2,778 research outputs found

    Photon Counting and Direct ToF Camera Prototype Based on CMOS SPADs

    Get PDF
    This paper presents a camera prototype for 2D/3D image capture in low illumination conditions based on single-photon avalanche-diode (SPAD) image sensor for direct time-offlight (d-ToF). The imager is a 64×64 array with in-pixel TDC for high frame rate acquisition. Circuit design techniques are combined to ensure successful 3D image capturing under low sensitivity conditions and high level of uncorrelated noise such as dark count and background illumination. Among them an innovative time gated front-end for the SPAD detector, a reverse start-stop scheme and real-time image reconstruction at Ikfps are incorporated by the imager. To the best of our knowledge, this is the first ToF camera based on a SPAD sensor fabricated and proved for 3D image reconstruction in a standard CMOS process without any opto-flavor or high voltage option. It has a depth resolution of 1cm at an illumination power from less than 6nW/mm 2 down to 0.1nW/mm 2 .Office of Naval Research (USA) N000141410355Ministerio de Economía y Competitividad TEC2015-66878-C3- 1-RJunta de Andalucía P12-TIC 233

    A CMOS 0.18ÎŒm 64×64 single photon image sensor with in-pixel 11b time-to-digital converter

    Get PDF
    The design and characterization of a CMOS 64×64 single-photon avalanche-diode (SPAD) array with in-pixel 11b time-to-digital converter (TDC) is presented. It is targeted for time-resolved imaging, in particular 3D imaging. The achieved pixel pitch is 64ÎŒm with a fill factor of 3.5%. The chip was fabricated in a 0.18ÎŒm standard CMOS technology and implements a double functionality: Time-of-Flight estimation and photon counting. The imager features a programmable time resolution for the array of TDCs from 625ps down to 145ps. The measured accuracy of the minimum time bin is lower than ±1LSB DNL and 1.7LSB INL. The TDC jitter over the full dynamic range is less than 1LSB. Die-to-die process variation and temperature are discarded by auto-calibration. Fast quenching/restore circuit on each pixel lowers the power consumption by limiting the avalanche currents. Time gatedoperation is possible as well.Office of Naval Research (USA) N000141410355Ministerio de EconomĂ­a y Competitividad TEC2012-38921- C02, IPT- 2011-1625-430000, IPC- 20111009 CDTIJunta de AndalucĂ­a TIC 2012- 233

    Discrete-Time Mixing Receiver Architecture for RF-Sampling Software-Defined Radio

    Get PDF
    A discrete-time (DT) mixing architecture for RF-sampling receivers is presented. This architecture makes RF sampling more suitable for software-defined radio (SDR) as it achieves wideband quadrature demodulation and wideband harmonic rejection. The paper consists of two parts. In the first part, different downconversion techniques are classified and compared, leading to the definition of a DT mixing concept. The suitability of CT-mixing and RF-sampling receivers to SDR is also discussed. In the second part, we elaborate the DT-mixing architecture, which can be realized by de-multiplexing. Simulation shows a wideband 90° phase shift between I and Q outputs without systematic channel bandwidth limitation. Oversampling and harmonic rejection relaxes RF pre-filtering and reduces noise and interference folding. A proof-of-concept DT-mixing downconverter has been built in 65 nm CMOS, for 0.2 to 0.9 GHz RF band employing 8-times oversampling. It can reject 2nd to 6th harmonics by 40 dB typically and without systematic channel bandwidth limitation. Without an LNA, it achieves a gain of -0.5 to 2.5 dB, a DSB noise figure of 18 to 20 dB, an IIP3 = +10 dBm, and an IIP2 = +53 dBm, while consuming less than 19 mW including multiphase clock generation

    Built-in self test of high speed analog-to-digital converters

    Get PDF
    Signals found in nature need to be converted to the digital domain through analog-to-digital converters (ADCs) to be processed by digital means [1]. For applications in communication and measurement [2], [3], high conversion rates are required. With advances of the complementary metal oxide semiconductor (CMOS) technology, the conversion rates of CMOS ADCs are now well beyond the gigasamples per second (GS/s) range, but only moderate resolutions are required [4]. These ADCs need to be tested after fabrication and, if possible, during field operation. The test costs are a very significant fraction of their production cost [5]. This is mainly due to lengthy use of very expensive automated test equipment (ATE) to apply specific test stimuli to the devices under test (DUT) and to collect and analyze their responses.publishe

    Phase Locked Loop Test Methodology

    Get PDF
    Phase locked loops are incorporated into almost every large-scale mixed signal and digital system on chip (SOC). Various types of PLL architectures exist including fully analogue, fully digital, semi-digital, and software based. Currently the most commonly used PLL architecture for SOC environments and chipset applications is the Charge-Pump (CP) semi-digital type. This architecture is commonly used for clock synthesis applications, such as the supply of a high frequency on-chip clock, which is derived from a low frequency board level clock. In addition, CP-PLL architectures are now frequently used for demanding RF (Radio Frequency) synthesis, and data synchronization applications. On chip system blocks that rely on correct PLL operation may include third party IP cores, ADCs, DACs and user defined logic (UDL). Basically, any on-chip function that requires a stable clock will be reliant on correct PLL operation. As a direct consequence it is essential that the PLL function is reliably verified during both the design and debug phase and through production testing. This chapter focuses on test approaches related to embedded CP-PLLs used for the purpose of clock generation for SOC. However, methods discussed will generally apply to CP-PLLs used for other applications

    Analysis and equalization of data-dependent jitter

    Get PDF
    Data-dependent jitter limits the bit-error rate (BER) performance of broadband communication systems and aggravates synchronization in phase- and delay-locked loops used for data recovery. A method for calculating the data-dependent jitter in broadband systems from the pulse response is discussed. The impact of jitter on conventional clock and data recovery circuits is studied in the time and frequency domain. The deterministic nature of data-dependent jitter suggests equalization techniques suitable for high-speed circuits. Two equalizer circuit implementations are presented. The first is a SiGe clock and data recovery circuit modified to incorporate a deterministic jitter equalizer. This circuit demonstrates the reduction of jitter in the recovered clock. The second circuit is a MOS implementation of a jitter equalizer with independent control of the rising and falling edge timing. This equalizer demonstrates improvement of the timing margins that achieve 10/sup -12/ BER from 30 to 52 ps at 10 Gb/s

    A high speed Tri-Vision system for automotive applications

    Get PDF
    Purpose: Cameras are excellent ways of non-invasively monitoring the interior and exterior of vehicles. In particular, high speed stereovision and multivision systems are important for transport applications such as driver eye tracking or collision avoidance. This paper addresses the synchronisation problem which arises when multivision camera systems are used to capture the high speed motion common in such applications. Methods: An experimental, high-speed tri-vision camera system intended for real-time driver eye-blink and saccade measurement was designed, developed, implemented and tested using prototype, ultra-high dynamic range, automotive-grade image sensors specifically developed by E2V (formerly Atmel) Grenoble SA as part of the European FP6 project – sensation (advanced sensor development for attention stress, vigilance and sleep/wakefulness monitoring). Results : The developed system can sustain frame rates of 59.8 Hz at the full stereovision resolution of 1280 × 480 but this can reach 750 Hz when a 10 k pixel Region of Interest (ROI) is used, with a maximum global shutter speed of 1/48000 s and a shutter efficiency of 99.7%. The data can be reliably transmitted uncompressed over standard copper Camera-Link¼ cables over 5 metres. The synchronisation error between the left and right stereo images is less than 100 ps and this has been verified both electrically and optically. Synchronisation is automatically established at boot-up and maintained during resolution changes. A third camera in the set can be configured independently. The dynamic range of the 10bit sensors exceeds 123 dB with a spectral sensitivity extending well into the infra-red range. Conclusion: The system was subjected to a comprehensive testing protocol, which confirms that the salient requirements for the driver monitoring application are adequately met and in some respects, exceeded. The synchronisation technique presented may also benefit several other automotive stereovision applications including near and far-field obstacle detection and collision avoidance, road condition monitoring and others.Partially funded by the EU FP6 through the IST-507231 SENSATION project.peer-reviewe

    A fully integrated multiband frequency synthesizer for WLAN and WiMAX applications

    Get PDF
    This paper presents a fractional N frequency synthesizer which covers WLAN and WiMAX frequencies on a single chip. The synthesizer is fully integrated in 0.35ÎŒm BiCMOS AMS technology except crystal oscillator. The synthesizer operates at four frequency bands (3.101-3.352GHz, 3.379-3.727GHz, 3.7-4.2GHz, 4.5-5.321GHz) to provide the specifications of 802.16 and 802.11 a/b/g/y. A single on-chip LC - Gm based VCO is implemented as the core of this synthesizer. Different frequency bands are selected via capacitance switching and fine tuning is done using varactor for each of these bands. A bandgap reference circuit is implemented inside of this charge pump block to generate temperature and power supply independent reference currents. Simulated settling time is around 10ÎŒsec. Total power consumption is measured to be 118.6mW without pad driving output buffers from a 3.3V supply. The phase noise of the oscillator is lower than -116.4dbc/Hz for all bands. The circuit occupies 2.784 mm2 on Si substrate, including DC, Digital and RF pads
    • 

    corecore