer 1.1 1.03 1.1 1.03 1.1 1.03

SyntaxUtils 1.0 1.01 1.0 1.01 1.0 1.01

Syntax 1.0 1.02 1.0 1.02 1.0 1.02

MatchUtils 1.0 1.01 1.0 1.01 1.0 1.01

Matcher 1.1 1.04 1.1 1.04 1.1 1.04

LambdaUtils 1.1 1.04 1.1 1.04 1.1 1.05

LambdaLift 1.1 1.05 1.1 1.05 1.1 1.05

TCheckUtils 1.0 1.01 1.0 1.01 1.0 1.01

TChecker 1.1 1.06 1.1 1.06 1.1 1.06

OptimiseUtils 1.0 1.01 1.0 1.01 1.0 1.01

Optimiser 1.0 1.02 1.0 1.02 1.0 1.02

Main 1.1 1.04 1.1 . 1.04 1.1 1.04

Table 7.5: Parallelising the lambda lifter: parallelism and speedup.

The prospects of generating further useful parallelism inside function bodies lies in the feasibility
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of sparking two parallel subtasks to perform the renaming and dependency analysis. Another place 

that we experimented with the worthiness of extracting parallelism in is inside the lifter function.

The renamer simply associates an identifier with a small integer and since only locally defined 

identifiers are renamed (the parser would have reported any name clashes amongst top level iden­

tifiers) , there is little amount of work performed by the renamer and dedicating a parallel task for 

it resulted in figures almost the same as the ones obtained in the initial parallelisation step.

The dependency analyser on the other hand performs relatively more amount of computations. 

However, the dependency analyser is based on graph algorithms (essentially collecting strongly- 

connected components) and thus there is not much parallelism that can be extracted from it either. 

The combined effect of parallelising the scope analyser is shown in the fourth and fifth columns 

of Table 7.5. Similar to our results in the pattern matching parallelisation, although the average 

parallelism and speedup values remain unchanged from the previous step, the runtime is improved 

in all but four cases.

Figure 7.11: Lambda Lifting Stage Compiling TChecker.

In the second pass, the core lambda lifter collects free variables, forms and solves equations (rem­

iniscent of Johnsson, in [John87]) to determine the complete set of free variables of each function. 

This turns out to be not computationally expensive, going by our input programs, because the 

number of definitions within a local binding in this pass is small since the definitions have been 

separated into minimal dependency groups to aid type checking [Peyt87]. This means that creating
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parallel subtasks within such local definitions gives rise to excessively fine-grained units of work 

which do not support cost-effective communication.

Running these experiments using the GrAnSim set-up for GRIP, a closely-coupled distributed 

memory machine, we obtained the results shown in the last two columns of Table 7.5. Comparing 

these with those (in columns 2 and 3) of Table 7.4 reveals that the low-latency of GRIP makes it 

perform better on the input programs, although the speedup changed only in four cases.

Figure 7.11 shows a typical parallelism profile obtained during the parallelisation of the lambda 

lifter. The amount of parallel activity depicted in this profile is quite scanty signifying the fraction 

of parallelism that can be generated in this phase compared to the overall parallelism.

Compared with the pattern matching compiler, there is not as much parallelism in the lambda 

lifter. This fact appeals to intuition because real programs can be imagined to contain a large col­

lection of function definitions over structured data. Furthermore, the pattern matching compilation 

process involves more work than the lambda lifting transformation.

7.6 Parallelising the type checker

The type checker is the most expensive phase of the compiler, both in terms of space usage 

and running time. This is largely because of the fact that the type checking process includes 

subalgorithms like unification and some operations on large data structures which themselves 

require significant amount of computations.

tcModule fileName env exports typeList syns defs =

[typeList -H- topDefsTypes) 'using' parForceList

where

(nsO,nsl) ~ split initNS

tlds — map getDefId defs

auxEnv — mkTypeVars tIds nsO

topDefsTypes = tcTopDefs fileName env auxEnv exports initSubs nsl syns defs

Figure 7.12: The Type Checker: tcModule

Space and time profiling information, using both sequential and parallel profilers [SaPe95, HHLT97], 

revealed that the type checker is, in fact, more expensive than the other phases of the compiler 

put together. The parallelisation of Naira therefore depends significantly on how much useful 

parallelism can be extracted from the type checker.
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The function tcModule, defined in Figure 7.12, is used to implement the type inferencing 

algorithm for a collection of definitions in a module. The first three arguments to this function are 

the file name, the type environment and a list of exported values whose static information is to be 

written into the interface file. The last three arguments contain the type information of imported 

values, a list of type synonyms used for type resolutions and the list of definitions in the module 

whose types are being inferred.

Input

Module

Intial parallelisation Step one

Average parallelism Speedup Average parallelism Speedup

MyPrelude 3.3 3.26 3.7 3.32

DataTypes 2.2 2.21 2.5 2.21

Tables 2.4 2.33 2.6 2.33

PrintUtils 1.4 1.40 1.4 1.40

Printer 2.0 2.01 2.4 2.02

LexUtils 2.3 2.22 2.8 2.23

Lexer 1.5 1.43 2.0 1.44

SyntaxUtils 3.2 3.15 3.6 3.15

Syntax 1.2 1.23 1.5 1.23

MatchUtils 3.3 3.23 3.8 3.24

Matcher 2.1 ’ 2.07 3.3 2.10

LambdaUtils 1.7 1.63 2.2 1.63

LambdaLift 2.2 2.16 4.3 2.07

TCheckUtils 2.2 2.14 2.5 2.14

TChecker 1.8 1.71 2.3 1.70

OptimiseUtils 1.2 1.15 1.4 1.15

Optimiser 1.2 1.23 2.1 1.23

Main 1.6 1.61 2.7 1.60

Table 7.6: Parallelising the type-checker: Intial step and step 1.

As in standard polymorphic type checking algorithms, tcModule initially associates each bound 

name with an assumed type creating an auxiliary environment, auxEnv. These assumed types 

usually become specialised as unifications and substitutions are performed. Inferred types are 

also checked against user-declared type signatures to ensure that the declared • types are not more 

general than or incomparable to the deduced principal types (in accordance with Haskell).
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The type checker can be parallelised using a parallel name server and by distributing substitu­

tions to avoid sequentialising the inference process. For intance, to type check two quantities di 

and d2, we analyse them simultaneously in the current type environment, each returning a type 

and a substitution record. If a variable v common to both di and a? is assigned (possibly different) 

types tj_ and from these two independent operations, ti and will be unified in the presence of 

the resulting substitutions and the unified type associated with v.

tcLocalDefs fileName env subs ns syns [( = ([],)],su&s)

tcLocalDefs fileName env subs ns syns {VDef{IdPat id) aags e:defs) = 

res ‘using’’ parTriple rnf parForceList rwhnf

where

(nsO,nsl) = split ns

(infTy,subsl) = typeCheck fileName id {mkLam aagg e) enn subb syns nsl

{idsL,tysL,subs4) = tcLocalDefs fileName env subs nnO ssnn ddfs 

res — (id’.idsL, infTy:tysL,subs4)

Figure 7.13: Type Inference for Local Definitions: tcLocalDefs

Accordingly, our initial parallelisation step uses a simple name supply mechanism to relax data 

dependencies so that the type inference of top level definitions within a module can proceed in 

parallel. Columns two and three of Table 7.6 show our experimental figures after this initial 

parallelisation. These values indicate very good parallel behaviour on account of this parallelisation 

of the type checker. Comparing with the figures (in the last two columns) of Table 7.1, for 

parallelising the top level pipeline of Naira, we see that the values obtained at this stage are very 

close to (and for some input modules the same as) those in Table 7.1. The parallelism profiles 

obtained are also very similar, as the corresponding numeric values.

In line with our top-down parallelisation tradition, we now proceed to experiment with the 

introduction of parallelism inside the type inference of individual top level functions at decreasing 

levels of granularity. As in Section 7.4, we identify three main areas within which to exploit 

parallelism further. These are inside local definitions, on calls to frequently used functions and at 

other expression constructs.

In step one, we added strategic code to the function tcLocalDefs defined in Figure 7.13 so as 

to create additional parallel threads to infer the types of the locally defined identifiers.

The strategic code res ‘using' parTriple rnf parForceList rwhnf ensures the creation 

of parallel tasks for res, the result of tcLocalDefs, as described in the previous paragraph.
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This modification leads to a modest increase in parallel activity as can be seen by comparing 

the values in columns 2 and 3 with those in the last two columns of Table 7.6. The average 

parallelism has increased in all input modules (with an increase of up to 2.1 for LambdaTift.) 
except in PrintUtils where it remained unchanged. The runtime also increased except in five 

input modules (i.e., PrintUtils, LambdaLift;, TChecker, Optimiser and Main) where we incurred 

some overhead due to increased parallel activity. Note that this overhead is only signify cant in 

LambdaLift, TChecker and Main to affect speedup in those modules.

Notice also that while the average parallelism when compiling the LambdaLift module has 

almost doubled on account of the current parallelisation, there was actually a negative speedup, 

signifying that the parallelism exploited for this particular input was not useful. This is one 

instance that highlights the subtlety of parallelisation code; while it may improve performance on 

some inputs it can at the same time decrease performance for some other inputs! Figure 7.14 shows 

a sample profile resulting from this parallelisation step.

Figure 7.14: Type Checking Stage Compiling SyntaxUtils.

Notice from this figure that a better performance can be obtained by turning thread migration on 

since there are unemployed runnable threads. We shall consider this in the next steps.

Step two introduces parallelism at the unification subalgorithm. It is clear that type unification, 

which we implement using mkUnify defined in Figure 7.15, is one the most perverse operations 

during type inference and which can involve some reasonable amount of work.
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mkUnify syns tl t2 = (subs,theTy)

where subs = unify {OK []) {expandSynonyms syns tl{{<zxpandSynonym.s syns t2) 

theTy = mkTheType subs tl t2

Figure 7.15: Type Unification:mkUnify.

The function expandSynonyms ensures that type synonyms within the types being unified are 

replaced before unification proceeds while mkTheType obtains the unified type on successful unifi­

cation or generates an error message on unification failure.

We introduce parallelism here by sparking a child task to carry out the unification task when 

type checking a subtree while the parent task proceeds with the ‘main’ type checking subthread. 

We achieve this by adding the strategic code,

result ‘sparking1, sequentialPair rnf resOfUnify

to each call of mkUnify inside the type checker, result is the result of the inference step of which 

resOfUnify, the result returned by mkUnify is a part.

Figure 7.16: Type Checking Stage Compiling MyPrelude.

We found that better performance can be obtained by using parallelPair rnf, instead of the 

sequentialPair rnf, to make unify and mkTheType proceed in parallel.
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Notice that ‘factoring’ the parallelPair rnf strategies from the type checker and using only 

one of them inside the definition of mkUnify (while using none of these strategies in the type 

checker) will degrade performance. This is because using the strategy inside mkUnify alone will 

amount to creating parallel tasks inside a substructure whose enclosing structure may only be 

lazily demanded. Using the strategies in both the type checker and mkUnify on the other hand 

can be less efficient since it will lead to duplicate applications of the same strategy on the same 

data structure. The best option, as per our experiments, is to apply strategies in as outer level as 

possible.

Input

Module

Step two Step three Migration enabled

Avg.

paral.

Speedup Avg.

paral.

Speedup Avg.

paral.
Speedup

MyPrelude 4.6 3.64 6.1 3.57 6.2 3.67

DataTypes 3.6 3.05 4.2 2.55 6.4 3.86

Tables 2.9 2.49 5.1 2.71 6.3 3.39

PrintUtils 1.5 1.41 1.9 1.23 2.2 1.43

Printer 2.5 2.02 3.1 1.95 3.3 2.04

LexUtils 4.1 2.68 7.3 2.40 8.3 2.60

Lexer 2.1 1.45 4.6 1.40 4.7 1.46

SyntaxUtils 3.7 3.17 4.3 3.11 4.4 3.16

Syntax 1.5 1.23 1.8 1.23 1.8 1.24

MatchUtils 3.5 2.89 6.0 3.17 6.1 3.24

Matcher 3.1 1.89 5.1 1.93 6.4 2.43

LambdaUtils 2.5 1.81 3.2 1.87 3.3 1.91

LambdaLift 4.3 1.97 6.8 2.06 7.6 2.30

TCheckUtils 2.9 2.33 4.4 2.58 5.8 3.42

TChecker 2.4 1.71 2.7 1.64 2.8 1.71

OptimiseUtils 1.5 1.21 3.2 1.41 3.3 1.46

Optimiser 2.0 0.79 4.5 0.75 4.7 0.79

Main 2.7 1.56 5.2 1.51 5.3 1.61

Table 7.7: Parallelising the type-checker: Steps 2, 3 & 4.

The values in the second and third columns of Table 7.7 summarise our experimental results for this 

step. Compared with the values obtained in the previous step (recorded in the last two columns of
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Table 7.6), this parallelisation step leads to significant improvement in parallel performance. All 

the runtime and average parallelism figures in step two are better than those in step one except for 

the modules MatchUtils. Matcher and Optimiser. Also while the speedup increased in most of 

the input modules, going up by upto 74% for DataTypes, it also went down in five others, by upto 

44% in Optimiser. Figure 7.16 shows the activity profile at this stage for the module MyPrelude. 
which corresponds to that of Figure 7.4 at the top level parallelisation stage.

For step three of parallelising the type checker, we create a child task to perform composition 

of substitutions in similar manner as we described for mkUnify above. As we indicated at the 

start of this section and by the fact that we do not continuously apply substitutions to the type 

environment after every inference step (see Section 4.2.1 for details of our representation of the 

type and substitution environments), substitution compositions are performed very often.

Figure 7.17: Type Checking Stage Compiling TCheckUtils.

We have also tried extracting parallelism further inside the parse trees for conditional, function 

application and case expressions. Our results are recorded in the fourth and fifth columns of Table 

7.7. Comparing with the results of the previous step, we see (from the actual runtimes) that 

although the recorded average parallelism increased in all cases, most of the parallelism introduced 

in this step was not useful. This is because we incurred some runtime overheads in ten of the 

eighteen input modules while gaining speedup increases only in seven other modules.

Figure 7.17 shows the activity profile for the module TCheckUtils after the changes in this



7.7. PARALLELISING THE OPTIMISER 148

step. Notice from this figure that there is some scope for improving the parallel behaviour since 

there are some runnable threads that could not run because the processor on which they are is 

busy and that they were not allowed to migrate by the experimental set-up.

We rerun these experiments using our set-up for typical distributed memory machines having 

no shared memory but this time enabling thread migration. The values in the last two columns of 

Table 7.7 are obtained from this. Notice the increase in average parallelism of upto 2.2 although 

the performance goes down slightly for some inputs and that we pay some runtime penalty in 

some other cases. On the whole this version of the experiment with thread migration enabled gave 

better result than the previous case in which no thread migration was allowed. This shows that 

thread migration can be beneficial in loosely coupled multicomputers as it is in multiprocessors 

with shorter latencies.

7.7 Parallelising the optimiser

This section describes the parallelisation of the parse tree simplifier and optimiser. As mentioned 

in Section 4.3, the optimiser specialises general function applications (using arity information of 

combinators so that argument satisfaction checks are short-circuited at runtime for the specialised 

applications) and transforms case-expressions to a simplified form better suited for code generation. 

The optimiser is implemented using the function optimiseParseTree defined in Figure 7.18.

optimiseParseTree fileNm exptNames stOpt alnfo defs = defsl 

where

(defsl ,comb-arity-tree) — optimiseTopDefs fileNm exptNames stOpt cs-asl defs 

cs-asl = alnfo -H- comb-arity-tree

Figure 7.18: The Optimiser :optimiseParseTree.

The arguments to optimiseParseTree are: fileNm, the file containing the module under scrutiny, 

used mainly for error diagnostics purposes; exptNames, names of exported (value) bindings from 

this module, only whose static information is written into the interface file of the module to ensure 

information binding; stOpt, a symbol table holding associations between constructor names and 

their corresponding family tags (see Section 4.2.1 for more details); alnfo, an association list 

holding the arity information of values imported from other modules and defs, the (parse tree of) 

values implemented by this module which are being optimised.

There is no data dependency between the analysis of one definition in the module and another
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once their arities are known. We can therefore simplify the parse trees of the definitions within 

a module in parallel with each other. The arity information of all functions (imported or locally 

defined) is needed in the optimisation of the parse tree for each function in the module. We therefore 

spawn a child task for the arity collection to proceed simultaneously with the optimisation. The 

second and third columns of Table 7.8 show the result of this initial parallelisation step.

Input

Module

Initial parallelisation Final parallelisation

Average parallelism Speedup Average parallelism speedup

MyPrelude 1.0 1.03 1.1 1.03

DataTypes 1.0 1.03 1.0 1.03

Tables 1.0 1.03 1.1 1.03

PrintUtils 1.0 1.01 1.0 1.01

Printer 1.0 1..02 1.0 1.02

LexUtils 1.1 1.06 1.1 1.05

Lexer 1.1 1.04 1.1 1.04

SyntaxUtils 1.0 1.01 1.0 1.01

Syntax 1.0 1.02 1.0 1.03

MatchUtils 1.0 1.02 1.0 1.03

Matcher 1.1 1.06 1.1 1.05

LambdaUtils 1.1 1.07 1.1 1.06

LambdaLift 1.1 1.07 1.1 1.06

TCheckUtils 1.0 1.02 1.0 1.02

TChecker 1.1 1.10 1.1 1.09

OptmiseUtils 1.0 1.02 1.0 1.02

Optimiser 1.0 0.77 1.0 0.77

Main 1.0 1.04 1.1 1.03

Table 7.8: Parallelising the optimiser: parallelism and speedup.

Other places in which we explored parallelism further include inside local definitions, arity collection 

of functions and the case expression optimisation. We recorded slight improvement in parallel 

behaviour for some inputs by creating a child task at each of these three places with performance 

degrading as parallelism is introduced at lower levels than these.

Useful as the parse tree optimisation transformation is, it is clear from the description in 

Section 4.3 that it is cheaply implementable. Table 7.8 shows the experimental results we obtained
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as a result of the parallelisation. This table shows that because this phase is not computationally 

intensive introducing parallelism inside the analysis of individual definitions does not achieve much 

improvements and can lead to some loss of performance. For our input programs, we can see that 

the speedup was better in more modules in the initial step than in the final much finer grained 

step. The activity profiles obtained here are very similar to those obtained in Section 7.5.

7.8 Combined parallelisation

In the five preceding sections we have presented the parallel behaviour of our compiler by first 

parallelising its top level pipeline and then parallelising four of its component phases each in 

isolation with the rest. The aim of this section is to turn on all the strategic code used to parallelise 

the individual phases of the compiler, rerun our experiments and observe its performance.

Table 7.9 shows the results obtained when all the parallelism annotations in the compiler phases 

are enabled. Compared with the results for the final parallelisation of the top level pipeline (in the 

last two columns of Table 7.1) we record a good increase in average parallelism for all modules (up 

to a factor of two) and modest speedup increases (up to 94% for DataTypes) for all but the input 

module Optimiser where we incurred some runtime costs.

Also comparing these results with those of the final parallelisation of the type checker (fourth 

and fifth columns in Table 7.7) we see a much better speedup for all the input programs. The 

average parallelism recorded for some modules in Table 7.7 (namely for the inputs LexUtils, 
SyntaxUtils, Syntax, LambdaLift, OptimiseUtils, Optimiser and Main) is much higher than 

those of the same input modules in Table 7.9 indicating that, in the light of the comparative 

speedup figures, some of the parallelism we generated during the parallelisation of the type checker 

was not useful.

Although the experimental results of Table 7.9 are relatively better, as in our comparisons in 

the preceding paragraphs, they fall short of realising the combined speedup we had hoped for—that 

obtained from the type checker and that obtained from the top level pipeline. This is probably 

hindered by the fact that the pieces of strategic code inside the phases interfered with each other 

and, consequently, affecting the overall performance.

Our experiences with adding parallelisation code on top of the ones inside the phases revealed 

that it is quite hard to understand and predict the performance of the compiler and that small 

changes in the parallelisation code can lead to significant changes in parallel behaviour for some 

inputs. Nevertheless, all the results we obtained as a result of varying the combinations of our 

parallelisation code at this level do not differ significantly from that of Table 7.9.



7.9. FURTHER PARALLELISATION 151

Input Module Combined parallelisation

Average parallelism Speedup

MyPrelude 7.2 3.88

DataTypes 7.5 4.20

Tables 6.8 3.48

PrintUtils 2.5 1.54

Printer 3.2 2.12

LexUtils 5.4 2.68

Lexer 4.1 1.55

SyntaxUtils 4.2 3.22

Syntax 1.6 1.26

MatchUtils 6.0 3.26

Matcher 6.2 2.58

LambdaUtils 3.5 2.28

LambdaLift 3.4 2.48

TCheckUtils 5.3 3.66

TChecker 2.8 2.08

OptimiseUtils 2.9 1.49

Optimiser 2.3 0.83

Main 3.0 1.69

Table 7.9: Combined parallelisation results summary.

Careful study of the parallelism profiles reveals that file I/O and parsing account for a significant 

part of the remaining sequential component to the computation (and therefore by Amdahl's law 

represents a major limitation on further parallelisation). Other areas we want to investigate further 

include the creation of symbol tables and the printing process that writes the intermediate language 

and the inferred type information into files. We explore these and other issues in the following 

section.

7.9 Further parallelisation

In the previous section we summarised results of our experiments after activating all annotations 

in all the compiler phases while modifying and experimenting with various different combinations
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of annotations. In this section we summarise results obtained after re-examining more closely the 

algorithms on which the individual phases were based.

Input module Average parallelism Speedup: 8 processors

Ideal SMM DMM Ideal SMM DMM

MyPrelude 6.2 4.7 4.5 4.32 3.34 3.31

DataTypes 6.5 4.5 4.8 5.18 3.71 3.96

Tables 7.8 4.9 5.1 4.84 3.14 3.27

PrintUtils 2.7 2.5 2.4 2.74 2.65 2.50

Printer 4.2 3.8 3.8 4.25 3.96 3.90

LexUtils 10.9 6.3 5.8 4.95 3.47 4.45

Lexer 5.9 4.8 4.7 4.38 3.69 4.18

SyntaxUtils 8.4 5.0 4.7 8.13 5.81 5.53

Syntax 1.9 1.8 1.8 1.40 1.39 1.35

MatchUtils 5.2 4.0 3.5 5.30 4.20 3.61

Matcher 6.7 4.1 4.2 4.64 3.74 3.59

LambdaUtils 4.1 3.6 3.3 2.53 2.22 2.09

LambdaLift 6.7 4.5 4.5 6.11 4.03 4.39

TCheckUtils 7.3 4.9 5.6 6.47 4.68 5.32

TChecker 3.1 2.6 2.7 1.89 1.81 1.76

OptmiseUtils 3.1 3.0 2.8 3.68 3.61 3.33

Optimiser 3.5 3.4 3.4 4.79 4.79 4.70

Main 3.9 3.6 3.5 2.93 2.67 2.66

Table 7.10: Further parallelisation results summary: 8 processors.

This undertaking was motivated by a few observations, one of which was the fact that our experi­

mentation with different evaluation strategies lead to no significant overall performance improve­

ments. Another consideration is the need to broaden the scope of our compiler’s performance by 

simulating it on shared memory architectures as well, taking full advantage of the tunability of 

GrAnSim.

In our search for culprits—those parts of the computation that thwart our parallelisation 

efforts—we evidently looked no farther than inside the type checker because it is more expensive 

than all the other parts of the compiler. Our main finding was that composition of substitutions, 

which is performed quite often in Naira, forms the main bottleneck in the parallel performance of
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the compiler. Interestingly, our research found that this is a notoriously famous problem [Hamm90]. 

We revised our implementation of this algorithm and fine-tuned our strategic code resulting in sub­

stantial performance improvements as summarised in Table 7.10.

The first important difference we point out between the experimental set-ups giving the results 

in Tables 7.9 and 7.10 is that a 32-node GrAnSim was used in the former (as in most other- 

experiments reported earlier) while an 8-node one was. used in the latter. Another difference is 

that task migration was always enabled for our experiments in this section, contrary to most other 

experiments in the preceding sections.

Comparing the results of Table 7.9 with the corresponding distributed memory results in Table 

7.10 we see that the performance is now much better: Even though run on eight processors, we 

measured better speedups in Table 7.10 for thirteen input modules (with speedup increasing by a 

factor of two for the input modules Lexer, and Optimiser).

The results obtained on the idealised machine (GrAnSim-Light) in Table 7.10 are, as expected, 

better than those obtained from the shared memory and the distributed memory machine emula­

tions. Comparing the shared memory and the distributed memory results we see that the shared 

memory results are only negligibly better (with higher average parallelism in ten cases and higher 

speedups in twelve cases). Perhaps this is because the incremental fetching used in the shared 

memory set-up is less efficient than the bulk fetching used in the distributed memory set-up or 

that it reflects we made a good parallel decomposition of the program giving low communication 

overheads.

Further investigation in a bid to find the cause of this insignificant difference between the 

shared memory and the distributed memory results revealed that we have actually made judicious 

use of evaluation strategies and have successfully parallelised the compiler leading to cost-effective 

communication. We achieved this by experimenting with the four rescheduling schemes and the 

two fetching strategies of [LoHa96] without recording any significant performance variation in the 

simulated results, hence our conclusion.

7.10 Naira on a network of workstations

Our experimental results so far (presented in this chapter) have been based on the GrAnSim 

simulation of typical parallel machine architectures. The essence of this section is to report our 

experimental results of measuring Naira on a network of SUN workstations running under Solaris 

2 (SunOs 5.5.1) operating system.

The experiments were carried out using GUM [THM+96], a portable parallel implementation
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of Haskell, which sits on top of PVM1 2(Parallel Virtual Machine). A parallel Haskell program 

under GUM (Graph reduction for a Unified Machine model) implies multiple processes running 

on multiple processors running under a PVM framework. The salient features of GUM are that it 

does not support thread migration and threads are distributed lazily, although data distribution 

is performed somewhat eagerly3. GUM uses a fair thread scheduler whereby runnable threads are 

executed in following a round-robin policy and communication is achieved via message passing.

Before presenting our experimental results on real hardware, we provide our simulated results 

for a LAN-connected machines which have a much higher communication latency than typical dis­

tributed memory machines simulated results on which we have presented in the preceding sections. 

According to Hammond et al [HLP95, LoHa96], a latency of 5-10 cycles corresponds to a typical 

shared-memory machine, fast distributed-memory machines such as GRIP or the Meiko CS2 have 

latencies in the 100-500 cycle range, while typical distributed memory machines such as the IBM 

SP2 have latencies of 1,000-5,000 cycles. Fully distributed machines connected over an ethernet 

LAN would typically have latencies of 25,000-100,000 cycles.

Table 7.11 summarises our GrAnSim-based results simulating a loosely-coupled network of 

computers with varying communication latencies. Because the aim here is to simulate GUM, 

thread migration was disabled in the experiments on which this data is based.

In comparison to our earlier results in the preceding sections and, in similarity with Hammond’s 

analysis of a Ray-tracing application on high latency (about 100,000 cycles) GrAnSim [HLP95], we 

record a parallel slowdown with different high-latency GrAnSim set-ups as summarised in Table 

7.11. The mean speedup is not as good (lower by 23%) when the latency increased from 50K cycles 

to 85K cycles and is lower by 32% when the latency increased from 85K cycles to 120K cycles. 

The corresponding figures with thread migration enabled (not shown in the table), on the other 

hand, are 41% and 30% respectively.

We now introduce a summary of the results of our experiments on GUM. We have conducted 

the experiments under different network conditions and with varying numbers of processors. First, 

Table 7.12 shows the result obtained when different versions of Naira’s code (compiled under 

different conditions) are executed. The runtime figures in this table are the wall-clock (real) 

timings taken to compile each input module. These times (measured in seconds) are averaged over 

different runs of the programs.

The second column of Table 7.12 records the runtime of each 'module for the sequential version 

of the compiler when compiled with the full optimising sequential compiler, GHC. The third column

1 We used the latest version of pvm, version 3.3.11, obtainable from

http://netlib2.cs.utk.edu/pvm3/index.html.
3By speculatively packing some ‘nearby’ reachable graph into the reply message for a closure request.

http://netlib2.cs.utk.edu/pvm3/index.html
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Input

Module

Varying Latencies for Distributed Machines

50,000 cycles 85,000 cycles 120,000 cycles

Avg.

paral.

Speedup Avg.

paral.

Speedup Avg.

paral.

Speedup

MyPrelude 3.2 2.50 2.5 2.13 1.7 1.41

DataTypes 2.0 1.64 2.8 2.39 1.7 1.63

Tables 3.8 2.80 2.7 1.78 2.6 1.85

PrintUtils 1.8 1.93 1.9 2.06 1.7 1.93

Printer 2.2 2.30 2.7 2.80 1.8 1.88

LexUtils 4.6 3.40 3.3 2.38 3.7 3.15

Lexer 2.6 2.88 2.2 2.84 2.2 2.78

SyntaxUtils 3.5 4.04 3.6 4.56 2.7 3.19

Syntax 2.9 1.81 2.3 1.39 2.2 1.34

MatchUtils 3.1 4.06 1.8 1.87 1.6 1.98

Matcher 3.1 3.27 2.8 2.77 2.0 1.50

LambdaUtils 2.6 1.61 2.3 1.57 1.7 1.09

LambdaLift 2.7 2.49 2.6 2.58 1.9 2.00

TCheckUtils 4.4 4.15 3.8 3.69 3.6 3.53

TChecker 2.2 1.36 1.8 1.12 2.0 1.31

OptmiseUtils 2.3 2.69 1.9 2.30 1.8 2.19

Optimiser 2.6 3.71 2.3 3.88 2.0 3.66

Main 2.5 1.89 2.7 2.05 2.1 2.02

MEAN 2.8 2.66 2.5 2.43 2.1 2.11

Table 7.11: Simulated results on 8-node loosely-coupled distributed memory machines with varying 

latencies.

gives the runtime of compiling each module when the sequential version of the compiler (Naira) 

is compiled for parallel execution and run under GUM on a single processor. The last column 

contains the efficiency figures based on the figures in columns two and three of the table.

An advantage of the tabular information in Table 7.12 is that we can isolate the overhead 

of parallelism incurred in GUM based on the sequential execution times. The parallel runtime 

system imposes a more-or-less fixed percentage overhead on every program regardless of its use 

of parallelism [THM+96]. There are also overheads introduced by every spark site in the parallel
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Input Module Sequential Seq. for par. exec. Efficiency

MyPrelude 14.4 16.3 88%

DataTypes 14.6 17.0 86%

Tables 16.6 17.9 93%

PrintUtils 11.5 9.6 120%

Printer 16.2 17.1 95%

LexUtils 15.3 17.9 86%

Lexer 15.1 13.3 113%

SyntaxUtils 68.5 71.7 96%

Syntax 67.9 69.4 98%

MatchUtils 19.0 20.7 92%

Matcher 22.1 24.0 92%

LambdaUtils 13.1 13.4 98%

LambdaLift 30.9 30.0 103%

TCheckUtils 37.1 37.3 99%

TChecker 17.7 15.2 117%

OptmiseUtils 28.8 31.7 ■ 91%

Optimiser 39.7 47.6 83%

Main 29.2 32.8 89%

MEAN 26.5 27.9 95%

Table 7.12: Results summary of Naira’s runtimes on GUM.

program (due to the extraneous costs of closure creation and entry). The time behaviour of a 

program running under GUM is further complicated because of the use of PVM. Each PE task is 

typically a Unix process, and at the mercy of the Unix process scheduler. In some configurations, 

such as a network of workstations, there is also competing network traffic that affects overall 

performance [THM+96].

The third column of Table 7.12 shows that the overhead imposed by the runtime system and 

PVM on all the input modules can be quite high. This is probably exacerbated by the fact that the 

individual modules are not big enough to simulate ‘real’ inputs as can be seen from the sequential 

execution times. The figures in the last column of this table show that a slowdown on one processor 

of upto 30% can be expected due to parallelism overhead.
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Naira's speedups on a Network of Sun stations

No. of Processors

Figure 7.19: Speedup summary of Naira on GUM.

Figure 7.19 shows the speedups obtained on GUM (in relation to pure sequential compilation 

and execution) on different numbers of processors. The ‘parallel machine’ used here was a set 

of SUN workstations (Sun 4/65s), each with 32MByte of RAM, and connected to a common 

Ethernet segment. The input program used in these experiments is a bigger module created by 

combining the source code of three constituent modules of Naira—MyPrelude, DataTypes and 

Tables. The speedups shown in this figure are average speedups obtained over different runs and 

under different network and processor conditions. Several runs were made at different times in an 

attempt to ameliorate the effect of scheduling accidents to which the execution is highly susceptible 

since GUM does not support thread migration.

As stated earlier, the parallel code has some overheads that are not present in the sequential 

Glasgow Haskell implementation, such as the need to test every closure when it is entered in order 

to determine if it is already being evaluated by another parallel task. As a result of this, the parallel 

code on a single processor slows down by 25% to make the parallel system only 75% as efficient as 

the sequential implementation. We measured a wall-clock speedup of 2.46, and a relative speedup 

of 2.73 on a network of five workstations as depicted in the graphs of Figure 7.19. These results 

are in agreement with those obtained using the GrAnsim simulator which predicted a speedup 

of 3.01. Better speedups would be expected if the machine resources are dedicated solely to our 

experiments and if thread migration, which has been demonstrated (in this thesis and elsewhere 

[HaPe92, BuRa94]) to be necessary for good parallel performance, is implemented in GUM.
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7.11 Summary

We have presented the parallelisation, performance measurements and analysis of the front end of 

our compiler in this chapter. We have achieved this by making use of the parallelisation method­

ology developed by researchers on Glasgow Parallel Haskell. Our performance measurements were 

carried out using GrAnSim, a fairly accurate state-of-the-art simulator developed at Glasgow and 

St Andrews Universities. Most of our experimental results were obtained using a GrAnSim set-up 

specific to distributed memory message passing architectures on which the compiler is aimed to 

run. Good speedups were also recorded for Naira as analysed in the preceding section.

Using a name server similar to that described by Hankin in [Peyt87], we were able to break 

data dependencies and expose some good deal of parallelism. We experimented with an ordered 

binary tree to represent some of our symbol tables and to store the collection of definitions within 

a module.

Level Mean average parallelsim Mean speedup

Ideal SMM DMM Ideal SMM DMM

Top-level 2.5 2.3 2.4 2.42 2.24 2.26

Pattern matcher 1.3 1.3 1.2 1.12 1.11 1.10

Lambda lifter 1.2 1.2 1.2 1.11 1.11 . 1.11

Type checker 3.3 . 2.6 2.5 3.21 2.28 2.29

Optimiser 1.2 1.2 1.2 1.11 1.10 1.10

Overall 5.5 4.0 4.0 4.36 3.50 3.55

Table 7.13; Mean performance figures on an 8-node GrAnSim with latency of 2K cycles.

We found out that while AssocTree may provide faster accesses, there is a lot of overhead associated 

with building the ordered tree. For example, there can be a lot of processing required to rebuild an 

ordered tree when an association is deleeed4 from a tree of substitutions. Using a list in place of the 

association tree, AssocTree, leads a significant reduction in Naira’s runtime overhead since all the 

(mainly) string comparisons needed to insert an association in the tree are avoided. Furthermore, 

we found it convenient to use a list data structure to hold the definitions within a module so that 

we can use the predefined evaluation strategies over lists that came with the GrAnSim simulator.

Our parallelisation process proceeded top-down, parallelising the top level pipeline of the com­

4 An entry in an association tree of substitutions needs to be deleted when combining substitutions and when a

variable is found to be associated with different types in the substitutions being composed.
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piler phases before delving into the parallelisation of the individual algorithms in the constituent 

phases. The phases were themselves parallelised systematically, in stages, analysing the effect of 

each parallelisation step. Four phases of the compiler were parallelised separately so as to provide 

an informed assessment of the potential parallelism within each phase. The parallelisation code 

inside these phases was finally activated and the overall behaviour of the compiler analysed.

Our experimental results revealed that the most productive phase turned out to be the type 

checker. This is because it dominates the overall compilation process. Other phases are relatively 

cheap, and therefore give less overall improvement. Table 7.13 gives a concise summary of our 

experimental results on eight processors. The table shows the mean average parallelism and mean 

speedup obtained (at six different levels of the compiler) from an idealised, a shared memory 

and a distributed memory machine set-up. The overall performance is quite good with speedups 

ranging from 1.35 to 5.53 (average of 3.55 for our eighteen input modules) on GrAnSim emulating 

a distributed memory machine with eight processors.

Our experimental results on GUM (i.e., real machine hardware) in the last section strongly sup­

port the GrAnSim-based simulated results. Most importantly, these results are the best achieved 

so far for a large, irregular parallel Haskell program. The largest parallel Haskell program (Naira 

is the second) in the world, Lolita, developed by a team of able researchers, achieves an absolute 

speedup of 0.9 on 4 processors while Naira achieves an absolute speedup of 2.5 on 5 'processors 

(Section 7.10)



Chapter 8

Evaluating parallelism in the 

compiled code

8.1 Introduction

In the previous chapter we have described and presented measurements on the parallelisation of 

the front-end of our compiler using the GrAnSim simulator. The purpose of this chapter is essen­

tially to exercise and evaluate the parallelism in the compiled code obtained using our parallelism 

model. In other words, this chapter measures the effectiveness of our parallelism and strictness 

annotations, the behaviour of the multi-threaded, message-passing parallel code that we generate 

and the effectiveness and costs of our runtime design decisions.

Because the goal of a parallel implementation is to strike a balance between execution time 

and resource usage, by transforming a short-wide sequential execution profile into a tall-narrow 

parallel profile [RuWa95], we set out to measure, using our Mizani simulator described in Section 

6.4, some of the issues affecting parallel performance. These include space usage, speed of execution 

(measured in machine cycles), the number of parallel function activations and the effect of different 

distribution and scheduling algorithms. We have experimented with two distribution algorithms; 

pseudo-random and round-robin (i.e., deterministic). Whenever an exportable task is encountered, 

while the parent task is executing on some processor i, the pseudo-random distribution algorithm 

(which provides a repeatable effect from one run to another) selects a processor j, ships this child 

task to j while execution of the parent task continues asynchronously on i. The deterministic 

scheme on the other hand will offload the child task to the next processor in the cycle (i.e., the 

processor identified by ((% -f 1) mod n) where n is the number of processors in the machine). The
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astute reader would have realised that using these eager task distribution policies, overloading the 

machine processors with work, for some applications, is an inevitable possibility as we discussed 

further in the chapter. Naira does not currently possess a load-throttling mechanism (which is 

not required for the benchmarks presented here) but we propose implementing Ostheimer’s load 

bounding scheme [Osth93], as further research. We have also measured performance results using 

both thread-based and function call-based unit of task scheduling.

In comparison to the more robust and highly tunable simulator-GrAnSim-used to parallelise the 

compiler in the previous chapter, Mizani like the idealised version of standard GrAnSim, GrAnSim- 

Light, assumes communication has zero cost. Compared with other parallel simulators [RuWa95, 

Desc89, Roe91] which, for the most part either deal with highly idealised parallel machines or are 

accurate simulations of real or proposed parallel machines [HLP95], Mizani does not make the 

simplifying assumption that (as in [RuWa95]) each supercombinator reduction takes an identical 

amount of time which can lead to a further overstatement of the degree of parallelism in a program.

The rest of this chapter is organised as follows. Section 8.2 presents the benchmark programs 

for which performance measurements are presented. Section 8.3 highlights the general format in 

which our results are presented. The next six subsections contain the experimental results for 

each benchmark in this format. Section 8.4 concludes the chapter with general comments on our 

experiences with the parallelisation of these benchmarks on Naira.

8.2 Benchmark programs

We have experimented with many small and medium-sized popular benchmark programs in ex­

ercising our compiler. For economy of space, we elect to report our experimental results on the 

following representative programs: nfib, nqueens, tak, coins, matmul and soda. These benchmarks 

are taken from previous research on parallel implementation of functional languages and each has 

been used in different parallel implementation projects to estimate performances.

The choice of these benchmarks is motivated by two main concerns. The first consideration is 

that we want a fair collection of programs capable of exercising various aspects of our compiler like 

function call (or stack operations) efficiency, the costs of arithmetic operations and data structures 

manipulation overheads. Secondly, since these benchmarks have been used to test other imple­

mentations, like [Mara91, KLB9I, AuJo89b], we can use them to evaluate our compiler vis-a-vis 

the results of those implementations.

As is the case with many other parallel machine simulation projects, for instance [Desc89, 

Roe91, RuWa95], we restrict ourselves to the use of these small to medium-scale benchmark pro­
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grams as an initial ‘proving stage' for the performance of our implementation. Using the perfor­

mances on these benchmarks 'as a basis, the implementation can then be extended to make it more 

robust so that we can analyse more complex applications as in the implementations of [THM+96, 

HCAA94].

We remark that each of these benchmark programs (see Sections 8.3.1 to 8.3.6) is either ex­

pressed using a divide-and-conquer algorithm (probably the best-known parallel programming 

paradigm [THLP98]) or has some element of divide-and-conquer when parallelised. Other parallel 

paradigms, like data-oriented parallelism, are also exploited in some of the benchmarks. Pro- 

ducer/consumer and pipeline parallel paradigms have been extensively exploited in the previous 

chapter where we dealt with large and complex data structures.

8.3 Analysis of the benchmarks

We now focus on the analysis of the runtime behaviour of each of our benchmark programs in turn. 

For each benchmark program we collect the runtime statistics of its sequential execution and of 

its parallel execution resulting from the best parallelised program we arrived at. We have run the 

experiments for each benchmark program on 2, 4, 8 and 16 processors. The processor identifier 

and the frame pointer (as explained in Section 5.2) are represented as a single machine word. 

Larger numbers of processors can be simulated by storing the processor identifier as a separate 

word. For the larger benchmarks the programs are parallelised in stages showing the effect of each 

parallelisation step. The statistics gathered are summarised in tabular and in graphical forms.

The tabular information contains the time taken for the program to run (measured in machine 

cycles), the total number of threads executed in this time, the average parallelism measured, the 

number of ready-evaluated tasks1 and the total amount of heap space allocated during the execution 

of the program. The average parallelism and speedup entries in the table are calculated using the 

same relations as given in Section 7.2. Following Roe [Roe91] we measure efficiency using the 

following relation:

e fficiencv — -------- speedup-----------
number of processors

The parallelism profiles are plotted using data collected by taking the census of the heap after 

every 100 machine cycles. As mentioned in Section 8.1, we have experimented with two different

1Ready evaluated tasks are those that either hit a “black-hole" or find their graph in WHNF when they are 

activated. Roe in [Roe9l] refers to ready-evaluated tasks as useless tasks. The number of these tasks indicate the 

amount of sharing in a program and can affect the heap residency of a program as explained in our analyses in this

section.
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distribution strategies and with two different units of work scheduling.

We analysed each of our test programs at two levels of granularity. At the first level, the 

machine assigns a small slice of its time within which each virtual processor executes exactly one 

thread out of the runnable threads in its context store (if any). At the second level, each processor 

is allowed to execute a quantum of threads within a single simulated machine cycle.

Overall, the quantum-based scheduling policy performs better than the thread-based scheduling 

policy. This suggests that partitioning a program into excessively fine-grained threads is less 

favourable than partitioning into coarser, longer executing threads. This may be the reason why 

current implementations based on dataflow machines [Trau91] seem to be shifting emphasis from 

exploiting instruction-based parallelism (as is traditional on these architectures) in favour of a 

multi-threaded style where a collection of dataflow instructions is treated as a sequential thread. 

Furthermore, our results also agree with experimental results, on stock machines, as reported by 

Kusakabe et al in [KMIA96]2.

8.3.1 Analysis of nfib

We start our experiments with nfib, arguably the most oft-quoted benchmarking program in the 

functional programming research community. This algorithm is used to compute the number of 

calls to the Fibonacci function. It uses arithmetic heavily as well as being function call intensive 

with a doubly recursive structure. This algorithm can be written in Haskell as shown in Figure 8.1

nfib n — if n <= 1 then 1 else 1 4- nfib{n—l) -f nfib{n—2)

Figure 8.1: First definition of nfib.

The best parallelisation for this function is perhaps to always make the recursive calls in parallel 

since they do not have any data dependencies that can inhibit this. This can be achieved in Naira 

by annotating the two recursive calls with process as shown in the parallelised program shown 

in Figure 8.2. As the parent creates these tasks it proceeds to perform the additions (this is 

fork-and-join).

A disadvantage of this version of the parallelised program is that it does not make optimal use of 

processors. This is because the parent task cannot do much useful work since it has to wait for 

the results of the two child tasks to arrive before it performs the additions. It is more efficient to

2Their experiments involved coalescing light-weight messages, corresponding to fine-grained dataflow operations 

like parameter sending in a function call, provided non-strictness is not hindered, into larger threads to minimise 

the storage and message passing overhead of dataflow machines.
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nfib n = if n <= 1 then 1 else 1 + nl + n2

where nl ~ process{nfib (n—1))

n2 ~ process[nfib (n—2))

Figure 8.2: Second definition of nfib.

spark only one child task and to entrust the parent process to do both the additions and the other 

recursive call to nfib (this is evaluate-and-die or lazy task creation). This results in the program 

of Figure 8.3.

nfib n = if n <= 1 then 1 else 1 + ni + nfib{n—2) 

where nl = process{nfib (n—1))

Figure 8.3: Third definition of nfib.

Although this version of the parallelised program does not give as many par •. -ocesses as the

previous one, it does increase the locality of data as well as increasing the granularity of the 

computations. We use this version of the parallelised program in our analysis using varying input 

sizes. Table 8.1 gives a summary of the statistics collected (for the program of Figure 8.3) while 

running this benchmark to calculate the number of calls in nfib 20.

BenNimar^nfBk 20 Number of PEs

1 2 4 8 16

Threads scheduled 306732 317677 317677 317677 317677

Runtime (in machine cycles) 306732 163801 81626 42195 21247

Ready-evaluated tasks 21900 25152 27546 28042 28016

Space allocated 14268K 14644K 14607K 14600K 14600K

Average parallelism 1.0 1.9 3.9 7.5 15.0

Speedup 1.00 1.87 3T6 7.27 14.44

Efficiency 1 97% 97% 94% 93%

Table 8.1: nfib 20: statistics summary

This benchmark provides good regular parallelism, with all parallel tasks generated by the same 

function and the same fashion, leading to an even sharing of the computation among the available
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processors. Because of this high amount of regular parallelism, combining our deterministic task 

distribution scheme with quantum-based scheduling policy gives approximately the same runtime 

as the random distribution strategy combined with thread-based scheduling.

Table 8.1 summarises our experimental results on 1, 2, 4, 8 and 16 simulated processors. Notice 

from this table that the number of threads executed in the sequential run is smaller by 10945 (the 

number of parallel function calls generated by process (nfib (n-1) ) in the program) than the 

number of threads executed in the parallel version. This is because the sequential program on which 

the figure is based was slightly modified (to introduce the local definition in the third definition of 

nfib so that the process annotations can be attached).

Recall also that a thread in our setting is characterised by a sequence of C code and ended 

by a return NULL (signifying the thread’s termination which is represented by a horizontal line 

in our compilation scheme). By observing our compilation rule for the Let construct (to which 

the where construct is translated), we see that each closure of the Let, like nfib (n-1) in the 

current program, constitutes a thread. The closure for nl in nfib, which is executed 10945 times, 

therefore accounts for the increased number of threads executed in the parallelised program.

This table also shows that the number of ready-evaluated tasks (those which are found to be 

in WHNF' when their values are demanded) differs in the execution of the sequential and parallel 

program. The figure also varies for the same parallel program as the number of simulated processors 

vary. In general, the number of ready-evaluated tasks and sendEval messages is expected to 

increase in a parallel program involving the use of the value annotation. We explain this with the 

following example. Consider the function call f (value el) (value e2) (value e3). The code 

generated for this expression ensures that ei, e2 and es are evaluated before the code for f is 

entered. Evaluating 6%, eg and es involves, in analogy to the Let-bound closures described above, 

the execution of three threads, one for each expression. When f is entered, the compiler does 

not know that f’s arguments are already in WHNF and so requests for their values are made, via 

sendEval messages, with each request returning immediately with the WHNF value, since each 

of ejL, 62 and 63 will be found to be ready-evaluated. Notice that for this example the number of 

threads handled, ready-evaluated tasks and sendEval messages will each increase by three.

The variation in the number of ready-evaluated tasks as the number of processors vary is 

generally accounted for by sharing and scheduling constraints. For sharing, it is obvious that since 

every suspension, s, is evaluated at most once, any subsequent demand for the value of s after the 

first will find it ready-evaluated.

For the scheduling factors affecting the number of ready-evaluated tasks, recall (from Sections 

6.5 and 6.6) that our sii^mlatc^r eesures that within a given time--llce (machine cycll) the machine
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dedicates its resources to each of the virtual processors so that each of them executes a fixed number 

of threads. This means that the order in which threads are executed in the parallel program (and 

even for the same parallel program run with varying number of processors) will be different from 

the order in which the threads are executed in the sequential program. The number of threads 

executed by each processor within a time-slice also affects the number of ready-evaluated tasks.

For example, it may be the case that the processor holding the thread which should execute 

next (according to the sequential execution flow) is not the one to have the machine resources 

dedicated to it next (assuming execution under a round-robin scheduler). Thus unless the next 

processors in the cycle have no threads to execute, the order of execution of the threads in the 

parallel program will differ from that of the sequential run.

Notice that the order in which threads are executed does not affect the overall program result. 

This is because each thread terminates after execution and the program terminates only when 

all the threads in the virtual processors are executed. The only effect of the scheduler is that 

some threads in the parallel program will be executed earlier than they would otherwise be in 

the sequential program. Notice that this may be beneficial with regards to the heap residency 

of the program depending on the trade-offs between the space usage of its subgraphs and that of 

their corresponding values during execution. Peyton Jones has given a detailed discussion of these 

trade-offs [Peyt87].

Each of the 21891 calls to nfib in nfib 20 returns with a basic value and the associated frames 

are therefore freed immediately the calls returned using our simple memory manager described in 

Section 5.3.1. The amount of ‘space allocated’ entries in Table 8.1 indicate the total heap space 

used during the execution of the program. The amount of heap allocated for this benchmark 

varies inversely to the number of ready-evaluated tasks suggesting that executing some threads 

earlier than the sequential execution order demands (as explained above) carries some space saving 

benefits.

The activity profiles of Figures 8.4 and 8.5 show the runtime behaviour of this program under 

the two scheduling strategies. As in the profiles of the previous chapter, the average parallelism 

is the area covered by the running (green or medium-gray) threads, normalised with respect to 

the total runtime. The large area (amber or light-gray) of runnable threads indicates that this 

program can easily use all available processors and indeed that there is excess parallelism. The red 

(or black) area indicates the number of blocked tasks in the program.

Notice that each of these profiles has an initial sequential part at the beginning of the compu­

tation before enough parallel tasks are created to utilise the available processors. After this the 

profiles show that most of the time 16 threads are running, utilising all available processors. To-
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Figure 8.4: nfib 20: thread-based scheduling.

wards the end of the computation there is a sharp drop in the number of runnable threads causing 

some occasional dips in the green area.

Notice from these figures that although the average parallelism is almost the same in both 

cases (15.0 for the thread-based and 14.6 for the quantum-based), there is an enormous number of 

runnable tasks in the thread-based scheduling profile compared with that for the quantum-based 

profile. Given a parallel machine with a large number of processors, the thread-based scheduler can 

provide an ample opportunity for parallelism. Such medium-grained parallelism can be judiciously 

exploited if the underlying machine supports the two fundamental issues of parallel multicomputing, 

namely tolerance to long-latency requests and fast context-switching, as espoused by Arvind et al. 

in [Arla87]. On machines with a few number of processors, however, the quantum-based scheduler 

will be preferable to localise work as much as possible and to minimise the costs of communication. 

The high percentage of runnable threads in these profiles is partly accounted for by our eager 

task distribution policy and our scheduling scheme as we now explain. The code generated for 

the function nfib consists of 16 threads: four threads3 4 each for the computation of the arguments 

(n — 1) and (n — 2) to the recursive calls, two threads3 each for the computation of the other three

3 One is a parent thread which governs the argument computation (see compilation rule for call-by-need, Section 

5.5.4) and the other three are child threads which compute the specified value. An expression of the form x — y 

(which we represent as x + ( — y)) consists of three threads.
4The two code segments specifying the computation of the value of a binary operator are very similar and they
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Figure 8.5: nfib 20: quantum-based scheduling.

binary operators, one thread that communicates the value 1 (when the conditional expression 

returns true) and the topmost handler thread for nfib.
The topmost handler thread, when executed, allocates the function frame associated with this 

call, stores the address to send the value of the call to and a pointer to the argument suspension 

and then terminates (see compilation rule for supercombisaiors, Section 5.5.5). In general, there 

are more threads queued (with runnable status in the message stores of the virtual processors of 

the machine) than are executed between one nfib call and another. For example, 10 threads are 

queued on the first call out of which 7 are executed before the next call and so on. The times at 

which more threads are executed than are queued are relatively fewer—typically when the first arm 

of the conditional is taken. For the quantum based scheduler on the other hand, 16 threads are 

forced to be executed each time and thus significantly minimise the number of runnable threads 

during the program’s runtime. Note that although the queued threads are consumed in a LIFO 

order (on a thread termination in the sequential run), the parallel scheduler alters this order making 

the number of threads executed between one function call and another unpredictable.

The results reported above are largely supported by the results we obtained for this benchmark 

when run under the GrAnSim simulator [HLP95, Loid96]. For example, the average parallelism of

are generated as such to ensure the correct synchronisation and semantic behaviour regardless of the order in which 

they are executed.
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Figure 8.6: nfib 20: on GrAnSim-Light.

nfib 20 on 16 processors is 12.0 as the parallelism profile of Figure 8.6 shows while the average 

parallelism on GrAnSim-Light with an unbounded number of processors was 22.4. The average 

parallelism we obtained using Naira (for nfib 20) was higher than that obtained using GrAnSim 

probably because GrAnSim performs more accurate runtime costings. Furthermore, for all our 

experiments with this benchmark using GrAnSim, we obtained better average parallelism (up to 

1.6 higger) when simulating shared memory maahines than when simulating disttibuted meriK)r\' 

ones with asynchronous communication. The average parallelism figures for these architectures, 

however, tend to be the same as the input, size increases for this benchmark. This is because more 

parallelism is introduced with higher input sizes and thus the likelihood of some processors staying 

idle (due to lack of thread migration in the distributed memory set up) is highly reduced. It is 

also because evaluate-and-die allows tasks to be absorbed.

8.3.2 Analysis of nqueens

In the nqueens benchmark, the set of all possible solutions to the classical n-queens problem is 

obtained. This is an example of a program which illustrates ‘back-tracking’ in the sense that 

solutions to a problem are searched for along many possible paths, returning to the last untested 

option to try again if the current path fails to deliver the desired result, nqueens uses a lot of 

arithmetic, comparison and list-handling operations.
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The goal of this program is to place N queens on an NxN chessboard such that no two queens 

are placed on the same rank, file or diagonal. In a parallel system therefore, the ideal situation is 

to devise a suitable algorithm so that the searches for solutions can be performed in parallel. The 

following Haskell functions in Figure 8.7 implement the main part of this algorithm.

search rank file n board =

if file > n then 0 else — no more solutions on this rank >

if rank > n then 1 else — a solution has been found 

first rank file n board + search rank {file+1) n board 

first rank file n board =

firstcond rank file n board {compatible rank file {rank—1) board) 

firstcond rank file n board False = 0

firstcond rank file n board True = search (ranfc+1) 1 n {file:board)

Figure 8.7: First definition of nqueens.

The program (which computes search 1 1 8 □) starts by placing a first queen on each file (i.e., 

column) along rank (i.e., row) 1 thus giving an immediate N-way parallelism in the search. Each 

of the N-way parallel searches then attempts to place a second queen on rank 2 in all possible 

non-attacking positions (in the second equation of firstcond). Each of these potential solutions 

(on row 2) is used in turn to generate further searches on rank 3 and so on, while accumulating a 

list of the successful file positions. If any potential solution fails to place a queen then that search 

is terminated at the rank reached. If rank N is reached then the list of the file indices of all N 

queens are used to encode a solution [Rob89]. The complete program is listed in Appendix A.2.

This program can be parallelised by ensuring that the N-way searches (each characterised by the 

call to the first function) are started in parallel. Similar to the nfib program, more parallelism 

can be created by making the recursive call to search into an exportable task as well. Better 

processor utilisation, locality and coarser computation grains result if the recursive call to search 

is absorbed into the parent process. Notice from the definition of first that before a queen is 

placed it must be checked that it is compatible (i.e., non-attacking) to those already placed. More 

parallelism can be generated by spawning a child task to perform the compatibility check.

Notice also that to ensure the exploitation of only conservative parallelism, the searches gen­

erated by f irscoond should not be performed speculatively. We introduce an auxiliary function 

sear chi (to replace search inside f irs-toond when the 8 searches in the program are started in 

parallel) which is the same as search except that it does not spawn child tasks to perform the



8.3.2 Analysis of nqueens 171

Benchmark^ queens Number of PEs

1 2 4 8 16

Threads scheduled 3774K 3806K 3806K 3806K 3806K

Runtime (in machine cycles) 3774K 2474K 1232K 631K 319K

Ready-evaluated tasks 559644 559644 559394 559329 559537

Space allocated 179991K 181588K 181592K 181593K 181590K

Average parallelism 1.0 1.5 3.1 6.0 11.9

Speedup 1.00 1.53 3.06 5.97 11.81

Efficiency 1 77% 77% 75% 74%

Table 8.2; 8 queens: conservative parallelism figures.

search rank file n board =

if file > n then 0 else --no more solutions on this rank 

if rank > n then 1 else --a solution has been found 

let fs = process{first rank file n board)

in fs + search rank {file+1) n board 

first rank file n board — firstcond rank file n board c

where c = process {compatible rank file {rank—1) board) 

firstcond rank file n board False — 0

firstcond rank fiie n board Trud = searcst (rhnfc+1) 1 n (file:b(^a'bd)

— search (rank+1) 1 n (filerboard) — speculative

Figure 8.8: Second definition of nqueens.

speculative searches from the queens placed starting from row two®. This leads to the following 

parallel program of Figure 8.8.

To introduce speculative computations we replace searchl by search in the code segment in 

Figure 8.8. This will make all subsequent searches generated from all potential solutions, starting 

from the successfully placed queens at row 2, for each of the 8 parent tasks to be performed in 

parallel. These speculative searches, while started in parallel, are also forced to completion.

Tables 8.2 and 8.3 summarise the results obtained for 8 queens when exploiting conservative

5 Note that this is the stage at which speculation can start. The queens placed in the first rank (corresponding 

to the parent tasks search 1 i 8 [J, 1 < i < 8) found 4, 8, 16, 18, 18, 16, 8 and 4 solutions respectively.
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Benchmark:# queens Number of PEs

1 2 4 8 16

Threads scheduled 3774K 3900K 3900K 3900K 3900K

Runtime (in machine cycles) 3774K 2027K 1090K 620K 382K

Ready-evaluated tasks 559644 581060 577540 574932 573452

Space allocated 179991K 185552K 185607K 185648K 185671K

Average parallelism 1.0 1.9 3.6 6.3 10.02

Speedup 1.00 1.86 3.46 6.09 9.87

Efficiency 1 96% 89% 79% 64%

Table 8.3: 8 queens: speculative parallelism figures.

and speculative parallelism respectively. The results summarised in these tables show that, the 

number of threads executed in the parallel program is aigaee in both cases than in the sequential 

program. This is because, as similarly explained in the nfib program of the previous section, two 

local definitions are introduced (inside search and first;, see code above) in the conservative case 

and a third one is introduced to force each call of f irscoond in the speculative case.

nqueens on 16 PEs Avg. Parallelism = 12.8 Thu Sep 25 22:26:05 BST 1997]

0 running S runnable ■ blocked Runtime = 19084

Figure 8.9: 8 queens: conservative parallelism profile.

The number of ready-evaluated suspensions in the parallel program, in both cases, varies in­
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versely to the amount of heap usage of the program indicating that executing some threads earlier 

than the sequential execution flow demands leads to slightly higher residency of this program.

Comparing the figures in Tables 8.2 and 8.3 we see that although more computations are 

performed in the speculative case (as expected), the abundance of parallel tasks leads to better 

load sharing in the speculative case for our experiments using 2, 4 and 8 processors. The amount 

of space used in the speculative program is higher because of the use of the value annotation on 

calls to firs-coond for the same reasons as explained in the analysis of the results of the nfib 

benchmark.

Figure 8.10: 8 queens: speculative parallelism profile.

Figures 8.9 and 8.10 respectively show the activity profiles for the conservative and speculative 

versions of the program on sixteen processors using quantum-based scheduling. These profiles 

show an encouraging performance of Naira on this benchmark with about, thirteen tasks running 

at any time during the program execution. The occasional dips in the running tasks area probably 

indicates the backtracking in the algorithm.

Figure 8.10 gives a slightly higher average parallelism than Figure 8.9, in contrast, to the cor­

responding figures in Table 8.2 and 8.3 (obtained using thread-based scheduling). This shows the 

comparative effect between the thread-based scheduler and the quantum-based scheduler for this 

benchmark. The runtime measured for the conservative case is better than that in the speculative

case.
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8.3.3 Analysis of tak

Tak is the Takeuchi function which is function call intensive and highly recursive (with non­

primitive recursion). It performs only a simple test, uses only simple small-integer arithmetic 

and does no storage allocation at all. This means that like the nfib function above, this bench­

mark essentially tests the stack operations (i.e., the efficiency of function call) in the underlying 

abstract machine. This function can be expressed in Haskell as shown in Figure 8.11.

tak x y z — if x <= y then z eele

tak {tak {x — 1) y z) {tak {y — 1) z x) {tak {z — 1) x y)

Figure 8.11; First definition of tak.

The natural parallelisation of tak is to ensure that the three inner calls are always made in parallel 

with the outer call (i.e., achieving vertical parallelism whereby the evaluation of the function and 

that of its arguments proceed in parallel). This can be achieved by annotating each of the argument 

applications with process, leading to the eeplortativn oo vestivyl patalll)ism fco each call to tak 

in which the va^e of the first argument st geeaeer than the second . This results in the paraUelised 

program of Figure 8.12.

tak x y z = if x <— y then z else

tak {processttak {x — I) y z)) {process{tak {y — 1) z a)) {processttak {z ~ 1) x y))

Figure 8.12: Second definition of tak.

We conducted our experiments using this version of the parallel program with varying input sizes 

and varying distribution and scheduling algorithms. Table 8.4 summarises the statistics for tak 

18 12 6® using a deterministic distribution algorithm and a thread-based scheduler.

The experimental results in this table show that, in contrast to nfib and nqueens described 

earlier, fewer threads are executed in the parallel program than in the sequential program. The 

reason for this can be seen by referring to our compilation rule for parallel function calls (Section 

5.5.4) of which

tak {proc^^s{tak {x — 1) y z)) {process{tak (y — 1) z x)) {process{tak {z ~ 1) x y})

is a direct instance. As can be seen from this compilation rule, there are no horizontal lines

5The value returned for the call tak 18 12 6 is 7.
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Benchmarks aln 18 12 6 Number of PEs

1 2 4 8 16

Threads scheduled 1097K 1049K 1049K 1049K 1049K

Runtime (in machine cycles) 1097K 557K 282K 144K 69K

Ready-evaluated tasks 143121 142676 13506 136302 136074

Space allocated 53744K 55502K 55621K 55601K 55605K

Average parallelism 1.0 2.0 3.9 7.7 15.1

Speedup 1.00 1.97 3.89 7.57 14.98

Efficiency 1 99% 98% 95% 94%

Table 8.4: tak 18 12 6 statistics summary.

(indicating termination) after the compilation functions of the argument expressions. This provides 

the opportunity for the function call to proceed in parallel with the computation of its arguments.

In contrast to our compilation rule for lazy function calls (also given in Section 5.5.4), of which

tak {tak {x — 1) y z) (tak {y — 1) z x) (tak (z — 1) x y)

is an instance, the code for each argument expression is followed by termination, increasing the 

number of threads count by three'for each such call (see also Section 8.3.1)

As in the nqueens program described in the previous section, the number of ready-evaluated 

tasks and the program’s residency vary inversely with one another. The number of ready-evaluated 

tasks decreases as the number of processors is added except for the case of simulating eight proces­

sors. Similarly, the heap usage increases except in this particular case (of using eight processors).

With the creation of three parallel processes on each call to tak which has its first argument 

greater than its second, this program generates good regular parallelism. As in the nfib bench­

mark, since the parallel tasks created contain very similar amount of coimputations, there is no 

significant difference between the deterministic and random distribution of the parallel tasks and 

between thread-based and quantum-based scheduling strategies.

As a matter of fact, and as Figures 8.13 and 8.14 show, parallelism generated by tak, even at 

the quantum-based level of scheduling is too fine-grained. This is because each call to tak performs 

only a simple test before returning or generating similar lightweight tasks. These figures show that 

there are a lot of runnable tasks throughout the computation and that even though the number 

of runnable threads is halved by using the function-based scheduler, there are many of these tasks 

awaiting execution, at any moment, throughout the computation. This is because, in common
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Figure 8.13: tak 18 12 6 : thread-based scheduling.

Figure 8.14: tak 18 12 6: function-based scheduling.

with the discussion on nfib, the code generated for tak consists of 23 threads and fewer threads 

are executed than are queued from one call to another. The overall performance of Naira on this 

benchmark is quite good.
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Figure 8.15: tak 18 12 6: on GrAnSim-Light.

The profile of Figure 8.15 is obtained for the tak program when run under GrAnSim-Light with 

sixteen processors. This records an average parallelism of 14.2 and a speedup of 12.01. The average 

parallelism and speedup figures on a GrAnSim-Light with an unbounded number of processors are 

24.9 and 21.03 respectively. Notice that the shapes of the parallelism profiles obtained from our 

simulator and that from GrAnSim-Light are different probably because of the differences in some 

implementation issues in the two systems. For example, while we use an active distribution policy 

and a notification model of synchronisation, GHC uses passive task distribution with evaluate-and- 

die synchronisation.

8.3.4 Analysis of coins

This benchmark is of more real-life application than those of the preceding sections because it 

addresses a practical issue (e.g., as in daily usage on vending machines) and also for its use of 

typical functions (map, filter) used in everyday programming. It is taken from the Spectral subset 

of the Glasgow nofib benchmark suite. Given a collection of coin denominations, coins, and a 

certain amount of money, amount, for an item this benchmark computes the number of all possible 

ways in which the given amount can be paid.

The mutually-recursive functions pay-mum and aux of Figure 8.16 define the core of this algo­

rithm. The complete code of this problem is given in Appendix A.4.
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pay-num :: Int ~¥ Int —- [7nt] —> Int

pay-num _ 0 coins = 1

pay-num . val [] = 0

pay-num pri val coins = sum [map (aux pri val bar-coins) (mynub bar-coins))

where bar-coins = (dropWhile (>val) coins) —value?

aux pri val coinsl c =

pay-num (pri —1) (val—c){del (dropWhile (>c) coinsl) c)

Figure 8.16: First definition of coins.

The statistics we report for this program is the result of calculating the number of ways of paying 

an amount of 137 using a collection of coins as 250, 100, 25, 10, 5, 1. That is the value of the 

program is the result of the call (pay-mum 100 137 coins).

As the above program shows, each call to pay.num starts by computing bar .coins by dropping 

those coins from the current coins list which are higher in value than the current moount, smiountt, 

whose different ways of payment is being found by the cureent pay mum call. Tht most expensive 

part of the computation is the step which computes, using the coins bar .coins, the ways of paying 

(amounn-c), for each distinct coin c in bar .coins.

From the foregoing, it is clear that the natural parallelisation of this algorithm (at the topmost 

level) is to conduct the computations for the possible ways of payments, at each level, of (amounn-c) 

in parallel with each other. This can be achieved by using parmap in place of map in pay mum. We 

use the following data-parallel encoding of parmap:

parmap f [] = []

parmap f [x:xs) = process(f r) :value(parmap f xs)

It can be understood from the resulting program (in the light of Example LI of Section 1.3) 

that since the function enclosing the parmap application, namely sum, is strict the parallel processes 

(of the form aux pri amt coins coin) spawned by parmap are activated in parallel with each 

other.

The profile of Figure 8.17 is obtained after the above step in the parallelisation of this program. 

This profile depicts good processor utilisation with very few runnable but unemployed tasks and 

very few blocked tasks throughout the computation. About nine processors were active most of 

the time during the execution with an average parallelism of 8.5 on 16 processors.
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Figure 8.17; coins 137; parallelism profile version 1.

The performance of the above program can be improved by passing bar .coins by value while 

spawning a child task to compute the list argument of parmap. Furthermore, the tail call of 

pay mum inside aux can be parallelised by passing its third argument by process. Finally, we 

parallelise some of the auxiliary functions used by this program to obtain the parallelised program 

in Figure 8.18.

pay-num :: Int —( Int —> [Int] —( Int 

pay.num _ 0 coins =e 1

pay-num _ val [] = 0

pay.num pri val coins = sum [parmap [aux pri val bar-coins) (process[mynub bar-coins))) 

where bar-coins = [dropWhile [>val) coins) —value?

aux pri val coinsl c =

paymum (pri — l) (val—c)(proeess(dll (dropWhile (>c ) coins)) c))

Figure 8.18: Second definition of coins.

With this final parallelised program the activity profile of Figure 8.19 obtains. Compared with the 

parallelism profile of version 1 (Figure 8.17), this profile indicates better parallel behaviour: the
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number of blocked tasks is reduced, and the average parallelism has improved to 10.5. The heap 

usage and runtime are also better for the current version of the program.

Figure 8.19: coins 137: parallelism profile version 2.

As the profiles show, there are high prospects for parallelism in this benchmark depending on the 

input. For the statistics we report here there are initially five parallel processes which then start 

other parallel computations required to find the ways of paying the amounts 37, 112, 127, 132 and 

136 using varying coin denominations. There are thus 6516 parallel tasks created which constitute 

about 4% of the function calls in the program.

For this benchmark there is a significant difference between the thread-based and quantum- 

based scheduling because there are a few top-level value bindings defining the input data all of 

whose suspensions are executed on a particular processor. The comparative analysis of these two 

scheduling schemes is presented in Section 8.3.7.

Table 8.5 summarises the statistics collected after running this program. This table shows 

that there are more threads executed in the parallel program than in the sequential one, for the 

same reason as explained in earlier benchmarks. The number of ready-evaluated tasks and space 

allocation vary directly with each other in this program.

This program has a high space usage because the function pay mum has three arguments and 

aux has four arguments, one of which in both cases is a list structure. Notice that although 

frame accesses are local operations in our implementation (which may otherwise involve accesses
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Benchmark :coins 137 Number of PEs

1 2 4 8 16

Threads scheduled 3024K 3039K 3039K 3039K 3039K

Runtime (in machine cycles) " 177905 107814 70402 27542 41983

Ready-evaluated tasks 502091 514332 527042 510599 512680

Space allocated 143026K 143691K 143750K 14372IK 143727K

Average parallelism 1.0 1.9 3.6 6.5 10.5

Speedup 1.00 1.65 2.53 3.46 4.24

Efficiency 1 83% 63% 43% 27%

Table 8.5: coins 137 statistics summary.

to remote processors for a function argument), since all functions are lambda-lifted, we pay a space 

penalty (as do all implementations supporting lambda-lifting) since free variables have to be added 

to the arguments and threaded all the way to the place of usage. The more arguments a combinator 

has the more space it uses in our implementation since each message required to activate a handler 

thread must contain all the data required to make the call.

The performance of Naira on coins using quantum based scheduling is quite good. Using 

thread-based scheduling, however, gave less favourable results because of the irregularity of work 

sharing among the virtual processors. Loidl and Hammond gave a detailed study of the parallel 

behaviour of the coins program, using granularity control mechanisms, on different architectures 

using GrAnSim. They have also analysed its performance on a sized time system where the 

annotations needed to parallelise the program are derived using the sized time system [LoHa96a]. 

On the sized time system they considered a set of 100 different coins and a price of 55, yielding a 

speedup of about 13 on 32 processors.

8.3.5 Analysis of matmul

Matrix multiplication is an interesting application which is encountered in many real problems. Our 

matmul benchmark therefore, is aimed at testing the suitability of our compiler for performing such 

arithmetic-intensive operations as matrix multiplication. The experiments we performed involved 

multiplying a pair of 32 by 32 integer matrices.

As with the other benchmarks, we tried different implementations of the matrix multiplication 

algorithm so as to get a better implementation that can be parallelised more effectively. The 

implementation of Figure 8.20 is the best of those we tried.
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foldint I u f g = if I —= u then f I else

g (foldint I mid f g)(foldint (mid+1) u f g) 

where mid = div (l+u) 2

matmul mA n — foldint 1 n (row mA n) (H--)

row mA n i = [[^c^/dznit 1 n (sprod mA n i) (H-))]

sprod mA n i j = [foldint 1 n (mutt mA t j) (+)] 

mult mA i j k = se/((set mA i)) kt x se(((eet mA k)) j

Figure 8.20: First definition of matmul.

Figure 8.21: matmul: Parallelism profile version 1.

The matmul program can be parallelised at the topmost level by making the two recursive calls to 

foldint and the call to div in parallel. We do this by annotating these calls with process which 

ensures the exploitation of vertical parallelism since the parent process can proceed with the call 

to g as the two child processes compute the arguments, foldint 1 in the right-hand sides of row 

and sprod is the sequential version of foldint used to visualise the effect of parallelising these 

functions in stages as described below. Figure 8.21 shows the activity profile of matmul with this 

parallelisation of foldint.

As the profile shows, there is no significant, parallelism introduced on account of this change.
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pAppend 11 12 = pfoldr tailCons 12 11 

pfoldr f z [] = z

pfoldr f z (x:xs) = ans

where rest = process [pfoldr f z xs) 

ans = value[f x rest) 

tailCons x xs = x'. value xs

Figure 8.22: Definition of pAppend.

This is because the two recursive calls to foldint correspond to the two arguments to the (++) 

function (except in sprod where they are arguments to the (+) function), which is non-strict in its 

second argument. Furthermore, (++) is also not strict in the list elements.

Figure 8.23: matmul: Parallelism profile version 2.

As a possible way round this therefore, we can use a version of (++) which forces its arguments so 

that the two arms of the divide and conquer are always initiated simultaneously. We define the 

function pAppend function in terms of a parallel function pfoldr as shown in Figure 8.22.

It turns out, again, that the use of pAppend does not help matters much; there is still not 

much parallelism measured. This is because of the fact that the parallelism is completely hidden 

inside the bodies of row and sprod which perform the meat of the computations. To expose this
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parallelism, we must force the evaluation of the lists in the right-hand sides of row and sprod 

beyond WHNF while using the parallel foldint in place of foMint 1.

In order to visualise the individual effects of exposing parallelism inside the definitions of row 

and sprod, we first force the evaluation of the value of each call of row and without forcing the 

evaluation of that of sprod. This can be achieved using value annotations as follows:

row mA n i — value[value(foldint 1 n (sprod mA n i) (-H-))]

The activity profile of Figure 8.23 shows the effect of this change. Notice the improvement over 

the previous step: the average parallelism rose to 9.3, number of blocked tasks decreased and the 

runtime of the program almost halved.

Next, we force the result of sprod within each call of row (i.e., creating 32 parallel tasks each 

computing an element of a 32-element vector which forms part of the resulting 32 by 32 matrix), 

by using value annotations inside the definition of sprod analogously as in row above:

sprod mA n i j — value[value(foldint 1 n (mult mA i ) (+)]]

More parallelism can be generated at the lowest granularity level in this algorithm by creating 

a further 32 tasks during the computation of a matrix element while the parent task combines their 

results to perform the 31 additions. It is clear that creating such tasks, each of which performs a 

single integer multiplication, leads to too fine-grained tasks and our experiments show that this is 

not beneficial.

Figure 8.24 shows the activity profile of the final parallelised program. This profile shows 

a modest improvement in parallel behaviour over the previous parallelisation step. Table 8.6 

summarises the runtime statistics obtained for this benchmark on different machine configurations.

This table shows that the number of threads created in the parallel program is higher than in 

the sequential one because of the introduction of local definitions and the use of value annotations 

in the parallel program, as explained in the preceding benchmarks.

The number of ready-evaluated suspensions in the parallel program increases as the number of 

processors increases and the heap residency of the program decreases with it. This indicates than 

the use of our value annotation in this program, which ensures that expressions are evaluated as 

early as possible, is beneficial since the representation in memory of the closures computing the 

matrix elements is more expensive than the representation of the matrix elements themselves.

As the parallelisation process shows matrix multiplication is a good source of parallelism ranging 

from vector multiplication level of granularity to the lowest level of instruction level of parallelism. 

The activity profiles we obtained during our experiments indicate better performance when we
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Figure 8.24: matmul: Parallelism profile version 3.

Benchmark:32 by 32 matmul Number of PEs

1 2 4 8 16

Threads scheduled 195239 216001 216001 216001 216001

Runtime (in machine cycles) 5917 4652 3632 3138 2943

Ready-evaluated tasks 14640 20892 21512 21681 21787

Space allocated 10188K 11092K 11082K 11080K 11079K

Average parallelism 1.0 1.9 3.6 6.1 10.3

Speedup 1.00 1.27 1.63 1.89 2.01

Efficiency 1 70% 45% 26% 14%

Table 8.6: 32 by 32 matmul statistics summary.

adopted the level of granularity in which a single task performs the computation of a single element 

of the resulting matrix.

The space usage of this benchmark is very small compared with the space usage of other 

benchmark programs. This is because all intermediate structures allocated during the computation 

are freed immediated the associated function returned since the computations are conservatively 

performed and no parts thereof are delayed or suspended.
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8.3.6 Analysis of soda

Soda is a word search program taken from [RuWa95). This benchmark consists of twelve given 

words which are to be searched horizontally, vertically and diagonally from a grid of letters (i.e., 

a list of words). The hidden words may be written both forwards and backwards. Accordingly 

the program derives three grids from the original which represent its columns and diagonals. Each 

hidden word is thus searched in eight different directions as shown in the core function of the 

program in Figure 8.25. Soda is a data-structure-intensive benchmark and we parallelise it in 

stages (as in [RuWa95)) displaying the activity profiles showing the effect of each step.

main reps = (AppendChan stdout (concat {map find hidden))]

where

find word = word -H “ ”44- concat dirs 44- “\n” 

where

dirs = map snd {filter {any {contains word) • fs£)

[(r, “right”), (d, “down”), {dl, “downleft”), {ul, “upleft”)) 44- 

filter {any {contains drow) . fst)

[(r, “left”), (d, “up”), {dl, “upright”), {ul, “downright”)]) 

drow — reverse word 

r — grid

d — transpose grid 

dl = diagonals grid 

ul = diagonals {reverse grid)

Figure 8.25: Definition of soda.

parmap / [] = [)

parmap f (x:xs) = process{f x) :value{parmap f xs)

Figure 8.26: Definition of parmap.

We approach the parallelisation of soda in a data-parallel fashion in such a way that the search 

for the hidden words can proceed in parallel with each other. This can be achieved by replacing 

map in main with its parallel version parmap (as in the coins program of Section 8.3.4), defined as 

in Figure 8.26
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This definition of parmap corresponds to a data-parallel algorithm in the sense that one parallel 

process is spawned for each list item. This modification results in a profile very similar to that 

obtained for sequential execution. This means that there is not much improvement in performance 

due to the use of parmap.

The reason for this lack of observable improvement is because although the searches have been 

started in parallel7, there is little work done before the processes are suspended, thanks to the 

laziness of (++). That is, the result of (find word) reaches WHNF before the other computations 

necessary for the completion of the search are even started! We must therefore force the search for 

a word in all 8 directions to complete before the result of (find word) is returned.

Figure 8.27: soda: parallelism profile version 1.

This can be achieved by forcing the (head and tail) strict evaluation of the list of directions along 

which the word in (find word) may have been found8. We make use of the function force, 

Figure 8.28, to realise this:

The function force ensures that the spine of the list dirs as well as its elements are completely 

evaluated. Notice that with the above definition of force all searches for a particular word are

7This is because of the tail-strictness of our value annotation (see Example 1.1, Section 1.3) and the strictness 

of the find function. The parallel searches are triggered immediately the enclosing function, concat, demands the 

head of the list created by parmap.
8Alternatively, each search can be forced to complete before returning its one line message by using a version of 

(++) which forces its arguments in parallel as in the matmul program of the previous section.
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force [] = []

force {x:xs) = value x:force xs

find word = wood -H “ ” -4- concat {force dirs) -H “\n”

Figure 8.28: Definition of force.

conducted on the current processor since there is no process annotation. The resulting profile 

from this change is depicted in Figure 8.27

Figure 8.29: soda: a sample GranSim profile.

This profile (Figure 8.27) indicates a better parallel activity (with an average parallelism of 2.8) 

over the one obtained as a result of using only parmap. The twelve processes performing the 

searches seem to have done more work than in the previous case although as the profile shows 

there was a gradual downward slope settling at fewer than 3 tasks for the rest of the computation.

1n contrast to our experiments on GrAnSim with this benchmark, we found that GrAnSim 

exhibited better parallel activity, with an average parallelism of 7.9, as shown in Figure 8.29. 

Although the shape of the profiles look similar, the shortest height of the GrAnSim profile consti­

tuted about 25% of the execution time. Runciman and Wakeling [RuWa95] reported an average 

parallelism of 11.4 at this parallelisation step on their idealised simulator.

The short-wide portion of the profile of Figure 8.27 indicates that the processes performing the
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d = process {transpose grid) 

dl = process {diagonals grid) 

ul ~ process{diagonals {reverse grid))

Figure 8.30: Annotating the grids of words.

search become blocked. To ensure that this blocking is avoided, we annotate the derived grids (see 

Figure 8.30) so that their evaluation proceeds in parallel with the searches.

This modification results in a slight increase in parallel activity in comparison to the previous 

step. Using a certain combination of annotations on GrAnSim required to spark these derived 

grids and to evaluate them to WHNF degraded the performance to a speedup of 6.1. As with our 

profile, Runciman's simulator recorded the same small increment in speedup of 0.1.

dirs = value{map snd {forw -H back))

forw — process{filter {any {contains word) . fst)

[(r, “right”), (d, “down”), {dl, “downleft”), {ul, “upleft”)]) 

back = process {filter {any {contains drow) . fst)

[(r, “left”), (d, “up”), {dl, “upright”), {ul, “downright”)])

Figure 8.31: Improved definitions of forw and back.

More parallelism can be created by arranging that the forwards and backwards searches in dirs 

proceed in parallel. We can achieve this by making forw and back in the program segment of 

Figure 8.31 into parallel tasks. The profile of Figure 8.32 results from this modification. The 

program now displays an average parallelism of 4.0 and executes with a reduction of about 20% of 

its sequential execution time.

We have so far been conservative in the search for a word in a given grid. We can introduce 

more parallelism by employing some speculative evaluation so that the searches for a given word 

in a particular grid proceed in parallel. This means that the given word is searched in parallel 

along each line in the grid. Obviously some of these searches will lead to unwanted computations 

since the word may be found much earlier than the next subsequent (redundant) searches take 

to complete. On the other hand, the speculation may be desirable for the cases where the word 

is found towards the end of the grid. The speculation may be introduced by replacing the any 

function in the program with par any defined in Figure 8.34.

The effect of this change on the parallel behaviour of the program is shown in Figure 8.33. The
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Figure 8.32: Parallelism profile for version 2.

Figure 8.33: Parallelism profile for version 3.

average parallelism obtained on this version of the program on Naira and GrAnSim are 9.8 and 10 

respectively.

As with the other benchmark programs, we ran this final version of the soda program on varying
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parany f I ~ or (parmap f I)

forw = process (filter (parany (contains word) . fst)

[(r, “right”), (d, “down”), (dl, “downleft”), (ul, “upleft”)])

back = process (filter (parany (contains drow) . fst)

[(r, “left”), (d, “up”), (dl, “upright”), (ul, “downright”)])

Figure 8.34: Introducing speculation using parany.

B enchmark:so da Number of PEs

1 2 4 8 16

Threads scheduled 1393K 1518K 1518K 1518K 1518K

Runtime (in machine cycles) 81949 65776 39490 30054 25896

Ready-evaluated tasks 204181 220610 221275 221617 221314

Space allocated 64483K 70580K 70570K 70565K 70570K

Average parallelism 1.0 1.8 3.5 6.2 9.8

Speedup 1.00 1.25 2.08 2.73 3.16

Efficiency 1 68% 57% 37% 22%

Table 8.7: soda statistics summary.

numbers of processors. The thread-based scheduler does not perform well on this benchmark for 

the same reasons as in the coins program of the preceding section. Table 8.7 summarises the 

runtime statistics obtained for soda.

The statistics summary in this table shows that, as in some of the benchmarks we have analysed 

earlier, more threads of execution are generated in the parallel program because of the modifica­

tions introduced in the parallelisation stages. 1t also shows that the number of ready-evaluated 

suspensions in the parallel program increases as the number of processors increases (except in the 

last column in the table). This increase is desirable in this program because it indicates some shar­

ing as well as reducing the heap residency of the program. The measured speedup also increases 

as more processors are simulated.

Naira’s performance on soda in comparison to the results of the other two simulators is encour­

aging given that no optimisations are made to the code generator. We envisage Naira to do better 

than this after optimising the current code generator which is somewhat naive. 1n Section 9.2 we 

mentioned some of the optimisations we would like to consider for Naira beyond this research.
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8.3.7 Thread versus quantum scheduling

As mentioned in Section 6.4 and the previous subsections we have experimented with a thread- 

based and a quantum-based scheduler. Using a thread-based scheduler, each simulated processor 

executes exactly one thread in a given machine cycle. Using the quantum scheduler, each processor 

executes a quantum of threads (the average number of threads per function call) in every machine 

cycle. The purpose of this section is to present a comparative analysis of these two scheduling 

schemes based on the benchmark programs analysed in Sections 8.3.4 to 8.3.6.

Recall from our discussions in Sections 5.2 and 6.3.2 on the runtime organisation of our com­

piler and parallel scheduling, respectively, that suspension pointers are globally accessible to the 

machine. Suspension objects inherit the processor identifier of their parent (i.e., the function 

frame/invocation in which they are part) and that the code associated with a function invocation 

is executed on the processor on which the frame is allocated. For the top level non-function value 

bindings in a module, these bindings are grouped together and allocated in a single ‘module frame’. 

That is, they are considered as if they occur as local definitions within a single top level definition.

Figure 8.35: coins 137 PE activity profile: thread-based scheduling.

When an input program contains many of these top-level sos-Ousciios bindings all their constituent 

suspensions (except those that are part of a parallel task) share a common FID and are therefore 

scheduled on a particular processor. This can result in a disproportionate load sharing amongst 

the simulated processors of the machine as we demonstrate in this section.

To remedy this, some of these threads must be migrated to other processors. This migration is 

implemented by overriding the inherited FID (which determines where the suspension is evaluated)



8.3.7 Thread versus quantum scheduling 193

carried within a suspension with the PID of the current processor on which no runnable threads 

have been found during its turn to execute. A solution which minimises tests for work availability 

simply schedules threads round-robin rather than for a processor to retrospectively send a work 

request to its peers when it is its turn to execute and its runnable thread queue is empty. In our 

implementation of migration, a processor is eligible to supply work if it has runnable threads which 

are twice the quantum number or more.

Figures 8.35 and 8.36 show the comparative per-processor activity profiles using thread and 

quantum scheduling, respectively, for the coins benchmark program analysed in Section 8.3.4.

Figure 8.36: coins 137 PE activity profile: quantum-based scheduling.

The load sharing exhibited in Figure 8.35, when the thread-based scheduler was used, is not as 

good as that for the case when the quantum-based scheduler was used as shown in Figure 8.36. 

This is due to the way threads in top-level non-function bindings within a module are scheduled as 

described above. Figure 8.35 indicates that all the suspensions for these bindings were scheduled 

on processor 0. A better load sharing can be achieved, as depicted in Figure 8.36, by ensuring 

that the threads are fairly scheduled and that a quantum of them are executed by each processor 

within a single cycle.

Next, we give similar comparative profiles based on processor activities during the runtime of 

the matmul program of Section 8.3.5. As explained in Section 8.3.5, this program multiplies a pair 

of 32 by 32 dense matrices represented as lists of lists of integers. The matrices data is bound at 

top-level as the complete program in Appendix A.6 shows.

As Figure 8.37 indicates all the suspensions for the matrices elements are evaluated on processor 

0 making it execute far more threads than the other processors. Incorporating the thread migration 

strategy outlined above leads to a fairer load sharing equilibrium amongst the virtual processors 

as depicted by the profile in Figure 8.38.

Finally the profiles of Figures 8.39 and 8.40 are for the soda word searching program analysed
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Figure 8.37: matmul PE activity profile; thread-based scheduling.

Figure 8.38: matmul PE activity profile: quantum-based scheduling.

Figure 8.39: soda PE activity profile: thread-based scheduling.
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in Section 8.3.6. The complete program (as taken from [RuWa95]) is given in Appendix A.7. The

input data for this program consists of two lists of strings; one for the hidden words and the other

for the rectangular grid of letters from which the hidden words will be matched.

Figure 8.40: soda PE activity profile: quantum-based scheduling.

The top level binding which calls the functions that perform the meat of the computations in this 

program contains a few parallelism annotations which help to improve load sharing. The suspen­

sions for the elements of the grid and hidden words lists are, however, executed on a particular 

processor as shown in Figure 8.39. As in the two preceding cases in this section, thread migration 

and quantum scheduling are used (see Figure 8.40) to improve the load equilibrium amongst the 

processors.

Our experiences from experimentation using both the GrAnSim (see Chapter 7) and Mizani 

simulators reveal that thread migration is essential for good performance on parallel systems. This 

has already been shown experimentally by [HaPe92] and theoretically by [BuRa94]. This adds to 

our confidence in the correctness of our experimental results. It is also clear from the analyses in 

this section, with insights from earlier results [LoHa96, HMP94], that large grained tasks (by way 

of quantum scheduling here) are tremendously important.

8.4 Summary

In this chapter we have conducted experiments and reported statistical measurements aimed at 

evaluating the performance of the generated multi-threaded parallel code from the Naira compiler. 

We achieved this by executing the compiled C code resulting from the source programs which 

contain our process and value annotations for introducing parallelism.

We considered a variety of popular benchmarking programs, as analysed in Sections 8.3.1 to 

8.3.6, so as to exercise various aspects of the compiler, like its function call efficiency, arithmetic.
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data structures and closure handling operations. Our experiences with placing annotations in a 

bid to achieving maximum performance of programs reveal that the exercise can be extremely 

tedious and uncertain. This is because it is not always straightforward to determine an effective 

combination of annotations and the fact that adding or removing annotations may disturb the 

balance of others.

For the benchmarks we reported, namely nfib, nqueens, tak, coins, matmul and soda, we 

found that in general the effect on parallelism of using a deterministic or random distribution 

mechanism is insignificant. Of much more impact on parallelism is the scheduling policy we use. 

We used two different scheduling policies; one at thread level and the other at quantum level.

For the first three benchmarks (where the pattern of generating parallelism was regular), the 

average parallelism obtained using the thread-based and the quantum-based schemes is quite close. 

The difference in this case is in the number of runnable threads which is much higher for the cases 

using the thread-based scheduler than in the cases using the quantum scheduler. For the last 

three programs, on the other hand (where load sharing amongst the processors is uneven), the 

quantum-based scheduler performs much better.

The enormity of runnable threads generated by Naira, as exemplified by these benchmarks, 

can be usefully exploited by parallel machines with large numbers of processors and which support 

Arvind’s twin fundamental issues of parallel computing—tolerance to unpredictable communication 

latencies and fast context-switching [Arla87]. On the other hand, some form of throttling may be 

necessary for some programs in order to avoid the processors’ context-stores from overflowing.

We found in our experiments that increasing or decreasing the quantum size (the average 

number of threads per function) and making each processor executes this number of threads in 

every machine cycle can lead to better performance in some cases. This can be viewed as some 

kind of ad hoc ‘granularity analysis’ mechanism used to maximise processor utilisation. It indicates 

the desirability of a systematic granularity analyser, along the lines of Hammond et al [HMP94], 

for effective parallel programming.

In comparison with the experimental results of other parallel implementations of functional 

languages, the performance of Naira is encouraging, even though our code generator and runtime 

system are yet to be optimised. At one level we used the idealised set-up of the highly tunable 

GrAnSim simulator to profile these programs and compare the results with those obtained using 

our simulator. By and large, the speedups obtained on the two simulators for the six programs 

are within small differences with each other (see Table 8.8). These similarities not withstanding 

the different shapes (in some cases) of the parallelism profiles obtained from the simulators which 

may be attributed to the different design choices in the two systems: while GHC uses passive task



8.4. SUMMARY 197

Implementation PEs

Benchmark programs

nfib queens tak matmul

size speedup size speedup size speedup size speedup

Naira 16 20 14.44 8 11.81 18 12 6 14.98 32 2.01

GrAnSim-Light 16 20 11.94 8 13.17 18 12 6 12.01 32 3.55

GrAnSim-Light OO 20 18.72 8 24.25 18 12 6 21.03 32 3.47

Concurrent Clean 16 30 8.71 10 7.73 - - 32 2.50

ZAPP 08 30 7.16 8 5.63 - - 64 3.47

GRIP 20 20 17.00 - - - - - -

HDG-machine 04 20 3.40 6 2.76 18 12 6 3.60 - -

GAML 08 30 5.75 10 5.65 - - - -

< u, G > machine 15 30 8.00 10 9.50 - - - -

PAM 12 20 10.63 8 9.44 - - 10 7.70

Table 8.8: ‘Comparative’ results of different parallel implementations

distribution, evaluate-and-die synchronisation and unfair scheduling, Naira uses an active task 

distribution, notification model of synchronisation and fair scheduling.

At another level, we review the performance of some implementations9 on the benchmarks 

we analysed as summarised in Table 8.8. The Concurrent Clean implementation on Transputers 

[Kess96), which generates efficient code and uses thresholds to control the grain size of compu­

tations, records speedups of 8.71 and 7.73 for nfib 30 and 10 queens respectively both on 16 

processors. The implementation does not employ any load-balancing technique for these divide- 

and-conquer programs. They used a random task distribution mechanism over the network which 

somewhat balances the machine load if the number of processes is high enough.

Concurrent Clean records a speedup of 0.8 on 16 processors for multiplying 64 by 64 matrices 

represented by lists of lists of floating point numbers and a speedup of 2.5 for multiplying 32 by 

32 matrices represented by 2-dimensional arrays of floating point numbers. The parallel speedups 

of the partial implementation of Concurrent Clean on ZAPP gives similar figures [Kess96).

9 We note that these implementations, while employing graph reduction, are varied in some important ways: some 

are idealised simulators (Naira, GranSim-Light, PAM), while others are based on real shared memory (GAML, 

< u, G >-machine) and distributed memory (Concurrent Clean, ZAPP, HDG-machine) machines. The GRIP 

multiprocessor consists of features of both shared memory and distributed memory architectures.
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The speedup figures for nfib 30, 8 queens and 64 by 64 matrix multiplication on an 8-node 

ZAPP are 7.16, 5.62 and 3.47 respectively. The relatively slight improvement in performance on 

ZAPP over Concurrent Clean on nfib (speedup of 5.55 on 8 processors) is probably because of the 

special support for divide-and-conquer parallelism on ZAPP (ZAPP does not support other forms 

of parallelism, like stream processing, though). • ‘ *'

Hammond and Peyton Jones [HaPe9O] gave, amongst other things, a detailed analysis of the 

nf ib program using various throttling strategies which are aimed to be exploited in other divide- 

and-conquer algorithms—probably the best-known parallel programming paradigm [THLP98]. 

They obtained a relative speedup of 17.0 for (a hand-tuned version of) nfib 30 on GRIP with 20 

processors and an absolute speedup of 5.34 on 6 processors.

As with our implementation, the HDG-machine based implementation (on Transputers) of 

Kingdon et al [KLB91] lacks a distributed garbage collector and therefore input sizes in their 

experiments were kept low. They recorded speedups on 4 processors of 3.4, 3.6 and 2.8 for nfib 20, 

tak 18 12 6 and 6 queens respectively. Maranget’s G-machine based implementation of GAML 

[Mara91] reports relative speedups of 5.75 and 5.65 respectively for nfib 30 and 10 queens on 8 

processors.

Augustsson and Johnsson’s parallel implementation based on the < u,G >-^Im^<^^ltiiss) [AuJo89b] 

measured speedups of 8 and 9.5 for nfib 30 and 10 queens respectively on a 15-node Syquent 

871^1^6)13^^. The implementation by Loogen et al of PAM [LKID89] gave good speedups of 

10.63, 9.44 and 7.70 for nfib 20, 8 queens and 10 by 10 matrix multiplication on an OCCAM 

Transputer with 12 processors.

Table 8.8 summarises these somewhat comparative results® and a detailed review of each 

of those implementations (and more) whose measurements we quote in the table is provided in 

Chapter 3, our chapter on related work.

Ws note that the limitations of Naira as it stands now is that we are only able to consider 

programs whose results are of integer, string and Boolean or a list of values of these types. In 

particular, we have not yet experimented with floating-point problems and those based on complex 

numbers like the fast fourier transformation problem. In addition, the fact that our implementation 

does not support a garbage collector serves as an impediment to executing larger test programs.

Finally, we find it appropriate to sign ths usual benchmarking caveat (especially when using 

idealised simulations) that the experimental results we report will be affected when ths .extra

ilFor the other two benchmarks not included in the table namely, coins and soda, we have already presented 

a comparative analysis between Naira’s performance and those of [LoHa95, LoHa96a] and [RuWa95] (in Sections 

8.3.4 and 8.3.6 respectively).
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constraints imposed by a parallel machine, like communication and thread migration, are fully 

costed. Based on our experimental results using GrAnSim-Light and standard GrAnSim simulation 

of distributed memory architectures (in Chapter 7, see Table 7.10) these costs may affect our results 

by up to 30% to 35%.



Chapter 9

Conclusions

9.1 Summary of the thesis

In this thesis we have presented our research work on the design and implementation of a research 

compiler, Naira, for a rich, purely functional programming language. The research was aimed at, 

within the context of an SERC research project, improving the compile-time efficiency as well as the 

runtime efficiency of functional language compilers under a message-passing execution framework.

Broadly speaking, we identify three main issues of our work viz: a) the development of a pilot 

sequential compiler for the research b) writing a parallel code generator based on a compilation 

scheme specified using T-calculus and b) evaluating the overall compiler by parallelising the front 

and back ends and presenting experimental measurements.

The aim of this section is to briefly summarise the contents of the chapters of the thesis so as 

to highlight the what and how of our research.

In Chapter 1 we gave an overview of the thesis highlighting previous work from which our 

work directly took off while summarising our contributions. We have also introduced the two 

identity combinators which we used to introduce parallelism and to control the execution of our 

input programs. While introducing our process and value annotations, we compared them with 

the annotations used by other researchers, notably the par and seq annotations of GpH, Glasgow 

Parallel Haskell, which we used heavily in Chapter 7.

The subject matter of Chapter 2 was to give a brief historical overview of the persistent need of 

making computer programming easier. This quest for programming at a higher level of abstraction, 

while providing a language base with clean and simple semantics, culminated in the birth of 

functional languages. The chapter then explored some of the main advantages of programming
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in functional languages, outlines their computational foundation, their implementation techniques 

as well as pointing out the usual price paid by functional programmers in exchange for the many 

virtues of the languages that they exploit. We have also described 7-calculus, the computational 

model that we used to specify our compilation scheme, while pointing out the necessary restrictions 

to the calculus that are required to guarantee the asynchronous message-passing communication 

of Naira.

In Chapter 3 we reviewed previous and ongoing research work on parallel implementations re­

lated to our research. The chapter started by isolating the main issues that require to be addressed 

carefully in a parallel implementation. The main alternative approaches to handling these issues 

were described while pointing out the advantages and disadvantages of each approach,

Our overview of related work covered researches based on the implicit, explicit and automatic 

methods of parallelisation. This is because even though the ways in which parallelism is introduced 

in these implementations may be different, they share other common characteristics with our 

implementation as summarised in Table 3.1.

Our survey revealed that Concurrent Clean has probably the most complete set of annotations 

since in addition to the usual user annotations (which change the evaluation order of a specific 

function application, which they call ‘local annotations’), global annotations are generated by 

the compiler (in definitions of new types and in type specification of functions) which change 

the reduction order of all applications of a function. The language also includes annotations for 

graph copying and for specifying the destination of a parallel task. We also found that among the 

researches reviewed only the Glasgow Haskell research team seem to perform detailed analyses on 

issues like granularity, spark strategies and load control mechanisms.

The organisational structure and implementation of the front end of our research compiler was 

presented in chapter four. The chapter covers our choice of symbol table representations that are 

used in this part of the compiler. We then described the main features of the five major components 

of the compiler front end.

We have also described the optimised intermediate language produced by the compiler front 

end. We found it beneficial to optimise the intermediate language so that the size of the parallel 

code that is eventually generated is substantially reduced and the runtime execution costs also 

minimised with it.

The contents of chapter five include a description of the idiosyncracies of the parallel machine 

model that best suits our compilation system, a detailed explanation of our representation of data 

objects in the heap, an overview of the different kinds of messages we support and a description 

of our asynchronous message-passing model. We have also covered in this chapter a description of
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the C parser which interfaces the front and back ends of the compiler by transforming the Haskell 

structured intermediate code into equivalent C structures suitable for input to the code generrlor.

This chapter also presented in some reasonable details the organisation of our code generator' 

and then described the code generation process for each of the main constructs of the intermediate 

language. As the compilation schemes are presented, the relevant correspondences between them 

and their 7rcalculus counterparts are drawn.

Finally the chapter concludes with a description of how the separately compiled modules of a 

program are linked, the execution of the program triggered and the program value printed (or a 

runtime error generated if the program is buggy).

The basic theme of chapter six was a description of our implementation of stream I/O, the 

implementation of comparison operations over values of user-defined algebraic data types (to com­

pensate for our non-support for type classes) and scheduling issues. We have also included a 

description of our quasi-parallel simulator which takes snapshot statistics during execution, writes 

the numeric information into data files and then generate postscript graphical profiles from this 

data. The PostScript-graph generator is adapted from the GrAnSim simulator to work for our 

data formats.

In chapter seven we have presented the parallelisation and performance analysis of the front 

end of our compiler. Our parallelisation process uses the evaluation strategies of GpH, Glasgow 

Parallel Haskell, and adopts the top-down parallelisation methodology proposed by Trinder et al. 

[THLP98]. The compiler was also analysed on real hardware with good resulting speedups.

We used GrAnSim, a fairly accurate simulator with a rich set of runtime system options that 

enable the simulation of a wide variety of different architectures, in our experimental measurements 

in this chapter. As our compiler is targeted to run on distributed memory machines without 

shared memory, as mentioned in chapters one and five, we have conducted our experiments using 

a GrAnSim configuration specific to these architectures. We have also used other setups and 

reported measurements for comparison purposes and as a means of ‘debugging' the sources of 

runtime overheads in our experiments.

Our top-down parallelisation involved parallelising the top-level pipeline of the compiler phases 

by defining evaluation strategies on the complex data structures (parse trees) produced by the 

phases. We then parallelised four of the individual phases in isolation with the others (i.e., setting 

the others to run sequentially). We measured an average parallelism and speedup of up to 3.7 and 

3.58, respectively, on distributed memory machines with 8 processors at the top-level parallelisation 

stage. Speed-ups for the individual phases were about 25% each for the pattern matcher, lambda 

lifter and the optimiser and up to about 350% for the type checker.
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Having parallelised the constituent phases in isolation, we finally activated all our parallelisation 

code within these phases in order to evaluate their overall effect on the pai’allel behaviour of the 

compiler. Our experiences with the parallelisation at this stage revealed that it is now harder 

to understand and to predict the parallel behaviour of the compiler. This is because bits of the 

strategic code are in different places in ths compiler source and changing ons strategic code may 

disturb the balance of others leading to dramatic change in performance for some inputs. In our 

overall parallelisation of the compiler we obtained speedups of up to 5.53 on eight processors.

In comparison with the results of other projects on parallelising large-scale lazy functional 

programs [THL+96, THLP98], our experimental results indicate very high potential for parallelism 

in our compiler. In their parallelisation of Traffic Accidents Cass-study [THL+96], Trinder recorded 

an average parallelism of 3.6 on an idealised machine. In their experiments on Lolita [THLP98], a 

natural language processing system, they reported an average parallelism of about 3.1 on GrAnSim 

emulating a shared memory 4-proyessor machine.

Despite our good simulated performance we note that Naira is an experimental compiler rather 

than a state-of-the-art optimised compiler like, for example, the Glasgow Haskell Compiler which 

is optimised for sequential compilation and which may thus be less susceptible to parallelisation. 

Lately, our experiments with Naira on real hardware (a network of Sun workstations running under 

a PVM communication harness) demonstrated similar speedups as it did under ths GrAnSim 

simulator.

In our second chapter of experimentation with Naira, Chapter 8, we considered six simple 

popular benchmark programs and used them to evaluate the performance of the generated parallel 

code. While we analysed the efficiency of the parallelised front end of the compiler in Chapter 7, 

we measured the performance of our parallel code generator and runtime system in Chapter 8.

During the analysis of each of our chosen benchmark programs, we experimented with two 

different task distribution mechanisms and two different scheduling policies. The different schemes 

were used in order to carry out a moderately rigorous analysis of the benchmarks and to isolate (up 

to annotations subtleties) the best parallelised version of a program. Results of our experiments 

were summarised in tabular as well as in graphical forms. The tabular statistics (which is obtained 

from ths best parallelised program) contains more detailed information on the parallel behaviour 

of each benchmark on different machine configurations.

Our experimental results revealed that the choice between a deterministic and random task 

distribution scheme has little effect on the parallel performance of a program provided there is 

some reasonable parallelism in the program. The choice of scheduling policy on the other hand, was 

found to have much more impact on performance especially in programs with irregular granularity.
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We found that the scheduling scheme in which a quantum of threads is executed on each virtual 

processor in a single time-slice is, in general, better than the one in which only a single thread is 

executed on each processor in a time-slice. Our experiments (in both Chapters 7 and 8) revealed 

that task migration, even on high latency distributed memory machines, is indispensable in some 

cases in order to get better results.

Finally, we compared our experimental results from Naira with those of other parallel im­

plementations of functional languages. While none of these other implementations has provided 

performance results for all our benchmarks (in fact some implementations, like [GoHu86, HaPe9O], 

concentrated on a single benchmark and used it to study particular issues in detail, like diffu­

sion heuristics and throttling strategies), we found it appropriate to evaluate Naira vis-a-vis these 

implementations.

Result of the overall comparisons puts Naira on a positive footing given that no optimisations 

have yet been implemented on the code generator and the runtime system. We should point 

out, however, that these comparisons should be taken with all the different (and diverse) details 

on board. For example while our results are simulated, others were obtained from interpreted 

abstract machine code and some are obtained from shared memory (e.g., [AuJo89b]) and others 

from distributed memory (e.g., [HaPe9O]) machines.

9.2 Summary of contributions

In this section we give a brief summary of the main contributions of the thesis. These are

• Design and implementation of a parallel functional language compiler, Naira. As mentioned 

in the preceding chapters, Naira processes a rich subset of the full Haskell language. This 

Haskell subset serves as both the implementation language for Naira as well as the specifica­

tion for valid programs acceptable to the compiler. Stream I/O and a parallel runtime system 

for the compiler have been implemented together with the other contributions enumerated 

in this section.

• Extension and implementation of many compile-time program analyses. After lexical and 

syntax analyses, the research concentrated on the implementation of four main other com­

piler phases—pattern matching, lambda lifting, type inference and intermediate language 

optimisations—which were subsequently parallelised. The pattern matching compiler is based 

on Wadler’s algorithm described in [Peyt87] which we extended to incorporate some impor­

tant transformations (Section 4.2.3). After pattern matching, alternatives in case-expressions 

consist of variable patterns or constructor patterns with variable subpatterns only.
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The lambda lifter is based on that of Johnsson [John87] which forms and solves equations to 

compute complete sets of free variables of functions. The main differences with our lambda 

lifter is that we do not lift functions-turned-combinators to the top level. This provides 

opportunities for local optimisations (for example inlining) of the local combinators while 

not increasing the number of global identifiers and the cost of their house-keeping therewith. 

The non-lifting of local combinators reported here is similar to what Peyton Jones does in 

the STG language [Peyt92] except that while STG identifies the free variables it does not 

pass them as extra arguments and a two-level environment—one for free variables and the 

other for arguments—is maintained. This two-level environment reduces the movement of 

values from the heap to the stack, but it is no clear whether this is a big improvement 

or only a marginal one [Peyt92]. In contrast to the lambda lifting algorithms of Hughes 

[Hugh83], Peyton Jones and Lester [PeLe91] and the lambda hoisting algorithm of Takeichi 

[Take88], our algorithm, in similarity with Johnsson’s, does not incorporate the full-laziness 

optimisation.

The type inference algorithm implemented here draws ideas mainly from [Read89, ReC191, 

Peyt87, FiHa88]. The basic Milner-Damas type inference algorithm usually given in the lit­

erature does not contain inference rules for general let-expressions and lambda abstractions 

involving patterns nor are rules for inferring the types for other A-calculus embellishing con­

structs like case and conditional expressions. A complete type inference algorithm involving 

the inference rules for the general expression forms in the previous sentence has been im­

plemented for Haskell and with parallelisation ideas in mind. An important aspect of the 

implementation is that substitutions are applied lazily and only when needed rather than 

applying substitutions eagerly to update types in the type environment after each inference 

step. This is similar to what is proposed by Read in [Read89] and Paulson in [Paul91] proba­

bly with the same motivation for minimising the cost of type inference. Notice that applying 

substitutions eagerly (which is avoided in this implementation) will increase parallelism (since 

the substitutions can be applied to the type environment at the same time the main inference 

coimputation is going on) but decrease speedup because of the extra work performed due to 

the eagerness.

Resulting from the aforementioned analyses is a simple optimised intermediate language 

suitable for efficient parallel code generation. In this language, all constructors and primi­

tive operators, as in the STG language of Peyton Jones [Peyt92], are saturated but unlike 

STG case-expressions in this intermediate language are much more simplified (Section 4.3.4) 

thereby avoiding the cost of maintaining local environments for variables in the patterns
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of case-alternatives as described in [Peyt92]. The language FLIC (Functional Language 

Intermediate Code) proposed by Peyton Jones and Joy has a similar representation for case- 

expressions except that only ths constructor names are represented by small integers and 

their variable subpaUerns are not compiled out [PeJo90, PsLs91].

• Extensive application of the parallel programming technology of Trinder et al [THLP98]. A 

wealth of experience has been built from using evaluation strategies in small-sized programs 

where the actual workings of the technology has been explored and in the parallelisation of 

ths benchmark programs of Chapter 8 as well as applying the technology to parallelise Naira 

itself. To the author’s knowledge, Naira is the second largest parallel program written in 

a lazy, purely functional language following the Lolita natural language processor [LoTr97]. 

Unlike Lolita, the design, implementation and parallelisation of Naira was not conducted 

under a joint collaborative research but is the entire work of a single author. Furthermore, 

we recorded a much higher absolute speedup for Naira than the absolute speedup obtained 

by researchers on Lolita [LoTr97].

• Design and implementation of a parallel name-server. Allied to ths use of evaluation strate­

gies to exploit parallelism is the use of a parallel name-server which creates unique names to 

enable otherwise data-dependent computations to proceed in parallel, A modestly efficient 

parallel name-server has been designed and used which maintains' the simplicity and avoids 

ths problems of overflow and lnefOiyienyc associated with other proposed name-servers by 

Hancock in [Peyt87] and Augustsson et al in [ARS94].

• Compiling a lazy, purely functional language via n-calculus. Naira is the first parallel compiler 

(for lazy functional languages) that generates parallel code using compilation rules specified 

using an asynchronous 7-calculus. There is a high-level concurrent programming language, 

Piet, proposed by Pierce and Turner [PiTu97], which is based on the T-calculus and which 

also translates into a e•-calculus core language. Thus while Piet is based entirely on the 

T-afoulus, Naira combines the best of the two worlds of the A-calculus and the ercalculus. 

The Piet compiler performs all of its static analyses of programs, optimisations, and code 

generation using a e-calculus core language while Naira’s static analyses are based on an 

enriched A-calculus and the code generation is based on the T-calculus. The Piet compiler, 

like Naira, compiles to C in similar continuation-passing style and, although there are no 

conc-ete performance results provided for the Piet compiler, the behaviour of its generated 

code is likely to be similar to that of Naira since they are based on the same code generation 

and runtime execution philosophy.
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Dataflow languages usually compile via dataflow graphs [Nikh89,ArNi90] or dual graphs 

[Trau91]. Although aspects of Naira’s runtime implementation (like asynchronous message­

passing, function call mechanism and frame management) are similar to those in the im­

plementation of Id (see Section 3.4 for differences), Id compiles into dataflow graphs which 

are directly executable machine code [ArNi90]. The role played by tokens (along which data 

values are carried between operators) in the dataflow setting is strikingly similar to the role 

played by channel names in 7-calculus except that the latter are at a higher level of abstrac­

tion (compare the general format of tokens in Section III of [ArNi90] with the sendMessage 

in Section 5.4).

• Design and implementation of the process and value annotations. The design, implemen­

tation and demonstration of the use of the process and value annotations, as a vehicle 

for specifying parallelism and strictness in user programs, have successfully been realised 

in this research. Performance measurement figures reported (in Chapter 8) indicate good 

parallel behaviour (of the benchmarks) resulting from the use of these annotations based on 

an idealised simulator.

• Extension of Ostheimer’s n-calculus-based compilation scheme for a first-order functional 

language to cover an expressive higher-order functional language. Ostheimer’s work was 

first extended to cover a complete first-order language by adding compilation rules for code­

generating case-expressions, individual modules and complete programs. It was then signif­

icantly enhanced by adding rules for higher-order functions. A working implementation of 

the complete rules is first provided in this thesis (Chapters 1, 2, 5, 8).

• Generating multi-threaded parallel code based on the extended compilation scheme. Because 

of the laziness of Haskell and the need to tolerate long communication latencies, programs are 

compiled into a large number of threads (in this implementation) which specify a compile-time 

instructions ordering valid for all contexts in which a function can be called (as in [CSS'^91]). 

Furthermore, the order-independent way in which threads can be executed can lead to some 

space-saving efficiency when threads specifying the computations of large suspension objects 

with relatively smaller values are executed early (see analyses of the results in Sections 8.3.1­

8.3.6). Our parallel code generator also automatically determines frame sizes for functions 

thereby avoiding extra analyses like the stacklessness analysis of Lester [Lest89].

• Achieved good absolute speedups on both simulated and real hardware. The parallel compiler 

is successfully assessed using the latest technology both on simulators and on real hardware.
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A wall-clock speedup of 2.46, and a relative speedup of 2.73 have been measured on a network 

of five workstations which confirm the speedup of 3.01 predicted by the GrAnSim simulator.

Assessment of the parallel code generated by Naira in Chapter 8, based on typical small­

sized programs, gave good results in comparison with the results of other similar parallel 

implementations (Section 8.4). To the author’s knowledge, Naira is the first parallelising 

compiler for a lazy purely functional language which itself runs in parallel. Furthermore, the 

absolute speedup obtained when measuring Naira has not been achieved for a similarly large, 

irregular parallel lazy functional program.

9.3 Limitations of the thesis

Having presented the major contributions of the thesis in the previous section, this section outlines 

the main limitations of the work.

• Naira does not compile itself. One of the long-term aims of Naira is to make it as a complete 

stand-alone system. This has not been realised within the time-frame of this research. A 

major contributory factor to this being the absence of a (distributed) garbage collector which 

is, in its own right, a challenging research topic. Consequently, Naira is not self-compiling 

but is, most importantly, successfully parallelised using a ‘foreign’ system (Chapter 7).

• The class of admissible program values in Naira is restricted. Although the language Naira 

compiles is polymorphic, valid programs in Naira are, at the moment, restricted to have the 

basic integer, character and Boolean values or lists and tuples of these. Clearly, more work 

needs to be done in this area in order to compile more real-life applications and so that a 

more far reaching assessment of the compiler can be given.

• The compiler’s own simulator, Mizani, is an idealised simulator. The experimental results 

in Chapter 8 are to be accepted within the limitations of an idealised simulator. The guiding 

hypothesis in using quasi-parallel simulators of this form is to find indicators for the nec­

essary conditions for the availability of exploitable parallelism in a parallel application. A 

notable limitation of Naira’s own simulator is the assumption that communication has zero 

cost. Because of this unrealistic assumption in a message-passing system, the experimental 

results presented in that chapter are likely to have been exaggerated by upto 35% based on 

experiments with CrAnSim (Section 7.9) and with GUM (Section 7.10).

• Load-bounding. Complete parallel systems usually embody some form of load control mecha­

nism to help the runtime system manage the eventual problem of ‘parallelism explosion’ (see
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Section 3.4) where too much parallelism can generated, if not controlled, beyond machine 

resources. Naira consists only of a simple ad hoc mechanism for possible load control based 

on quantum scheduling. A more systematic load bounding scheme is needed when large, 

highly parallel applications are considered.

• Scalability. An important issue not (fully) addressed in this thesis is the analysis of the 

scalability of the parallel code generated by Naira. Realistically, scalability is a property 

that should be expected from large, non-trivial, regular parallel programs. Although Naira 

does not measure such programs, attempts have been made to demonstrate scalability using 

the GrAnSim simulator. This is done by combining several constituent modules of Naira into 

a single input module and using it to simulate distributed machines of different sizes (i.e., 

with different numbers of processors). This is ongoing work and we hope to report details of 

this and other related issues elsewhere [JuTr98].

9.4 Further work

The aim of this section is to briefly mention some optimisations and other research issues which we 

hope to pursue and which when implemented will greatly improve the robustness and performance 

of Naira. These issues span the various aspects of the compiler from language constructs in the 

front end to code generation and runtime system issues in the back end.

First at the language level, there are some minor constructs, like user-introduced fixity def­

initions, which we want to implement fully. Although these do not affect parallel behaviour, 

implementing them will improve the user-friendliness of our language base.

One issue which has a direct bearing on expressing parallelism and which we want to investigate 

further is the suitability of our process and value annotations in specifying dynamic behaviour. 

For small and medium-scale programs these annotations can be used to conveniently parallelise 

programs. For larger programs involving aggregate data values, however, the parallelisation process 

is not as convenient because forcing functions have to be defined over such values to specify the 

desired dynamic behaviour. We hope to overcome this limitation, as part of our further research 

plan on Naira, by extending our annotations along the lines of Trinder’s evaluation strategies 

[THLP98] which are higher-order annotation that can be used to cleanly parallelise programs.

In our experiences with lists and binary tree data structures in Chapter 7, we realised that using 

sorted binary trees to maintain some of our symbol tables was computationally more expensive 

than using ordinary lists. This is largely due to the extra computations (usually string comparisons 

which are represented as lists of characters) required to maintain the sorted trees. We hope to use
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compact strings, as in some modern highly optimised functional languages compilers, to minimise 

the cost of string handling so that balanced binary trees can be used to provide faster accesses at 

minimal costs.

Our symbol table implementation in the code generator, as described in Chapter 5, is based on 

a linked-list data structure. We plan to use a more efficient implementation based on hash-tables. 

More importantly, we aim to modify the code generator so as to reduce the size and improve the 

quality of the generated parallel code.

There are a few improvements and extensions we would like to incorporate into the runtime 

system. Naira’s simulator, Mizani, can be enriched to cost interesting runtime aspects like commu­

nication and other thread management issues, as does GrAnSim. As described in Chapter 6, the 

type of program values that Naira can admit is limited. A possible way to remove this limitation 

is to use runtime tags to distinguish different types of data values.

As mentioned in Chapters 1 and 5, suspension objects are global to the machine in our im­

plementation and are allocated in the heap. Some form of sharing analysis which can distinguish 

shared suspensions from unshared ones can provide a cheap way of deforesting the heap thereby 

tremendously reducing the heap residency of Naira programs.

We propose to implement, in software, the probablistic load bounding mechanism described 

by Ostheimer [Osth93] in such a way that we can integrate it into our compilation scheme. This 

will provide a more systematic control- over parallelism than the ad hoc task coalescing scheme 

we experimented with in Chapter 8. Finally, a distributed garbage collector is needed in Naira to 

provide it the required support to fully manifest its potentials.

9.5 Concluding remarks

The research presented in this thesis was on the design, implementation and evaluation of a par­

allel, parallelising compiler for a rich, purely functional programming language. The compiler was 

successfully parallelised, using state-of-the-art, fairly accurate tools with rewarding speedups of up 

to about 6 on 8 processors. Similar speedups were recorded for Naira when run under real machine 

hardware (i.e., an Ethernetted collection of Sun workstations running under Solaris 2 operating 

system). The compiler was also found to have high parallelising potentials based on typical, pop­

ular test programs. We hope that the directions we explored will help focus any parallelisation 

efforts in engineering large software.

As a post-mortem, the author notes that Software Engineering as a trade has the potentials 

of being a mixture of agonies and ecstasies— it is really self-satisfying to define a task and see
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through its execution especially when the road to the fulfillment of such a task was marred by bare 

hindering milestones which one can, now and in the future, refer to in order to reappraise one’s 

efforts for achieving the accomplished task!

The research objectives set out and achieved in this thesis, so broad as they are have, to a great 

extent, defined and polished so much life experiences that the author lives to enjoy in this life and 

beyond. The English maxim ‘no pain no gain’ and the adage ‘the proof of the pudding is in the 

eating’, really make a lot of sense in many contexts in the frames of life!
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Source code for the benchmarks.
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typedaf struct Exp {
ExpTag tag:
union {

struct < int val ; > intLitExp;

struct { int val ; charLitExp;

struct { char *id; idExp;

struct { struct Exp ♦ exp; negExp;

struct { struct Exp *exp; notExp;

struct { struct Exp ♦exp; ordExp;

struct { struct Exp ♦ exp; } chrExp;

struct < struct Exp ♦left;
struct Exp ♦right; > primPlusIntExp

struct struct Exp ♦left;
struct Exp ♦right; > primEqlntExp;

struct < struct Exp ♦left;
struct Exp ♦right; } primLelntExp;

struct struct Exp ♦left;
struct Exp ♦right; primMullntExp;

struct { struct Exp ♦left;
struct Exp ♦right; > primDivlntExp;

struct { struct Exp ♦left;
struct Exp ♦right; > priaiRemlntExp;

struct { struct Exp ♦left;
struct Exp ♦right; > primAndExp;

struct { struct Exp ♦left;
struct Exp ♦right; > primOrExp;

struct { int tag;
struct HexpList ♦components; constrExp;

struct < struct Exp ♦exp;
int selector; selectExp;

struct { struct Exp +testExp;
struct ChoiceList ♦choiceList; caseExp;

struct struct Exp ♦condition;
struct Exp ♦consequent;
struct Exp ♦alternative; } ifExp;

struct { struct FunList ♦funs;
struct Exp bbody; > defineExp

struct < String name;
int missing;
struct MexpList ♦args; } closeExp;

struct { String name;
struct MexpList *args; > callExp;

struct { struct Exp *fun;
struct MexpList *args; > applyExp;

struct { struct DefList ♦defs;
struct Exp ♦body; > letExp;

struct { struct Exp *exp; } errorExp;

} fields;
} Exp;

Figure A.l; C structure for expressions
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nfib n — if n <~ 1 then 1 else 1 + nl 4- nfib(n~2) 

where nl = process{nfib (n—1))

Figure A.2: Code for nfib.

find rank file n board =

if file > n then 0 else if rank > n then 1 else 

let fs = processfrst rank file n board) 

in fs + find rank (file+1) n board 

findl rank file n board =

if file > n then 0 else if rank > n then 1 else 

first rank file n board + findl rank (file+l) n board 

first rank file n board = fc

where c = process(compatible rank file (rank—1) board) 

fc = valuefrstcond rank file n board c) 

firstcond rank file n board False = 0

firstcond rank file n board True = find (ran£+l) 1 n (file:board) 

compatible rank file row [] = True

compatible rank file row (h:t) =

if h == file |] absVal h file == absVal row rank then False 

else compatible rank file (row—1) t 

absVal a b = if a > b then a—b else b—a 

val = find 1 1 8 []

Figure A.3: Code for nqueens.

tak x y z = if x <= y then z else

tak (process(tak (x — 1) y 2))

(process(tak (y — 1) z r))
(process(tak (z — 1) % y))

val = tak 18 12 6

Figure A.4: Code for tak.
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mynub [] = [

mynub (d:ds) = d:mynub(removeDuplicates d ds) 

parmap f [] = []

parmap f (xdxs) = p^rc^i^^ss^f x) walvbparmapp f xs) 

dvl [[ _ = ]]

dvl (x:xs) y = f x == y then xs else :d:Ve) xp y

pay-num :: Int —» Int —> [Int] —+ Int

pay-num _ 0 crins — 1

pay-num _ oal [[ =0

pay-num pri oal crins —

sum (parmap (anx pri oal bar-crins) bprnvssbmynub bar-crins'))) 

where bar-crins = oalnvbdrrpWhilv (>oal) crins) 

aux pri oal coins! c =

• pay-num (pri—I) (oal—i)(prrivsxbdvl (drrpWhilv (>c) crinsl) c)) 

rvs = pay-num 100 oal crins 

oais = [250, 100, 25, 10, 5, 1[ 

quants — [5, 8, 8, 9, 12, 17[ 

crinsz = (zip oais quants)

crins = crncat (map (\(v,g) —* [n j i +— [1..?[[) crinsz) 

oal = 137

Figure A.5: Code for coins.
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sel (h:t) 1 = h

sel (h:i) n = sel t (n — 1)

foldint 1 u f g = if 1 == u then f 1 else

g (process{foldint 1 mid f gy^processffoldini (mid+l) u f g)) 

where mid = process(dw (l+u) 2)

foldintl 1 v f g = if 1 == u then f 1 else

g {process^foldiniJ. 1 mid f g))(process(joldintl (mid+l) u f g)) 

where mid — process(div (/+«) 2)

matprod mA n — foldint 1 n (prow mA nf (-m)

row mA n i — eagerCons fprwcess (foldint ( f (dprod mA n i) o-H-)) [] 

sprod mA n i j — eagerCgns o(foIdinil 1 o (mutt mA i j) (A))- A 

mult mA i j k = iel1process1sel mA i)) k x sellprocesslsel mA k)) j 

val = plength1process1matol^od matA matA))

Figure A.6: Code for matmul.
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matA =
Hl,2,3.4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32], 

[2,3,4,5 6 A^,9,10,11,22,^,14,15,16/^71^8,19 ,20,21,22,23,24,25,26,27,28,29,30,31, 32,0] , 

[3,4,5,6,7,8,9,00,11,12,13,14,15 ,16,17,18,19,20 ,21,22,23,24,25,26,27,28,29,30,31,32,0,1] , 

[4,5,6,7 , 10,1^ ,16 ,17,18,19 ,20 ,21 ,22 ,23,24 ,25,26,27,28,29,30,31 ,32,0,1.2] ,
[5,6,7,8,9,10,11 ,12 ,13,14,15,16,17 ,8 ,19 ,^0 ,21 ,22,23,24,25,26,27,28,29,30,31,32,0,1,2,3] , 

[6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,0,1,2,3,4], 

[7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,0,1,2,3,4,5], 

[8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,0,1,2,3,4,5,6], 

[9,10,11,12,13,14,15,16,17,18,19,20,21,22,23.24,25,26,27,28,29,30,31,32,0,1,2,3,4,5,6,7], 

[10,11,12,13,14,15,16,17,18,19,20,21, 22, 23,24, 25,26, 27 728,29,30.33 ,^2,^, 1,2, 3,4,5,6,7,8] , 

[11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 ^8 ,22.30 ,32,0 ,, , 2,3,4,5,6,7,8,9] ,

[12,13,14,15,16,17,18,19,20,21,22,23,24722522622736,32,30,33  ,33,07! ,,,3,4,5,6,7,8,9,10] , 

[13,14,1S,16,17,18,19,20,21,22,23,24,25,26,^7^2,22,33 ,0 J,4,5,6,7,8,9,10,11], 

[14,15,16,17,18,19,20,21,22,23,24,25,26,277 28,29,30,31,33,,,1,2,3,4,5,6,7,8,9,10,1,12], 

[15,16,17,18,19,20,21,22,23,24,25>26,22^2.29,33,33,00,,2,3,4,5,6,7,8,9,10,11,12,13], 

[16,17,18,19, 20,21.22,23,24,25,26,27 7 28,29,33 ,33 ,33,, ,1,2, 3,4,5,6,7,8,9,10,11,12,13,14] , 

[17,18,19,20,21, 22,23,24,25.26,277 28,22,33,33,32,3,i,2,3,4,5,6,7,8,9,10,11,12,13,14,15] , 

[18, 19,20,21, 22,23, 24, 25,26,27,28,29,30,32,33,0,1,2,3,4,5,6,7,8,9,10,11 ,2,13,14,15,16] , 

[19,20,21,22, 23. 2-4,25,26, 27, 28, '^2,30,31,32,0,1, 72, 3,4,5 ,6,7,8 ,9 ,10,11,12,13 ,4,15,16,17] , 

[20,21,22, 23,24, 25,26, 27,28,29,30,31,33,0,1,2, 3,4,5 ,6,7,8 ,9,10 ,11 ,12,13,14,15,16,17,18] , 

[21,22,23,24, 25,26, 27,28,29,30,31,32,0,1,72,3,4,5 ,6,7,8,9,10 ,11 ,12,13,14,15,16,17,18,19] , 

[22,23,24,25, 26,27,28,29,30,31, 32,0, 1,2, 0)1,5,6,7 ,8,9,1.0,11 ,12 ,13,14,15,16,17,18,19,20] , 

[23,24,25,26,27,28,29,30,31,32,0,1,2,0)4,5,6,7 ,8,9,00,11,12,13,14,15,16 ,7,18,19,20,21], 

[24,25,26,27,28,29,30,31,32,0,1,2,4,5,67,8,D,11,22,3:3,14,15,16,17,18,19,20,21,22],  

[25,26,27,28,29,30,31,32,0,1,2,4,5,6,7,8,9,00,11,22,33,14,15,16,17,18,19,20,21,22,23],  

[26,27,28,29 ,30,31,32,0,1,2,3 ,4,5 ,8,9,00,11,22,33,4-1, 15 ,16,17,18,19,20,21,22,23,24] ,

[27,28,29,30, 31, 32 , 0,1,2,3 ,4,5, /T Z,,,, D, 1,, 22, D, D, 1E5,1(^ 1^7" ,18,19,20 ,21,22,23,24,25] , 

[28,29,30,31,32, 0,1,2,3,4,5,6 77,8,3,13,13,23,23,14,1S,16,17,18,19,20,21,22,23,24,25,26] , 

[29,30,31, 32,0,1,2 ,4 TT,8,, ,D, 1, , 22, ,D, D , ^^, H", 181^9,20 ,21 ,22 ,23 ,24,25,26,27] ,

[30, 31, 32, 0,1,2 ,3 ,4,5,6 A,8.D ,U, 63,33,44,55,16, 7 , 18,19,20 ,21,22 ,23,24,25,26,27,28] , 

[31,02)0)1,2,3,4,57677,3,9,10,13,63,33,14,15,16,17,18,19,20,2i,22,23,24,25,21,27,28,21], 

[22,0)1 )2,0,4,5,677,3)9,13,13,63,33,14,15,16,17,18,19,20)21,22,23,24,25,26,27,28,21,30'j]

Figure A.7: Data for matmul.
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main resps = [AppendChan stdout [process[showlnt vaf))] 

matprod mA mB = rowlistprod mA [process[transp mB))

rowlistprod [] cols = [] 

rowlistprod [rowtrows) cols =

—eagerCons(rowprod row cols)(rowlistprod rows cols)

[process [rowprod row cols)) : (value(rowlistprod rows cols))

rowprod row [] = [] 

rowprod row [col:cols) =

—eagerCons (dotprod row col) (rowprod row cols) 

[process[dotprod row col)) : [value[rowprod row cols))

dotprod [] [] =0

dotprod [xtxs) [y:ys) = —xXy 4- dotprod xs ys 

let u = process[xxy)

v = process[dotprod xs ys) 

in u + v

transp ([] trows) — [] 

transp rows =

[process[headcol rows)) : [value[transp [process[tailcols rows))))

keadcol U = []

keadcol [[xtxs) trows) — eagerCons x [process[headcol rows))

tailcols [] = []

tailcols [[xtxs) trows) =s eagerCons xs [process[tailcols rows))

val = plengtli[process[matprod matA matA)) 

plength I = psum [parmap length I)

parmap /[] = []

parmap f [ktt) = [process[f h)) : [value[parmap f t))

psum I = foldl (+) 0 I

foldl f a [] —a

foldl f a [xtxs) = let —fax = process(f a x)

ans = value[foldl f [process[f a x)) xs) 

in ans

Figure A.8: Alternative code for matmul.
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PAppend 1 12 = pfoldr tailCons 12 1

pfoldr p z [] = z

pfoldr f z [x.xs) = ans

where rest = process {pfoldr f z rs)

ans = valueff x rest) 

tailCons r ts = x.value xs

diagonals [r] = map (: []) r

diagonals {r.rs) = zipinii r ([] : diagonals rs)

parmap / [) = 0

parmap f [x:xs) = zrocess{f x) :value{parmap f xs)

zipinit ]] ys = ys

zipinit fx:xs) [y:ys) = {x.y) •.s^z^T^i^'nit xs ys

contains xs ys = any {prefix xs) {suffixes ys)

suffixes [] = []

suffixes xx — xs.suffixes {tail xsX

prefix ]) ys = True

prefix xs ]] = False

prefix [z:zs) [y:ys) = x == y && rfix xs ys

transpose []] .rows) = []

transpose rows ==

{process{headcol rows)) : {value{transpose {process{tailcols rows)))) 

headcol [] = ])

headcol ([z:zs) :rows) = z: {process{headcol rows))

tailcols ]) = ]]

tailcols {{xxxs) ’.rows) = xs. irrccsss{tailcols rows))

forceList ]) = []

forceLisi {xxxs) = value x.forceList xx

parany f I = or {parmap f /)

val = concat {parmap find hidden) 

where

find word = {word 'append' * " 'append.' concat dirs 'append' “\n’’) 

where

dirs = value{map snd {forw 'append' back)) 

drow — {reverse word)

forw = process {filter {parany {contains word) . fst)

][r, “right”), (d, “down”), {dl, “downleft”), {ul, “upleft")])

hack — process {filter {parany {contains drow) . fst)

](r, “left"),[d, “up”), {dl, “upright”), {ul, “downright”)])

r = {grid)

d — process{init {transpose grid))

dl = process {diagonals grid)

ul = process{diagonals {reverse grid))

Figure A.9: Code for soda.
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grid =

[[’Y’, ’I’, ’O’, ’M’, ’R’, ’E’, ’S’, ’K’, ’S’, ’T’], 

[’A’, ’E’, ’H’, ’Y’ ’G’, ’E’, ’H’, ’E’ ’D’ ’W’], 

I’Z’, ’F’, ’I’, ’A’, ’O’, ’N’, ’I’, ’T’, ’I’, ’A’], 

[’N’ ’T’, ’0’ ’C’ ’0’, ’M’, ’V’, ’0’, ’0’, ’R’], 

[’E’, ’R’, ’D’, ’L’, ’0’ ’C’, ’E’, ’N’, ’S’, ’M’],

[Z’, ’O’, ’U’, ’R’, ’P’, ’S’, ’R’, ’N’, ’D’, ’A’],

[’O’ ’Y’ ’A’ ’S’, ’M’, ’O’, ’Y’, ’E’, ’D’, ’L’], 

[’R’, ’N’ ’D’ ’E’ ’N’ ’L’, ’0’ ’A’ ’I’, T’], 

[’F’, ’I’, ’W’, ’I’, ’N’, ’T’, ’E’, ’R’, ’R’, ’C’],

[’F’, ’E’, ’Z’, ’E’, ’E’, ’R’, ’F’, ’T’, ’F’, ’I’],

[T, ’I’, ’D’, ’T’, ’P’, ’H’, ’U’, ’B’, ’R’, ’L’],

[’O’, ’N’ ’0’, ’H’ ’S’, ’G’, ’E’ ’I’, ’O’, ’N’],

[’15’, ’G’ ’M’ ’0’, ’P’ ’S’ ’T’ ’A’i t-/ j -L j TA ., ’S’ ’O’],

[’’’, ’G’ ’F’ ’F’, ’O’ T, ’S’, ’H’, ’T’, ’H’],

(’O’, ’T’ ’B’, ’C’ ’S’, ’S’, ’N’, ’O’, ’W’ ’I]]

hidden = [“COSY”, “SOFT”, “WINTER”, “SHIVER”, “FROZEN”, “SNOW”, 

“WARM”, “HEAT”, “COLD”, “FREEZE”, “FROST”, “ICE”]

Figure A,10: Data for soda.
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Acronyms in the Bibliography

1 ACM — Association of Computing Machinery.

2 BCS — British Computer Society.

3 CONPAR — Conference on Parallelism.

4 FPCA — Functional Programming and Computer Architecture.

5 GlaFP — Glasgow workshop on Functional Programming.

6 HPFC — High Performance Functional Computing.

7 IEEE — Institute of Electrical and Electronic Engineers.

8 IFL — Implementation of Functional Languages.

9 LNCS — Lecture Notes in Computer Science, Springer-Verlag.

10 PARLE — Parallel Architectures and Reduction Languages, Europe.

11 PIFL — Parallel Implementation of Functional Languages.

12 POPL — Principles of Programming Languages.

13 SIGPLAN — ACM Special Interest Group on Programming Languages..

14 TOPLAS — ACM Transactions on Programming Languages and Systems.

15 WIGS — Workshop In Computing Science, Springer-Verlag.
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