
D1.3
SUPERCLOUD Architecture Implementation

Project number: 643964

Project acronym: SUPERCLOUD

Project title:
User-centric management of security and dependability in clouds of
clouds

Project Start Date: 1st February, 2015

Duration: 36 months

Programme: H2020-ICT-2014-1

Deliverable Type: Demonstrator

Reference Number: ICT-643964-D1.3 / 1.0

Work Package: WP 1

Due Date: July 2017 - M30

Actual Submission Date: 31st July, 2017

Responsible Organisation: TUDA

Editor: Markus Miettinen

Dissemination Level: PU

Revision: 1.0

Abstract:

This report describes the structure of the SUPERCLOUD architec-
ture implementation and the roles purpose of its different compo-
nents. It also describes the integration of components between the
layers of the architecture and provides download and installation in-
structions for the software components.

Keywords:
implementation, software, architecture, computation, data storage,
network, security management, virtualization

This project has received funding from the European Unions Horizon 2020 research
and innovation programme under grant agreement No 643964.

This work was supported (in part) by the Swiss State Secretariat for Education, Research and
Innovation (SERI) under contract number 15.0091.

This document has gone through the consortiums internal review process and is still subject to the

review of the European Commission. Updates to the content may be made at a later stage.

D1.3 - SUPERCLOUD Architecture Implementation

Editor

Markus Miettinen (TUDA)

Contributors (ordered according to beneficiary numbers)

Mario Münzer (TEC)
Marc Lacoste, Sébastien Canard, Marie Paindavoine (ORANGE)
Marko Vukolić (IBM)
Alysson Bessani, Fernando Ramos, Nuno Neves, Eric Vial (FCiencias.ID)
Reda Yaich, Grégory Blanc (IMT)
Markus Miettinen, Ferdinand Brasser, Tommaso Frassetto (TUDA)
Daniel Pletea (PEN)

Disclaimer

The information in this document is provided ”as is”, and no guarantee or warranty is given that the
information is fit for any particular purpose. The users thereof use the information at their sole risk
and liability.
This document has gone through the consortiums internal review process and is still subject to the
review of the European Commission. Updates to the content may be made at a later stage.

SUPERCLOUD D1.3 Page I

D1.3 - SUPERCLOUD Architecture Implementation

Executive Summary

In this document we describe the implementation of the SUPERCLOUD architecture. The architecture
provides an abstraction layer on top of which SUPERCLOUD users can realize SUPERCLOUD ser-
vices encompassing secure computation workloads, secure and privacy-preserving resilient data storage
and secure networking resources spanning across different cloud service providers’ computation, data
storage and network resources. The components of the SUPERCLOUD architecture implementation
are described. Integration between the different layers of the architecture (computing security, data
protection, network security) and with the facilities for security self-management is also highlighted.
Finally, we provide download and installation instructions for the released software components that
can be downloaded from our common SUPERCLOUD code repository.

SUPERCLOUD D1.3 Page II

D1.3 SUPERCLOUD Architecture Implementation

Contents

Chapter 1 Introduction 1
Chapter 2 Architecture implementation overview 2

2.1 Architecture frameworks . 2
2.2 Architecture implementation . 3

Chapter 3 Computing security framework 4
3.1 Components . 4
3.2 Integration with data protection framework . 5

3.2.1 Extending isolation to data protection . 5
3.2.1.1 Data access obfuscation . 5
3.2.1.2 Secure key management . 6

3.2.2 Managing SSLAs for geolocation-based data replication 6
3.2.2.1 SLA management for geolocation-aware data replication 6
3.2.2.2 Location-awareness policies for SLAs 7

3.3 Integration with network security framework . 8
3.3.1 Integrating computing security orchestration with network security 9
3.3.2 Integrating VM orchestration with network hypervisor 9
3.3.3 Extending Cloud FPGAs to the network . 10

3.4 Integration with security self-management . 11
Chapter 4 Data protection framework 12

4.1 Components . 12
4.1.1 Cryptographic libraries (attribute-based encryption and deduplication) 12

4.1.1.1 Data anonymization tool . 13
4.1.2 Hyperledger Fabric . 13

4.1.2.1 Component description . 14
4.1.2.2 Integration with use cases . 14

4.2 Integration with security self-management . 14
4.2.1 Monitoring of data access failures . 14

Chapter 5 Network security framework 16
5.1 Components . 16
5.2 Integration with computing security framework . 17

5.2.1 Integration of network hypervisor with VM orchestrator 17
5.3 Integration with data protection framework . 18

5.3.1 Integration of SDN control with BFT SMR . 18
5.4 Integration with security self-management . 18

5.4.1 Integration of network security with security monitoring 19
5.4.2 Integration of network hypervisor with network security 19

Chapter 6 Installation 20
6.1 Computing framework components . 20

6.1.1 Virtualization and orchestration and micro-hypervisor 20
6.1.2 Isolation . 20
6.1.3 Security Orchestrator . 20
6.1.4 Authorization . 21

SUPERCLOUD D1.3 Page III

D1.3 - SUPERCLOUD Architecture Implementation

6.1.5 Monitoring . 21
6.1.6 Security SLA . 21
6.1.7 Software trust . 21

6.2 Data protection framework components . 21
6.2.1 Janus . 21
6.2.2 Hyperledger Fabric . 22

6.3 Network security framework components . 22
6.3.1 Multi-cloud network orchestrator and network hypervisor 22

6.3.1.1 VM infrastructure . 22
6.3.1.1.1 SSH connection . 23
6.3.1.1.2 Inter-cloud tunnels . 23
6.3.1.1.3 Intra-cloud tunnels . 23
6.3.1.1.4 Docker installation . 23

6.3.1.2 Orchestrator . 23
6.3.1.3 Hypervisor . 23

6.3.2 Network security monitoring and appliance chaining 23
6.3.3 Network security policy management . 24

6.4 Security self-management components . 24
6.4.1 Manual deployment . 24
6.4.2 Orchestrated deployment . 24

Chapter 7 Summary 25
Chapter 8 List of Abbreviations 26
Bibliography 28

SUPERCLOUD D1.3 Page IV

D1.3 SUPERCLOUD Architecture Implementation

List of Figures

2.1 SUPERCLOUD overall component architecture . 2

3.1 Overview of SUPERCLOUD computing security framework 4
3.2 Integration with data protection framework . 5
3.3 SSLA and georeplication integration . 7
3.4 SSLA location-aware Janus . 8
3.5 Integration with network security framework . 8
3.6 OrBAC-based orchestration of network security policies 9
3.7 VM virtualization and orchestration, network hypervisor, multi-cloud orchestrator [21] 10
3.8 A first interconnection scenario . 11

4.1 Integrating Janus with advanced cryptographic component: upload 13
4.2 Janus and Self-Management Integration . 15

5.1 SUPERCLOUD network security framework overview 16
5.2 Integration with computing security framework . 17
5.3 Integration with data protection framework . 18

SUPERCLOUD D1.3 Page V

D1.3 - SUPERCLOUD Architecture Implementation

Chapter 1 Introduction

This Deliverable describes the implementation of the SUPERCLOUD architecture that was specified
in Deliverable D1.1 [11] and presented in [8]. The SUPERCLOUD architecture consists of three layers,
refined into corresponding frameworks for computing security, data protection and network security.
All frameworks are supported by an orthogonal security self-management infrastructure. This docu-
ment provides descriptions of the components for the frameworks of each layer of the architecture. It
also outlines the integration interfaces between the different layers.

In Chapter 2 we first present an overview of the overall SUPERCLOUD architecture implementation
and enumerate the components comprising the frameworks for computing security, data protection
and network security.

The following chapters then outline each framework separately, and highlight interconnections with
other frameworks:

• Chapter 3 describes the components of the computing security framework. It presents the com-
ponents comprising its virtualization and self-management infrastructures. It also describes
integration with components of frameworks for data protection and network security and with
security self-management.

• Chapter 4 describes the components of the data protection framework. It also presents integration
with components of frameworks for computing security and for network security and with security
self-management.

• Chapter 5 describes the components of the network security framework. It also presents integra-
tion points with components of computing security and data protection frameworks and with
self-management of security.

Installation instructions including guidance on download locations for the discussed architectural com-
ponents are provided in Chapter 6, before concluding with a summary in Chapter 7.

SUPERCLOUD D1.3 Page 1 of 30

D1.3 - SUPERCLOUD Architecture Implementation

Chapter 2 Architecture implementation overview

Figure 2.1: SUPERCLOUD overall component architecture

Figure 2.1 shows the overall SUPERCLOUD component architecture. As outlined in Deliverable
D1.1 [11] describing the SUPERCLOUD architecture, its purpose is to provide to SUPERCLOUD users
a computing, data storage and network abstraction for securely deploying SUPERCLOUD services in
a way that is independent of the underlying cloud service providers.
This Deliverable describes the implementation of the overall architecture. The architecture consists
of three layers, refined into computing security, data protection and network security frameworks. All
frameworks are also supported by an orthogonal security self-management infrastructure providing
facilities for automation of user-level control of security and privacy settings.

2.1 Architecture frameworks

The role of the computing security framework (cf. Chapter 3) is to provide facilities for exe-
cuting computing workloads on execution environments across different cloud service providers and
orchestrating their functions. The framework provides strict isolation of the execution environments
of different SUPERCLOUD users that can be enhanced with hardware-based isolation and trust man-
agement. According to the requirements specified in Deliverable D1.1 [11], this framework also enables
to control the deployment of computing workloads based on geographical constraints related to, e.g.,
legal requirements on jurisdictional borders.

SUPERCLOUD D1.3 Page 2 of 30

D1.3 - SUPERCLOUD Architecture Implementation

The data protection framework (cf. Chapter 4) provides facilities for secure and resilient storage
of SUPERCLOUD user data across cloud service providers. It provides advanced protection mea-
sures based on, e.g., attribute-based encryption or assurance of anonymity of data. It also features
blockchain-based mechanisms for non-repudiation of records to provide reliable data storage for ap-
plications with high requirements towards data confidentiality and user privacy.

The network security framework (cf. Chapter 5) provides a secure network abstraction deploy-
able over several cloud service providers’ networking resources. It is based on a multi-cloud network
hypervisor and a multi-cloud orchestrator to realize desired network topologies on top of the physical
network resources. It also provides facilities for security self-management allowing configuration and
monitoring of the security of the network and of its components.

2.2 Architecture implementation

The subsequent Chapters provide brief outlines of the implemented components of each framework.
They describe the integration interfaces of individual components to other frameworks and compo-
nents of the SUPERCLOUD architecture.

For implementation details of the components, we refer the reader to:

• Deliverable D2.3 “Proof-of-Concept Prototype of Secure Computation Infrastructure and SU-
PERCLOUD Security Services” [9] for the secure computation-related components;

• Deliverable D3.3 “Proof-of-Concept Prototype for Data Management”[3] for data protection-
related components;

• and to Deliverable D4.3 “Proof-of-Concept Prototype of the Multi-Cloud Network Virtualization
Infrastructure” [16] for the network security-related components.

Each Chapter also provides an overview of the integration of each framework with components for
self-management of security - described in detail in Deliverable D1.4 [26].

SUPERCLOUD D1.3 Page 3 of 30

D1.3 - SUPERCLOUD Architecture Implementation

Chapter 3 Computing security framework

This Chapter presents the SUPERCLOUD computing security framework, described more extensively
in Deliverable D2.3 [9]. We give an overview of the framework’s main components (Section 3.1).
We then show how the framework interacts with SUPERCLOUD frameworks for data protection
(Section 3.2, see Deliverable D3.3 [3]), network security (Section 3.3, see Deliverable D4.3 [16]) and
self-management of security (Section 3.4, see Deliverable D1.2 [27]).

3.1 Components

Figure 3.1: Overview of SUPERCLOUD computing security framework

Figure 3.1 shows the main components of the computing security framework. Components may be
grouped into two-distinct sub-infrastructures:

• The virtualization infrastructure provides a distributed abstraction layer for running U-
Clouds on computing resources of different cloud providers. It includes low-level infrastruc-
ture security services for: horizontal orchestration to achieve unified security management of
computing elements regardless of providers; vertical orchestration, extending user-control over
U-Cloud security into the lower layers of the provider infrastructure using a micro-hypervisor;
and strong isolation and trust management between computing elements, relying on hardware
security mechanisms (e.g., Intel SGX, FPGAs).

SUPERCLOUD D1.3 Page 4 of 30

D1.3 - SUPERCLOUD Architecture Implementation

• The self-management infrastructure implements autonomic security management for the
distributed cloud. This infrastructure provides a number of security services that may be or-
chestrated on-demand to guarantee (self-) protection of U-Clouds on top of the distributed
virtualization infrastructure. Provided services include: authorization to perform resource ac-
cess control at different infrastructure levels; security monitoring across infrastructure layers and
providers; geolocation-aware data replication; management of security SLAs; and software-level
trust management between users or providers.

3.2 Integration with data protection framework

Figure 3.2: Integration with data protection framework

Figure 3.2 shows how components from the computing framework interact with those from the
data protection framework. Two inter-framework connections are particularly interesting: extend-
ing hardware-based isolation to protect data (Section 3.2.1) and managing SLAs for geolocation-aware
data replication (Section 3.2.2).

3.2.1 Extending isolation to data protection

This type of integration may cover both obfuscating data access (Section 3.2.1.1) and using isolation
technology to achieve secure key management (Section 3.2.1.2).

3.2.1.1 Data access obfuscation

The Intel SGX execution environment (as described in more detail in Deliverable D2.3 [9], Section 3.3)
provides isolation of data and code. Concretely, the memory which contains data and code cannot
be accessed by any other entity except the execution environment itself. Data often processed are
loaded on-demand from external resources like local storage, or over the network. Using appropriate
cryptographic methods, the data cannot be inspected by an external, untrusted entity (the adversary).
However, which data are accessed, at which point in time and in which order accesses happen can
reveal sensitive information. For instance, if an execution environment instance is known to process
medical data which are related to a certain disease and if the adversary observes access to a particular
patient’s file, the adversary may infer that this patient has (is suspected to have) this particular
disease, which is clearly sensitive information.

SUPERCLOUD D1.3 Page 5 of 30

D1.3 - SUPERCLOUD Architecture Implementation

To prevent such information leakage the concept of Oblivious Random Access Memory (ORAM) has
been introduced and studied extensively [7, 20]. With ORAM, data are stored in a randomized order
and the adversary cannot identify individual data sets.
In the example above, this means that the adversary would learn that some patient’s file has been
accessed. However, he would not be able to distinguish the files of different patients. Furthermore,
ORAM not only randomizes data once, but on every access data are re-randomized to prevent the
adversary from gradually learning about individual files.
The ORAM scheme can be integrated into the SGX execution environment as an abstraction layer for
accesses to external resources, like local storage or network-attached storage. This layered integration
makes the protection offered by ORAM transparent to the software executed inside the execution
environment. Notably, the code interpretation layer (Python, see Deliverable D2.3 [9], Section 3.3 for
details) of the SGX execution environment allows interception of any access to external resources to
protect them with an ORAM-secured access.

3.2.1.2 Secure key management

Secure key management is arguably one of the most difficult challenges when it comes to implementing
cryptographic protocols. In the case of SUPERCLOUD, this problem mainly arises when manipulating
the Attribute-Based Encryption (ABE) library integrated into CLINIdATA, one of the SUPERCLOUD
use case systems (cf. Deliverable D5.2 [19]). We propose to leverage secure cloud enclaves, such as
Intel SGX, to help towards reliable key management and to prevent any leakage while storing and
manipulating users’ secret keys.
In the ABE library, each user secret key is associated with a set of attributes, while each ciphertext
is associated with an access policy, which is a formula over the whole set of attributes in the system.
One secret key can be used to decrypt a ciphertext if and only if its set of attributes satisfies the access
policy underlying the ciphertext.
Each user secret key is only generated once and can be secretly stored in the cloud. This secure storage
is achieved using the sealing feature of Intel SGX. This operation encrypts the cryptographic key under
the enclave’s secret key, before storing this encryption in a cloud service provider. When a user needs
a document to be decrypted, the enclave retrieves the key, decrypts it and uses it inside the protected
environment. The document is sent to the user using a secure channel, such as TLS. In this setting,
the user’s keys are always protected while unused, and only decrypted inside the secure enclave. This
enables a user-friendly experience, where the device loss can be managed securely without losing data
encrypted under the device’s key.
This feature is still under implementation using OpenSGX, and will be integrated into the SUPER-
CLOUD testbed via OpenStack.

3.2.2 Managing SSLAs for geolocation-based data replication

This type of integration covers managing Security Service Level Agreements (SSLA) for geolocation-
based data replication, replication being managed directly above the distributed storage system (Sec-
tion 3.2.2.1), or integrated directly in a multi-cloud storage system such as Janus (Section 3.2.2.2).

3.2.2.1 SLA management for geolocation-aware data replication

The main goal of the location-aware data replication service is to allow cloud users to keep control on
the locations where their data could be replicated, addressing the numerous geolocation directives and
regulations 1. We showcase in this Section how such objective has been achieved in SUPERCLOUD.
As illustrated in Figure 3.3, geolocation policies are extracted from the SSLA by the SSLA manage-
ment service and converted to Organization-Based Access Control (OrBAC) rules. These rules are

1GDPR: General Data Protection Regulation.

SUPERCLOUD D1.3 Page 6 of 30

D1.3 - SUPERCLOUD Architecture Implementation

Authorization Service

Application
Interface

Address:Port

JVM Server

OrBAC API

SOAP
Handler

G
eo

Lo
ca

tio
n

Po
lic

ie
s SSLA

Mgnt.
 Service

DataSLA Compliant
Hosts

Philips Research GeoReplication Service

Axis Server

Figure 3.3: Integration of SSLA management and georeplication services

subsequently processed by the authorization service to derive permissions/prohibitions. From the geo-
replication service perspective, integration with the aforementioned authorization service is achieved
throughout a standard REST API interface. This interface allows the georeplication service to re-
trieve the list of locations/VMs that are compliant with the cloud customer requirements. This list is
subsequently used by this service to achieve SSLA-compliant data replication.

3.2.2.2 Location-awareness policies for SLAs

This Section provides an overview on the implementation of location-aware data replication services.
This feature is showcased in SUPERCLOUD through the integration of SSLA services that extract
user requirements in terms of data location and of the secure storage provided by Janus.

SUPERCLOUD D1.3 Page 7 of 30

D1.3 - SUPERCLOUD Architecture Implementation

JANUS
Disk Driver

Cloud Providers SUPERCLOUD Data Layer

if(conn
 SELEC
 WHERE
 print

SSLA
Specification

Service

JANUS
Server

REST API

Security
Orchestrator

Cloud
User

volumes configuration

if(conn
 SELEC
 WHERE
 print

if(conn
 SELEC
 WHERE
 print

requirements

Providers

Settings

Security Self-Management

Figure 3.4: SSLA location-aware Janus

As illustrated in Figure 3.4, the location-aware fault-tolerance service is the result of the integration
of two components for self-management of security, and two components from the Janus framework.
The user first specifies his data volumes requirements through the SSLA specification service2. Then,
based on these requirements, a request is sent to the Janus service where a solver will find the best
solution that matches the user’s desiderata. Once this configuration is found, the result is sent back
to the SSLA service which takes care of forwarding it to the Security Orchestrator. In the last phase,
the Orchestrator will use this configuration file to deploy and configure the Janus Virtual Disk Driver.
Once running, this component will do regular backups of user data only on providers that fulfill the
user’s requirements in terms of location, but also in terms of cost and latency.

3.3 Integration with network security framework

Figure 3.5: Integration with network security framework

Figure 3.5 shows how computing components may interact with network security components. Three
inter-framework connections are particularly interesting : how to integrate the security orchestrator
for computing resources with the network security module (Section 3.3.1), how to connect VM orches-

2This service is presented in detail in Deliverable D1.4 [26].

SUPERCLOUD D1.3 Page 8 of 30

D1.3 - SUPERCLOUD Architecture Implementation

tration with the network hypervisor (Section 3.3.2), or how to apply the Cloud FPGA component in
a networked setting (Section 3.3.3).

3.3.1 Integrating computing security orchestration with network security

In this Section, we present an overview of the integration of security services from the self-management
and computing framework with security services from the networking framework. This integration
showcases the implementation of user-driven and adaptive network policies for service availability.

Control Plane

SDN
Controller

Data Plane

SwitchSwitch

Switch

Switch

Switch

Alerts

Context
Information Policies

Security Orchestrator Monitoring Engine

VM
Status

Network
Status

SDN
Security
Module

Figure 3.6: OrBAC-based orchestration of network security policies

User security preferences captured and negotiated by the SSLA service are represented as OrBAC
authorization rules (i.e., permissions and prohibitions), as shown in the top-left part of Figure 3.6.
These policies are then used by the Security Orchestrator to activate and/or deactivate SDN routing
paths based on context and monitoring information [21].

3.3.2 Integrating VM orchestration with network hypervisor

This Section shows how the VM virtualization and orchestration computing component (implemented
by the Mantus multi-cloud builder as part of the Orbits framework [14, 15]) could be interconnected
with network hypervisor and multi-cloud orchestrator networking components (implemented by the
Sirius multi-cloud network virtualisation platform [1, 2]). Figure 3.7 recalls the principles of these
components.

• Computing: to build the multi-cloud substrate, the computing infrastructure administrator se-
lects the infrastructure elements (VMs, containers) and security services (mostly for computing)
to deploy in the substrate, specified as templates. Both elements are then matched with provider
capabilities, dispatched to the different clouds providers, weaved to inject the security services
in the infrastructure, and finally instantiated on the different providers. This set of compilation
operations results in a (distributed) U-Cloud composing either nested VMs or containers within
VMs (depending on chosen virtualization technology) with security services located in differ-
ent parts of the infrastructure. A distributed orchestration logic enables to achieve U-Cloud
multi-provider awareness. The application containers are then deployed in U-Cloud execution
environments using an application-level deployment framework.

• Networking: the networking infrastructure administrator selects the infrastructure elements
(VM, containers) to build the substrate. The user selects the virtual networks to deploy, com-

SUPERCLOUD D1.3 Page 9 of 30

D1.3 - SUPERCLOUD Architecture Implementation

Figure 3.7: VM virtualization and orchestration, network hypervisor, multi-cloud orchestrator [21]

posed of a number of containers interconnected according to an arbitrary topology, and their
security requirements. The multi-cloud orchestrator then deploys the infrastructure elements
(VMs, bootstrap containers), builds the necessary tunnels to interconnect networks, and is re-
turned information on the state of the infrastructure such as resource availability. The network
hypervisor performs the embedding operation to match the chosen virtual network topology to
available resources in the substrate: it instructs the multi-cloud orchestrator to deploy the virtual
network containers accordingly. The network hypervisor also updates OVS switch configurations
in the infrastructure to enforce user-defined security requirements such as network isolation.

Architectures and deployment processes are thus very similar, and a first level of integration is being
explored for corresponding computing and networking components. A first design is shown in Fig-
ure 3.8 to make virtual networks of VMs enriched with security services controllable remotely from
the network hypervisor. Further results will be reported in Deliverable D2.4.
A possible integration scenario is the following: as previously, the user specifies the application as a
set of containers and virtual networks. This knowledge is shared between the VM virtualization and
orchestration and the multi-cloud orchestrator components. The infrastructure administrator also
specifies the infrastructure elements to deploy: this operation will be shared by VM virtualization
and orchestration component (for the private cloud) and by the multi-cloud orchestrator (for the rest
of the infrastructure). Specification of security services and of network security requirements and
instantiation of infrastructure elements is then performed as before. Each Open vSwitch (OVS) of
the private cloud is made controllable remotely by the network hypervisor that can now perform
network embedding on all OVS switches of the infrastructure to enforce security requirements. For
application-level deployment, the multi-cloud orchestrator deploys virtual networks as previously in
its own control perimeter. It also instructs the VM virtualization and orchestration component to
deploy the other application containers in the private cloud.

3.3.3 Extending Cloud FPGAs to the network

The Cloud FPGA component of the computing framework enables to off-load tasks from CPUs of the
SUPERCLOUD infrastructure such as intensive computations related to cryptography or security. Its

SUPERCLOUD D1.3 Page 10 of 30

D1.3 - SUPERCLOUD Architecture Implementation

Figure 3.8: A first interconnection scenario

design was presented in Deliverable D2.2 [12] and its objective and internal interface in Deliverable
D2.3 [9]. Moreover, this component also provides network security benefits to manage a fabric of
multiple FPGAs using Software-Defined Networking, within the SUPERCLOUD network plane. More
details will be provided in Deliverable D2.4.

3.4 Integration with security self-management

Computing and security self-management components are already tightly integrated by the very design
of the computing framework. They can then integrate further with other SUPERCLOUD planes such
as storage to introduce location-awareness policies for SLAs (Section 3.2.2). Integration of security
orchestration, SLA management, and network security policy management was already described in
Section 3.3.1, and will be described in more detail in Deliverable D1.4 [26].

SUPERCLOUD D1.3 Page 11 of 30

D1.3 - SUPERCLOUD Architecture Implementation

Chapter 4 Data protection framework

This Chapter presents the SUPERCLOUD data management and data protection framework, de-
scribed more extensively in Deliverable D3.3 [3]. We give an overview of the framework main com-
ponents in Section 4.1. Interactions of the data management and protection framework with self-
management of security (itself detailed in Deliverable D1.2 [27]) are described in Section 4.2.
For information about interaction of the data management framework with the computing framework,
we refer the reader to Section 3.2 of this Deliverable.

4.1 Components

The SUPERCLOUD data protection and management components implement secure and dependable
data management services in a cloud-of-clouds environment. The overall architecture envisioned for
the project data management, and the main contributions in this context were described in previous
Deliverables [24, 25, 3].
In a nutshell, this architecture considers many different instantiations of data management services.
This includes the use of existing public cloud services like Amazon S3 and Rackspace Files for storing
files and support cheap disaster recovery, the design of custom blockchain-like multi-cloud services,
and new tools and programming libraries for implementing advanced security features in existing ap-
plications.

The main data protection and management components include:

• Janus, a cloud-backed storage service that can be configured on the web, by specifying workloads
and requirements for data storage, and using a proxy locally to transfer this data to/from a set
of cloud storage services selected by the system.

• Cryptographic libraries which span k-anonymity (for removing privacy-sensitive datasets), attribute-
based encryption (ABE) (that allows encryption of data records such that only parties satisfying
certain attributes can decrypt such records), and deduplication (which removes redundant infor-
mation stored on clouds). These cryptographic libraries integrate with the Janus cloud storage
service as described in Section 4.1.1.

• Hyperledger Fabric, described briefly in Section 4.1.2, a permissioned blockchain framework that
employs Byzantine-resilient consensus on its core. Although Hyperledger Fabric is not 100%
supported by SUPERCLOUD, we are contributing with several alternatives for implementing
the agreement on the ordering of blocks.

4.1.1 Cryptographic libraries (attribute-based encryption and deduplication)

We present here how advanced cryptographic components can be integrated with Janus as a further
avenue of research. We focus our study on both attribute-based encryption (ABE), which allows
fine-grained access control, and convergent encryption (CE), which allows secure deduplication.
In a nutshell, the cryptographic component is in charge of generating session keys, that are next
used to encrypt the data itself. In order to do so, the component needs to obtain different types of

SUPERCLOUD D1.3 Page 12 of 30

D1.3 - SUPERCLOUD Architecture Implementation

information, such as an access control policy for ABE or compressed data for convergent encryption.
The compressed data has to come from the Janus component to ensure secure deduplication. The
session key thus generated is used within the Janus component to encrypt compressed data and
proceed with storage into cloud service providers. These interactions in the upload phase are summed
up in Figure 4.1.

Figure 4.1: Integrating Janus with advanced cryptographic component: upload

For downloading data, the cryptographic component has first to recompute the session key from the
user’s secret key (or to retrieve it if securely stored via SGX, as described in Section 3.2.1). Then,
Janus uses this key to decrypt files before decompressing.

4.1.1.1 Data anonymization tool

Data anonymization techniques open the possibility of releasing personal and sensitive data, while
preserving an individual’s privacy. The data anonymization tool in this context is among others based
on k-anonymity, whereby the focus is put on the irreversibility of the released data. The tool aims
to calculate the best solution for the given data in terms of cost-efficiency. This is done by means of
so-called cost metric calculation as well as the Optimal Lattice Anonymization (OLA) algorithm. A
detailed explanation of the OLA algorithm as well as of all including components of the tool can be
found in the Deliverable D3.2 [25].

4.1.2 Hyperledger Fabric

In general, blockchains are distributed ledgers (typically immutable and totally ordered) of transac-
tions pertaining to distributed applications. Distributed applications may be cryptocurrencies (such
as Bitcoin) but also general applications (i.e., state machines, sometimes called smart contracts). Per-
missioned blockchains [22, 23] are those blockchains in which the membership of the nodes that hold
copies of the ledger is restricted and managed in some way.
Permissioned blockchains work across multiple administrative domains and are a good match for
SUPERCLOUD project goals and its data management requirements. SUPERCLOUD project con-
tributes to the Hyperledger Fabric open-source blockchain project and benefits from it. Hyperledger
Fabric (HLF)1 is an open-source project within the Hyperledger umbrella project under the auspices
of the Linux Foundation. HLF is a modular general-purpose permissioned blockchain system which
can be also seen as a distributed operating system for permissioned blockchains.

1https://github.com/hyperledger/fabric

SUPERCLOUD D1.3 Page 13 of 30

https://github.com/hyperledger/fabric

D1.3 - SUPERCLOUD Architecture Implementation

The SUPERCLOUD project contributes to the HLF project by influencing its overall architecture,
including approach to handling non-determinism in the system [5]. It also serves as an integration
vector for State-machine replication related components of SUPERCLOUD as described in Deliverable
D3.2 [25]. Notably these include:

• A component that treats non-determinism when replicating arbitrary applications when replicas
can fail in an arbitrary (i.e., Byzantine) way [5].

• A component that introduces a novel model for developing reliable distributed protocols called
XFT [10].

• A component that empirically evaluates latency-optimization for state-machine replication in
WANs and informing the design of novel state-machine replication protocols [18].

• A component that introduces a generic state-transfer tool for partitioned state-machine replica-
tion that enables elasticity [13].

The integration of the last two components is done via integration of HLF and the BFT-SMaRt
library [4] in which those components were implemented.

4.1.2.1 Component description

The architecture of the component is described in the main architecture document https://github.
com/hyperledger/fabric/blob/master/proposals/r1/Next-Consensus-Architecture-Proposal.

md. This overall architecture has been developed in part in the SUPERCLOUD project.
Other lower-level architecture design documents are available at https://wiki.hyperledger.org/

community/fabric-design-docs. With the exception of the Simplified Byzantine Fault Tolerance
(SBFT) consensus, which was developed in the context of the SUPERCLOUD project, other compo-
nents have been developed outside SUPERCLOUD, by the community.

4.1.2.2 Integration with use cases

Hyperledger Fabric will serve as a secure globally replicated log for the Maxdata use case. The
distributed application that will be BFT-replicated using Hyperledger Fabric will be in this case an
append-only immutable log that will be used for auditing access to healthcare records.

4.2 Integration with security self-management

In this Section, we provide an overview of the ongoing integration action between security self-
management and Janus, the dependable and secure multi-cloud data storage service2.

4.2.1 Monitoring of data access failures

As illustrated in Figure 4.2, the Janus secure storage service embodies monitoring components that
collect information about the health of the servers wherein SUPERCLOUD users’ data is hosted.
The collected information concern essentially data Availability and the Latency witnessed. The col-
lected data are then sent to the Security Storage Service (part of Security Self-Management) to be
processed by the SSLA enforcement service (Left part of Figure 4.2). This raw data is then processed
to be converted into high level metrics to be compared with SSLA objectives defined by the SUPER-
CLOUD Cloud Customer. The results of this processing is then displayed to allow supervision and
arbitration. 3

2We invite the reader to refer to Deliverable D3.3 [3] for more details about Janus.
3A more detailed description of the SSLA enforcement service can be found in Deliverable D2.3 [9].

SUPERCLOUD D1.3 Page 14 of 30

https://github.com/hyperledger/fabric/blob/master/proposals/r1/Next-Consensus-Architecture-Proposal.md
https://github.com/hyperledger/fabric/blob/master/proposals/r1/Next-Consensus-Architecture-Proposal.md
https://github.com/hyperledger/fabric/blob/master/proposals/r1/Next-Consensus-Architecture-Proposal.md
https://wiki.hyperledger.org/community/fabric-design-docs
https://wiki.hyperledger.org/community/fabric-design-docs

D1.3 - SUPERCLOUD Architecture Implementation

Storage Service

Raw MetricsActive SSLA SSLA
Objectives

SSLA
Enforcement

Service

JANUS

Raw Data

Cloud Providers SUPERCLOUD Data LayerSecurity Self-Management

Figure 4.2: Integration of self-management of security and Janus

SUPERCLOUD D1.3 Page 15 of 30

D1.3 - SUPERCLOUD Architecture Implementation

Chapter 5 Network security framework

This chapter presents a short overview of the network framework and of the interactions with the
other SUPERCLOUD components. We start with a short overview of the main components of the
framework, in Section 5.1. Then, in Sections 5.2 and 5.3 we explain how the network framework
interacts with the computing and data protection frameworks, respectively. Finally, in Section 5.4, we
focus on the integration of the network framework with the security self-management modules.

5.1 Components

In this Section we present a short description on the network architecture. For more detail we invite
the reader to Deliverable D4.3 [16]. Our solution leverages a substrate infrastructure that entails
both public clouds and private datacenters. In our platform tenants can define virtual networks with
arbitrary topologies, while making use of the full address space. In addition, we allow them to specify
security and dependability requirements for all virtual resources.
The main components of the network framework are shown in Figure 5.1: the multi-cloud network
hypervisor, the multi-cloud orchestrator, and the self-management security services.

Security	
monitoring	

Network	
security	

Service	
chaining	

Multi-Cloud Network Hypervisor

sNet topology
specifier & config

sNet config

sNet topology
data collector

vNet topology
specifier & config

vNet config

vNet routing secure VNE
Embedder

virtual-substrate
mapper

flows handler network
monitoring

virtual-substrate
handler

packet-In
handler

components
isolation handler

Hypervisor core

Interfaces handler
External Interfaces

Mul7-Cloud	Orchestrator	
	

Mul7-cloud	provision	

User	&	Cloud	manager	

Topology	

Hypervisor	support	

Figure 5.1: SUPERCLOUD network security framework overview

The cloud orchestrator is responsible creating the substrate infrastructure by deploying the necessary
VMs and containers. This component takes care of the configuration of secure tunnels between par-
ticipating clouds, normally building a fully connected topology. These tunnels are established in a
particular VM, the gateway, that acts like an edge router, receiving local packets whose destination
is in another cloud and then forwarding them to its peer gateways using the secure tunnels set up.
Intra-cloud communications between tenant containers is performed with the use of GRE (Generic
Routing Encapsulation) tunnels that are setup between the local VMs, to ensure isolation.

SUPERCLOUD D1.3 Page 16 of 30

D1.3 - SUPERCLOUD Architecture Implementation

The network hypervisor runs as an application on top of a Software-Defined Networking (SDN) con-
troller. This component forms the core of our solution, dealing with the placement of the virtual
networks, setting up the necessary network paths, and intercepting all control messages between the
substrate infrastructure and the users’ virtual networks to enable full network virtualisation.
Finally, the self-management security services run on top of the network hypervisor. They include
three modules: a security monitor to detect incidents related to security, a network security service
with the main function of responding to these incidents, and a service chaining component that allows
tenants to compose security service chains.

5.2 Integration with computing security framework

Figure 5.2: Integration with computing security framework

Figure 5.2 shows how networking components may interact with the computing components. An
interesting inter-framework connection is notably how to integrate the networking multi-cloud security
orchestrator and network hypervisor with the VM orchestration component for computing resources
(Section 5.2.1).

5.2.1 Integration of network hypervisor with VM orchestrator

A first possible integration scenario was described in Section 3.3.2. Further results will be reported in
Deliverable D2.4.

SUPERCLOUD D1.3 Page 17 of 30

D1.3 - SUPERCLOUD Architecture Implementation

5.3 Integration with data protection framework

N
et

w
or

k

Multi-cloud
network orchestrator

Network hypervisor

Network security
monitoring

Security appliance
chaining

Network security
policy management

Fault-tolerant
SDN controller

Distributed
SDN controller

D
at

a
Multi-cloud
storage (Janus)

Hyperledger fabric

Attribute-based
encryption

Secure de-
duplication

K-anonymity

Secure MultiParty
 Computation

ORAM (SGX)

BFT SMR
 Resilient KV Store

DB disaster
Recovery (Ginja)

Figure 5.3: Integration with data protection framework

Figure 5.3 shows how networking components interact with data protection components. The main
inter-framework connection includes integration of the fault-tolerant and distributed SDN controller
with the Byzantine fault-tolerant state-machine replication component.

5.3.1 Integration of SDN control with BFT SMR

The SUPERCLOUD network hypervisor has resilience built-in by design into the control plane (the
SDN controller). The goal is to ensure that correct operation can be maintained under the most
relevant failure scenarios. The design of scalable and fault-tolerant SDN controllers traditionally gives
up strong consistency for the network state, adopting instead the more efficient eventually consistent
storage model, for performance reasons. This lack of consistency can lead to network anomalies that
may result in security breaches, an undesirable consequence, particularly for the SUPERCLOUD
context.
In the project, we are developing fault-tolerant and distributed SDN control planes to address this
issue. The solutions proposed are supported by a fault-tolerant data store that provides the necessary
strong consistency properties. We use replicated state machines to build the data store. This technique
considers a set of replicas implementing the data store being accessed through a total order multicast
protocol that ensures all replicas process the same sequence of requests. The core of the total order
multicast protocol we use is the consensus algorithm BFT SMR. In order to deal with the fundamental
concern of such design, we apply several techniques, tailored to SDN, for optimizing the data store
performance.
These solutions were described in detail in Deliverable D4.2 [17]. Further enhancements that are
currently work in progress will appear in Deliverable D4.4.

5.4 Integration with security self-management

As threats on the cloud services and infrastructures are varied and constantly changing, it appears
necessary to provide an autonomous security management system. Self-management of security is
enabled through a combination of interacting components, as described in this Section. At the core of
this system sits the network security module which features a context-aware dynamic security policy
decision point which reacts on both the security alerts and the network status changes, and enforces
security policies upon the network infrastructure. In order to realize the former, the network security
module needs to integrate with the security monitoring component, while to perform the latter, it
interfaces with the network hypervisor.

SUPERCLOUD D1.3 Page 18 of 30

D1.3 - SUPERCLOUD Architecture Implementation

5.4.1 Integration of network security with security monitoring

As described in Deliverable D4.3 [16], the security monitoring component collects information from
the network infrastructure and outputs alerts in the IDMEF format. Such format is parsable by the
network security module, which exposes a REST API to process the alerts. The alerts enable the
network security module to define a context on which to fine-tune the security policy decision.
Further results will be reported in Deliverable D4.4.

5.4.2 Integration of network hypervisor with network security

As described in Deliverable D4.3 [16], the network hypervisor exposes a REST API that allows the
network security module to enforce the decided security policy. Upon deciding on the appropriate
security policy to enforce, the network security module outputs a high-level policy action and some
parameters concerning the suspected flow that the network hypervisor will use to instantiate the
low-level instructions that will enforce the reaction.
Further results will be reported in Deliverable D4.4.

SUPERCLOUD D1.3 Page 19 of 30

D1.3 - SUPERCLOUD Architecture Implementation

Chapter 6 Installation

The code of components of the SUPERCLOUD architecture can be found in a central code repository
at https://github.com/H2020-SUPERCLOUD. Before the code repository is made publicly available,
please contact marc.lacoste@orange.com for obtaining access to the code.
For source code of used open-source software integrated in the SUPERCLOUD architecture imple-
mentation, we provide links to the respective code repositories from which the required software can
be downloaded.

6.1 Computing framework components

Instructions to obtain and install components of the computing framework are provided in Deliverable
D2.3 [9]. The code of most components can be obtained from the SUPERCLOUD repository (WP2
subtree)1 or from open source repositories. Detailed instructions for installation and further docu-
mentation about the software are distributed together with the code release. We provide simply here
some component-specific information.

6.1.1 Virtualization and orchestration and micro-hypervisor

These components can be obtained from the SUPERCLOUD repository2, with sub-folders for virtu-
alization and orchestration (Orbits and Mantus frameworks) and for the micro-hypervisor.
Orbits and Mantus are built for OpenStack environments, with also support for Amazon Web
Services. They notably rely on the tosca-parser library3 to manipulate TOSCA ServiceTemplates.
The micro-hypervisor component extends the Genode OS framework4. Instructions are provided to
build and run U-Cloud nodes with cross-layer system support.

6.1.2 Isolation

The isolation framework requires the Intel SGX SDK, which can be obtained on the project’s web-
site5, and common build tools. The code for the framework can be obtained on the SUPERCLOUD
repository6. The script build.sh downloads all other required dependencies, builds the framework,
and starts an interactive session.

6.1.3 Security Orchestrator

The security service deployment component may be downloaded from the SUPERCLOUD repository 7.
Execution of SSLA2Config.jar and Deploy.jar allow to configure the Orchestrator and to deploy
security services locally.

1https://github.com/H2020-SUPERCLOUD/SUPERCLOUD-FW/tree/master/WP2/
2https://github.com/H2020-SUPERCLOUD/SUPERCLOUD-FW/tree/master/WP2/virtualization/virtualization
3https://github.com/openstack/tosca-parser
4The Genode toolchain and code are available at https://github.com/genodelabs/genode.git and https://

sourceforge.net/projects/genode/files/genode-toolchain/15.05/genode-toolchain-15.05-x86_64.tar.bz2.
5https://01.org/intel-software-guard-extensions/downloads/intel-sgx-linux-1.5-beta-release-0
6https://github.com/H2020-SUPERCLOUD/SUPERCLOUD-FW/tree/WP2-isolation
7https://github.com/H2020-SUPERCLOUD/SUPERCLOUD-FW/tree/master/WP2/selfmanagement/sorchestrator

SUPERCLOUD D1.3 Page 20 of 30

https://github.com/H2020-SUPERCLOUD
marc.lacoste@orange.com
https://github.com/H2020-SUPERCLOUD/SUPERCLOUD-FW/tree/master/WP2/
https://github.com/H2020-SUPERCLOUD/SUPERCLOUD-FW/tree/master/WP2/virtualization/virtualization
https://github.com/openstack/tosca-parser
https://github.com/genodelabs/genode.git
https://sourceforge.net/projects/genode/files/genode-toolchain/15.05/genode-toolchain-15.05-x86_64.tar.bz2
https://sourceforge.net/projects/genode/files/genode-toolchain/15.05/genode-toolchain-15.05-x86_64.tar.bz2
https://01.org/intel-software-guard-extensions/downloads/intel-sgx-linux-1.5-beta-release-0
https://github.com/H2020-SUPERCLOUD/SUPERCLOUD-FW/tree/WP2-isolation
https://github.com/H2020-SUPERCLOUD/SUPERCLOUD-FW/tree/master/WP2/selfmanagement/sorchestrator

D1.3 - SUPERCLOUD Architecture Implementation

6.1.4 Authorization

The authorization component is provided as a deploy-ready Docker image that may be downloaded
from the SUPERCLOUD repository 8. Script ./start.sh starts the component.

6.1.5 Monitoring

The monitoring component is accessible at https://github.com/Orange-OpenSource/vespa-core,
with the corresponding documentation9. A tutorial is also provided to set up a first monitoring
environment.

6.1.6 Security SLA

The SSLA enforcement component is provided as a deploy-ready Docker image that may be down-
loaded from the SUPERCLOUD repository 10. Script ./start.sh starts the component.

6.1.7 Software trust

The Software Trust Service is available as a deploy-ready Docker image that may be downloaded from
the SUPERCLOUD repository 11. Script ./startSTS.sh starts the service, accessible through its
REST API.

6.2 Data protection framework components

6.2.1 Janus

Code/component access. In this Section, we describe how Janus can be installed as a NFS server
inside a Docker container. The server is implemented using Java, so it can be deployed in any operating
system that supports Docker. More specifically, we make available a deploy-ready Janus NFS Docker
image, that can be easily integrated with other SUPERCLOUD components, in particular with the
network virtualization element being developed in WP4. The commands below are for Windows
deployment, but they are almost the same for the other OSs. For instance, for a Linux-based OS, .sh
shell scripts should be used. We describe instead the .bat commands. Moreover, the commands may
need to be run with sudo capabilities.
In the following, we present a short overview of the steps required for running the system. Nevertheless,
before going into the steps, the user must first request a Janus account by sending an email to
anbessani@ciencias.ulisboa.pt.

1. Login into the Janus platform at http://janus.lasige.di.fc.ul.pt;

2. Download the Janus NFS Docker image on the “Download” tab on the left side;

3. Uncompress janus-nfs.zip;

4. Open the terminal, and go to the uncompressed janus-nfs folder;

5. Load the Janus NFS image by running docker load -i janus-nfs.docker;

6. Run the container by running run.bat;12

8https://github.com/H2020-SUPERCLOUD/SUPERCLOUD-FW/tree/master/WP2/selfmanagement/sservices/

authorization
9http://vespa-core.readthedocs.io/en/latest/

10https://github.com/H2020-SUPERCLOUD/SUPERCLOUD-FW/tree/master/WP2/selfmanagement/sservices/sla
11https://github.com/H2020-SUPERCLOUD/SUPERCLOUD-FW/tree/master/WP2/selfmanagement/sservices/trust/
12This container will have a default volume configured to spread the data across the globe and in different storage

providers.

SUPERCLOUD D1.3 Page 21 of 30

https://github.com/Orange-OpenSource/vespa-core
anbessani@ciencias.ulisboa.pt
http://janus.lasige.di.fc.ul.pt
https://github.com/H2020-SUPERCLOUD/SUPERCLOUD-FW/tree/master/WP2/selfmanagement/sservices/authorization
https://github.com/H2020-SUPERCLOUD/SUPERCLOUD-FW/tree/master/WP2/selfmanagement/sservices/authorization
http://vespa-core.readthedocs.io/en/latest/
https://github.com/H2020-SUPERCLOUD/SUPERCLOUD-FW/tree/master/WP2/selfmanagement/sservices/sla
https://github.com/H2020-SUPERCLOUD/SUPERCLOUD-FW/tree/master/WP2/selfmanagement/sservices/trust/

D1.3 - SUPERCLOUD Architecture Implementation

7. Wait until the output of running status.bat be “RUNNING”;

8. (On Windows) Install the “Services for NFS” package, which is part of “Windows Features”;

9. Mount the Janus NFS share by running mount-janus-nfs.bat;

10. Open “Explorer”, go to “This PC” and there one will find a “Janus” network location which is
the Janus NFS share.13

Note. All the steps and scripts provided were tested only in Ubuntu 16.04 and Windows 10 (Build
14393). We are working on the Docker container for MacOS 10.12.4. However, the Janus NFS server
(undockerized) works in all of these platforms.
A more complete description of the system can be found in Chapter 10 of SUPERCLOUD D3.2 [25].

6.2.2 Hyperledger Fabric

As Hyperledger Fabric installation instructions are not stable yet, please refer to the URL https:

//hyperledger-fabric.readthedocs.io/en/latest/getting_started.html for the latest instruc-
tions.
The Hyperledger Fabric v1 code is accessible at: https://github.com/hyperledger/fabric/. The
integration between Hyperledger Fabric v1 and BFT-SMaRt is still under work14. Meanwhile, the
code for BFT-SMaRt is available on http://bft-smart.github.io/library/.
The documentation is available at: https://hyperledger-fabric.readthedocs.io/en/latest/.

6.3 Network security framework components

6.3.1 Multi-cloud network orchestrator and network hypervisor

Detailed instructions to install and run the Sirius components can be found in the README file
at https://github.com/H2020-SUPERCLOUD/SUPERCLOUD-FW/tree/master/WP4/sirius. Hereafter,
we will only deal with some of the main requirements and steps to run the code. We will discuss the
three parts of the Sirius architecture:

• The VMs are deployed in private or public clouds and run the Docker containers mapped from
the virtual infrastructure.

• The Hypervisor is responsible for maintaining the substrate topology information and perform-
ing the embedding process to create the virtual topology.

• The Orchestrator allows to design the substrate topology and deploy the required containers
through a web-based graphical interface.

6.3.1.1 VM infrastructure

The first version of the Orchestrator has been designed to interact with Linux VMs. As the Docker
platform also supports Windows systems, Windows-based VMs could be used in theory but will re-
quire modifications in the current code.

13Note that it is impossible to write to the root folder of the Janus NFS folders. It is only possible to work in volumes’
folders.

14Recall that HLF is not only a SUPERCLOUD component, but a large and complex project with many stakeholders.
Therefore, adding a new component in its codebase is a complex process which requires the development of several
performance and integration tests.

SUPERCLOUD D1.3 Page 22 of 30

https://hyperledger-fabric.readthedocs.io/en/latest/getting_started.html
https://hyperledger-fabric.readthedocs.io/en/latest/getting_started.html
https://github.com/hyperledger/fabric/
http://bft-smart.github.io/library/
https://hyperledger-fabric.readthedocs.io/en/latest/
https://github.com/H2020-SUPERCLOUD/SUPERCLOUD-FW/tree/master/WP4/sirius

D1.3 - SUPERCLOUD Architecture Implementation

6.3.1.1.1 SSH connection

The SSH protocol is used to connect the VMs and execute remote commands. Default port 22
TCP should be open but other ports can be configured. SSH sessions on VMs are established based
on public/private key authentication. Key files must be available in the "sirius/keys" folder as
described in the README file.

6.3.1.1.2 Inter-cloud tunnels

Gateway VMs from different clouds are connected through OpenVPN tunnels. Port 1194 UDP must
be open on those machines. As the Orchestrator does not handle yet the creation of new gateway
VMs, OpenVPN tunnels have to be set up and running before the Orchestrator starts.

Note that the Orchestration can be run with a set of local VMs configured in a single cloud. In this
case, no OpenVPN tunnels are required.

6.3.1.1.3 Intra-cloud tunnels

According the substrate topology, GRE tunnels are automatically created by the Orchestration be-
tween VMs located in the same cloud. No predefined configuration is required.

6.3.1.1.4 Docker installation

The Docker platform as well as the OpenVSwitch components have the installed in all VMs. The
‘‘installDocker’’ script from ‘‘sirius/script’’ can be used to automatically install the required
libraries in Ubuntu environments.

6.3.1.2 Orchestrator

The Orchestrator runs on Windows or Linux platforms and only requires a HTTP/Servlet server.
Instructions to compile and install the code are detailed in the README file. Assuming that the Apache
Tomcat server is installed on Linux, the script ‘‘/opt/tomcat/startup.sh’’ starts the server.

6.3.1.3 Hypervisor

The Hypervisor is available in the form of a JAR file to be downloaded and installed from the GIT
repository. The Hypervisor uses the same configuration file (‘‘console.properties’’) as the Or-
chestration. Both components communicate through a TCP socket and that way can operate in
different machines. IP addresses and TCP ports can be set up in the properties file. The script
‘‘sirius/script/floodlight.sh’’ starts the Hypervisor which relies on the Floodlight SDN con-
troller.

6.3.2 Network security monitoring and appliance chaining

The network security monitoring and appliance chaining components are being put in open source.
The components will then be accessible at https://github.com/Orange-OpenSource, also being
published on the SUPERCLOUD private repository15. More detailed instructions are provided to
build and run a Floodlight SDN controller enhanced with security monitoring features, or extended
to run the appliance chaining application.

15https://github.com/H2020-SUPERCLOUD/SUPERCLOUD-FW/tree/master/WP4/monitoring and https://github.

com/H2020-SUPERCLOUD/SUPERCLOUD-FW/tree/master/WP4/service-chaining

SUPERCLOUD D1.3 Page 23 of 30

https://github.com/Orange-OpenSource
https://github.com/H2020-SUPERCLOUD/SUPERCLOUD-FW/tree/master/WP4/monitoring
https://github.com/H2020-SUPERCLOUD/SUPERCLOUD-FW/tree/master/WP4/service-chaining
https://github.com/H2020-SUPERCLOUD/SUPERCLOUD-FW/tree/master/WP4/service-chaining

D1.3 - SUPERCLOUD Architecture Implementation

6.3.3 Network security policy management

The network security module may be downloaded from the SUPERCLOUD repository 16. Instructions
for installation are detailed in the README file. The module runs as a Python program, so a Python
runtime environment (version 2.6 or later) is all that is necessary to execute it. It is also recommended
to allocate a dedicated storage space to host network security policies.

6.4 Security self-management components

Components developed as part of the security self-management are made available as ready-to-deploy
Docker images. The detailed description of each components as well as the installation and deployment
procedure are provided in Deliverable D1.4 [26]. The images of the components can be found in the
SUPERCLOUD repository 17.
In what follows we present two approaches for the deployment of the security self-management com-
ponents, a manual one in Section 6.4.1 and an automatic one in Section 6.4.2.

6.4.1 Manual deployment

The procedure to follow in order to deploy each component individually is as follows:

• Download the .tar file containing the component binaries;

• Download the launch.sh script containing commands for the deployment of the image;

• Place the .tar file and the .sh file in the same repository;

• Execute the .sh script.

6.4.2 Orchestrated deployment

In the orchestrated deployment, security self-management components are deployed by the Orchestra-
tor in an automatic way. The deployment schema relies on Docker-Compose [6]. To proceed, all is
needed is to run the start.sh script. The Orchestrator will take care of downloading the the compo-
nents from the project repository and deploy them individually. The Orchestrator will also take care
of the creation of a virtual network to bind the components between them.

16https://github.com/H2020-SUPERCLOUD/SUPERCLOUD-FW/tree/master/WP4/network-security
17https://github.com/H2020-SUPERCLOUD/SUPERCLOUD-FW/tree/master/WP1/

SUPERCLOUD D1.3 Page 24 of 30

https://github.com/H2020-SUPERCLOUD/SUPERCLOUD-FW/tree/master/WP4/network-security
https://github.com/H2020-SUPERCLOUD/SUPERCLOUD-FW/tree/master/WP1/

D1.3 - SUPERCLOUD Architecture Implementation

Chapter 7 Summary

In this Deliverable, we have provided an overview of the implementation of the SUPERCLOUD archi-
tecture. It is composed of a number of software components organized into frameworks for each of the
three layers of this architecture, respectively providing secure computing, data storage and networking
functionalities that can be deployed across infrastructures of different cloud service providers. Each
framework is supported by an orthogonal security self-management infrastructure providing facilities
for user-level control of security and privacy settings. We have provided descriptions of the imple-
mented architectural components and described their integration across the different frameworks. The
code of the released software components is accessible on a common SUPERCLOUD code repository
at https://github.com/H2020-SUPERCLOUD. The installation instructions for these components have
also been provided in this Deliverable.

SUPERCLOUD D1.3 Page 25 of 30

https://github.com/H2020-SUPERCLOUD

D1.3 - SUPERCLOUD Architecture Implementation

Chapter 8 List of Abbreviations

ABE Attribute-Based Encryption

API Application Programming Interface

BFT Byzantine Fault Tolerance

CE Convergent Encryption

CPU Central Processing Unit

DB Database

EC European Commission

FPGA Field-Programmable Gate Array

GDPR General Data Protection Regulation

GRE Generic Routing Encapsulation

HLF Hyperledger Fabric

HTTP Hypertext Transfer Protocol

IP Internet Protocol

KV Key-Value

NFS Network File System

OLA Optimal Lattice Anonymization

ORAM Oblivious Random Access Memory

OrBAC Organization Based Access Control

ORBITS ORchestration for Beyond InTer-cloud Security

OS Operating System

OVS Open vSwitch

PC Personal Computer

REST Representational State Transfer

SBFT Simplified Byzantine Fault Tolerance

SDK Software Development Kit

SDN Software-Defined Networking

SGX Software Guard eXtensions

SLA Service Level Agreement

SMR State Machine Replication

SSH Secure Shell

SSLA Security Service Level Agreement

SUPERCLOUD D1.3 Page 26 of 30

D1.3 - SUPERCLOUD Architecture Implementation

TCP Transmission Control Protocol

TLS Transport Layer Security

TOSCA Topology and Orchestration Specification for Cloud Applications

U-Cloud User Cloud

UDP User Datagram Protocol

URL Uniform Resource Locator

VM Virtual Machine

VNE Virtual Network Environment

SUPERCLOUD D1.3 Page 27 of 30

D1.3 - SUPERCLOUD Architecture Implementation

Bibliography

[1] M. Alaluna, F. Ramos, and N. Neves. (Literally) Above the Clouds: Virtualizing the Network
over Multiple Clouds. In IEEE NetSoft, 2016.

[2] Max Alaluna, Eric Vial, Nuno Neves, and Fernando Ramos. Secure and Dependable Multi-Cloud
Network Virtualization. In EuroSys 1st International Workshop on Security and Dependability of
Multi-Domain Infrastructures (XDOM0), 2017.

[3] Alysson Bessani, Mario Münzer, Sébastien Canard, Nicolas Desmoulins, Marie Paindavoine,
Marko Vukolić, and Daniel Pletea. D3.3 - Proof-of-Concept Prototype for Data Management.
SUPERCLOUD, 2017.

[4] Alysson Bessani, Joao Sousa, and Eduardo Alchieri. State machine replication for the masses
with BFT-SMaRt. In Proc. of the IEEE/IFIP International Conference on Dependable Systems
and Networks – DSN 2014, June 2014.

[5] Christian Cachin, Simon Schubert, and Marko Vukolić. Non-determinism in byzantine fault-
tolerant replication. In 20th International Conference on Principles of Distributed Systems,
OPODIS 2016, December 13-16, 2016, Madrid, Spain, pages 24:1–24:16, 2016.

[6] Docker Compose. Docker compose tool. 2016.

[7] O. Goldreich. Towards a theory of software protection and simulation by oblivious rams. In
Proceedings of the Nineteenth Annual ACM Symposium on Theory of Computing, STOC ’87,
pages 182–194, New York, NY, USA, 1987. ACM.

[8] Marc Lacoste, Markus Miettinen, Nuno Neves, Fernando M. V. Ramos, Marko Vukolic, Fabien
Charmet, Reda Yaich, Krzysztof Oborzynski, Gitesh Vernekar, and Paulo Sousa. User-Centric
Security and Dependability in the Clouds-of-Clouds. IEEE Cloud Computing, 3(5):64–75, 2016.

[9] Marc Lacoste, Mario Münzer, Felix Stornig, Alex Palesandro, Denis Bourge, Charles Henrotte,
Houssem Kanzari, Marko Vukolić, Jagath Weerasinghe, Reda Yaich, Nora Cuppens, Frédéric
Cuppens, Markus Miettinen, Ferdinand Brasser, Tommaso Frassetto, and Daniel Pletea. D2.3 -
Proof-of-Concept Prototype of Secure Computation Infrastructure and SUPERCLOUD Security
Services. SUPERCLOUD, 2017.

[10] Shengyun Liu, Paolo Viotti, Christian Cachin, Vivien Quéma, and Marko Vukolić. XFT: practical
fault tolerance beyond crashes. In 12th USENIX Symposium on Operating Systems Design and
Implementation, OSDI 2016, Savannah, GA, USA, November 2-4, 2016., pages 485–500, 2016.

[11] Markus Miettinen, Ferdinand Brasser, Ahmad-Reza Sadeghi, Marc Lacoste, Nizar Kheir, Marko
Vukolić, Alysson Bessani, Fernando Ramos, Nuno Neves, and Majid Sobhani. D1.1 - SUPER-
CLOUD Architecture Specification. SUPERCLOUD, 2015.

[12] Markus Miettinen, Mario Münzer, Felix Stornig, Marc Lacoste, Alex Palesandro, Denis Bourge,
Charles Henrotte, Houssem Kanzari, Ruan He, Marko Vukolić, Jagath Weerasinghe, Sabir Idrees,
Reda Yaich, Nora Cuppens, Frédéric Cuppens, Ferdinand Brasser, Raad Bahmani, Tommaso

SUPERCLOUD D1.3 Page 28 of 30

D1.3 - SUPERCLOUD Architecture Implementation

Frassetto, David Gens, Daniel Pletea, and Peter van Liesdonk. D2.2 - Secure Computation
Infrastructure and Self-Management of VM Security. SUPERCLOUD, 2016.

[13] Andre Nogueira, Antonio Casimiro, and Alysson Bessani. Elastic state machine replication. IEEE
Transactions on Parallel and Distributed Systems, March 2017. Accepted for publication.

[14] Alex Palesandro, Chirine Ghedira Guegan, Marc Lacoste, and Nadia Bennani. Overcoming bar-
riers for ubiquitous user-centric healthcare services. IEEE Cloud Computing, 3(6):64–74, 2016.

[15] Alex Palesandro, Marc Lacoste, Nadia Bennani, Chirine Ghedira Guegan, and Denis Bourge.
Putting Aspects to Work for Flexible Multi-Cloud Deployment. In IEEE International Conference
on Cloud Computing (CLOUD), 2017.

[16] Fernando M. V. Ramos, Nuno Neves, Ruan He, Pascal Legouge, Marc Lacoste, Nizar Kheir,
Redouane Chekaoui, Medhi Boutaka, Eric Vial, Max Alaluna, Khalifa Toumi, Rishikesh Sahay,
and Gregory Blanc. D4.3 - Proof-of-concept Prototype of the Multi-Cloud Network Virtualization
Infrastructure. SUPERCLOUD, 2017.

[17] Fernando M. V. Ramos, Nuno Neves, Marc Lacoste, Nizar Kheir, Max Alaluna, André Man-
tas, Luis Ferrolho, José Soares, Grégory Blanc, Fabien Charmet, and Khalifa Toumi. D4.2 -
Specification of Self-Management of Network Security and Resilience. SUPERCLOUD, 2016.

[18] Joao Sousa and Alysson Bessani. Separating the WHEAT from the chaff: An empirical design
for geo-replicated state machines. In Proc. of the 34th International Symposium on Reliable
Distributed Systems – SRDS’15, September 2015.

[19] Paulo Sousa, Gregory Blanc, Krzysztof Oborzyński, Bruno Ferreira, and Joana Cruz. D5.2 -
Use-Case Demonstrators. SUPERCLOUD, 2017.

[20] Emil Stefanov, Marten van Dijk, Elaine Shi, Christopher Fletcher, Ling Ren, Xiangyao Yu, and
Srinivas Devadas. Path oram: An extremely simple oblivious ram protocol. In Proceedings ACM
SIGSAC Conference on Computer & Communications Security, CCS ’13, pages 299–310, New
York, NY, USA, 2013. ACM.

[21] K. Toumi, M. S. Idrees, F. Charmet, R. Yaich, and G. Blanc. Usage control policy enforcement in
sdn-based clouds: A dynamic availability service use case. In 2016 IEEE 18th International
Conference on High Performance Computing and Communications; IEEE 14th International
Conference on Smart City; IEEE 2nd International Conference on Data Science and Systems
(HPCC/SmartCity/DSS), pages 578–585, Dec 2016.

[22] Marko Vukolić. The quest for scalable blockchain fabric: Proof-of-work vs. BFT replication.
In Open Problems in Network Security - IFIP WG 11.4 International Workshop, iNetSec 2015,
Zurich, Switzerland, October 29, 2015, Revised Selected Papers, pages 112–125, 2015.

[23] Marko Vukolić. Rethinking permissioned blockchains. In Proceedings of the ACM Workshop on
Blockchain, Cryptocurrencies and Contracts, BCC ’17, pages 3–7, 2017.

[24] Marko Vukolić, Mario Münzer, Sébastian Canard, Marie Paindavoine, Alysson Bessani, Caroline
Fontaine, Krzysztof Oborzyński, Meilof Veeningen, and Paulo Sousa. D3.1 - Architecture for Data
Management. SUPERCLOUD, 2015.

[25] Marko Vukolić, Mario Münzer, Sébastian Canard, Marie Paindavoine, Andre Nogueira, Antonio
Casimiro, João Sousa, Joel Alcântara, Tiago Oliveira, Ricardo Mendes, Alysson Bessani, Christian
Cachin, Simon Schubert, Caroline Fontaine, Daniel Pletea, Meilof Veeningen, and Jialin Huang.
D3.2 - Specification of Security Enablers for Data Management. SUPERCLOUD, 2016.

SUPERCLOUD D1.3 Page 29 of 30

D1.3 - SUPERCLOUD Architecture Implementation

[26] Reda Yaich, Nora Cuppens, Frédéric Cuppens, Marc Lacoste, Sébastien Canard, Alysson Bessani,
Fernando Ramos, Nuno Neves, Markus Miettinen, Krzysztof Oborzyński, Daniel Pletea, and
Marko Vukolić. D1.4 - SUPERCLOUD Self-Management of Security Implementation. SUPER-
CLOUD, 2017.

[27] Reda Yaich, Sabir Idrees, Nora Cuppens, Frédéric Cuppens, Marc Lacoste, Nizar Kheir, Ruan He,
Khalifa Toumi, Krzysztof Oborzyński, Meilof Veeningen, and Paulo Sousa. D1.2 - SUPERCLOUD
Self-Management of Security Specification. SUPERCLOUD, 2015.

SUPERCLOUD D1.3 Page 30 of 30

	Introduction
	Architecture implementation overview
	Architecture frameworks
	Architecture implementation

	Computing security framework
	Components
	Integration with data protection framework
	Extending isolation to data protection
	Data access obfuscation
	Secure key management

	Managing SSLAs for geolocation-based data replication
	SLA management for geolocation-aware data replication
	Location-awareness policies for SLAs

	Integration with network security framework
	Integrating computing security orchestration with network security
	Integrating VM orchestration with network hypervisor
	Extending Cloud FPGAs to the network

	Integration with security self-management

	Data protection framework
	Components
	Cryptographic libraries (attribute-based encryption and deduplication)
	Data anonymization tool

	Hyperledger Fabric
	Component description
	Integration with use cases

	Integration with security self-management
	Monitoring of data access failures

	Network security framework
	Components
	Integration with computing security framework
	Integration of network hypervisor with VM orchestrator

	Integration with data protection framework
	Integration of SDN control with BFT SMR

	Integration with security self-management
	Integration of network security with security monitoring
	Integration of network hypervisor with network security

	Installation
	Computing framework components
	Virtualization and orchestration and micro-hypervisor
	Isolation
	Security Orchestrator
	Authorization
	Monitoring
	Security SLA
	Software trust

	Data protection framework components
	Janus
	Hyperledger Fabric

	Network security framework components
	Multi-cloud network orchestrator and network hypervisor
	VM infrastructure
	SSH connection
	Inter-cloud tunnels
	Intra-cloud tunnels
	Docker installation

	Orchestrator
	Hypervisor

	Network security monitoring and appliance chaining
	Network security policy management

	Security self-management components
	Manual deployment
	Orchestrated deployment

	Summary
	List of Abbreviations
	Bibliography

