161 research outputs found

    Study on Analog Front End of Passive UHF RFID Transponder

    Get PDF
    In this paper, an overview of passive Ultra High Frequency (UHF) Radio Frequency Identification (RFID) is presented. This literature review emphasis on the analog front end part of the RFID transponder based on several published papers conducted by previous researchers. A passive UHF RFID transponder chip design was proposed using 0.18 μm standard CMOS process. It is estimated to have power of 1μW and high efficiency that greater than 32%. This design will work in the range of frequency between 900MHz to 960MHz

    A Review Of Implementing Adc In Rfid Sensor

    Get PDF
    Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)The general considerations to design a sensor interface for passive RFID tags are discussed. This way, power and timing constraints imposed by ISO/IEC 15693 and ISO/IEC 14443 standards to HF RFID tags are explored. A generic multisensor interface is proposed and a survey analysis on the most suitable analog-to-digital converters for passive RFID sensing applications is reported. The most appropriate converter type and architecture are suggested. At the end, a specific sensor interface for carbon nanotube gas sensors is proposed and a brief discussion about its implemented circuits and preliminary results is made.Region Rhone-Alpes (France)CNPq (Brazil)INCT/NAMITEC (Brazil)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq

    A Review Of Implementing Adc In Rfid Sensor

    Get PDF
    Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)The general considerations to design a sensor interface for passive RFID tags are discussed. This way, power and timing constraints imposed by ISO/IEC 15693 and ISO/IEC 14443 standards to HF RFID tags are explored. A generic multisensor interface is proposed and a survey analysis on the most suitable analog-to-digital converters for passive RFID sensing applications is reported. The most appropriate converter type and architecture are suggested. At the end, a specific sensor interface for carbon nanotube gas sensors is proposed and a brief discussion about its implemented circuits and preliminary results is made.Region Rhone-Alpes (France)CNPq (Brazil)INCT/NAMITEC (Brazil)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq

    A Review of Implementing ADC in RFID Sensor

    Get PDF
    The general considerations to design a sensor interface for passive RFID tags are discussed. This way, power and timing constraints imposed by ISO/IEC 15693 and ISO/IEC 14443 standards to HF RFID tags are explored. A generic multisensor interface is proposed and a survey analysis on the most suitable analog-to-digital converters for passive RFID sensing applications is reported. The most appropriate converter type and architecture are suggested. At the end, a specific sensor interface for carbon nanotube gas sensors is proposed and a brief discussion about its implemented circuits and preliminary results is made

    Nanopower CMOS transponders for UHF and microwave RFID systems

    Get PDF
    At first, we present an analysis and a discussion of the design options and tradeoffs for a passive microwave transponder. We derive a set of criteria for the optimization of the voltage multiplier, the power matching network and the backscatter modulator in order to optimize the operating range. In order to match the strictly power requirements, the communication protocol between transponder and reader has been chosen in a convenient way, in order to make the architecture of the passive transponder very simple and then ultra-low-power. From the circuital point of view, the digital section has been implemented in subthreshold CMOS logic with very low supply voltage and clock frequency. We present different solutions to supply power to the transponder, in order to keep the power consumption in the deep sub-µW regime and to drastically reduce the huge sensitivity of the subthreshold logic to temperature and process variations. Moreover, a low-voltage and low-power EEPROM in a standard CMOS process has been implemented. Finally, we have presented the implementation of the entire passive transponder, operating in the UHF or microwave frequency range

    Smart RFID Tags

    Get PDF

    Antenna Design for Semi-Passive UHF RFID Transponder with Energy Harvester

    Get PDF
    A novel microstrip antenna which is dedicated to UHF semi-passive RFID transponders with an energy harvester is presented in this paper. The antenna structure designed and simulated by using Mentor Graphics HyperLynx 3D EM software is described in details. The modeling and simulation results along with comparison with experimental data are analyzed and concluded. The main goal of the project is the need to eliminate a traditional battery form the transponder structure. The energy harvesting block, which is used instead, converts ambient energy (electromagnetic energy of typical radio communication system) into electrical power for internal circuitry. The additional function (gathering extra energy) of the transponder antenna causes the necessity to create new designs in this scope

    Design And Implementation Of An X-Band Passive Rfid Tag

    Get PDF
    This research presents a novel fully integrated energy harvester, matching network, matching network,matching network, matching network,matching network, matching network, matching network, multi-stage RF-DC rectifier, mode selector, RC oscillator, LC oscillator, and X-band power amplifier implemented in IBM 0.18-µm RF CMOS technology. We investigated different matching schemes, antennas, and rectifiers with focus on the interaction between building blocks. Currently the power amplifier gives the maximum output power of 5.23 dBm at 9.1GHz. The entire RFID tag circuit was designed to operate in low power consumption. Voltage sensor circuit which generates the enable signal was designed to operate in very low current. All the test blocks of the RFID tag were tested. The smaller size and the cost of the RFID tag are critical for widespread adoption of the technology. The cost of the RFID tag can be lowered by implementing an on-chip antenna. We were able to develop, fabricate, and implement a fully integrated RFID tag in a smaller size (3 mm X 1.5 mm) than the existing tags. With further modifications, this could be used as a commercial low cost RFID tag

    A Novel Micro Piezoelectric Energy Harvesting System

    Get PDF
    (Doktora) -- İstanbul Teknik Üniversitesi, Fen Bilimleri Enstitüsü, 2007(PhD) -- İstanbul Technical University, Institute of Science and Technology, 2007Bu tezde yeni bir titreşim temelli mikro enerji harmanlayıcı sistemi önerilmiştir. Titreşimler ve ani hareketler, mekanik yapının sadece eğilmesine değil aynı zamanda gerilmesine yol açar, bu sayede sistem doğrusal olmayan bölgede çalışır. İnce piezoelektrik film tabakası mekanik stresi elektrik enerjisine çevirir. Mikrowatt mertebesinde güç seviyeleri mm3’lük aletlerle elde edilebilir, bu da güneş panellerinde elde edilen güç yoğunlukları kadar yüksektir. Algılayıcı kabiliyeti sayesinde bilgi depolayabilen, kum tanesi büyüklüğünde olan ve üretiminde kullanılan temel malzeme silikon olan bu aletler “zeki kum” olarak isimlendirilmiştir. Mekanik yapının modellenmesi ve tasarımı geliştirilmiş ve üretim sonuçları da ayrıca verilmiştir. Sistemin bilgi gönderebilmesi ve alabilmesi amacıyla iyi bilinen RFID teknolojisi tabanlı bir kablosuz haberleşme yöntemi önerilmiştir. Bu bağlamda, paket taşımacılığında sürekli ivme denetleme, sınır güvenliği için kendinden beslemeli algılayıcılar, çabuk bozulan yiyeceklerin taşımacılığında sıcaklık denetleme ve pilsiz kalp atışı algılayıcı gibi birçok uygulama önerilmiştir.In this thesis, a novel, vibration based micro energy harvester system is proposed. Vibrations or sudden movements cause the mechanical structure does not only bend but also stretch, thus working in non-linear regime. The piezoelectric thin film layer converts the mechanical stress into the electrical energy. Microwatts of power can be achieved with a mm3 device which yields a high power density levels on the order of the solar panels. This device is named “smart sand”, because it has also sensor capabilities that can store information, its size is almost a sand grain and the main material used for the fabrication is silicon. The modeling and design of the mechanical structure has been developed and fabrication results have also been given in the thesis. In order for the system to send and receive the information, a wireless communication scheme is proposed which is based on the well-known RFID technology. In this concept, several applications are proposed such as continuous acceleration monitoring in package delivery, self-powered sensors for homeland security, temperature monitoring of the perishable food item delivery and a batteryless heart rate sensor.DoktoraPh

    Capacitive coupled RFID tag using a new dielectric droplet encapsulation approach

    Get PDF
    Radio frequency identification (RFID) is a well-known and fast-growing technology used to identify people, animals and products. RFID tags are used to replace bar codes in a wide range of applications, to mention just a few, retail, transportation, logistics and healthcare. The two main driving aspects for most of research and development projects concerning RFID tags are the reduction of assembly costs and the downsizing of microchips. In that respect and considering an Industry 4.0 scenario, the study of a new assembly approach for passive and high frequency RFID tags has been proposed and studied in this thesis. In this new approach, which is based on the inkjet printing technology, a specifically designed radio frequency integrated circuit (RFIC) will be delivered, inside a liquid dielectric droplet, onto the antenna and no longer placed and oriented precisely as it happens nowadays with pick-and-place and flip chip machines. After a landing phase, the liquid droplet (with the encapsulated chip) will self-aligns with respect to the contact thanks to capillary forces driven by specifically designed wetting conditions on the substrate of the antenna. Finally, with few additional steps, the complete RFID tag is created. This research project brings to light a considerable simplification and a very high potential of parallelization, compatible with large volume manufacturing methods, in comparison to nowadays existing technologies. This may substantially drive down the fabrication costs. An in-depth analysis of electrical performances have been carefully undertaken and compliance with the ISO/IEC 144443 standard has been verified. Mathematical models have been developed showing fundamental limits for the maximum tag reading range and power requirements of the RFID reader
    corecore