24 research outputs found

    CFD study of section characteristics of Formula Mazda race car wings

    Full text link
    A great deal of research has been performed on the aerodynamic characteristics of race cars competing in the major racing series through out the world. Because of the competitive nature of motorsports, this research is usually not published until after it is obsolete. The teams operating at the minor league levels of the sport do not have the funding resources of the major series to perform aerodynamic research; In an effort to provide some information for teams competing in the minor league Formula Mazda race car class, this study was conducted. The Star-CD computation fluid dynamics code was used to perform a laminar simulation on the front and rear wings of a Formula Mazda with different angles of attack and Gurney flap heights. Results are presented graphically showing pressure and velocity distributions

    CFD investigation of airflow on a model radio control race car

    Get PDF
    The modern day design of vehicles, especially in the racing industry involve a great deal of air flow study. This study shows that drag force adversely affects the forward motion of the car and that there is a difference in the pressure between the air flowing above and below the car. This produces forces along the vertical axis. Aerodynamic forces acting on a car greatly reduces its efficiency. If the car is redesigned to optimise these forces it could produce better results. This paper discusses various techniques that have been used to redesign and optimise the aerodynamics of a model radio control race car

    A CFD Study of a Multi-Element Front Wing for a Formula One Racing Car

    Get PDF
    Presently, one of the key factors in determining a success of an open wheel racecar such as Formula One or Indy car, is its aerodynamic efficiency. A modern racecar front wing can generate about 30% of the total downforce. The present study focuses on investigating the aerodynamic characteristics of such highly efficient multi-element front wing for a Formula One racecar by conducting a three-dimensional computational analysis using Reynolds Averaged Navier-Strokes model. A three-dimensional computational study is performed investigating predictive capability of the structured trimmer and unstructured polyhedral meshing model to generate a three-dimensional volume mesh for a multi-element front wing. Also, the ability of the standard k- ω Shear Stress Transport (SST) and the one equation Spalart-Allmarus turbulence models to predict the three-dimensional flow over a multi-element front wing operating in ground effect has been investigated. Furthermore, the present study also determines the effect of varying ground clearance and angle of attack. Lastly, the aerodynamic characteristics of the wing operating in the wake of racecar in front is also investigated with the help of a generic bluff body. To get more realistic results a moving ground simulation has been used. It has been observed that the RANS model is able to predict the three-dimensional flow over the double element front wing correctly. Both of the turbulence models are able to predict the flow over the front wing in decreasing ground clearance and indicate the regions of force enhancement and force reduction. However, for low ground clearances, the standard k- ω SST turbulence model is best suited as it is able to predict the flow more accurately. Moreover, the results indicate, use of unstructured polyhedral mesh model for meshing of wing is more effective. By studying the flow characteristics of the wing at different ground clearances, it has been observed that the downforce generated behaves as a function of ground clearance. Furthermore, by studying the lift and drag forces generated by the wing, it has also been observed that the wing clearly operates in three different regions which can be classified as; a region similar to free stream case, a force enhancement region and a force reduction region. In addition, by investigating the effect of increasing angle of attack for forces generated, the study indicated that for lower values of angle of attack the corresponding very low ground clearances has more impact in decreasing the downforce generated. However, for higher angle of attack, the resulting increase in camber has a significant impact than very low ride heights which leads to an increase in downforce generated. Moreover, the studies for front wing operating in wake show the downstream wing is significantly affected by the up-wash flow field from the leading racecar leading to a loss of downforce. However, the leading racecar also creates a drafting effect which can be used to get as a tow and improve straight-line speeds of following racecar

    Aerodynamics of Race Car Wings: A CFD Study

    Get PDF
    Formula 1 racing is one of the most advanced technological sports. The aerodynamic on open wheel race cars is essential for the performance during a race. The front wing on a race car produces about 30 percent of the entire downforce of a race car. Several studies on front wings for open wheel race cars are conducted by various authors. A number of research studies include single element airfoils in ground effect and undisturbed flow. Numerical and experimental studies show that by decreasing the ground clearance, the downforce increases. The most efficient ground clearance is reported to be approximately 10 percent of the chord length. Another effective parameter to increase the downforce is the increase of angle of attack. Both increase of angle of attack and decrease of ground clearance result in an increasing of drag. Experimental studies on race car front wings have been carried out in disturbed flow. As soon as a wing operates in a wake, a significant change on the aerodynamic forces can be found. This aerodynamic study of race car wings will focus on a wing operating in a wake. The wing model is analyzed prior in freestream and ground effect only. The study in ground effect shows a maximum downforce at a ground clearance of 22 percent of the chord length. The study in a wake consists of different ground clearance levels and different distances between a bluff body and the analyzed wing. At a distance of 10 percent of a car length, both downforce and drag experience a significant decrease compared to undisturbed flow. While moving the wing further downstream, the lift and drag coefficient recover towards the values of a wing operating in ground effect only. The most efficient ground clearance point moves from 22 percent to 25 percent of the chord length at a distance of 30, respectively 50 percent of a car length. The flow structure analysis clearly showed a positive impact of the wing tip vortices coming from the bluff body. All studies are performed using Star CCM+, a commercial CFD code developed by CD Adapco

    Turbulent flow simulations around the front wing of a racing car

    Get PDF
    Aerodynamics has played a more and more important role in motorsports for maximising the race car performance. Amongst all the aerodynamic devices of race car, the front wing plays a vital role. In order to evaluate aerodynamic forces and develop new solutions for the race car, Computational Fluid Dynamics (CFD) has become a powerful tool. The most classical numerical simulations are based on solving the Reynolds Averaged Navier-Stokes (RANS) equations. In this project, the aerodynamics of front wings in ground effect has been studied using computational methods. A serious of simulations has carried out both for a single element wing and a double element wing by using DLR‟s FLOWer code. Simulations using three numerical schemes and three different turbulence models are carried out and the computational results were compared with the experimental data around the single element wing in ground effect. Further on, numerical studies on the aerodynamics performance have carried out for both single and double element wings in ground effect. For the investigation of different numerical methods and different turbulence models, the results obtained by using HLLC Riemann solver with 3rd order WENO schemes in conjunction with two-equation SST k-ω turbulence model shows more accurate simulations for the lift, drag coefficients and the pressure distributions at all heights. Furthermore, the numerical study on single element wing shows that the decreased height (to a certain level) and the increased angle of attack (up to the stall angle) will result in larger downforce. For the double element wing, various simulations were carried out under the configurations that the main element is fixed while the flap angle changes. The general tendency for both the downforce and the drag are similar with the single element wing, however the magnitude is much bigger. It is also found that the increased camber which made by the adding flap does not bring a significant vortex shedding after the trailing edge

    Numerical Simulation of the Flow Field around Generic Formula One

    Get PDF
    The steady Reynolds-Averaged Navier-Stokes (RANS) method with the Realizable k turbulence model was used to analyze the flow field around a race car (generic Formula One). This study was conducted using the ANSYS software package. The numerical simulations were conducted at a Reynolds number based on the race car model (14.9Ă—106). The time-averaged velocity field, flow topology, velocity magnitude, static pressure magnitude and vortex regions of the flow fields are presented in this paper. The measurements were performed on the vertical and cross-sectional planes. The results are presented graphically, showing the main characteristics of the flow field around the whole race car, whereas most previous studies only mention the flow field around individual components of race cars. The Realizable k turbulence model results showed consistency with the valuable validation data, which helps to elucidate the flow field around a model generic Formula one race car

    Yaw angle effect on the aerodynamic performance of hatchback vehicle fitted with wing spoiler

    Get PDF
    Research on spoiler available to date was mainly done to optimize the performance of spoiler in non-zero yaw condition. However, the effect of spoiler is most needed during cornering to ensure the stability of the vehicle. Therefore, this study aims to inspect the effect of yaw angles change on the aerodynamic performance of the NACA 0018 wing spoiler and the subsequent influence on the flow characteristics of the hatchback vehicle. Computational Fluid Dynamics (CFD) has been applied to model the flow. Comparison between numerically obtained results and experimental data was done to validate the CFD method. The findings show that both the drag coefficient, Cd, and lift coefficient, Cl have increased with increasing yaw angle. However, the spoiler has performed in favor of reducing the Cd and Cl even with increasing yaw angle. The averaged proportion contributions from the spoiler to the overall Cd and Cl are 2.7% and 4.1%, respectively. The other body parts that have contributed to the Cd and Cl reductions were the base and slant, and the roof

    Impact of HPC and Automated CFD Simulation Processes on Virtual Product Development : A Case Study

    Get PDF
    High-performance computing (HPC) enables both academia and industry to accelerate simulation-driven product development processes by providing a massively parallel computing infrastructure. In particular, the automation of high-fidelity computational fluid dynamics (CFD) analyses aided by HPC systems can be beneficial since computing time decreases while the number of significant design iterations increases. However, no studies have quantified these effects from a product development point of view yet. This article evaluates the impact of HPC and automation on product development by studying a formula student racing team as a representative example of a small or medium-sized company. Over several seasons, we accompanied the team, and provided HPC infrastructure and methods to automate their CFD simulation processes. By comparing the team’s key performance indicators (KPIs) before and after the HPC implementation, we were able to quantify a significant increase in development efficiency in both qualitative and quantitative aspects. The major aerodynamic KPI increased up to 115%. Simultaneously, the number of expedient design iterations within one season increased by 600% while utilizing HPC. These results prove the substantial benefits of HPC and automation of numerical-intensive simulation processes for product development

    Optimisation and Efficiency Improvement of Electric Vehicles Using Computational Fluid Dynamics Modelling

    Get PDF
    This is the final version. Available on open access from MDPI via the DOI in this recordData Availability Statement: The research data supporting this publication are provided within this paper.Due to the rise in awareness of global warming, many attempts to increase efficiency in the automotive industry are becoming prevalent. Design optimization can be used to increase the efficiency of electric vehicles by reducing aerodynamic drag and lift. The main focus of this paper is to analyse and optimise the aerodynamic characteristics of an electric vehicle to improve efficiency of using computational fluid dynamics modelling. Multiple part modifications were used to improve the drag and lift of the electric hatchback, testing various designs and dimensions. The numerical model of the study was validated using previous experimental results obtained from the literature. Simulation results are analysed in detail, including velocity magnitude, drag coefficient, drag force and lift coefficient. The modifications achieved in this research succeeded in reducing drag and were validated through some appropriate sources. The final model has been assembled with all modifications and is represented in this research. The results show that the base model attained an aerodynamic drag coefficient of 0.464, while the final design achieved a reasonably better overall performance by recording a 10% reduction in the drag coefficient. Moreover, within individual comparison with the final model, the second model with front spitter had an insignificant improvement, limited to 1.17%, compared with 11.18% when the rear diffuser was involved separately. In addition, the lift coefficient was significantly reduced to 73%, providing better stabilities and accounting for the safety measurements, especially at high velocity. The prediction of the airflow improvement was visualised, including the pathline contours consistent with the solutions. These research results provide a considerable transformation in the transportation field and help reduce fuel expenses and global emissions
    corecore