2,564 research outputs found

    A smartwater metering deployment based on the fog computing paradigm

    Get PDF
    In this paper, we look into smart water metering infrastructures that enable continuous, on-demand and bidirectional data exchange between metering devices, water flow equipment, utilities and end-users. We focus on the design, development and deployment of such infrastructures as part of larger, smart city, infrastructures. Until now, such critical smart city infrastructures have been developed following a cloud-centric paradigm where all the data are collected and processed centrally using cloud services to create real business value. Cloud-centric approaches need to address several performance issues at all levels of the network, as massive metering datasets are transferred to distant machine clouds while respecting issues like security and data privacy. Our solution uses the fog computing paradigm to provide a system where the computational resources already available throughout the network infrastructure are utilized to facilitate greatly the analysis of fine-grained water consumption data collected by the smart meters, thus significantly reducing the overall load to network and cloud resources. Details of the system's design are presented along with a pilot deployment in a real-world environment. The performance of the system is evaluated in terms of network utilization and computational performance. Our findings indicate that the fog computing paradigm can be applied to a smart grid deployment to reduce effectively the data volume exchanged between the different layers of the architecture and provide better overall computational, security and privacy capabilities to the system

    Design and experimental validation of a LoRaWAN fog computing based architecture for IoT enabled smart campus applications

    Get PDF
    A smart campus is an intelligent infrastructure where smart sensors and actuators collaborate to collect information and interact with the machines, tools, and users of a university campus. As in a smart city, a smart campus represents a challenging scenario for Internet of Things (IoT) networks, especially in terms of cost, coverage, availability, latency, power consumption, and scalability. The technologies employed so far to cope with such a scenario are not yet able to manage simultaneously all the previously mentioned demanding requirements. Nevertheless, recent paradigms such as fog computing, which extends cloud computing to the edge of a network, make possible low-latency and location-aware IoT applications. Moreover, technologies such as Low-Power Wide-Area Networks (LPWANs) have emerged as a promising solution to provide low-cost and low-power consumption connectivity to nodes spread throughout a wide area. Specifically, the Long-Range Wide-Area Network (LoRaWAN) standard is one of the most recent developments, receiving attention both from industry and academia. In this article, the use of a LoRaWAN fog computing-based architecture is proposed for providing connectivity to IoT nodes deployed in a campus of the University of A Coruña (UDC), Spain. To validate the proposed system, the smart campus has been recreated realistically through an in-house developed 3D Ray-Launching radio-planning simulator that is able to take into consideration even small details, such as traffic lights, vehicles, people, buildings, urban furniture, or vegetation. The developed tool can provide accurate radio propagation estimations within the smart campus scenario in terms of coverage, capacity, and energy efficiency of the network. The results obtained with the planning simulator can then be compared with empirical measurements to assess the operating conditions and the system accuracy. Specifically, this article presents experiments that show the accurate results obtained by the planning simulator in the largest scenario ever built for it (a campus that covers an area of 26,000 m2), which are corroborated with empirical measurements. Then, how the tool can be used to design the deployment of LoRaWAN infrastructure for three smart campus outdoor applications is explained: a mobility pattern detection system, a smart irrigation solution, and a smart traffic-monitoring deployment. Consequently, the presented results provide guidelines to smart campus designers and developers, and for easing LoRaWAN network deployment and research in other smart campuses and large environments such as smart cities.This work has been funded by the Xunta de Galicia (ED431C 2016-045, ED431G/01), the Agencia Estatal de Investigación of Spain (TEC2016-75067-C4-1-R) and ERDF funds of the EU (AEI/FEDER, UE)

    GASP: Genetic algorithms for service placement in fog computing systems

    Get PDF
    Fog computing is becoming popular as a solution to support applications based on geographically distributed sensors that produce huge volumes of data to be processed and filtered with response time constraints. In this scenario, typical of a smart city environment, the traditional cloud paradigm with few powerful data centers located far away from the sources of data becomes inadequate. The fog computing paradigm, which provides a distributed infrastructure of nodes placed close to the data sources, represents a better solution to perform filtering, aggregation, and preprocessing of incoming data streams reducing the experienced latency and increasing the overall scalability. However, many issues still exist regarding the efficient management of a fog computing architecture, such as the distribution of data streams coming from sensors over the fog nodes to minimize the experienced latency. The contribution of this paper is two-fold. First, we present an optimization model for the problem of mapping data streams over fog nodes, considering not only the current load of the fog nodes, but also the communication latency between sensors and fog nodes. Second, to address the complexity of the problem, we present a scalable heuristic based on genetic algorithms. We carried out a set of experiments based on a realistic smart city scenario: the results show how the performance of the proposed heuristic is comparable with the one achieved through the solution of the optimization problem. Then, we carried out a comparison among different genetic evolution strategies and operators that identify the uniform crossover as the best option. Finally, we perform a wide sensitivity analysis to show the stability of the heuristic performance with respect to its main parameters

    Maturity of Industry 4.0: A Systematic Literature Review of Assessment Campaigns

    Get PDF
    The Industry 4.0 paradigm represents the fourth industrial revolution, embodied by the marriage between information and communication technologies and manufacturing. Assessment campaigns are conducted to examine the status of deployment of that paradigm, mostly through self-assessment questionnaires. Each campaign is typically limited in scope, involving just a group of companies located in a few countries at most. Such limitation does not allow an overall view of Industry 4.0's diffusion. In this paper, we offer that panoramic view through a systematic literature review. The number of papers devoted to Industry 4.0 assessment grows steadily. However, many papers do not provide essential information about the assessment campaigns they report, e.g., not detailing the number, type, or location of companies involved and the questionnaire employed. We observe a large diffusion in Europe and Asia but not in the U.S., with the Top 5 countries being Malaysia, Poland, Italy, Germany and Slovakia. The campaigns uniformly cover small, medium, and large companies but not all industrial sectors. The choice of questionnaires is extremely varied, with no standard emerging

    A Survey of Enabling Technologies for Smart Communities

    Get PDF
    In 2016, the Japanese Government publicized an initiative and a call to action for the implementation of a Super Smart Society announced as Society 5.0. The stated goal of Society 5.0 is to meet the various needs of the members of society through the provisioning of goods and services to those who require them, when they are required and in the amount required, thus enabling the citizens to live an active and comfortable life. In spite of its genuine appeal, details of a feasible path to Society 5.0 are conspicuously missing. The first main goal of this survey is to suggest such an implementation path. Specifically, we define a Smart Community as a human-centric entity where technology is used to equip the citizenry with information and services that they can use to inform their decisions. The arbiter of this ecosystem of services is a Marketplace of Services that will reward services aligned with the wants and needs of the citizens, while discouraging the proliferation of those that are not. In the limit, the Smart Community we defined will morph into Society 5.0. At that point, the Marketplace of Services will become a platform for the co-creation of services by a close cooperation between the citizens and their government. The second objective and contribution of this survey paper is to review known technologies that, in our opinion, will play a significant role in the transition to Society 5.0. These technologies will be surveyed in chronological order, as newer technologies often extend old technologies while avoiding their limitations

    Raspberry Pi Technology

    Get PDF

    Charting Past, Present, and Future Research in the Semantic Web and Interoperability

    Get PDF
    Huge advances in peer-to-peer systems and attempts to develop the semantic web have revealed a critical issue in information systems across multiple domains: the absence of semantic interoperability. Today, businesses operating in a digital environment require increased supply-chain automation, interoperability, and data governance. While research on the semantic web and interoperability has recently received much attention, a dearth of studies investigates the relationship between these two concepts in depth. To address this knowledge gap, the objective of this study is to conduct a review and bibliometric analysis of 3511 Scopus-registered papers on the semantic web and interoperability published over the past two decades. In addition, the publications were analyzed using a variety of bibliometric indicators, such as publication year, journal, authors, countries, and institutions. Keyword co-occurrence and co-citation networks were utilized to identify the primary research hotspots and group the relevant literature. The findings of the review and bibliometric analysis indicate the dominance of conference papers as a means of disseminating knowledge and the substantial contribution of developed nations to the semantic web field. In addition, the keyword co-occurrence network analysis reveals a significant emphasis on semantic web languages, sensors and computing, graphs and models, and linking and integration techniques. Based on the co-citation clustering, the Internet of Things, semantic web services, ontology mapping, building information modeling, bioinformatics, education and e-learning, and semantic web languages were identified as the primary themes contributing to the flow of knowledge and the growth of the semantic web and interoperability field. Overall, this review substantially contributes to the literature and increases scholars’ and practitioners’ awareness of the current knowledge composition and future research directions of the semantic web field. View Full-Tex
    • …
    corecore