718 research outputs found

    Smart and high-performance digital-to-analog converters with dynamic-mismatch mapping

    Get PDF
    The trends of advanced communication systems, such as the high data rate in multi-channel base-stations and digital IF conversion in software-defined radios, have caused a continuously increasing demand for high performance interface circuits between the analog and the digital domain. A Digital-to-Analog converter (DAC) is such an interface circuit in the transmitter path. High bandwidth, high linearity and low noise are the main design challenges in high performance DACs. Current-steering is the most suitable architecture to meet these performance requirements. The aim of this thesis is to develop design techniques for high-speed high-performance Nyquist current-steering DACs, especially for the design of DACs with high dynamic performance, e.g. high linearity and low noise. The thesis starts with an introduction to DACs in chapter 2. The function in time/frequency domain, performance specifications, architectures and physical implementations of DACs are brie y discussed. Benchmarks of state-of-the-art published Nyquist DACs are also given. Chapter 3 analyzes performance limitations by various error sources in Nyquist current-steering DACs. The outcome shows that in the frequency range of DC to hundreds of MHz, mismatch errors, i.e. amplitude and timing errors, dominate the DAC linearity. Moreover, as frequencies increase, the effect of timing errors becomes more and more dominant over that of amplitude errors. Two new parameters, i.e. dynamic-INL and dynamic-DNL, are proposed to evaluate the matching of current cells. Compared to the traditional static-INL/DNL, the dynamic-INL/DNL can describe the matching between current cells more accurately and completely. By reducing the dynamic-INL/DNL, the non-linearities caused by all mismatch errors can be reduced. Therefore, both the DAC static and dynamic performance can be improved. The dynamic-INL/DNL are frequency-dependent parameters based on the measurement modulation frequency fm. This fm determines the weight between amplitude and timing errors in the dynamic-INL/DNL. Actually, this gives a freedom to optimize the DAC performance for different applications, e.g. low fm for low frequency applications and high fm for high frequency applications. Chapter 4 summarizes the existing design techniques for intrinsic and smart DACs. Due to technology limitations, it is diffcult to reduce the mismatch errors just by intrinsic DAC design with reasonable chip area and power consumption. Therefore, calibration techniques are required. An intrinsic DAC with calibration is called a smart DAC. Existing analog calibration techniques mainly focus on current source calibration, so that the amplitude error can be reduced. Dynamic element matching is a kind of digital calibration technique. It can reduce the non-linearities caused by all mismatch errors, but at the cost of an increased noise oor. Mapping is another kind of digital calibration technique and will not increase the noise. Mapping, as a highly digitized calibration technique, has many advantages. Since it corrects the error effects in the digital domain, the DAC analog core can be made clean and compact, which reduces the parasitics and the interference generated in the analog part. Traditional mapping is static-mismatch mapping, i.e. mapping only for amplitude errors, which many publications have already addressed on. Several concepts have also been proposed on mapping for timing errors. However, just mapping for amplitude or timing error is not enough to guarantee a good performance. This work focuses on developing mapping techniques which can correct both amplitude and timing errors at the same time. Chapter 5 introduces a novel mapping technique, called dynamic-mismatch mapping (DMM). By modulating current cells as square-wave outputs and measuring the dynamic-mismatch errors as vectors, DMM optimizes the switching sequence of current cells based on dynamic-mismatch error cancelation such that the dynamic-INL can be reduced. After reducing the dynamic-INL, the non-linearities caused by both amplitude and timing errors can be significantly reduced in the whole Nyquist band, which is confirmed by Matlab behavioral-level Monte-Carlo simulations. Compared to traditional static-mismatch mapping (SMM), DMM can reduce the non-linearities caused by both amplitude and timing errors. Compared to dynamic element matching (DEM), DMM does not increase the noise floor. The dynamic-mismatch error has to be accurately measured in order to gain the maximal benefit from DMM. An on-chip dynamic-mismatch error sensor based on a zero-IF receiver is proposed in chapter 6. This sensor is especially designed for low 1/f noise since the signal is directly down-converted to DC. Its signal transfer function and noise analysis are also given and con??rmed by transistor-level simulations. Chapter 7 gives a design example of a 14-bit current-steering DAC in 0.14mum CMOS technology. The DAC can be configured in an intrinsic-DAC mode or a smart-DAC mode. In the intrinsic-DAC mode, the 14-bit 650MS/s intrinsic DAC core achieves a performance of SFDR>65dBc across the whole 325MHz Nyquist band. In the smart-DAC mode, compared to the intrinsic DAC performance, DMM improves the DAC performance in the whole Nyquist band, providing at least 5dB linearity improvement at 200MS/s and without increasing the noise oor. This 14-bit 200MS/s smart DAC with DMM achieves a performance of SFDR>78dBc, IM

    An interleaved full nyquist high-speed DAC technique

    Get PDF
    A 9 bit 11 GS/s DAC is presented that achieves an SFDR of more than 50 dB across Nyquist and IM3 below 50 dBc across Nyquist. The DAC uses a two-times interleaved architecture to suppress spurs that typically limit DAC performance. Despite requiring two current-steering DACs for the interleaved architecture, the relative low demands on performance of these sub-DACs imply that they can be implemented in an area and power efficient way. Together with a quad-switching architecture to decrease demands on the power supply and bias generation and employing the multiplexer switches in triode, the total core area is only 0.04 mm2 while consuming 110 mW from a single 1.0 V supply

    Wide-band mixing DACs with high spectral purity

    Get PDF

    A CMOS Digital Beamforming Receiver

    Full text link
    As the demand for high speed communication is increasing, emerging wireless techniques seek to utilize unoccupied frequency ranges, such as the mm-wave range. Due to high path loss for higher carrier frequencies, beamforming is an essential technology for mm-wave communication. Compared to analog beamforming, digital beamforming provides multiple simultaneous beams without an SNR penalty, is more accurate, enables faster steering, and provides full access to each element. Despite these advantages, digital beamforming has been limited by high power consumption, large die area, and the need for large numbers of analog-to-digital converters. Furthermore, beam squinting errors and ADC non-linearity limit the use of large digital beamforming arrays. We address these limitations. First, we address the power and area challenge by combining Interleaved Bit Stream Processing (IL-BSP) with power and area efficient Continuous-Time Band-Pass Delta-Sigma Modulators (CTBPDSMs). Compared to conventional DSP, IL-BSP reduces both power and area by 80%. Furthermore, the new CTBPDSM architecture reduces ADC area by 67% and the energy per conversion by 43% compared to previous work. Second, we introduce the first integrated digital true-time-delay digital beamforming receiver to resolve the beam squinting. True-time-delay beamforming eliminates squinting, making it an ideal choice for large-array wide-bandwidth applications. Third, we present a new current-steering DAC architecture that provides a constant output impedance to improve ADC linearity. This significantly reduces distortion, leading to an SFDR improvement of 13.7 dB from the array. Finally, we provide analysis to show that the ADC power consumption of a digital beamformer is comparable to that of the ADC power for an analog beamformer. To summarize, we present a prototype phased array and a prototype timed array, both with 16 elements, 4 independent beams, a 1 GHz center frequency, and a 100 MHz bandwidth. Both the phased array and timed array achieve nearly ideal conventional and adaptive beam patterns, including beam tapering and adaptive nulling. With an 11.2 dB array gain, the phased array achieves a 58.5 dB SNDR over a 100 MHz bandwidth, while consuming 312 mW and occupying 0.22 mm2. The timed array achieves an EVM better than -37 dB for 5 MBd QAM-256 and QAM-512, occupies only 0.29 mm2, and consumes 453 mW.PHDElectrical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/147716/1/smjang_1.pd

    New device matching strategies for high-precision analog and mixed-signal circuits

    Get PDF
    For several decades, technology scaling has brought many orders of magnitude improvements in digital CMOS performance and similar economic benefits to consumers. Feature size is quickly approaching nanometer scale, and the associated large variability imposes grand challenges in achieving reliable and robust operation. This is especially so for high-precision analog and mixed-signal circuits since they have always relied on accurate device matching which will not be available in nanometer CMOS or emerging technologies. This dissertation is aiming to develop design methodologies for overcoming such grand challenges without the conventional matching requirements. The underlining hypothesis is that, from a population of devices with significant variability, correct interconnection and sequencing can produce an effective system level matching that is several orders of magnitude better than the original devices. The optimal solution is non-deterministic polynomial-time hard but a simple ordered element matching strategy based on ordered statistics produces dramatically improved matching. Practical implementation of the new matching strategy is demonstrated on a 15-bit binary-weighted current-steering digital-to-analog converter design in a 130nm CMOS technology. The core area of the chip is less than 0.42mm2, among which the MSB current source area is well within 0.021mm2. Measurement results have shown that the differential nonlinearity and integral nonlinearity can be reduced from 9.85LSB and 17.41LSB to 0.34LSB and 0.77LSB, respectively

    Dynamic calibration of current-steering DAC

    Get PDF
    The demand for high-speed communication systems has dramatically increased during the last decades. Working as an interface between the digital and analog world, Digital-to-Analog converters (DACs) are becoming more and more important because they are a key part which limits the accuracy and speed of an overall system. Consequently, the requirements for high-speed and high-accuracy DACs are increasingly demanding. It is well recognized that dynamic performance of the DACs degrades dramatically with increasing input signal frequencies and update rates. The dynamic performance is often characterized by the spurious free dynamic range (SFDR). The SFDR is determined by the spectral harmonics, which are attributable to system nonlinearities.;A new calibration approach is presented in this thesis that compensates for the dynamic errors in performance. In this approach, the nonlinear components of the input dependent and previous input code dependent errors are characterized, and correction codes that can be used to calibrate the DAC for these nonlinearities are stored in a two-dimensional error look-up table. A series of pulses is generated at run time by addressing the error look-up table with the most significant bits of the Boolean input and by using the corresponding output to drive a calibration DAC whose output is summed with the original DAC output. The approach is applied at both the behavioral level and the circuit level in current-steering DAC.;The validity of this approach is verified by simulation. These simulations show that the dynamic nonlinearities can be dramatically reduced with this calibration scheme. The simulation results also show that this calibration approach is robust to errors in both the width and height of calibration pulses.;Experimental measurement results are also provided for a special case of this dynamic calibration algorithm that show that the dynamic performance can be improved through dynamic calibration, provided the mean error values in the table are close to their real values

    A 12-bit@40MS/s Gm-C Cascade 3-2 Continuous-Time Sigma-Delta Modulator

    Get PDF
    This paper reports the transistor-level design of a 130-nm CMOS continuous-time cascade ΣΔ modulator. The modulator topology, directly synthesized in the continuous-time domain, consists of a third-order stage followed by a second-order stage, both realized using Gm-C integrators and a 4-bit internal quantizer. Dynamic element matching is included to compensate for the non-linearity of the feedback digital-to-analog converters. The estimated power consumption is 70 mW from a 1.2-V supply voltage when is clocked at 240MHz. CADENCE-SPECTRE simulations show 12-bit effective resolution within a 20-MHz signal bandwidth.This work has been supported by the Spanish Ministry of Science and Education (with support from the European Regional Development Fund) under contract TEC2004-01752/MIC.Peer reviewe

    Broadband Continuous-time MASH Sigma-Delta ADCs

    Get PDF

    Design of Energy-Efficient A/D Converters with Partial Embedded Equalization for High-Speed Wireline Receiver Applications

    Get PDF
    As the data rates of wireline communication links increases, channel impairments such as skin effect, dielectric loss, fiber dispersion, reflections and cross-talk become more pronounced. This warrants more interest in analog-to-digital converter (ADC)-based serial link receivers, as they allow for more complex and flexible back-end digital signal processing (DSP) relative to binary or mixed-signal receivers. Utilizing this back-end DSP allows for complex digital equalization and more bandwidth-efficient modulation schemes, while also displaying reduced process/voltage/temperature (PVT) sensitivity. Furthermore, these architectures offer straightforward design translation and can directly leverage the area and power scaling offered by new CMOS technology nodes. However, the power consumption of the ADC front-end and subsequent digital signal processing is a major issue. Embedding partial equalization inside the front-end ADC can potentially result in lowering the complexity of back-end DSP and/or decreasing the ADC resolution requirement, which results in a more energy-effcient receiver. This dissertation presents efficient implementations for multi-GS/s time-interleaved ADCs with partial embedded equalization. First prototype details a 6b 1.6GS/s ADC with a novel embedded redundant-cycle 1-tap DFE structure in 90nm CMOS. The other two prototypes explain more complex 6b 10GS/s ADCs with efficiently embedded feed-forward equalization (FFE) and decision feedback equalization (DFE) in 65nm CMOS. Leveraging a time-interleaved successive approximation ADC architecture, new structures for embedded DFE and FFE are proposed with low power/area overhead. Measurement results over FR4 channels verify the effectiveness of proposed embedded equalization schemes. The comparison of fabricated prototypes against state-of-the-art general-purpose ADCs at similar speed/resolution range shows comparable performances, while the proposed architectures include embedded equalization as well

    NONLINEARITY COMPENSATION AND HIGH VOLTAGE PROTECTION OF CURRENT STEERING DAC

    Get PDF
    Department of Electrical EngineeringCurrent steering digital to analog converter (DAC) always suffer from lots of problem like mismatch errors and timing related dynamic errors. Diverse studies from art-of-the-state suggest methods for compensate some of these errors. Typical examples of compensation methods are segmentation, quad-quadrant (Q2) random walk and dynamic element matching (DEM). These compensation methods reduce lots of fundamental errors while used together with other proposed technique in this thesis. This thesis propose two structure. One structure is related with industrial applications. Industrial application usually requires 10V swing for voltage driving and 20mA swing for current driving. Conventional industrial DAC satisfy these swing requirement with high voltage driving amplifier. But driving amplifier consumes additional power and adds its own distortion to output signal. High voltage protection structure is proposed to satisfy industrial swing requirement and solve the problems of driving amplifier combined DAC. Proposed high voltage protection structure decrease cost of manufacturing by decreasing number of high voltage transistor. Proposed structure also increases linearity by changing effective output impedance and decreases additional current consumption while satisfying industrial swing requirement. The other proposed structure is related with resolution improving. Recent current steering DAC becomes fast enough to cover over GHz range with developing technologies. However resolution is still limited by matching properties. Current steering DAC with resolution improving sigma-delta (?????) modulation is proposed. It increase resolution by noise shaping of ????? modulation while sacrificing speed. It still fast because recent current steering DAC is very fast. ????? modulator only randomize LSB side and shaping LSB related noise. Q2 random walk and DEM are also included to randomize MSB side and reduce MSB related noise. Two version of test chips are tested. 12bit random rotation-based binary-weighted (RRSB) DEM current steering DAC is implemented in 130nm compliment metal-oxide semiconductor (CMOS) process. Test result shows the effect of MSB side randomizing DEM from art-of-the-state. Proposed 14bit resolution improved DAC with high voltage protection is implemented in 180nm bipolar + compliment + double-diffused metal oxide semiconductor (BCDMOS) process. Test result verify performance improvement in frequency domain. Operation voltage and resolution of DAC can be changed by each proposed method. DAC can be applied to various application that require various operation voltage and resolution by using both method properly.ope
    corecore