1,250 research outputs found

    Shuttle Ground Operations Efficiencies/Technologies (SGOE/T) study. Volume 2: Ground Operations evaluation

    Get PDF
    The Ground Operations Evaluation describes the breath and depth of the various study elements selected as a result of an operational analysis conducted during the early part of the study. Analysis techniques used for the evaluation are described in detail. Elements selected for further evaluation are identified; the results of the analysis documented; and a follow-on course of action recommended. The background and rationale for developing recommendations for the current Shuttle or for future programs is presented

    An Overview of MCC and Its Research

    Get PDF
    Viewgraphs on Microelectronics and Computer Technology Corporation (MCC) are presented. The MCC is a cooperative enterprise whose mission is to strengthen and sustain America's competitiveness in information technologies. Their objective is excellence in meeting broad industry needs through application-driven research, development, and timely deployment of innovative technology. Research programs include: software technology; VLSI/computer aided design; packaging/interconnect; electronic applications of high temperature superconductors; and advanced computing technology

    MINIMALIST: An Environment for the Synthesis, Verification and Testability of Burst-Mode Asynchronous Machines

    Get PDF
    MINIMALIST is a new extensible environment for the synthesis and verification of burst-mode asynchronous finite-state machines. MINIMALIST embodies a complete technology-independent synthesis path, with state-of-the-art exact and heuristic asynchronous synthesis algorithms, e.g.optimal state assignment (CHASM), two-level hazard-free logic minimization (HFMIN, ESPRESSO-HF, and IMPYMIN), and synthesis-for-testability. Unlike other asynchronous synthesis packages, MINIMALIST also offers many options:literal vs. product optimization, single- vs. multi-output logic minimization, using vs. not using fed-back outputs as state variables, and exploring varied code lengths during state assignment, thus allowing the designer to explore trade-offs and select the implementation style which best suits the application. MINIMALIST benchmark results demonstrate its ability to produce implementations with an average of 34% and up to 48% less area, and an average of 11% and up to 37% better performance, than the best existing package. Our synthesis-for-testability method guarantees 100% testability under both stuck-at and robust path delay fault models,requiring little or no overhead. MINIMALIST also features both command-line and graphic user interfaces, and supports extension via well-defined interfaces for adding new tools. As such, it is easily augmented to form a complete path to technology-dependent logic

    Cost modelling and concurrent engineering for testable design

    Get PDF
    This thesis was submitted for the degree of Doctor of Philosophy and awarded by Brunel University.As integrated circuits and printed circuit boards increase in complexity, testing becomes a major cost factor of the design and production of the complex devices. Testability has to be considered during the design of complex electronic systems, and automatic test systems have to be used in order to facilitate the test. This fact is now widely accepted in industry. Both design for testability and the usage of automatic test systems aim at reducing the cost of production testing or, sometimes, making it possible at all. Many design for testability methods and test systems are available which can be configured into a production test strategy, in order to achieve high quality of the final product. The designer has to select from the various options for creating a test strategy, by maximising the quality and minimising the total cost for the electronic system. This thesis presents a methodology for test strategy generation which is based on consideration of the economics during the life cycle of the electronic system. This methodology is a concurrent engineering approach which takes into account all effects of a test strategy on the electronic system during its life cycle by evaluating its related cost. This objective methodology is used in an original test strategy planning advisory system, which allows for test strategy planning for VLSI circuits as well as for digital electronic systems. The cost models which are used for evaluating the economics of test strategies are described in detail and the test strategy planning system is presented. A methodology for making decisions which are based on estimated costing data is presented. Results of using the cost models and the test strategy planning system for evaluating the economics of test strategies for selected industrial designs are presented

    Overview of E-Learning Environment for Web-Based Study of Testing and Diagnostics of Digital Systems

    Full text link
    In this paper, we present an overview of latest developments taking place at Tallinn Technical University (TTU) in the area of e-learning supported by Europea

    Simulated annealing based datapath synthesis

    Get PDF

    SRAM-Based FPGA Systems for Safety-Critical Applications: A Survey on Design Standards and Proposed Methodologies

    Get PDF
    As the ASIC design cost becomes affordable only for very large-scale productions, the FPGA technology is currently becoming the leading technology for those applications that require a small-scale production. FPGAs can be considered as a technology crossing between hardware and software. Only a small-number of standards for the design of safety-critical systems give guidelines and recommendations that take the peculiarities of the FPGA technology into consideration. The main contribution of this paper is an overview of the existing design standards that regulate the design and verification of FPGA-based systems in safety-critical application fields. Moreover, the paper proposes a survey of significant published research proposals and existing industrial guidelines about the topic, and collects and reports about some lessons learned from industrial and research projects involving the use of FPGA devices

    Doctor of Philosophy

    Get PDF
    dissertationThe design of integrated circuit (IC) requires an exhaustive verification and a thorough test mechanism to ensure the functionality and robustness of the circuit. This dissertation employs the theory of relative timing that has the advantage of enabling designers to create designs that have significant power and performance over traditional clocked designs. Research has been carried out to enable the relative timing approach to be supported by commercial electronic design automation (EDA) tools. This allows asynchronous and sequential designs to be designed using commercial cad tools. However, two very significant holes in the flow exist: the lack of support for timing verification and manufacturing test. Relative timing (RT) utilizes circuit delay to enforce and measure event sequencing on circuit design. Asynchronous circuits can optimize power-performance product by adjusting the circuit timing. A thorough analysis on the timing characteristic of each and every timing path is required to ensure the robustness and correctness of RT designs. All timing paths have to conform to the circuit timing constraints. This dissertation addresses back-end design robustness by validating full cyclical path timing verification with static timing analysis and implementing design for testability (DFT). Circuit reliability and correctness are necessary aspects for the technology to become commercially ready. In this study, scan-chain, a commercial DFT implementation, is applied to burst-mode RT designs. In addition, a novel testing approach is developed along with scan-chain to over achieve 90% fault coverage on two fault models: stuck-at fault model and delay fault model. This work evaluates the cost of DFT and its coverage trade-off then determines the best implementation. Designs such as a 64-point fast Fourier transform (FFT) design, an I2C design, and a mixed-signal design are built to demonstrate power, area, performance advantages of the relative timing methodology and are used as a platform for developing the backend robustness. Results are verified by performing post-silicon timing validation and test. This work strengthens overall relative timed circuit flow, reliability, and testability
    • …
    corecore