15 research outputs found

    Étude et positionnement utilisant le réseau de capteur sans fil dans un environnement minier souterrain

    Get PDF
    La sécurité et la communication posent des problèmes majeurs auxquels il faut remédier dans les environnements hostiles comme les mines souterraines. Pour une communication fiable ainsi que pour tracer la position exacte d’un objet dans les mines souterraines, différentes technologies ont été déployé. Parmi ces dernières, le réseau de capteurs sans fil est considéré comme un outil prometteur pour les applications basées sur la localisation, à savoir, la surveillance des lieux, le repérage des mobiles et la navigation. En fait, les réseaux de capteur sans-fil fournissent une couverture d’une vaste gamme d’équipements fiables, efficaces, tolérants aux défaillances et évolutives. Cependant, les travaux de recherches précédents ont divisé la localisation en deux parties: les méthodes basées sur la portée et celles non-basées sur la portée. Où la première est précise et coûteuse tandis que la deuxième est présentée pour réduire la quantité d’énergie consommée du côté capteur dont les ressources sont limitées. Notre recherche se focalise sur la localisation basée sur la portée utilisant le réseau de capteurs sans fil dans les milieux internes et mines souterrains. Plusieurs techniques ont été proposées pour la localisation comme la réception de l'indicateur de force de signal (RSSI), le temps d'arrivée (TOA), la différence de temps d'arrivée (TDOA), l'angle d'arrivée (AOA). Bien que plusieurs travaux de recherches utilisant ces techniques aient été exécutés, l'approche de localisation à base de temps pour les environnements complexe comme la mine souterraine demeure limitée. Cette thèse offre de nouvelles solutions pour combler l’écart entre la localisation à base de temps et le réseau de capteurs sans fil à haute précision, pour l’environnement minier souterrain. De plus, nous avons utilisé une technologie émergente, à savoir les communications ultra-large bande, pour booster la performance et l'exactitude. Notre travail de recherche est subdivisé en deux principales parties : une partie simulation et une partie pratique. Dans la première, nous avons utilisé MATLAB pour faire les différentes simulations. La deuxième partie consiste en plusieurs mesures pratiques réalisées dans un environnement intérieur ainsi que dans une mine souterraine. Les résultats montrent une amélioration remarquable et une meilleure précision de la technique UWB à base de temps

    Visible Light Positioning using Received Signal Strength for Industrial Environments

    Get PDF
    There is a forecast for exceptional digital data traffic growth due to the digitisation of industrial applications using the internet of things. As a result, a great need for high bandwidth and faster transmission data rates for future wireless networks has emerged. One of the considered communication technologies that can assist in satisfying this demand is visible light communications (VLC). VLC is an emerging technology that uses the visible light spectrum by mainly utilising lightemitting diodes (LEDs) for simultaneous indoor lighting and high bandwidth wireless communication. Some of the applications of VLC are to provide high data rate internet in homes, offices, campuses, hospitals, and several other areas. One of these promising areas of application is for industrial wireless communications. The research project will provide a review of VLC applications intended for industrial applications with an emphasis on visible light positioning (VLP). In this research work, a three-dimensional (3D) positioning algorithm for calculating the location of a photodiode (PD) is presented. It solely works on measured powers from different LED sources and does not require any prior knowledge of the receiver’s height unlike other works in the literature. The performance of the proposed VLP algorithm in terms of positioning error is evaluated using two different trilateration algorithms, the Cayley–Menger determinant (CMD) and the Linear Least Squares (LLS) trilateration algorithms. The evaluation considers different scenarios, with and without receiver tilt, and with multipath reflections. Simulation results show that the CMD algorithm is more accurate and outperforms the LLS trilateration positioning algorithm. Furthermore, the proposed method has been experimentally assessed under two different LED configurations, with different degrees of receiver tilt, and in the presence of a fully stocked storage rack to examine the effect of multipath reflections on the performance of VLP systems. It was observed from simulations and experimental investigations that the widely used square LED-configuration results in position ambiguities for 3D systems while a non-lattice layout, such as a star-shaped configuration, is much more accurate. An experimental accuracy with a 3D median error of 10.5 cm was achieved using the CMD algorithm in a 4 m × 4 m × 4.1 m area with a horizontal receiver. Adding receiver tilt of 5◦ and 10◦ increases the median error by an average of 29% and 110%, respectively. The effect of reflections from the i storage rack has also been thoroughly examined using the two mentioned trilateration algorithms and showed to increase the 3D median positioning error by an average of 69% in the experimental testbed for the areas close to the storage rack. These results highlight the degrading effect of multipath reflections on VLP systems and the necessity to consider it when evaluating these systems. As the primary consideration for positioning systems in industrial environments is for mobile robots, the encouraging results in this thesis can be further improved though the use of a sensor fusion method

    Cooperative Radio Communications for Green Smart Environments

    Get PDF
    The demand for mobile connectivity is continuously increasing, and by 2020 Mobile and Wireless Communications will serve not only very dense populations of mobile phones and nomadic computers, but also the expected multiplicity of devices and sensors located in machines, vehicles, health systems and city infrastructures. Future Mobile Networks are then faced with many new scenarios and use cases, which will load the networks with different data traffic patterns, in new or shared spectrum bands, creating new specific requirements. This book addresses both the techniques to model, analyse and optimise the radio links and transmission systems in such scenarios, together with the most advanced radio access, resource management and mobile networking technologies. This text summarises the work performed by more than 500 researchers from more than 120 institutions in Europe, America and Asia, from both academia and industries, within the framework of the COST IC1004 Action on "Cooperative Radio Communications for Green and Smart Environments". The book will have appeal to graduates and researchers in the Radio Communications area, and also to engineers working in the Wireless industry. Topics discussed in this book include: • Radio waves propagation phenomena in diverse urban, indoor, vehicular and body environments• Measurements, characterization, and modelling of radio channels beyond 4G networks• Key issues in Vehicle (V2X) communication• Wireless Body Area Networks, including specific Radio Channel Models for WBANs• Energy efficiency and resource management enhancements in Radio Access Networks• Definitions and models for the virtualised and cloud RAN architectures• Advances on feasible indoor localization and tracking techniques• Recent findings and innovations in antenna systems for communications• Physical Layer Network Coding for next generation wireless systems• Methods and techniques for MIMO Over the Air (OTA) testin

    Cooperative Radio Communications for Green Smart Environments

    Get PDF
    The demand for mobile connectivity is continuously increasing, and by 2020 Mobile and Wireless Communications will serve not only very dense populations of mobile phones and nomadic computers, but also the expected multiplicity of devices and sensors located in machines, vehicles, health systems and city infrastructures. Future Mobile Networks are then faced with many new scenarios and use cases, which will load the networks with different data traffic patterns, in new or shared spectrum bands, creating new specific requirements. This book addresses both the techniques to model, analyse and optimise the radio links and transmission systems in such scenarios, together with the most advanced radio access, resource management and mobile networking technologies. This text summarises the work performed by more than 500 researchers from more than 120 institutions in Europe, America and Asia, from both academia and industries, within the framework of the COST IC1004 Action on "Cooperative Radio Communications for Green and Smart Environments". The book will have appeal to graduates and researchers in the Radio Communications area, and also to engineers working in the Wireless industry. Topics discussed in this book include: • Radio waves propagation phenomena in diverse urban, indoor, vehicular and body environments• Measurements, characterization, and modelling of radio channels beyond 4G networks• Key issues in Vehicle (V2X) communication• Wireless Body Area Networks, including specific Radio Channel Models for WBANs• Energy efficiency and resource management enhancements in Radio Access Networks• Definitions and models for the virtualised and cloud RAN architectures• Advances on feasible indoor localization and tracking techniques• Recent findings and innovations in antenna systems for communications• Physical Layer Network Coding for next generation wireless systems• Methods and techniques for MIMO Over the Air (OTA) testin

    Mobile and Wireless Communications

    Get PDF
    Mobile and Wireless Communications have been one of the major revolutions of the late twentieth century. We are witnessing a very fast growth in these technologies where mobile and wireless communications have become so ubiquitous in our society and indispensable for our daily lives. The relentless demand for higher data rates with better quality of services to comply with state-of-the art applications has revolutionized the wireless communication field and led to the emergence of new technologies such as Bluetooth, WiFi, Wimax, Ultra wideband, OFDMA. Moreover, the market tendency confirms that this revolution is not ready to stop in the foreseen future. Mobile and wireless communications applications cover diverse areas including entertainment, industrialist, biomedical, medicine, safety and security, and others, which definitely are improving our daily life. Wireless communication network is a multidisciplinary field addressing different aspects raging from theoretical analysis, system architecture design, and hardware and software implementations. While different new applications are requiring higher data rates and better quality of service and prolonging the mobile battery life, new development and advanced research studies and systems and circuits designs are necessary to keep pace with the market requirements. This book covers the most advanced research and development topics in mobile and wireless communication networks. It is divided into two parts with a total of thirty-four stand-alone chapters covering various areas of wireless communications of special topics including: physical layer and network layer, access methods and scheduling, techniques and technologies, antenna and amplifier design, integrated circuit design, applications and systems. These chapters present advanced novel and cutting-edge results and development related to wireless communication offering the readers the opportunity to enrich their knowledge in specific topics as well as to explore the whole field of rapidly emerging mobile and wireless networks. We hope that this book will be useful for students, researchers and practitioners in their research studies

    Kinematic State Estimation using Multiple DGPS/MEMS-IMU Sensors

    Get PDF
    Animals have evolved over billions of years and understanding these complex and intertwined systems have potential to advance the technology in the field of sports science, robotics and more. As such, a gait analysis using Motion Capture (MOCAP) technology is the subject of a number of research and development projects aimed at obtaining quantitative measurements. Existing MOCAP technology has limited the majority of studies to the analysis of the steady-state locomotion in a controlled (indoor) laboratory environment. MOCAP systems such as the optical, non-optical acoustic and non-optical magnetic MOCAP systems require predefined capture volume and controlled environmental conditions whilst the non-optical mechanical MOCAP system impedes the motion of the subject. Although the non-optical inertial MOCAP system allows MOCAP in an outdoor environment, it suffers from measurement noise and drift and lacks global trajectory information. The accuracy of these MOCAP systems are known to decrease during the tracking of the transient locomotion. Quantifying the manoeuvrability of animals in their natural habitat to answer the question “Why are animals so manoeuvrable?” remains a challenge. This research aims to develop an outdoor MOCAP system that will allow tracking of the steady-state as well as the transient locomotion of an animal in its natural habitat outside a controlled laboratory condition. A number of researchers have developed novel MOCAP systems with the same aim of creating an outdoor MOCAP system that is aimed at tracking the motion outside a controlled laboratory (indoor) environment with unlimited capture volume. These novel MOCAP systems are either not validated against the commercial MOCAP systems or do not have comparable sub-millimetre accuracy as the commercial MOCAP systems. The developed DGPS/MEMS-IMU multi-receiver fusion MOCAP system was assessed to have global trajectory accuracy of _0:0394m, relative limb position accuracy of _0:006497m. To conclude the research, several recommendations are made to improve the developed MOCAP system and to prepare for a field-testing with a wild animal from a family of a terrestrial megafauna

    On uncoordinated wireless ad-hoc networks:data dissemination over WIFI and cross-layer optimization for ultra wide band impulse radio

    Get PDF
    Emerging pervasive wireless networks, pocket switched networks, Internet of things, vehicular networks and even sensor networks present very challenging communication circumstances. They might involve up to several hundreds of wireless devices with mobility and intermittent connectivity. Centralized coordination in such networks is practically unfeasible. We deal with these challenge using two potential technologies: WIFI and Ultra Wide Band (UWB) Impulse Radio (IR) for medium and short communication range, respectively. Our main goal is to improve the communication performance and to make these networks sustainable in the absence of a centralized coordination. With WIFI, the goal is to design an environment-oblivious data dissemination protocol that holds in highly dynamic unpredictable wireless ad-hoc networks. To this end, we propose a complete design for a scope limited, multi-hop broadcast middleware, which is adapted to the variability of the ad-hoc environment and works in unlimited ad-hoc networks such as a crowd in a city, or car passengers in a busy highway system. We address practical problems posed by: the impossibility of setting the TTL correctly at all times, the poor performance of multiple access protocols in broadcast mode, flow control when there is no acknowledgment and scheduling of multiple concurrent broadcasts. Our design, called "Self Limiting Epidemic Forwarding" (SLEF), automatically adapts its behavior from single hop MAC layer broadcast to epidemic forwarding when the environment changes from being extremely dense to sparse, sporadically connected. A main feature of SLEF is a non-classical manipulation of the TTL field, which combines the usual decrement-when-sending to many very small decrements when receiving. Then, we identify vulnerabilities that are specific to epidemic forwarding. We address broadcast applications over wireless ad-hoc networks. Epidemic forwarding employs several mechanisms such as forwarding factor control and spread control, and each of them can be implemented using alternative methods. Thus, the existence of vulnerabilities is highly dependent on the methods used. We examine the links between them. We classify vulnerabilities into two categories: malicious and rational. We examine the effect of the attacks according to the number of attackers and the different network settings such as density, mobility and congestion. We show that malicious attacks are hard to achieve and their effects are scenario-dependent. In contrast, rational attackers always obtain a significant benefit. The evaluation is carried out using detailed realistic simulations over networks with up to 1000 nodes. We consider static scenarios, as well as vehicular networks. In order to validate our simulation results, we build a solid and widely adaptable experimental testbed for wireless networks. It is composed of 57 mobile wireless nodes equipped with WIFI interface. The adopted platform is OpenWrt, a Linux-like firmware, which makes the testbed robust and easily configurable. With UWB IR, the main problem we deal with is the presence of uncontrolled interference. Indeed, similarly to Code Division Multiple Access (CDMA) systems, signal acquisition with UWB IR signaling requires power control in the presence of interferers, which is very expensive in an uncoordinated system. We solve this problem through a cross-layer optimization: We propose a new signal acquisition method that is independent of the received signal power and we adapt the MAC layer accordingly. Our signal acquisition method is designed to solve the IUI (Inter-User Interference) that occurs in some ad-hoc networks where concurrent transmissions are allowed with heterogeneous power levels. In such scenarios, the conventional detection method, which is based on correlating the received IR signal with a Template Pulse Train (TPT), does not always perform well. The complexity of our proposal is similar to that of the conventional method. We evaluate its performance with the Line Of Sight (LOS) and the Non-LOS (NLOS) office indoor-channel models proposed by the IEEE P802.15.4a study group and find that the improvement is significant. We also investigate the particular case where the concurrent transmissions have the same time-hopping code, and we show that it does not result in collision, such scenarios appear in ad-hoc networks that employ a common code for control or broadcast purposes. At the MAC level, we focus only on one component of a MAC layer, which is the sleeping mode that could be added to any MAC layer proposal adequate to UWB IR. We are motivated by the low power consumption constraint required by the potential applications. We identify the design elements that should be taken into account for an optimal design for a sleeping protocol for UWB-IR such as the possibility of transmitting concurrently without collision and the power consumption model of the hardware behind which is completely different than with the narrow-band signaling. Then, we design two sleeping protocols for centralized and decentralized ad-hoc networks, respectively. We evaluate their performance analytically with the adopted metric being the average life-time of the wireless nodes

    Optimization of multidimensional equalizers based on MMSE criteria for multiuser detection

    Get PDF
    PhD ThesisThis thesis is about designing a multidimensional equalizer for uplink interleaved division multiple access (IDMA) transmission. Multidimensional equalizer can be classified into centralized and decentralized multidimensional equalizer. Centralized multidimensional equalizer (MDE) have been used to remove both inter-symbol interference (ISI) and multiaccess interference (MAI) effects from the received signal. In order to suppress MAI effects, code division multiple access (CDMA) has been used with MDE to minimize the correlation between users' signals. The MDE structure can be designed using linear equalizer (MLE) or decision feedback equalizer (MDFE). Previous studies on MDE employed adaptive algorithms to estimate filter co-effi cients during the training mode, i.e. the symbol equalization was not optimal, for two users. In our work, we applied MDE on IDMA receiver for multipath selective fading channels and also derived new equations to obtain the optimal filter taps for both types of MDE equalizers, i.e. MDFE and MLE, based on the minimum mean square error (MMSE) criterion. The optimal filter taps are calculated for more than two users. Moreover, we investigated the performance of the optimal MDFE using both IDMA (MDFE-IDMA) and CDMA (MDFE-CDMA) detectors. Generally, the MDE equalizer suffers from residual MAI interference effects at low signal-to-noise-ratios (SNR) due to the delay inherent in the convergence of the crossover filter taps. Therefore, a new decentralized multidimensional equalizer has been proposed to IDMA detector. Within design of decentralized equalizer, the convergence problem has been resolved by replacing the crossover filters with parallel interference canceler (PIC) for removing MAI dispersion. The proposed decentralized multidimensional equalizer shows a higher efficiency in removing MAI interference when compared with existing receivers in the literature. However, this is achieved at the expense of higher computational complexity compared to centralized multidimensional equalization
    corecore