347 research outputs found

    Classifying resilience approaches for protecting smart grids against cyber threats

    Get PDF
    Smart grids (SG) draw the attention of cyber attackers due to their vulnerabilities, which are caused by the usage of heterogeneous communication technologies and their distributed nature. While preventing or detecting cyber attacks is a well-studied field of research, making SG more resilient against such threats is a challenging task. This paper provides a classification of the proposed cyber resilience methods against cyber attacks for SG. This classification includes a set of studies that propose cyber-resilient approaches to protect SG and related cyber-physical systems against unforeseen anomalies or deliberate attacks. Each study is briefly analyzed and is associated with the proper cyber resilience technique which is given by the National Institute of Standards and Technology in the Special Publication 800-160. These techniques are also linked to the different states of the typical resilience curve. Consequently, this paper highlights the most critical challenges for achieving cyber resilience, reveals significant cyber resilience aspects that have not been sufficiently considered yet and, finally, proposes scientific areas that should be further researched in order to enhance the cyber resilience of SG.Open Access funding provided thanks to the CRUE-CSIC agreement with Springer Nature. Funding for open access charge: Universidad de Málaga / CBUA

    A review of solutions for SDN-Exclusive security issues

    Get PDF
    Software Defined Networking is a paradigm still in its emergent stages in the realm of production-scale networks. Centralisation of network control introduces a new level of flexibility for network administrators and programmers. Security is a huge factor contributing to consumer resistance to implementation of SDN architecture. Without addressing the issues inherent from SDNs centralised nature, the benefits in performance and network configurative flexibility cannot be harnessed. This paper explores key threats posed to SDN environments and comparatively analyses some of the mechanisms proposed as mitigations against these threats – it also provides some insight into the future works which would enable a securer SDN architecture.

    Resilience support in software-defined networking:a survey

    Get PDF
    Software-defined networking (SDN) is an architecture for computer networking that provides a clear separation between network control functions and forwarding operations. The abstractions supported by this architecture are intended to simplify the implementation of several tasks that are critical to network operation, such as routing and network management. Computer networks have an increasingly important societal role, requiring them to be resilient to a range of challenges. Previously, research into network resilience has focused on the mitigation of several types of challenges, such as natural disasters and attacks. Capitalizing on its benefits, including increased programmability and a clearer separation of concerns, significant attention has recently focused on the development of resilience mechanisms that use software-defined networking approaches. In this article, we present a survey that provides a structured overview of the resilience support that currently exists in this important area. We categorize the most recent research on this topic with respect to a number of resilience disciplines. Additionally, we discuss the lessons learned from this investigation, highlight the main challenges faced by SDNs moving forward, and outline the research trends in terms of solutions to mitigate these challenges

    SIoTFog: Byzantine-resilient IoT fog networking

    Get PDF
    The current boom in the Internet of Things (IoT) is changing daily life in many ways, from wearable devices to connected vehicles and smart cities. We used to regard fog computing as an extension of cloud computing, but it is now becoming an ideal solution to transmit and process large-scale geo-distributed big data. We propose a Byzantine fault-tolerant networking method and two resource allocation strategies for IoT fog computing. We aim to build a secure fog network, called “SIoTFog,” to tolerate the Byzantine faults and improve the efficiency of transmitting and processing IoT big data. We consider two cases, with a single Byzantine fault and with multiple faults, to compare the performances when facing different degrees of risk. We choose latency, number of forwarding hops in the transmission, and device use rates as the metrics. The simulation results show that our methods help achieve an efficient and reliable fog network

    D1.3 - SUPERCLOUD Architecture Implementation

    Get PDF
    In this document we describe the implementation of the SUPERCLOUD architecture. The architecture provides an abstraction layer on top of which SUPERCLOUD users can realize SUPERCLOUD services encompassing secure computation workloads, secure and privacy-preserving resilient data storage and secure networking resources spanning across different cloud service providers' computation, data storage and network resources. The components of the SUPERCLOUD architecture implementation are described. Integration between the different layers of the architecture (computing security, data protection, network security) and with the facilities for security self-management is also highlighted. Finally, we provide download and installation instructions for the released software components that can be downloaded from our common SUPERCLOUD code repository

    Security Threats in Software Defined Mobile Clouds (SDMC)

    Get PDF
    Future Internet comprises of emerging ICT mega-trends (e.g., mobile, social, cloud, and big data) commands new challenges like ubiquitous accessibility, high bandwidth, and dynamic management to meet the data tsunami requirements. In the recent years, the rapid growth of smartphone business is highly evidenced due to its versatile usage irrespective of location, personality or context. Despite of increased smartphone usage, exploiting its full potential becomes very difficult owing to its typical issues such as resource scarcity, mobility and more prominently the security. Software Defined Networking (SDN), an emerging wireless network paradigm can make use of rich mobile cloud functionalities such as traffic management, load balancing, routing, and firewall configuration over physical abstraction of control planes from data planes. Hence SDN leads to a clear roadmap to Software Security control in Mobile Clouds (SDMC). Further it can be extended to a level of Security prevention. To address in this direction, this paper surveys the relevant backgrounds of the existing state-of-art works to come up with all possible SDMC threats and its countermeasures
    • …
    corecore