401 research outputs found

    Novel polarization-diversity devices on a silicon-on-insulator platform.

    Get PDF
    Master'sMASTER OF ENGINEERIN

    Silicon nitride Arrayed Waveguide Gratings

    Get PDF
    Le développement des télécommunications optiques à haute capacité fait des multiplexeurs en longueur d'onde un sujet brûlant des récentes recherches. Dans cette thèse, nous proposons et démontrons des réseaux sélectifs planaires ou (Arrayed Waveguide Grating, AWG) basés sur une plateforme de Nitrure de silicium (SiN) comme multiplexeur ou démultiplexeur. Dans le premier chapitre, nous comparons les guides d'onde en silicium et en nitrure de silicium et confirmons que le SiN sera considéré comme la plateforme principale de ce travail. Nous présentons des simulations des guides d'onde de SiN qui forme les AWGs, incluant les guides d'onde planaires, les guides d'onde à bande, les guides d'onde courbés et les guides d'onde fuselée utilisant FDTD solution et Mode solution d'Ansys Lumerical. L'influence des paramètres de conceptions des AWGs en SiN tels que la longueur focale, la distance séparant les guides d'onde, l'espacement entre les ouvertures adjacentes et les pertes de propagation liées à la fabrication sur les performances est aussi étudié en utilisant sur un modèle semi-analytique. Les AWGs communs sont typiquement conçus pour les modes électriques transverses (TE). Pour améliorer la capacité de transmission des réseaux WDM, dans le second chapitre, nous présentons un AWG insensible à la polarisation conçus avec des guides d'onde en SiN. L'insensibilité à la polarisation des AWGs est obtenue lorsque l'espace intercanal et la longueur d'onde centrale des deux modes sont alignés pour un même AWG. L'alignement de l'espace intercanal entre les deux états de polarisations est obtenu en optimisant la géométrie du réseau de guide d'onde, alors que l'insensibilité de la longueur d'onde centrale est obtenue en séparant les deux états de polarisations et en ajustant leur angle d'incidence à l'entrée du coupleur en étoile pour compenser la dispersion entre les modes dans l'AWG. Un multiplexeur de longueur d'onde 1 × 8 avec un espacement entre les canaux de 100 GHz et une diaphonie de −16 dB est démontré expérimentalement. Dans la conception d'un AWGs en SiN, un espacement d'une largeur supérieur à 10 µm entre des guides d'ondes identiques minimise le couplage parasite augmentant ainsi leur empreinte. Dans le troisième chapitre, nous présentons un AWG ultra-compact 1×8 ayant une séparation de 100 GHz entre les canax rendu possible grâce à des guides d'onde en super-réseaux supprimant le couplage entre les guides d'onde. Bénéficiant de la haute densité du super-réseau, cet AWG possède une empreinte compacte de 4.3mm × 0.6mm, ce qui est plus que 2 fois plus petit qu'un AWG conventionnel ayant des performances similaires à celui présenté dans le second chapitre. Le SL-AWG montre aussi une faible perte d'insertion de 3.4 dB et une faible diaphonie de −18 dB. À part le couplage entre les guides d'onde discuté dans le troisième chapitre, l'erreur de phase produite par les variations de fabrication a l'impact le plus important sur les performances de l'AWG. Il a été étudié que leurs performances sont liées à la longueur du réseau de guide d'onde déterminant l'erreur de phase. Toutefois, il existe encore un écart de quantification de l'impact de la longueur du réseau et les variations de fabrication sur les performances de l'AWG. Dans le quatrième chapitre, nous présentons une analyse statistique de l'AWG en présence d'erreurs de phase dans les guides d'onde. Des figures de mérites importantes pour la performance incluant les pertes d'insertion, la diaphonie et la non-uniformité sont paramétrées en fonction de la longueur de cohérence, un paramètre physique qui caractérise l'accumulation d'erreur de phase dans les guides d'ondes optique. Une longueur de cohérence de 23.7 mm au niveau de la matrice pour les guides d'onde de SiN peut être extraite en mesurant les variations dans la longueur d'onde de résonnance d'un interféromètre de Mach-Zhender. Au travers de simulations Monte-Carlo, nous examinons l'impact de l'erreur de phase sur les performances de l'AWG avec une espace entre les canaux de 100 GHz et 200 GHz.The development of optical communications with high transmission capacity makes wavelength division multiplexing (WDM) systems a hot topic of recent research. In this thesis, we propose and demonstrate arrayed waveguide gratings (AWGs) based on a SiN platform as the multiplexers or demultiplexers. In the first chapter, we compare the material and waveguides between silicon and silicon nitride. We present numerical simulations of the SiN waveguides, including slab waveguides, strip waveguides, bent waveguides and tapered waveguides, using FDTD solutions and MODE solutions from Ansys Lumerical. These waveguides are used to form an AWG in this thesis. The influences of SiN AWGs designed parameters including focal length, separation of arrayed waveguides, gaps between adjacent apertures and propagation loss on the performances are studied based on a semi-analytical model. Common AWGs are typically designed in TE mode. In order to improve the transmission capacity in WDM system, in the second chapter, we present a polarization insensitive AWG built with SiN waveguides. The polarization insensitive AWGs are obtained when both the channel spacing and the center wavelength are aligned for TE and TM modes in a single AWG. The channel spacing polarization insensitivity is obtained by optimizing the geometry of the arrayed waveguides whereas the central wavelength polarization insensitivity is obtained by splitting the two polarization states and adjusting their angle of incidence at the input star coupler. A 100 GHz 1×8 AWG with crosstalk below −16 dB is demonstrated experimentally. In the design of SiN AWGs, the gaps of wider than 10 µm between adjacent identical waveguides are designed to minimize parasitic coupling. However, these gaps suppress further shrinking the footprint of AWGs. In the third chapter, we present an ultra-compact 100 GHz 1 × 8 SiN AWG enabled by a novel concept of the waveguide superlattice suppressing coupling between waveguides. Benefiting from the densely arrayed waveguides patterning with waveguide superlattice, this superlattice AWG has a compact footprint of 4.3 mm × 0.6 mm, which is more than two times smaller than a conventional AWG with similar performance. The SL-AWG also shows a low insertion loss of 3.4 dB and a low crosstalk level of −18 dB. Beside the coupling between waveguides discussed in the third chapter, the phase errors due to fabrication variations have a considerable impact on the performance of AWGs. It is shown that their performances are related to the length of arrayed waveguides determining the phase errors. However, there lacked a practical way to quantify the impact of arrayed waveguide length and fabrication variations on the performances of AWGs. In the fourth chapter, we present a statistical analysis of AWGs in presence of phase errors of arrayed waveguides. The important figures of merits including insertion loss, crosstalk and non-uniformity, are parameterized by the coherence length, a physical parameter that characterizes the accumulated phase errors in an optical waveguide. A die-level coherence length of 23.7 mm for the SiN waveguides is extracted by measuring variation of resonant wavelength of Mach-Zehnder interferometers. Through Monte Carlo simulations, we present the impacts of phase errors on performance of 1 × 4 AWGs with 200 GHz and 100 GHz channel spacings

    Addressing Fiber-to-Chip Coupling Issues in Silicon Photonics

    Full text link
    Esta tesis trata de resolver el problema de la interconexión (acoplo) entre un circuito integrado fotónico de silicio (chip) y el mundo exterior, es decir una fibra óptica. Se trata de uno de los temas más importantes a los que hoy en día se enfrenta la comunidad científica en óptica integrada de silicio. A pesar de que pueden realizarse circuitos integrados fotónicos de silicio de muy alta calidad utilizando herramientas estándar de fabricación CMOS, la interfaz con la fibra óptica sigue siendo la fuente más importante de pérdidas, debido a la gran diferencia en el tamaño entre los modos de propagación de la fibra y de las guías de los circuitos integrados fotónicos. Abordar el problema es, por lo tanto, muy importante para poder utilizar los circuitos integrados fotónicos de silicio en una aplicación práctica. Objetivos: El propósito de este trabajo es hacer frente a este problema en la interfaz del acoplamiento fibra-chip, con énfasis en el ensamblado o empaquetado final. Por lo tanto, los objetivos principales son: 1) estudio, modelado y optimización de diseños de diferentes técnicas eficientes de acoplamiento entre fibras ópticas y circuitos integrados fotónicos de silicio, 2) fabricación y demostración experimental de los diseños obtenidos, 3) ensamblado y empaquetado de algunos de los prototipos de acoplamiento fabricados. Metodología: Este trabajo se desarrolla a lo largo de dos líneas de investigación, en conformidad con las dos principales estrategias de acoplamiento que pueden encontrarse en la literatura, concretamente, estructuras de acoplamiento tipo "grating" (la fibra acopla verticalmente sobre la superficie de circuito), y estructuras del tipo ¿inverted taper¿ (la fibra acopla horizontalmente por el extremo de circuito). Resultados: tanto en el caso de estructuras tipo "grating" como en el caso de estructuras "inverted taper", son importantes los avances conseguidos sobre el estado del arte. En lo que respecta al "grating", se ha demostrado dos tipos de estructuras. Por un lado, se ha demostrado "gratings" adecuados para acoplo a guías de silicio convencionales. Por otra parte, se ha demostrado por primera vez el funcionamiento de "gratings" para guías de silicio tipo "slot" horizontal, que son un tipo de guía muy prometedora para aplicaciones de óptica no lineal. En relación con el acoplamiento a través de "inverted taper", se ha demostrado una estructura novedosa basada en este tipo de acoplamiento. Con esta estructura, importantes son los avances conseguidos en el empaquetado de fibras ópticas con el circuito de silicio. Su innovadora integración con estructuras de tipo "V-groove" se presenta como un medio para alinear pasivamente conjuntos de múltiples fibras a un mismo circuito integrado fotónico. También, se estudia el empaquetado de conjuntos de múltiples fibras usando acopladores tipo "grating", resultando en un prototipo de empaquetado de reducido tamaño.Galán Conejos, JV. (2010). Addressing Fiber-to-Chip Coupling Issues in Silicon Photonics [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/9196Palanci

    Polarization insensitive metamaterial engineered multimode interference coupler in a 220 nm silicon-on-insulator platform

    Get PDF
    High-index contrast silicon waveguides exhibit strong birefringence that hinders the development of polarization-insensitive devices, especially for sub-micrometer silicon layer thickness. Here a polarizationindependent 2 × 2 multimode interference coupler in a 220 nm silicon-on-insulator platform is designed and experimentally demonstrated for the first time. Leveraging the advanced control of electromagnetic properties provided by a subwavelength grating metamaterial topology, our multimode interference coupler operates for both TE and TM polarization states with measured polarization dependent loss, insertion loss and imbalance all less than 1 dB, and phase errors below 5◦ in the wavelength range from 1500 nm to 1560 nm. The device has a footprint of only 3.5 μm × 47.25 μm and was fabricated using a single etch-step process with a minimum feature size of 100 nm compatible with immersion deep-UV lithography.We acknowledge funding from Ministerio de Economía y Competitividad (PID2019106747RB-I00), Junta de Andalucía (P18-RT-1453, UMA-FEDERJA-158), Ministerio de Ciencia, Innovaci ́on y Universidades (FPU16/06762, FPU19/02408), and Universidad de Málaga. Funding for open access charge: Universidad de Málaga / CBUA

    Doctor of Philosophy

    Get PDF
    dissertationPhotonic integration circuits (PICs) have received overwhelming attention in the past few decades due to various advantages over electronic circuits including absence of Joule effect and huge bandwidth. The most significant problem obstructing their commercial application is the integration density, which is largely determined by a signal wavelength that is in the order of microns. In this dissertation, we are focused on enhancing the integration density of PICs to warrant their practical applications. In general, we believe there are three ways to boost the integration density. The first is to downscale the dimension of individual integrated optical component. As an example, we have experimentally demonstrated an integrated optical diode with footprint 3 Ã- 3 m2, an integrated polarization beamsplitter with footprint 2.4 Ã- 2.4 m2, and a waveguide bend with effective bend radius as small as 0.65 m. All these devices offer the smallest footprint when compared to their alternatives. A second option to increase integration density is to combine the function of multiple devices into a single compact device. To illustrate the point, we have experimentally shown an integrated mode-converting polarization beamsplitter, and a free-space to waveguide coupler and polarization beamsplitter. Two distinct functionalities are offered in one single device without significantly sacrificing the footprint. A third option for enhancing integration density is to decrease the spacing between the individual devices. For this case, we have experimentally demonstrated an integrated cloak for nonresonant (waveguide) and resonant (microring-resonator) devices. Neighboring devices are totally invisible to each other even if they are separated as small as /2 apart. Inverse design algorithm is employed in demonstrating all of our devices. The basic premise is that, via nanofabrication, we can locally engineer the refractive index to achieve unique functionalities that are otherwise impossible. A nonlinear optimization algorithm is used to find the best permittivity distribution and a focused ion beam is used to define the fine nanostructures. Our future work lies in demonstrating active nanophotonic devices with compact footprint and high efficiency. Broadband and efficient silicon modulators, and all-optical and high-efficiency switches are envisioned with our design algorithm

    Development of an integrated silicon photonic transceiver for access networks

    Full text link
    Debido a la imparable aparición de dispositivos móviles multifunción junto con aplicaciones que requieren cada vez más un mayor ancho de banda en cualquier momento y en cualquier lugar, las futuras redes de acceso deberán ser capaces de proporcionar servicios tanto inalámbricos como cableados. Es por ello que una solución a seguir es el uso de sistemas de comunicaciones ópticas como medio de transporte de señales inalámbricas en enlaces de radio sobre fibra. Con ello, se converge a un dominio óptico reduciendo y aliviando el cuello de botella entre los estándares de acceso inalámbrico y cableado. En esta tesis, como parte de los objetivos establecidos en el proyecto europeo HELIOS en el que está enmarcada, se han investigado y desarrollado los bloques funcionales básicos necesarios para realizar un transceptor fotónico integrado trabajando en el rango de longitudes de onda milimétricas, y haciendo uso de los formatos de modulación más robustos y que mejor se adaptan al ámbito de aplicación considerado. El trabajo que se presenta en esta tesis se puede dividir básicamente en tres partes. La primera de ellas ofrece una descripción general de los beneficios del uso de la fotónica en silicio para el desarrollo de enlaces inalámbricos a velocidades de Gbps, así como el estado del arte de los transceptores desarrollados por los grupos de investigación más activos y punteros para satisfacer las necesidades de mercado, cada vez más exigentes. La segunda parte se centra en el estudio y desarrollo del transmisor integrado de onda milimétrica. Primero realizamos una breve introducción teórica tanto del funcionamiento de los dispositivos que forman parte del transmisor, como a los formatos de modulación existentes, centrando la atención en la modulación por desplazamiento de fase (PSK) que es la que se va a utilizar en el desarrollo de los dispositivos implicados, y más concretamente en la modulación (diferencial) de fase en cuadratura ((D)QPSK). También se presentan los bloques básicos que integran nuestro transmisor y se fijan las especificaciones que deben cumplir dichos bloques para conseguir una transmisión libre de errores. El transmisor está compuesto por un filtro/demultiplexor encargado de separar dos portadoras ópticas separadas una frecuencia de 60 GHz. Una de estas portadoras es modulada al pasar por un modulador DQPSK basado en una estructura de dos MachZehnders (MZs) anidados, para ser nuevamente combinada con la otra portadora óptica que se ha mantenido intacta. Una vez combinadas, éstas son fotodetectadas para ser transmitidas inalámbricamente. En la tercera parte de esta tesis, se investiga el uso de un esquema de diversidad en polarización junto a un receptor DQPSK integrado para la demodulación de la señal recibida. El esquema de diversidad en polarización está formado básicamente por dos bloques: un separador de polarización con el objetivo de separar la luz a la entrada del chip en sus dos componentes ortogonales; y un rotador de polarización. En lo que se refiere al receptor DQPSK propiamente dicho, se ha investigado y optimizado cada uno de los bloques funcionales que lo componen. Éstos son básicamente un divisor de potencia termo-ópticamente sintonizable basado en un interferómetro MZ, en serie con un interferómetro MZ que introduce un retardo de duración de un bit en uno de sus brazos, para obtener una correcta demodulación diferencial. El siguiente bloque que forma parte de nuestro receptor DQPSK es un 2x4 acoplador de interferencia multimodal actuando como un híbrido de 90 grados, cuyas salidas van a parar a dos fotodetectores balanceados de germanio. Las contribuciones principales de esta tesis han sido: ¿ Demostración de un filtro/demultiplexor con tres grados de sintonización con una relación de extinción superior a 25dB. ¿ Demostración de un rotador con una longitud de tan sólo 25µm y CMOS compatible. ¿ Demostración de un modulador DPSK a una velocidad máxima de 20 Gbit/s. ¿ Demostración de un demodulador DQPSK a una velocidad máxima de 20 Gbit/s.Due to the relentless emergence of multifunction mobile devices with applications that require increasingly greater bandwidth at anytime and anywhere, future access networks must be capable of providing both wireless and wired services. The use of optical communications systems as transport medium of wireless signals over fiber radio links is a steady solution to be taken into account. This will make possible a convergence to an optical domain reducing and alleviating the bottleneck between wireless access standards and current wired access. In this thesis, as part of the objectives of the European project HELIOS in which it is framed, we have investigated and developed the basic functional blocks needed to achieve an integrated photonic transceiver working in the range of millimetre wavelengths, and using robust modulation formats that best fit the scope considered. The work presented in this thesis can be basically divided into three parts. The first one provides an overview of the benefits of using silicon photonics for the development of wireless links at rates of Gbps, and the state of the art of the transceivers reported by the most important research groups in order to meet the increasingly demanding needs¿ market. The second part focuses on the study and development of millimetre-wave integrated transmitter. First we provide a brief theoretical introduction of the operation principles of the devices involved in the transmitter such as a modulation formats, focusing on the phase shift keying (PSK) which is the one that will be used, particularly the (differential) quadrature phase shift keying ((D) QPSK). We also present the building blocks involved in our transmitter and we set the specifications that must be met by these devices in order to achieve an error-free transmission. The transmitter includes a filter/demultiplexer which must separate two optical carriers 60 GHz separated. One of these optical carriers is modulated by passing through a DQPSK Mach-Zehnder-based modulator (MZM) by arranging two MZMs in a nested configuration. Using a combiner, the modulated optical signal and the un-modulated carrier are combined and photodetected to be transmitted wirelessly. In the third part of this thesis, we investigate the use of a polarization diversity scheme with an integrated DQPSK receiver for demodulating of the wireless signal. The polarization diversity scheme basically consists of two blocks: a polarization splitter in order to separate the random polarization state of the incoming light into its two orthogonal components, and a polarization rotator. Regarding the DQPSK receiver itself, all the functional blocks that comprise it have been investigated and optimized. It basically includes a thermo-optically tunable MZ interferometer power splitter, in series with a MZ interferometer that introduces, in one of its arms, a delay of one bit length in order to obtain a correct differential demodulation. The next building block of our DQPSK receiver is a 2x4 multimode interference coupler acting as a 90 degree hybrid, whose outputs are connected to two balanced germanium photodetectors. The main contributions of this thesis are: ¿ Demonstration of a filter/demultiplexer with three degrees of tuning and an extinction ratio greater than 25dB. ¿ Demonstration of a polarization rotator with a length of only 25¿m and CMOS compatible. ¿ Demonstration of a DPSK modulator at a maximum rate of 20 Gbit/s. ¿ Demonstration of a DQPSK demodulator to a maximum rate of 20 Gbit/s.Aamer, M. (2013). Development of an integrated silicon photonic transceiver for access networks [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/31649TESI

    1D Photonic Crystals: Principles and Applications in Silicon Photonics

    Get PDF
    One-dimension (1D) photonic crystals have been widely used in silicon photonics due to its simple structure and multiple working regimes: diffraction, Bragg reflection, and sub-wavelength regimes. Thanks to recent development of photonic technologies and high-resolution lithography, many 1D photonic crystal-assisted silicon integrated devices have been proposed and demonstrated to further increase integration density and improve device performance. This chapter first presents some fundamentals of 1D photonic crystals. An overview of the applications of 1D photonic crystals in silicon photonics is then given including grating couplers, waveguide crossings, multimode interference couplers, polarization-independent directional couplers, hybrid lasers, polarizers, and high-order mode filters, among others. Particular attention is paid to providing insight into the design strategies for these devices
    corecore