67 research outputs found

    Multi-threshold Control of the BMAP/SM/1/K Queue with Group Services

    Get PDF
    We consider a finite capacity queue in which arrivals occur according to a batch Markovian arrival process (BMAP). The customers are served in groups of varying sizes. The services are governed by a controlled semi-Markovian process according to a multithreshold strategy. We perform the steady-state analysis of this model by computing (a) the queue length distributions at departure and arbitrary epochs, (b) the Laplace-Stieltjes transform of the sojourn time distribution of an admitted customer, and (c) some selected system performance measures. An optimization problem of interest is presented and some numerical examples are illustrated

    The departure process of a quorum queueing system

    Get PDF
    AbstractWe study in this paper the departure process of a bulk service queueing system. The server operates under a minimum batch size strategy. We characterize the departure process through the distribution of the interdeparture times of batches and of customers, the distribution of the number of customers in a batch, and the coefficient of correlation between the interdeparture time of a batch and the number of customers in the batch. A numerical illustration is presented

    Queues with delays in two-state strategies and Lévy input

    Get PDF
    We consider a reflected Lévy process without negative jumps, starting at the origin. When the reflected process first upcrosses level K, a timer is activated. After D time units, the timer expires and the Lévy exponent of the Lévy process is changed. As soon as the process hits zero again, the Lévy exponent reverses to the original function. If the process has reached the origin before the timer expires then the Lévy exponent does not change. Using martingale techniques, we analyze the steady-state distribution of the resulting process, reflected at the origin. We pay special attention to the cases of deterministic and exponential timers, and to the following three special Lévy processes: (i) a compound Poisson process plus negative drift (corresponding to an M/G/1 queue), (ii) Brownian motion, and (iii) a Lévy process that is a subordinator until the timer expires. © Applied Probability Trust 2008

    On transient queue-size distribution in the batch arrival system with the N-policy and setup times

    Get PDF
    In the paper the MX/G/1M^{X}/G/1 queueing system with the NN-policy and setup times is considered. An explicit formula for the Laplace transform of the transient queue-size distribution is derived using the approach consisting of few steps. Firstly, a "special\u27\u27 modification of the original system is investigated and, using the formula of total probability, the analysis is reduced to the case of the corresponding system without limitation in the service. Next, a renewal process generated by successive busy cycles is used to obtain the general result. Sample numerical computations illustrating theoretical results are attached as well

    On transient queue-size distribution in the batch arrival system with the N-policy and setup times

    Get PDF
    In the paper the MX/G/1M^{X}/G/1 queueing system with the NN-policy and setup times is considered. An explicit formula for the Laplace transform of the transient queue-size distribution is derived using the approach consisting of few steps. Firstly, a "special\u27\u27 modification of the original system is investigated and, using the formula of total probability, the analysis is reduced to the case of the corresponding system without limitation in the service. Next, a renewal process generated by successive busy cycles is used to obtain the general result. Sample numerical computations illustrating theoretical results are attached as well

    Non Markovian Queue with Two Types service Optional Re-service and General Vacation Distribution

    Get PDF
    We consider a single server batch arrival queueing system, where the server provides two types of heterogeneous service. A customer has the option of choosing either type 1 service with probability p1 or type 2 service with probability p2 with the service times follow general distribution. After the completion of either type 1 or type 2 service a customer has the option to repeat or not to repeat the type 1 or type 2 service. As soon as the customer service is completed, the server will take a vacation with probability θ or may continue staying in the system with probability 1 -θ: The re-service periods and vacation periods are assumed to be general. Using supplementary variable technique, the Laplace transforms of time dependent probabilities of system state are derived and thus we deduce the steady state results. We obtain the average queue size and average waiting time. Some system performance measures and numerical illustrations are discussed

    An investigation of a bulk service model with gama distributed arrivals and service

    Get PDF
    An investigation of the propeties of the bulk service queueing model using gamma distributed interarrival and service distributions is presented

    Analysis of an MAP/PH/1 Queue with Flexible Group Service

    Get PDF
    Abstract A novel customer batch service discipline for a single server queue is introduced and analyzed. Service to customers is offered in batches of a certain size. If the number of customers in the system at the service completion moment is less than this size, the server does not start the next service until the number of customers in the system reaches this size or a random limitation of the idle time of the server expires, whichever occurs first. Customers arrive according to a Markovian arrival process. An individual customer's service time has a phase-type distribution. The service time of a batch is defined as the maximum of the individual service times of the customers which form the batch. The dynamics of such a system are described by a multi-dimensional Markov chain. An ergodicity condition for this Markov chain is derived, a stationary probability distribution of the states is computed, and formulas for the main performance measures of the system are provided. The Laplace–Stieltjes transform of the waiting time is obtained. Results are numerically illustrated

    Mathematical Analysis of Queue with Phase Service: An Overview

    Get PDF
    We discuss various aspects of phase service queueing models. A large number of models have been developed in the area of queueing theory incorporating the concept of phase service. These phase service queueing models have been investigated for resolving the congestion problems of many day-to-day as well as industrial scenarios. In this survey paper, an attempt has been made to review the work done by the prominent researchers on the phase service queues and their applications in several realistic queueing situations. The methodology used by several researchers for solving various phase service queueing models has also been described. We have classified the related literature based on modeling and methodological concepts. The main objective of present paper is to provide relevant information to the system analysts, managers, and industry people who are interested in using queueing theory to model congestion problems wherein the phase type services are prevalent
    corecore