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Abstract: High-performance computing (HPC) enables both academia and industry to accelerate
simulation-driven product development processes by providing a massively parallel computing
infrastructure. In particular, the automation of high-fidelity computational fluid dynamics (CFD)
analyses aided by HPC systems can be beneficial since computing time decreases while the number
of significant design iterations increases. However, no studies have quantified these effects from a
product development point of view yet. This article evaluates the impact of HPC and automation on
product development by studying a formula student racing team as a representative example of a
small or medium-sized company. Over several seasons, we accompanied the team, and provided
HPC infrastructure and methods to automate their CFD simulation processes. By comparing the
team’s key performance indicators (KPIs) before and after the HPC implementation, we were able
to quantify a significant increase in development efficiency in both qualitative and quantitative
aspects. The major aerodynamic KPI increased up to 115%. Simultaneously, the number of expedient
design iterations within one season increased by 600% while utilizing HPC. These results prove
the substantial benefits of HPC and automation of numerical-intensive simulation processes for
product development.

Keywords: HPC; CFD; automation; benefits; costs; product development

1. Introduction

High-performance computing (HPC) accelerates product development by decreasing
the computing time of numerical-intensive simulations, such as CFD analyses, and allows
for an increase in design iterations. Automating the simulation-driven optimization pro-
cesses can further increase the efficiency of product development. However, utilizing HPC
systems in this way requires specialist knowledge, dedicated hardware and comprehensive
software licenses for proprietary simulation software. The monetary expenditure is easy to
forecast but it is hard to determine the benefit regarding the time reduction of development
cycles or the implications for the product’s quality. For that reason, HPC-driven product
development is still a considerable cost factor for small and medium-sized enterprises
(SMEs) with uncertain profitability.

In recent years, there has been a great deal of interest in outlining the advantages of
HPC and automation for simulation and optimization processes. Thus far, comparatively
few attempts have been made to measure their technical and economic effects on product
development. Studying technical and non-technical effects of new technologies on existing
systems and organizations is an important aspect of technology adaption and has already
been addressed for similar fields, e.g., in [1] for cloud computing.

The aim of this paper is to quantify the effects of HPC on product development, to
make a case for future profitability calculations and to increase HPC’s acceptance among
SMEs. Therefore, we used a case study approach and accompanied a formula student racing
team over several seasons. We developed and implemented an HPC-driven optimization
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approach based on ANSYS Fluent and studied the team’s productivity before and after
deploying HPC-based development procedures. We focused on the following questions:

(1) How many major design iterations can be conducted in a predetermined period
with the help of HPC and automation compared to the conventional approach of not
utilizing HPC (quantitative effect)?

(2) How does the quantitative effect affect the product’s key performance indicators
(qualitative effect)?

This article is structured as follows: First, we give a brief insight into product develop-
ment to underline the relevance and analyze the challenges and requirements when setting
up an automated and HPC-based development process. In Section 2, we describe brief
theoretical foundations of parallel processing, present the investigated case and the details
of the implemented and HPC-based design optimization approach. Section 3 then moves
on to present the results of the HPC adoption for the investigated case. In Section 4, we
discuss those results and assess the implications for product development aided by HPC.
Finally, we summarize our work and evaluate the case study critically.

1.1. Background

The complexity of product development is constantly increasing due to more disci-
plines being involved, such as mechanics, electrical engineering and information technology.
For managing the interdisciplinary nature of product development, the approach of sys-
tems engineering (SE) has been developed over the years and established in both academia
and industry [2]. The basic idea is to subsequently reduce complex systems into smaller
and more manageable subsystems and define their interfaces in advance [3,4]. A widely
used SE model is the V-model (see Figure 1), which classifies the technical work stages
in product development processes and defines responsibilities. One of the first works
addressing product development according to the V-model was published in 1991 [5].
However, the model has been adapted in multiple ways, and enhanced and implemented
in guidelines, such as VDI 2206 [6], which is widely used in German-speaking countries.

According to VDI 2206, product development begins with the requirements specifi-
cation in the left branch of the “V” and is continuously enriched and detailed until the
requirements for all subassemblies and components are specified and a final design is
available (lower tip of the “V”). The right branch covers the validation and verification
of the design proposals. For example, simulations or bench tests validate the required
properties on the different abstraction levels. In this context, it is essential to consider the
dependencies between the (sub)systems. In addition to straightforward validation, one
must also successfully carry out integration tests in the higher-level system structure. The
right branch usually concludes with a simulation of the overall system. If one of the tests
fails and components must be modified or optimized, this leads to new validation and
verification test cycles [7]. In simulation-based product development, this results in a large
number of simulations, which, depending on the type of analysis, can result in a high
computing load, especially if many engineering disciplines are involved, as is now com-
mon. If product development includes very elaborate simulations, such as computational
fluid dynamics (CFD), single simulations can already be so time-consuming that only a
few designs or optimization iterations for the overall system are possible to meet a given
time-to-market. Reducing the accuracy of simulation models to save computational load
is not worthwhile in many use cases. Especially for iterative developments, the use of
high-resolution simulation models is beneficial, as shown, for example, in [8].

Possibilities to speed up complex simulation-based development processes are the
increased use of HPC systems to accelerate simulations, the automation of simulation
and optimization processes or a combined approach. Unfortunately, the automation of
optimization processes highly depends on the underlying model and is usually associated
with a high initial effort. In [9], for example, an approach to an automated CFD-based
optimization is shown. With the rapid increase in performance of processor and memory
technologies and current research in the HPC domain [10], further increases in efficiency
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and cost reductions are highly probable. Combined with progressive development of com-
putational methodologies [11,12], this opens new potential for product development [13].

Figure 1. The V-model according to guideline VDI 2206.

Unfortunately, the tendency of SMEs to use HPC is low. This is partly due to the
comparatively high cost and knowledge required to integrate HPC into existing processes
and the poor quantifying value of HPC for SMEs. We want to address the last obstacle by
providing insights in HPC-based product development to show its effects and value. How-
ever, first, we will examine the challenges of integrating HPC in the following subsection,
focusing on an automated CFD workflow as an example.

1.2. Challenges and Requirements

In this subsection, we examine challenges that need to be handled to set up an auto-
mated CFD optimization workflow on HPC systems. However, before we proceed, some
necessary definitions and explanations for the rest of the article are provided. HPC systems
can exist in various forms and their size can vary between local clusters or large-scale
supercomputers, which can either have virtualized or non-virtualized resources. In order to
maximize performance, we define an HPC system in the context of this article as a system
with dedicated and distributed memory hardware. The available resources (hardware and
software licenses) usually cannot cover the computing needs, which realistically reflects
many SMEs’ situations. This requires the usage of scheduling systems, which orchestrate
the resource allocation for a set of given jobs submitted by one or more users working for
multiple teams. A job is a specific computation for the HPC system. This can either be a
single flow simulation or parametric optimization of a CFD simulation, involving several
runs with varying design variables. The set of all sequential or parallel jobs for a given
simulation model defines a workflow. When implementing an automated workflow for
CFD simulation, several challenges can occur:
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• Since resources (hardware and licenses) are usually limited, one has to determine the
optimal computation configuration for the given job depending on the flow model.

• Asynchronously sent jobs have to be integrated into the overall workflow.
• Automated postprocessing must be conducted on the HPC system in order to save

data bandwidth.
• Less experienced IT users must be able to interact with the implementation of the process.

In order to use HPC cost-effectively in product development, one has to consider
these challenges during the implementation of HPC-supported optimization processes in
an organization. This leads to the following requirements for its implementation:

• Usability: The implementation should be usable without in-depth knowledge of the
underlying CFD solver and HPC system.

• Efficiency: The overall runtime of a simulation should be reduced as much as possible.
Therefore, the optimum hardware shall be considered for each particular case and
the amount of data exchanged from local host to the HPC system shall be reduced as
much as possible.

• Portability: The implementation should be adaptable for any (parametric) flow model
and should be re-usable on a different HPC system with as little modification as possible.

• Automation: Steps that are time-consuming or error-prone should be automated
where reasonable to achieve a certain level of automation and to guarantee absolute
comparability. This leads to a more time-efficient development process and simultane-
ously increases its robustness.

• Physical accuracy: The obtained results should be of high quality and accuracy. There-
fore, the user must be able to change most of the physical preferences via a text
file-based interface to allow variance in parameters within one workflow.

2. Materials and Methods

In this section, all theoretical and practical foundations, throughout this contribution,
are introduced as much as is necessary to reproduce or evaluate the results. This includes
a brief introduction to CFD workflows, the fundamentals of parallel computing and a
presentation of the research design, as well as the utilized software and HPC system.

2.1. CFD Workflow

As shown in Figure 2, a CFD workflow implies setting up an initial design (CAD
model), deriving an idealized and defeatured geometry (geometry), its discretization
(mesh), the computation (solver) and a report to evaluate the simulation results. During
a product’s optimization, several of the model parameters (design variables) are usually
varied systematically and thus a large number of simulations are generated. However,
since changes to the geometry require new meshing, the simulation procedure described so
far might be repeated for each design iteration. If the model is parametrized, the variation
in design variables and the restart of the downstream process steps can be automated. Since
an automation of the overall optimization process results in a multitude of simulations, it
is appropriate to utilize HPC systems.

The variation in the design variables can be applied on different levels: They can
affect the mesh, the idealized geometry or the original CAD model. It is advantageous to
apply design variables to the CAD model if the optimized design is to be available as a
CAD model after completion of the optimized design. However, this implies a significantly
higher computing effort per design iteration and an increasing amount of data to be
transferred between a local host and the remote HPC system. Therefore, the scope of our
article focuses on applying design variables only to the simulation model (geometry and
mesh as depicted in Figure 2).
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Figure 2. Overview of an engineering simulation process and the scope of our article. Process steps
marked with an asterisk (*) can require (partial) user interaction.

Within the case study, there are slight limitations regarding the degree of automation:
Since the approximation of the geometry and fluid domain is crucial for the validity of
the results, the initial meshing requires manual user interaction for an assessment of the
mesh quality. Although there are well-established mesh quality metrics, which indicate
an overall quality and show starting points for mesh improvement, no computer can say
whether the quality is sufficient or not without having in-depth knowledge about the
context of the simulation. Therefore, we assume that the initial mesh has already been
verified and potential adaptive mesh refinement on the verified mesh does not negatively
influence the obtained results.

2.2. Foundations of Parallel Processing

In order to rate parallel performance and advantages, several fundamental laws of
parallel computing have to be introduced. The first one is so-called Amdahl’s argument [14].
In its most basic form, it describes how the overall elapsed time of a parallel program is
composed. It is defined as:

T(P) = TS +
Tp

P
(1)

where T(P) is the overall time, P is the number of CPUs, TS is the time to run the sequential
part and TP is the time to run the parallel part. Therefore, a serial run of the program can
be expressed by

T(1) = TS + TP (2)
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while the serial fraction of the program’s code f is defined as

f =
TS

T(1)
(3)

Applying these definitions to the first equation leads to, namely

T(P) = T(1) f +
T(1)(1 − f )

P
(4)

Then, the overall speedup of parallel computation can be defined as

Speedup(P) =
T(1)
T(P)

=
1

f + 1− f
P

(5)

In summary, Amdahl’s argument gives the upper limit of possible speedup in parallel
computing if the problem size is fixed. This condition can appear as a bottleneck of this
theory, so Gustafson’s law [15] was proposed. The new theory not only addresses the issue
of fixed problem sizes, it also promotes strict linear speedup for the parallel part while
the serial part is kept constant. In brief, Gustafson’s law describes the possible speedup
for cases where the ratio of problem size and resources is kept constant. Both theories are
now widely accepted and are considered to be legitimate but have different points of view.
Amdahl’s law is known as strong scaling while the Gustafson’s law is referred to as weak
scaling. To avoid any possibility of confusion, the speedup defined by Gustafson’s law is
today known as scaled speedup [16]:

scaled Speedup(P) = f + P(1 − f ) (6)

It is important to note that performance benchmarking should not be considered
trivial. In particular, benchmarking with heterogeneous HPC resources requires special
approaches, as indicated in [17].

2.3. The Case: Elefant Racing

In this section, we present the object of our study, the formula student team Elefant
Racing (University of Bayreuth, Germany), in more detail. Formula student racing is a
competition for engineering students. Every year, the teams develop a new racing car and
compete against each other. Our institute supports students by providing infrastructure
and knowledge. To be successful, a team must engage in research, manufacturing and
testing, in addition to designing the racecar.

Furthermore, the teams must also deal with marketing, finance and management
issues. Therefore, Elefant Racing can also be regarded as a small company. Considering
the team’s usually very small financial resources, cost efficiency is probably a much more
significant factor than in actual companies. Thus, Elefant Racing is an ideal candidate to
study the benefits of automated HPC-based development processes.

Each season, the formula student team designs a new racecar from scratch. Up to
now, the students have carried out their simulations and optimizations on conventional
workstations with the known limitations about computational power and capacity. In
the context of our research, we opened our HPC infrastructure to the team, provided
methodological knowledge and conducted the implementation. This was the first time
that the team was able to perform a CFD simulation of the entire racecar. Previously,
only specific parts had been investigated aerodynamically, therefore HPC opened up new
possibilities in terms of holistic optimization. Their development workflow was similar
to [18]. Since our institute supported and guided Elefant Racing for several years, the
team’s efficiency increase through HPC could be quantified by comparing historic key
performance indicators (KPIs) with today’s: “drag” and “downforce”. Drag is the force that
a surrounding fluid exerts on an object in motion. The smaller the drag, the more efficient
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the movement of the racecar. In contrast, downforce is a vertical force in the racecar acting
perpendicular to the road in addition to the racecar’s gravitational force. A high downforce
is generally desirable because it leads to higher friction between the tire and the road, thus
enabling higher cornering speeds. Therefore, the team’s objective is always to minimize
drag while maximizing downforce.

2.4. Software and Hardware Stack

Within the case study, all simulations were conducted with ANSYS Fluent v19.2.
Besides the graphical user interface (GUI), ANSYS Fluent provides a scheme-based text
interface (TUI) for automation of tasks. Scheme is a LISP dialect. For details, we refer the
reader to [19,20].

We utilized the HPC system “btrzx4” with a total number of 91 compute nodes. Most
nodes were equipped with two Intel Xeon E5-2630 v4 @ 2.2 GHz (Broadwell), resulting in a
total of 20 physical CPU cores per node. We refer to those nodes as “compute20”. Some
of the nodes had additional memory (2x 128 GB RAM) and a GPU (NVIDIA Tesla P100,
12 GB), which we refer to as node type “cuda”. There were other node types available,
but compute20 and cuda were the most beneficial nodes for CFD analysis in the available
HPC system.

The interconnection between the nodes was a two-level fat-tree Intel Omni-Path
network. This network is a particular optical fiber network for HPC systems, designed for
high parallel bandwidth and low parallel latency. The Omni-Path technology is similar to
the open industry standard Infiniband with connection speeds up to 100 Gib/s [21]. The
network throughput of the HPC system reached around 6.259 Gib/s within ANSYS Fluent,
while the network latency was, on average, 1.598 µs. The operating system was CentOS
version 7. As a resource manager and scheduler, we used PBS Torque in combination with
Maui. At the time of the research, there were no restrictions on the wall time for team
members of Elefant Racing.

2.5. Implementation

In this subsection, we present the implementation details of the HPC optimization
procedures. First, an automated CFD simulation had to be modeled into the schema
presented in Figure 3, which consists of five basic stages. This also represents the structure
of the implemented code, as there was one individual script for each of these steps. Within
Figure 3, the dotted lines indicate two potential loops where variation of model parameters
is possible by changing values within the CFD application or by asynchronously submitting
additional jobs.

Figure 3. Our implementation of an automated CFD workflow with two optional loops for
parameter variation.

Within the Setup and Submit stage, all required settings, both the model and HPC
job-related parameters, are parsed from separate text files where the user can modify
the iteration according to the user’s preferences. This will already include an automatic
allocation of HPC resources based on a decision rule, which must be defined in advance.
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A commonly used approach reinforces the decision rule by individual benchmark results.
CFD parameters like turbulence modeling can be set up in the files as well. Furthermore,
the user has to specify a threshold value for the desired residuals and maximum number
of iterations. At the end of the step, the script submits the job to the HPC system’s queue,
invokes the HPC system’s scheduler and precisely defines the application and the data
which the CFD solver should execute. In the Calculation phase, the logic and the internal
solver data are defined and executed. If the residuals do not fall short of the threshold
and the solver exceeds the maximum number of iterations, the workflow terminates itself
automatically and frees HPC resources for other runs of the optimization loop and/or
other users. For many cases, especially within parameter studies, a standardized approach
for Postprocessing with predefined figures and views can already be of huge value. This
not only reduces the amount of data which have to be transferred from the HPC system
to a local host, where postprocessing is often conducted, it also reveals the areas to exam-
ine further within the optimization process. Last, in the Evaluation phase, all runs are
summarized in a pre-defined report and can include different metrics based on the user’s
preferences. The presented schema presumes a high-quality mesh, as already discussed
in the previous section. If there is no optimization process and the CFD simulation is
run only once, there is no considerable benefit in automation and there would not be
any loop iteration. However, if the user wants to conduct a parameter or optimization
study with constant HPC resources, the Calculation and Postprocessing phases can be
executed in a loop and the simulation is run within the same instance of the CFD soft-
ware several times. Furthermore, the user can submit multiple jobs asynchronously. This
might be beneficial if additional resources become available or the user wants to achieve
additional parallelization.

Using the Scheme interface, automation of tasks within ANSYS Fluent is achievable.
During programming, we encountered the issue that the interface does not rest upon a
clear standard and can be seen as a mixture of MIT Scheme 3 and 4. In the example below
(Algorithm 1), the TUI command, which is double-quoted, would start a simulation run
with the value previously assigned to number-of-iterate. Additionally, these exact strings
could be entered into the GUI console to start the simulation. The command would be
executed for any value within the list called speed-parameters due to being nested in a
Scheme for each loop.

Algorithm 1. Exemplary code snippet for calling ANSYS Fluent with dynamic parameter passing
using TUI and Scheme interface.

( for–each (lambda (air–speed)
(begin

;——Run calculation——
( ti–menu–load–string (format #f “solve iterate number–of–iterate”))

)
) speed–parameters)

Consequently, we recommend a text editor which is capable of interpreting the LISP-
specific syntax of s-expressions. As a result, it is only possible to test implementations on
specific simulation input files, preferably on the system used later.

The idea of an automated setup also includes the intention to optimize the overall
runtime and resource utilization. Therefore, the selection of hardware resources in pro-
portion to the problem size (internal degree of freedoms) is a critical variable since it is
one of the few options to affect the overall runtime within proprietary simulation software.
However, scaling is highly specific to hardware, software and the model itself. Usually, in
many commercial CFD simulations, one process per CPU core is spawned, resulting in a
model-dependent cell-per-CPU ratio. This ratio has a high impact on the speedup since it
influences the wall time per iteration. We have benchmarked ANSYS Fluent 19.2 and listed
the average wall time per iteration in Table 1. The lower the avg. wall time per iteration,
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the shorter the overall runtime. Based on the benchmark results, we implemented an HPC
resource allocation rule on the ratio.

number o f cells
number o f CPUs

≈ 150, 000 (7)

Table 1. Influence of the cell/CPU ratio on the avg. wall time per iteration.

Cells/CPU Avg. Wall Time per Iteration in s

~100,000 1.737
~150,000 1.706
~200,000 2.334
~250,000 3.106

Most simulation software packages require so-called license tokens. For each CPU
core used, a certain number of license tokens is required. Within the case study, the formula
student team had licenses to utilize 300 CPU cores in total, consequently resulting in a
threshold of 45 million cells which could be processed in the HPC system simultaneously.
Since there are no restrictions on hardware resources and other limiting factors, such as
memory size, did not have an influence, the licenses can be seen as the major bottleneck in
scalability for both the development workflow and the speedup of the solver itself.

3. Results

After describing the implementation of the automated CFD process on HPC systems
in the previous section, this section will present the implications for product development.

The scope of our research subject included a “real-world” application in which the
aerodynamic package of a formula student open-wheel racing car was redesigned from
scratch. A formula student team as an object of research is particularly interesting be-
cause there are short development cycles and often fewer restrictions compared to most
industrial projects, which opens new possibilities for innovations based on high-fidelity
CFD simulations. By using HPC, the formula student team was able to implement an
automated optimization approach for the aerodynamics of their racing car. It was not
possible for the Elefant Racing team to implement such an approach before due to the lack
of computational resources.

Before applying the workflow to the open-wheel racing car, a symmetric full-scale
CFD simulation had to be set up in order to verify the initial mesh quality. The basis of the
CFD model was CAD geometry in which all aerodynamically unnecessary elements (e.g.,
bolts, nuts) were removed. The surrounding fluid domain was meshed with polyhedrons
including two refinement boxes to capture the recirculation zone. The fluid domain had a
relatively large size compared to the racecar in order to minimize any unphysical impact of
uniform boundary conditions. The resulting CFD model consisted of approx. 80 million
mesh cells and was set up with a double precision, pressure-based 3D solver. Both laminar
and turbulent cases were investigated. Exemplary insights into the model and results are
shown in Figure 4a,b.

The effect of HPC on the efficiency of Elefant Racing’s product development can be
illustrated by comparing the number of major design iterations to the previous years and
by showing the progress within the season where the implementation is used for the first
time (season 19/20). Thereby, major design iterations are defined as adding new parts or
changing parts for fully redesigned versions. In contrast, changing positions or sizes of
parts was conducted within an iteration. Therefore, there were up to 100 simulations within
one single design iteration. The number of designs iteration before and after the availability
of HPC is shown in Figure 5a. Furthermore, HPC leads to major design improvements, as
the KPIs drag and downforce indicate in Figure 5b.
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Figure 4. Excerpt from the results of the CFD workflow. (a) Exemplarily meshed fluid domain of the investigated case.
(b) Pressure distribution over the structure in Pa.

Figure 5. Increment in simulations and progress within one year. (a) Number of conducted design iterations per season.
(b) Progress achieved during the season 19/20 by the means of reduction in drag and the increase in downforce. Design
iteration 0 represents the status quo at the beginning of the season.

The use of an HPC-based and automated CFD setup increased the number of design
iterations by 600%. Figure 5b reveals more details of season 19/20 when the new approach
was used for the first time: Within this season, a significant increase in downforce by about
115% was achieved while the drag force was reduced by about 20% during the optimization
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workflow. It is also worth considering that the overall performance gain would have been
far less after one iteration in this particular year. The graphs also show setbacks throughout
the development process which can lead to even better results or are easier to cope with.
This opens the opportunity to explore designs that are even more experimental.

Figure 6 shows the drag and downforce KPIs of the final racecar designs for the
last three seasons. Compared to the previous season 18/19, downforce increased in
19/20 by 214% and drag was reduced by 17%. Since optimizations on the basis of full-scale
simulations on the entire racecar were first enabled with HPC in season 19/20, setbacks of
initial designs in previous seasons could hardly be improved. For example, the racecar of
the season 18/19 was worse than the design in 17/18 due to missing computational power
and the remaining time budget.

Figure 6. KPIs “drag” and “downforce” of final designs from the last three seasons. Without the
possibility of more than one design iteration per season, the team was not able to mitigate setbacks
such as those in the 18/19 season.

HPC has also changed the way team members work. Table 2 shows the estimated
time spent on the individual phases of the development workflow of a new design before
and after HPC introduction. The reduction in waiting times, the elimination of the manual
modification of design variables or the generation of reports allows a stronger focus on
value-adding activities such as model development or testing. However, as a precaution,
we would like to emphasize that this is merely a shift in expenditure. The time required
to generate valid meshes, to verify and validate models, etc. is only being moved from
the day-to-day operations to the implementation and deployment phase of the HPC
optimization approach. However, this shifting leads to shorter development cycles and
can increase the internal capability of an organization’s R&D unit. Despite the high initial
effort for such an approach, HPC and the ability to derive and implement adjustments
or optimizations quickly can still be seen as a major competitive advantage, both on the
product side and economically.

Table 2. Estimated rel. temporal expenditure for design iterations w/o and w/ HPC.

Process Step Without HPC With HPC

Initial meshing 25% 0%
Model preprocessing and verification 35% 10%

Computational phase 1 25% 85%
Variation of design variables 5% 0%

Model postprocessing 10% 5%
1 Not including model verification.
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4. Discussion

Due to HPC, the formula student team increased the major KPI downforce up to 115%
while also decreasing drag force by about 20% within one project lifetime or a formula
season. However, there is still a lot to consider towards reasonable handling of HPC-based
optimization procedures. The degree of automation and the costs of hardware and software
licenses (if one is using proprietary software) must be weighed up accurately. For the
iterative development of a single and parameterizable product, the approach shown is
suitable since the initial implementation effort can be quickly amortized. However, if one
conducts simulation not on a regular basis or uses simulation software in a more general
manner on different products, such an implementation might be disproportionate.

The most significant restriction on HPC-based product development is probably
the automation of mesh generation. Since meshing can be considered as a critical, time-
consuming and complex step, which can heavily affect the quality of results, the possible
degree of automation is limited and considered a major bottleneck [22]. Current mesh
automation approaches such as conducting mesh generation and manipulation on an HPC’s
“super node” are widely considered unpractical, especially for high-fidelity meshes [23],
and lack acceptance. Although the meshing process can benefit from automation, user
interaction is still needed for preparing geometry, choosing proper cells or improving the
mesh’s quality. Even with current defeaturing methods and adaptive mesh refinement,
preparing the initial mesh generation remains one of the most time-consuming steps
throughout the CFD process and highly depends on specialist knowledge and experience.
Therefore, complete automation is neither currently possible nor reasonable, as argued.

Besides mesh generation, the CFD process does benefit from automation on HPC
systems. The reason for that is that these problems are solved by sophisticated software,
which typically has a time-consuming set up phase that rarely differs throughout the
development of a specific product.

Several studies (e.g., [24]) state that CFD solvers can also benefit from general-purpose
computation on GPU (GPGPU) acceleration in principle. However, we could not confirm a
significant effect. Although the manufacturer of the GPUs of the “cuda” nodes cooperates
with the software vendor and advertises possible speedup factors up to 3.7 [25], we could
not achieve such a significant speedup by the use of GPGPU acceleration. It turns out that
these high speedups are limited to particular cases, physical preferences and machines
with a considerably high number of GPGPUs, which might lead to bad cost–benefit ratios.
Unfortunately, this fact is not self-evident, and a bit misleading since the official user guide
for graphic-accelerated runs only states a comprehensive formula to calculate the maximum
mesh size. Consequently, no overall statement on the effect of GPGPU acceleration can be
made but GPGPU acceleration is still a promising current trend towards increasing the
overall performance of HPC systems and should always be considered.

It is clear that CFD simulations are not an end in themselves and require a lot of
expertise. However, the latest developments in artificial intelligence (AI) and machine
learning can assist the user further in the future. Current research shows that AI can already
support the generation of problem-adapted geometries and models [26]. The evaluation
of the mesh quality, which is now mostly conducted by the user, could also be automated
with the help of AI [27]. The practical applicability of AI-based meta-modeling is also
continuously increasing [28], making AI a promising perk for the HPC and simulation-
driven product development of the future.

Whether with or without AI support, high-performance computing and automation
enable organizations to fundamentally speed up and improve their product development
processes. This not only results in more design iterations in less time, but also in a solid
increase in the product’s performance and/or quality, as indicated by our case study.

Of course, the general validity of the results is limited, since the subject of the study
was a formula student racing team. Therefore, the results need to be verified with real
company data. However, considering the usually small data basis in this research field
due to their sensitivity and most companies’ healthy skepticism about revealing them, this
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article still proves the positive effects of HPC for product development and indicates that
a combination of HPC and automation is beneficial for product development. Therefore,
this research can serve as a reference and help to facilitate the acceptance of HPC and
automation, especially among SMEs.
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