402,327 research outputs found

    TGFβ1-induced cell motility but not cell proliferation is mediated through Cten in colorectal cancer

    Get PDF
    Cten (C-terminal tensin-like) is a member of the tensin protein family found in complex with integrins at focal adhesions. It promotes epithelial‐mesenchymal transition (EMT) and cell motility. The precise mechanisms regulating Cten are unknown, although we and others have shown that Cten could be under the regulation of several cytokines and growth factors. Since Transforming growth factor beta 1 (TGF-β1) regulates integrin function and promotes EMT / cell motility, we were prompted to investigate whether TGF-β1 induces EMT and cell motility through Cten signalling in colorectal cancer. TGF-β1 signalling was modulated by either stimulation with TGF-β1 or knockdown of TGF-β1 in the CRC cell lines SW620 and HCT116. The effect of this modulation on expression of Cten, EMT markers and on cellular function was tested. The role of Cten as a direct mediator of TGF-β1 signalling was investigated in a CRC cell line in which the Cten gene had been deleted (SW620ΔCten). When TGF-β1 was stimulated or inhibited, this resulted in, respectively, upregulation and downregulation of Cten expression and EMT markers (Snail, Rock, N-Cadherin, Src). Cell migration and cell invasion were significantly increased following TGF-β1 stimulation and lost by TGF-β1 knockdown. TGF-β1 stimulation of the SW620ΔCten cell line resulted in selective loss of the effect of TGF-β1 signalling pathway on EMT and cell motility whilst the stimulatory effect on cell proliferation was retained. These data suggested Cten may play an essential role in mediating TGF-β1 induced EMT and cell motility and may therefore play a role in metastasis in CRC

    Stat3/Cdc25a-dependent cell proliferation promotes embryonic axis extension during zebrafish gastrulation

    Get PDF
    Cell proliferation has generally been considered dispensable for anteroposterior extension of embryonic axis during vertebrate gastrulation. Signal transducer and activator of transcription 3 (Stat3), a conserved controller of cell proliferation, survival and regeneration, is associated with human scoliosis, cancer and Hyper IgE Syndrome. Zebrafish Stat3 was proposed to govern convergence and extension gastrulation movements in part by promoting Wnt/Planar Cell Polarity (PCP) signaling, a conserved regulator of mediolaterally polarized cell behaviors. Here, using zebrafish stat3 null mutants and pharmacological tools, we demonstrate that cell proliferation contributes to anteroposterior embryonic axis extension. Zebrafish embryos lacking maternal and zygotic Stat3 expression exhibit normal convergence movements and planar cell polarity signaling, but transient axis elongation defect due to insufficient number of cells resulting largely from reduced cell proliferation and increased apoptosis. Pharmacologic inhibition of cell proliferation during gastrulation phenocopied axis elongation defects. Stat3 regulates cell proliferation and axis extension in part via upregulation of Cdc25a expression during oogenesis. Accordingly, restoring Cdc25a expression in stat3 mutants partially suppressed cell proliferation and gastrulation defects. During later development, stat3 mutant zebrafish exhibit stunted growth, scoliosis, excessive inflammation, and fail to thrive, affording a genetic tool to study Stat3 function in vertebrate development, regeneration, and disease

    Induction of endothelial cell proliferation by recombinant and microparticle-tissue factor involves β1-integrin and extracellular signal regulated kinase activation

    Get PDF
    Objective: Increased levels of circulating tissue factor (TF) in the form of microparticles increase the risk of thrombosis. However, any direct influence of microparticle-associated TF on vascular endothelial cell proliferation is not known. In this study, the influence of recombinant and microparticle- associated TF on endothelial cell proliferation and mitogen-activated protein kinase signaling mechanisms was examined. Methods and Results: Incubation of human coronary artery endothelial cells with lipidated recombinant full-length TF, or TF-containing microparticles (50 to 200 pmol/L TF), increased the rate of cell proliferation and induced phosphorylation of extracellular signal regulated kinase 1 in a TF-dependent manner. Inhibition of extracellular signal regulated kinase 1/2 using PD98059 or extracellular signal regulated kinase 1/2 antisense oligonucleotides or inhibition of c-Jun N-terminal kinase reduced recombinant TF-mediated cell proliferation. PD98059 also reduced cell proliferation in response to TF-containing microparticles. Inclusion of FVIIa (5 nmol/L) and FXa (10 nmol/L) or preincubation of cells with an inhibitory anti-FVIIa antibody had no additional influence on TF-mediated cell proliferation. However, preincubation of exogenous TF with a β1-integrin peptide (amino acids 579 to 799) reduced TF-mediated proliferation. Conclusion: High concentrations of recombinant or microparticle-associated TF stimulate endothelial cell proliferation through activation of the extracellular signal regulated kinase 1/2 pathway, mediated through a novel mechanism requiring the interaction of exogenous TF with cell surface β1-integrin and independent of FVIIa. © 2010 American Heart Association, Inc

    Ubiquitylation activates a peptidase that promotes cleavage and destabilization of its activating E3 ligases and diverse growth regulatory proteins to limit cell proliferation in Arabidopsis

    Get PDF
    The characteristic shapes and sizes of organs are established by cell proliferation patterns and final cell sizes, but the underlying molecular mechanisms coordinating these are poorly understood. Here we characterize a ubiquitin-activated peptidase called DA1 that limits the duration of cell proliferation during organ growth in Arabidopsis thaliana. The peptidase is activated by two RING E3 ligases, Big Brother (BB) and DA2, which are subsequently cleaved by the activated peptidase and destabilized. In the case of BB, cleavage leads to destabilization by the RING E3 ligase PROTEOLYSIS 1 (PRT1) of the N-end rule pathway. DA1 peptidase activity also cleaves the deubiquitylase UBP15, which promotes cell proliferation, and the transcription factors TEOSINTE BRANCED 1/ CYCLOIDEA/PCF 15 (TCP15) and TCP22, which promote cell proliferation and repress endoreduplication. We propose that DA1 peptidase activity regulates the duration of cell proliferation and the transition to endoreduplication and differentiation during organ formation in plants by coordinating the destabilization of regulatory proteins

    Soluble CD40 ligand can replace the normal T cell-derived CD40 ligand signal to B cells in T cell-dependent activation

    Get PDF
    We have constructed a soluble chimeric fusion protein between the mouse CD8 alpha chain and the mouse CD40 T cell ligand. This protein binds to both human and mouse B cells. By itself it induced a modest degree of B cell proliferation, but together with anti-immunoglobulin (anti-Ig) antibody it greatly stimulated B cell proliferation, as determined by both [3H]thymidine uptake and increase in cell numbers. These data are evidence that the CD40 ligand on T cells provides a signal that drives B cell proliferation. This signal is synergistic with that delivered by anti-Ig antibody

    Skin Cell Proliferation Stimulated by Microneedles

    Get PDF
    A classical wound may be defined as a disruption of tissue integrity. Wounds, caused by trauma from accidents or surgery, that close via secondary intention rely on the biological phases of healing, i.e., hemostasis, inflammation, proliferation, and remodeling (HIPR). Depending on the wound type and severity, the inflammation phase begins immediately after injury and may last for an average of 7–14 days. Concurrent with the inflammation phase or slightly delayed, cell proliferation is stimulated followed by the activation of the remodeling (maturation) phase. The latter phase can last as long as 1 year or more, and the final healed state is represented by a scar tissue, a cross-linked collagen formation that usually aligns collagen fibers in a single direction. One may assume that skin microneedling that involves the use of dozens or as many as 200 needles that limit penetration to 1.5 mm over 1 cm2 of skin would cause trauma and bleeding followed by the classical HIPR. However, this is not the case or at least the HIPR phases are significantly curtailed and healing never ends in a scar formation. Conversely dermabrasion used in aesthetic medicine for improving skin quality is based on “ablation” (destruction or wounding of superficial skin layers), which requires several weeks for healing that involves formation of new skin layers. Such procedures provoke an acute inflammatory response. We believe that a less intense inflammatory response occurs following microneedle perforation of the skin. However, the mechanism of action of microneedling appears to be different. Here we review the potential mechanisms by which microneedling of the skin facilitates skin repair without scarring after the treatment of superficial burns, acne, hyperpigmentation, and the non-advancing periwound skin surrounding the chronic ulcerations of the integument

    Inhibition of Tendon Cell Proliferation and Matrix Glycosaminoglycan Synthesis by Non-Steroidal Anti-Inflammatory Drugs in vitro

    Get PDF
    The purpose of this study was to investigate the effects of some commonly used non-steroidal anti-inflammatory drugs (NSAIDs) on human tendon. Explants of human digital flexor and patella tendons were cultured in medium containing pharmacological concentrations of NSAIDs. Cell proliferation was measured by incorporation of 3H-thymidine and glycosaminoglycan synthesis was measured by incorporation of 35S-Sulphate. Diclofenac and aceclofenac had no significant effect either on tendon cell proliferation or glycosaminoglycan synthesis. Indomethacin and naproxen inhibited cell proliferation in patella tendons and inhibited glycosaminoglycan synthesis in both digital flexor and patella tendons. If applicable to the in vivo situation, these NSAIDs should be used with caution in the treatment of pain after tendon injury and surgery

    Age-dependent decline in beta-cell proliferation restricts the capacity of beta-cell regeneration in mice.

    Get PDF
    ObjectiveThe aim of this study was to elucidate whether age plays a role in the expansion or regeneration of beta-cell mass.Research design and methodsWe analyzed the capacity of beta-cell expansion in 1.5- and 8-month-old mice in response to a high-fat diet, after short-term treatment with the glucagon-like peptide 1 (GLP-1) analog exendin-4, or after streptozotocin (STZ) administration.ResultsYoung mice responded to high-fat diet by increasing beta-cell mass and beta-cell proliferation and maintaining normoglycemia. Old mice, by contrast, did not display any increases in beta-cell mass or beta-cell proliferation in response to high-fat diet and became diabetic. To further assess the plasticity of beta-cell mass with respect to age, young and old mice were injected with a single dose of STZ, and beta-cell proliferation was analyzed to assess the regeneration of beta-cells. We observed a fourfold increase in beta-cell proliferation in young mice after STZ administration, whereas no changes in beta-cell proliferation were observed in older mice. The capacity to expand beta-cell mass in response to short-term treatment with the GLP-1 analog exendin-4 also declined with age. The ability of beta-cell mass to expand was correlated with higher levels of Bmi1, a polycomb group protein that is known to regulate the Ink4a locus, and decreased levels of p16(Ink4a)expression in the beta-cells. Young Bmi1(-/-) mice that prematurely upregulate p16(Ink4a)failed to expand beta-cell mass in response to exendin-4, indicating that p16(Ink4a)levels are a critical determinant of beta-cell mass expansion.Conclusionsbeta-Cell proliferation and the capacity of beta-cells to regenerate declines with age and is regulated by the Bmi1/p16(Ink4a)pathway

    Syntaphilin controls a mitochondrial rheostat for proliferation-motility decisions in cancer.

    Get PDF
    Tumors adapt to an unfavorable microenvironment by controlling the balance between cell proliferation and cell motility, but the regulators of this process are largely unknown. Here, we show that an alternatively spliced isoform of syntaphilin (SNPH), a cytoskeletal regulator of mitochondrial movements in neurons, is directed to mitochondria of tumor cells. Mitochondrial SNPH buffers oxidative stress and maintains complex II-dependent bioenergetics, sustaining local tumor growth while restricting mitochondrial redistribution to the cortical cytoskeleton and tumor cell motility. Conversely, introduction of stress stimuli to the microenvironment, including hypoxia, acutely lowered SNPH levels, resulting in bioenergetics defects and increased superoxide production. In turn, this suppressed tumor cell proliferation but increased tumor cell invasion via greater mitochondrial trafficking to the cortical cytoskeleton. Loss of SNPH or expression of an SNPH mutant lacking the mitochondrial localization sequence resulted in increased metastatic dissemination in xenograft or syngeneic tumor models in vivo. Accordingly, tumor cells that acquired the ability to metastasize in vivo constitutively downregulated SNPH and exhibited higher oxidative stress, reduced cell proliferation, and increased cell motility. Therefore, SNPH is a stress-regulated mitochondrial switch of the cell proliferation-motility balance in cancer, and its pathway may represent a therapeutic target
    corecore