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R. Bekker∗

Department of Mathematics
Vrije Universiteit

De Boelelaan 1081a, 1081 HV Amsterdam, The Netherlands

O.J. Boxma
EURANDOM and Department of Mathematics and Computer Science

Eindhoven University of Technology
P.O. Box 513, 5600 MB Eindhoven, The Netherlands

O. Kella †

Department of Statistics
The Hebrew University of Jerusalem

Mount Scopus, Jerusalem 91905, Israel

Abstract

We consider a reflected Lévy process without negative jumps, starting at the origin.
When the reflected process first upcrosses level K, a timer is activated. D time units
later the timer expires, and the Lévy exponent of the Lévy process is changed. As soon
as the process hits zero again, the Lévy exponent reverses to the original function. If
the process has reached the origin before the timer expires, then the Lévy exponent
does not change.

Using martingale techniques, we analyze the steady-state distribution of the re-
sulting process, reflected at the origin. We pay special attention to the cases of deter-
ministic and exponential timers, and to the following three special Lévy processes: (i)
a compound Poisson process plus negative drift (corresponding to an M/G/1 queue),
(ii) Brownian motion, and (iii) a Lévy process that is a subordinator until the timer
expires.

Keywords: M/G/1 queue; workload process; storage process; reflected Lévy process;
Lévy exponent; two-state strategy; delayed feedback control.
2000 Mathematics Subject Classification: 60K25; 60J30.

1 Introduction

Communication systems are often controlled using feedback information signals that reg-
ulate the transmission of traffic. One reason for this is to regulate the traffic volume in
accordance with the actual level of congestion. For example, in networks with distributed
congestion control, the transmission rate of the end-users is based on an estimation of the

∗Part of the research was done while the first author was affiliated to CWI, Amsterdam, The Nether-
lands, and Eindhoven University of Technology, Eindhoven, The Netherlands.

†Supported by grant 964/06 from the Israel Science Foundation.

1



level of congestion. The foremost example is the Internet which is predominantly regulated
by end-users through the Transmission Control Protocol (TCP) which, for this reason, has
been the focus of a large body of research [22, 30]. Another example is provided by Eth-
ernet that has significantly regained importance recently, due to its use in metropolitan
networks [28]. In Ethernet it is possible, via a so-called backpressure mechanism, to adjust
transfer rates from one node to another depending on the level of congestion in the latter.
Significant understanding in the above-mentioned systems has been obtained through the
use of performance models with simplifying assumptions on the possible delay that feed-
back signals may suffer. In many cases, it is assumed for analytic tractability that the
traffic adaptation is instantaneous, or takes a deterministic time. In practice, the conges-
tion information may only become available after some (random) delay. The delay can
either be the result of a physical distance that separates the sender from the receiver, or
control signals may be deliberately delayed so as to prevent them from putting a dispro-
portionate load on the system that may compromise stability. Both types of feedback may
typically vary over time.
The goal of the present paper is to develop stochastic models that take delayed feedback
control, based on congestion levels, into account. We aim at a profound qualitative under-
standing of the impact of delayed feedback signals, by abstracting them from the detailed
characteristics of a particular feedback-based system.
The model under consideration is a reflected Lévy process [10] without negative jumps,
starting at the origin. Special cases of Lévy processes are compound Poisson processes,
Brownian motion, linear drift processes, and independent sums of these. When the re-
flected process first upcrosses a certain level K (corresponding to a certain level of con-
gestion), a timer is activated. D time units later (the feedback delay) the timer expires,
and the Lévy exponent (also called Laplace exponent) of the Lévy process is changed.
D is a random variable that is assumed to be finite w.p. 1. As soon as the reflected
process hits zero again, the Lévy exponent reverses to the original function. If the process
has reached the origin before the timer expires, then the Lévy exponent does not change.
It should be noticed that this model contains the M/G/1 queue with delayed feedback
control as a special case. In the case of a compound Poisson process with negative drift,
the reflected Lévy process indeed is the workload process of an M/G/1 queue; changing
the Lévy exponent now amounts to changing the drift (service speed), arrival rate and/or
service requirement distribution.
The main result of the paper is the determination of the steady-state distribution of the
resulting process, reflected at the origin (Theorem 3.1). We employ martingale techniques
[23] and exploit several properties of Lévy processes in obtaining this result.

Related queueing/performance literature
For the case of zero feedback delay, there is a large collection of papers in the queueing
literature regarding M/G/1 queues with workload-dependent input; we extend this litera-
ture both by introducing a non-zero delay and by considering Lévy processes. We refer to
the survey [18] for a large number of references on queueing systems with state-dependent
parameters. These go back to pioneering papers like [20], in which a storage system is
considered that operates with two speeds, depending on the workload level. For a text-
book treatment of storage systems with state-dependent release, see [5, Chapter XIV]. We
refer to [8] for a study of M/G/1-type queues where both the service speed and arrival
rate vary continuously with the workload. For additional references on queueing systems
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with workload-dependent rates, see e.g. [7].
The literature on queueing systems driven by Lévy processes is considerably less extensive.
For some studies of queues with adaptable rates driven by a Lévy process, we refer to [9, 13]
and references therein.
The number of papers that take delayed feedback into account is also much smaller. Mo-
tivated by ATM networks, Altman et al. [3] study a discrete-time queue with delayed
information on the queue length. In a slot, a service is only attempted if, given the infor-
mation available to the server, it is certain that at least one customer is present. Another
early study regarding communication networks with rate-based flow control and action
delay is [2]. Sharma [36] considers an M/G/1-type queue in which the service rate is
controlled by a scheduler who receives workload information from the queue with some
delay (caused by the fact that the scheduler resides in a satellite and the queue is on
earth). The paper focuses on stability conditions and on the rate of convergence to the
stationary distribution. See [37, 39] for two recent studies on delayed feedback due to the
use of the Automatic Repeat reQuest (ARQ) protocol in an error-prone communication
medium, and [16, 17] for queue-length dependent delayed arrivals occurring in cable access
networks regulated by a time-slot reservation procedure. The following paper is closest to
the present study. Lee and Kim [27] consider an M/G/1 queue in which the service speed
is adapted an exponential amount of time after a certain workload level is exceeded. The
delay here occurs due to the fact that a set-up time is needed for changing the service speed.

Organization of the paper
Section 2 of the paper presents preliminary results on Lévy processes. Theorem 2.1 cites
a known result [6, 29] on the joint transform of the first-exit time from the interval [0,K)
of the reflected process and the exit position of the reflected process. We use this result
to obtain a suitable expression for the exit position from [0,K) of the reflected process
(Corollary 2.1). The steady-state distribution of the workload process under consideration
is analyzed in Section 3. In three subsections we successively consider (i) the interval until
the first upcrossing of level K, (ii) the interval until either the timer expires or the origin
is reached, and (iii) the remaining interval until the origin is reached (the latter interval
might have length zero). Taking a weighted average over the three intervals, we finally
obtain the Laplace-Stieltjes transform (LST) of the steady-state workload distribution in
Theorem 3.1. We pay special attention to a few specific Lévy processes: the compound
Poisson process with negative drift (corresponding to an M/G/1 queue) and Brownian
motion. Section 4 is devoted to the special case in which the Lévy process X is nonde-
creasing (a subordinator) during the first and second subinterval. This case is of interest
in view of queueing models with a removable server. Since the origin cannot be hit in
the first two intervals, this case leads to more convenient expressions. Relatively tractable
results also occur when the timer period is exponentially distributed, which is the subject
of Section 5. Some topics for future research are discussed in Section 6.

2 Preliminary results on Lévy processes

We refer to Bertoin [10] for an excellent treatment of Lévy processes. Consider a spectrally
negative Lévy process X̃ = {X̃(t), t ≥ 0}, i.e., a Lévy process with no positive jumps. In
addition we assume that X̃ is neither nonincreasing nor deterministic.
For such a Lévy process, the generating function of X̃(t) is finite for all α ≥ 0 and t ≥ 0
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and is given by
E[eαX̃(t)] = etψ(α),

for some function ψ(α), which is called the Lévy exponent. It is also well known, that under
the assumed conditions, ψ(α) is strictly convex on [0,∞), ψ(0) = 0 and limα→∞ ψ(α) = ∞
(see e.g. [10]).
Let α0 = inf{α ≥ 0| ψ(α) > 0}. If ψ′(0+) < 0 then α0 > 0 and otherwise α0 = 0. By
strict convexity ψ is strictly increasing and continuous on [α0,∞), thus, as a function
from [α0,∞) to [0,∞), it has an inverse which we denote by Φ. For a ≥ 0, let τ+

a =
inf{t ≥ 0| X̃(t) > a}. For a given (appropriately measurable) functional h we denote
Exh(X̃) = Eh(x + X̃) and Px[h(X̃) ∈ ·] = P [h(x + X̃) ∈ ·]. The transform of this exit
time is given in Formula (3) of [25]:

Proposition 2.1. For any a ≥ x and s ≥ 0,

Exe−sτ
+
a = e−Φ(s)(a−x) .

In particular Px[τ+
a <∞] = lims↓0 Exe−sτ

+
a = e−Φ(0)(a−x) = e−α0(a−x).

In Theorem 2.1 we shall present the joint transform of the first-exit time from the interval
[0,K) of the reflected process and the exit position of the reflected process [6, 29]. Results
on first-exit times and exit positions are in the literature often expressed in terms of the
family of so-called scale functions, see e.g. [1, 6, 10, 11, 12, 25, 29]. In this paper, we are
only concerned with exit positions, but since the results are generally studied jointly with
first-exit times we introduce the more general framework first, to derive the exit position
as a corollary.

Definition 2.1. For q ≥ 0, the q-scale function W (q) : (−∞,∞) → [0,∞) is the unique
function whose restriction to (0,∞) is continuous and has Laplace transform∫ ∞

0
e−αxW (q)(x)dx =

1
ψ(α)− q

, for α > Φ(q),

and W (q)(x) = 0 for x < 0.

For exit positions, it is in fact sufficient to restrict to the case q = 0. In that case
W (·) := W (0)(·), which is also often referred to as the scale function. In some special
cases, the scale function can be explicitly determined. For instance, if the Lévy process
is a compound Poisson process with drift, then W (·) can be related to the waiting time
distribution in the M/G/1 queue. For further examples and details we refer to Section 3
and [29].
Moreover, a related quantity is

Z(q)(x) := 1 + q

∫ x

0
W (q)(y)dy, for x > 0,

with Z(q)(x) = 1 for x ≤ 0. Finally, for c ≥ 0, define

ψc(α) = ψ(c+ α)− ψ(c),
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and let W (q)
c be the q-scale function associated with the Lévy process with exponent ψc(α),

see [6, 29] for details. Accordingly, let

Z(q)
c (x) := 1 + q

∫ x

0
W (q)
c (y)dy, for x > 0. (1)

Now, we are ready to present the joint transform of the first-exit time and exit position
of the process reflected at its maximum. To clarify what we mean, let the process X̄ :=
{X̄(t), t ≥ 0} be the running supremum, i.e.,

X̄(t) = max
{
xs, sup

0≤u≤t
X̃(u)

}
,

where xs is its initial maximum. The process Y := X̄−X̃ then represents the Lévy process
reflected at its supremum. Note that Y (0) =: z = xs − x0 ≥ 0. Let τK := inf{t ≥ 0 :
Y (t) 6∈ [0,K)} be the first-exit time from [0,K). The joint Laplace transform of τK and
Y (τK) is given in [6, Theorem 1] and [29, Corollary 3]:

Theorem 2.1. For u ≥ 0 and v ≥ 0, with X̃(0) = x0 and Y (0) = z ≥ 0,

Ez,x0 [e
−uτK−vY (τK)] = e−vz

(
Z(p)
v (K − z)−W (p)

v (K − z)
pW

(p)
v (K) + vZ

(p)
v (K)

W
(p)′
v (K) + vW

(p)
v (K)

)
, (2)

where p = u− ψ(v).

Below, we rewrite this expression for u = 0, i.e., for the exit position, to obtain an
expression that is suitable for the analysis in Section 3. To simplify notation, we express
the LST of the overshoot in terms of the scale functionW (·). To do so, we use the following
relationship between scale functions, see e.g. [29] and [6, Remark 4],

W (u)(x) = evxW (u−ψ(v))
v (x) (3)

for v such that ψ(v) <∞. Equation (1) may thus be equivalently expressed as

Z(p)
v (x) = 1 + p

∫ x

0
e−vyW (u)(y)dy.

For u = 0, we then obtain

Z(−ψ(v))
v (x) = 1− ψ(v)

∫ x

0
e−vyW (y)dy, (4)

which, using Definition 2.1, may be reduced to ψ(v)
∫∞
x e−vyW (y)dy in case v > Φ(0).

Next, we further rewrite the fraction on the RHS of Equation (2). For the denominator,
it easily follows by differentiating both sides of (3) with respect to x that, for u = 0,

W (−ψ(v))′
v (x) + vW (−ψ(v))

v (x) = e−vxW
′
(x).

For the numerator, we apply partial integration in (4), yielding

−ψ(v)W (−ψ(v))
v (x) + vZ(−ψ(v))

v (x) = v − ψ(v)
∫ x

0
e−vydW (y).

Combining the above, we have derived the following result for the exit position from [0,K)
of the reflected process.
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Corollary 2.1. For v ≥ 0, with X̃(0) = x0 and Y (0) = z ≥ 0,

Ez,x0 [e
−vY (τK)] = e−vz

(
1− ψ(v)

∫ K−z

0
e−vyW (y)dy

)
−W (K − z)

W ′(K)

(
v − ψ(v)

∫ K

0
e−vydW (y)

)
,

which, for v > Φ(0), can be reduced to

Ez,x0 [e
−vY (τK)] = ψ(v)

(
e−vz

∫ ∞

K−z
e−vyW (y)dy − W (K − z)

W ′(K)

∫ ∞

K
e−vydW (y)

)
.

3 Analysis

Let X be a right-continuous Lévy process without negative jumps starting at the origin,
with Lévy exponent φ(α) = logEe−αX(1). We exclude the degenerate case that X is a
negative drift. In this section, we also exclude the case that the processX is nondecreasing.
For results in case X is a subordinator, we refer to Section 4.
Let Z(t) = Z(0) + X(t) + L(t), t ≥ 0, where L(t) = −inf0≤s≤t[Z(0) + X(s)]−. Let
TK = inf{t ≥ 0 : Z(t) ≥ K}, i.e., TK denotes the epoch at which, for the first time, Z(t)
upcrosses level K > 0. We assume the following. At TK a timer is activated. D time
units later, the timer expires, and the Lévy exponent changes into φ∗(α). As soon as the
process hits zero again, the Lévy exponent reverses to the original φ(α). If the process
has reached the origin before the timer expired, then the Lévy exponent does not change,
but remains φ(α).
We shall analyze the steady-state distribution of the Z-process, by distinguishing three
successive time intervals: (i) The interval from 0 to TK ; (ii) the interval from TK until the
timer expires or the origin is reached – whichever comes first; (iii) the interval from the
expiration of the timer until the origin is reached (if positive). We assume that φ

′
∗(0) > 0

for the system to be stable, and let Z denote a random variable with the steady-state
distribution of the Z-process. Using the theory of regenerative processes, and introducing
τ as the length of time until the origin is reached for the first time after TK ,

E[e−αZ ] =
E[
∫ TK

0 e−αZ(s)ds] + E[
∫ TK+(τ∧D)
TK

e−αZ(s)ds] + E[
∫ TK+τ
TK+(τ∧D) e−αZ(s)ds]

ETK + Eτ
. (5)

The steady-state analysis of the Z-process in each of these intervals heavily relies on a
martingale technique. We treat the three intervals successively in Subsections 3.1, 3.2 and
3.3. In each subsection, we specify the results for the two special cases of (i) Brownian
motion and (ii) the M/G/1 and M/M/1 queue.

3.1 The first interval: [0, TK ]

Applying [23] to Z(·) and simplifying, the following is seen to be a martingale:

M(t) = φ(α)
∫ t

s=0
e−αZ(s)ds− e−αZ(t) + e−αZ(0) − αL(t). (6)

In the following, we take Z(0) = 0. Application of the optional sampling theorem, with
stopping time TK , to this martingale yields (cf. [5, 23]):

φ(α)E[
∫ TK

s=0
e−αZ(s)ds] = Ee−αZ(TK) − 1 + αEL(TK), (7)
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or

E[
∫ TK

s=0
e−αZ(s)ds] =

Ee−αZ(TK) − 1 + αEL(TK)
φ(α)

. (8)

Notice that this expression, when divided by ETK , represents the LST of the steady-state
distribution of the Z-process on the interval [0, TK ].
The transform of the overshoot Ee−αZ(TK) can be directly obtained by taking z = 0 (since
xs = 0 and x0 = 0) in the last formula of Corollary 2.1, providing, for α > Φ(0),

E[e−αZ(TK)] = φ(α)
(∫ ∞

K
e−αyW (y)dy − W (K)

W ′(K)

∫ ∞

K
e−αydW (y)

)
. (9)

Note that α > Φ(0) ≥ 0 for the two integrals in (9) to be bounded. To determine the
constant EZ(TK) we differentiate the first formula of Corollary 2.1 and take α = 0 to
obtain

EZ(TK) = φ′(0)
∫ K

0
W (y)dy +

W (K)
W ′(K)

(
1− φ′(0)

∫ K

0
dW (y)

)
. (10)

In the remainder we will also use the notation Zl := Z(TK) to denote the value of the
reflected process at the moment it leaves [0,K).
Letting α ↓ 0 in (8) and applying l’Hôspital’s rule gives a relation between ETK and
EL(TK):

φ′(0)ETK = −EZ(TK) + EL(TK), (11)

so
EL(TK) = EZ(TK) + φ′(0)ETK . (12)

Note that, for φ′(0) = 0, we directly obtain EL(TK) = EZ(TK). In that case, letting α ↓ 0
in (8) and applying l’Hôspital’s rule twice gives the constant ETK = E[Z(TK)2]/φ′′(0),
where E[Z(TK)2] may be determined from the first formula of Corollary 2.1. For φ′(0) 6= 0,
a second relation between EL(TK) and ETK is obtained by defining α̂ as a non-zero solution
of φ(α) = 0. (For instance, for φ′(0) < 0, take α̂ := Φ(0) as the unique positive zero of
φ(α) = 0.) Since the expectation in the LHS of (7) is finite for α = α̂, the RHS of (7)
should be zero for this value of α:

EL(TK) =
1− Ee−α̂Z(TK)

α̂
. (13)

¿From (12) and (13), (with φ′(0) 6= 0)

ETK =
1

φ′(0)

(
1− Ee−α̂Z(TK)

α̂
− EZ(TK)

)
. (14)

We now consider two special cases.

Case (i): Brownian motion
If X is Brownian motion, with drift parameter µ and variance parameter σ2, then φ(α) =
σ2

2 α
2 − µα. Instead of X, we shall also write B to denote the case of Brownian motion.

It may be verified that (9) indeed reduces to

E[e−αZ(TK)] = e−αK ,
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or Z(TK) = K. Formula (12) thus becomes

EL(TK) = K − µETK . (15)

In case µ = 0, it directly follows that EL(TK) = K and ETK = (K/σ2)2. For µ 6= 0, there
is one non-zero α for which φ(α) = 0, viz., α̂ = 2µ

σ2 , and

0 = e−
2µ

σ2K − 1 +
2µ
σ2

(K − µETK),

so

ETK =
σ2

2µ2

(
e−

2µ

σ2K − 1 +
2µ
σ2
K

)
. (16)

It now follows from (8) that

E[
∫ TK

s=0
e−αZ(s)ds] =

e−αK − 1− α
α̂(e−α̂K − 1)

σ2

2 α
2 − µα

. (17)

Case (ii): M/G/1 and M/M/1
Let X correspond to the M/G/1 queue with arrival rate λ, service speed r, and general
service requirements with distribution function B(·), mean β, and LST β(·). Then φ(α) =
rα − λ(1 − β(α)). As in Case (i), we can determine the scale function W (·) explicitly.
Define ρ := λβ/r and

H(x) := β−1

∫ x

0
(1−B(y))dy

as the distribution of the residual service requirement. For ρ < 1, it is well-known from
Definition 2.1 with q = 0, see e.g. [5, Theorem VIII.5.7], that

W (x) =
1
r

∞∑
n=0

ρnHn(x), (18)

where Hn(·) denotes the n-fold convolution of H(·) with itself. In fact, (1 − ρ)rW (·)
corresponds to the workload distribution in the M/G/1 queue with service rate r (the 1/r
in (18) is in fact a correction term).

Remark 3.1. In case ρ ≥ 1, the scale function can be obtained by replacing ρH(x) in
(18) by L(x) :=

∫ x
0 e−δudρH(u), with δ the unique positive zero of

∫∞
0 e−xudρH(u) − 1.

We refer to [14] for further details. In that case W (·)/W (K) can be identified with the
workload distribution of the finite M/G/1 dam with buffer size K. �

The results can be further simplified in the M/M/1 case. Assume that the server works
at unit speed as long as there is any work present and let the service requirements be
exponentially distributed with mean 1/µ := β/r.1 Then φ(α) = α − λ α

µ+α . Simplifying
(9) or applying the memoryless property of the exponential service time distribution yields
Ee−αZ(TK) = e−αK µ

µ+α . For ρ 6= 1, we obtain after straightforward calculations that

α̂ = λ− µ,

and

ETK =
1

1− λ/µ

(
1− µ

λe−(λ−µ)K

λ− µ
−K − 1

µ

)
.

1We note that µ has a different meaning in the M/M/1 case than in the case of Brownian motion.
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3.2 The second interval

We put the time origin at TK , i.e., the timer starts at time 0, where Z(0) is distributed
as the overshoot over level K, that is Zl. Application of the martingale M(t), now with
stopping time D ∧ τ , yields as in (7),

φ(α)E[
∫ D∧τ

s=0
e−αZ(s)ds] = E[e−αZ(D∧τ)]− E[e−αZ(0)], (19)

where E[e−αZ(0)] is given by (9). Notice that, this time, there is no reflection term,
since the horizontal axis is not hit during [0, D ∧ τ). For the same reason, one can write
Z(s) = Z(0) +X(s), where X(·) is the free Lévy process.
Let us for the moment assume that the timer, that starts at TK , runs for a fixed time t;
later we consider the case of a random timer. Consider the unknown term in the RHS of
(19), using (·) to denote an indicator function:

EZ(0)[e
−αZ(t∧τ)] = EZ(0)[e

−αZ(τ)(τ < t)] + EZ(0)[e
−αZ(t)(τ ≥ t)]

= PZ(0)(τ < t) + EZ(0)[e
−α(Z(0)+X(t))(τ ≥ t)]

= PZ(0)(τ < t) + E[e−α(Z(0)+X(t))]− EZ(0)[e
−α(Z(0)+X(t))(τ < t)], (20)

where we used the fact that Z(·) is a free Lévy process for τ ≥ t. We shall successively
study these three terms. For the first term we note that, for fixed x, the transform of
Px(τ < t) is given by Proposition 2.1. Specifically, for x ≥ 0 and s ≥ 0, we have

Ex[e−sτ ] = e−Φ(s)x. (21)

Conditioning on Z(0) and invoking the second formula of Corollary 2.1 with z = 0 in the
second step, we may write for the transform of τ :

EZ(0)[e
−sτ ] =

∫ ∞

K
e−Φ(s)xdP(Z(0) < x)

= s

(∫ ∞

K
e−Φ(s)yW (y)dy − W (K)

W ′(K)

∫ ∞

K
e−Φ(s)ydW (y)

)
, (22)

where we used that Φ(s) > Φ(0) and φ(Φ(s)) = s for s > 0, see for instance [10], p. 189.
This completes the analysis of the transform of τ . To obtain its distribution, define the
first passage time into (−∞,−x] by T (x) := inf{t ≥ 0 : X(t) ≤ −x}. We note that the
distribution of T (x) has a possible atom. For instance, in the standard M/G/1 queue with
service speed r, T (x) has an atom at t = x/r and a density for t > x/r. Dividing both
sides of (22) by s and applying (21), we obtain by Laplace inversion that, for t > 0,

PZ(0)(τ < t) =
(∫ ∞

K
W (y)dP(T (y) < t)− W (K)

W ′(K)

∫ ∞

K
W

′
(y)dP(T (y) < t)

)
. (23)

Explicit expressions for the distribution of T (x) and thus for PZ(0)(τ < t) are only available
in some special cases, see for instance [31, Chapter 2] and [32, Chapter 4].
We now turn to the second and third term of (20). Using the Lévy exponent, we have

E[e−α(Z(0)+X(t))] = E[e−αZ(0)]eφ(α)t.

9



For the third term we have τ < t with t the timer duration. Hence, if τ = u ≤ t, then
the Lévy process starts at 0 at time u, i.e., Z(0) +X(u) = 0. Conditioning on τ , we thus
obtain

EZ(0)[e
−α(Z(0)+X(t))(τ < t)] =

∫ t

0
eφ(α)(t−u)dPZ(0)(τ < u).

Combining the above yields

EZ(0)[e
−αZ(t∧τ)] = PZ(0)(τ < t) + E[e−αZ(0)]eφ(α)t −

∫ t

0
eφ(α)(t−u)dPZ(0)(τ < u). (24)

Integrating over t then directly provides

EZ(0)[e
−αZ(D∧τ)] =

∫ ∞

t=0

(
PZ(0)(τ < t) + E[e−αZ(0)]eφ(α)t (25)

−
∫ t

0
eφ(α)(t−u)dPZ(0)(τ < u)

)
dP(D ≤ t).

It follows from (19) and (24) that, for fixed t > 0,

E[
∫ t∧τ

s=0
e−αZ(s)ds] =

∫ t
u=0(1− eφ(α)(t−u))dPZ(0)(τ < u)− (1− eφ(α)t)E[e−αZ(0)]

φ(α)
. (26)

The result for a generally distributed timer is obtained by integrating over t:

E[
∫ D∧τ

s=0
e−αZ(s)ds] =

1
φ(α)

∫ ∞

t=0

(∫ t

u=0
(1− eφ(α)(t−u))dPZ(0)(τ < u) (27)

−(1− eφ(α)t)E[e−αZ(0)]
)

dP(D ≤ t).

The result is especially tractable in case the timer D has an exponential distribution func-
tion (or mixture of exponentials). This special case is further addressed in Section 5.
Moreover, in Section 5 we outline another method to derive Equation (26) by consider-
ing an exponential timer first and using some properties of the exponential distribution
(Remark 5.1).
For the steady-state distribution of the Z-process, we need the constant E[D∧ τ ]. Letting
α ↓ 0 in (27) and applying l’Hôspital’s rule we also have, for φ′(0) 6= 0,

E[D ∧ τ ] =
∫ ∞

t=0

(
tPZ(0)(τ ≥ t) +

∫ t

u=0
udPZ(0)(τ < u)

)
dP(D ≤ t). (28)

(In case φ′(0) = 0, we have to apply l’Hôspital’s rule twice.) It also easily follows from
(19) that

E[D ∧ τ ] =
E[Z(0)]− E[Z(D ∧ τ)]

φ′(0)
= −E[X(D ∧ τ)]

φ′(0)
. (29)

Hence, for φ′(0) 6= 0,

E[Z(D ∧ τ)] = E[Z(0)]− φ′(0)
∫ ∞

t=0

(
tPZ(0)(τ ≥ t) +

∫ t

u=0
udPZ(0)(τ < u)

)
dP(D ≤ t),

(30)
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with E[Z(0)] given in (10).

Case (i): Brownian motion
For Brownian motion it is possible to give explicit expressions for, e.g., the first-exit time
and thus, by (27), also for the steady-state workload distribution in the second interval.
In particular,

Φ(s) =
µ+

√
µ2 + 2σ2s

σ2
,

giving the LST of τ , see (21). Moreover, denoting by N(·) the Normal distribution, we
may obtain from the LST of τ [32], p. 113, or from [21], p. 14, that

P(τ < t) = N

(
−K − µt

σ
√
t

)
+ e−2Kµ/σ2

N

(
−K + µt

σ
√
t

)
. (31)

After some calculations similar to [32], p. 112, (24) can be seen to reduce to

E[e−αZ(t∧τ)] = P(τ < t) + e−αKetφ(α)

[
N

(
K − (ασ2t− µt)

σ
√
t

)
(32)

− e2K(α−µ/σ2)N

(
−K − (ασ2t− µt)

σ
√
t

)]
.

Hence, in this case,

E[
∫ D∧τ

s=0
e−αZ(s)ds] =

1
φ(α)

∫ ∞

t=0

(
P(τ < t) + e−αKetφ(α)

[
N

(
K − (ασ2t− µt)

σ
√
t

)
(33)

− e2K(α−µ/σ2)N

(
−K − (ασ2t− µt)

σ
√
t

)]
− e−αK

)
dP(D ≤ t).

Remark 3.2. For Brownian motion, Equation (32) can also be obtained more directly.
Define the Brownian motion process B̃(t) = −B(t), t ≥ 0 (having drift parameter −µ
and variance parameter σ2), and its running supremum M̃(t) = sup0≤s≤t{B̃(s)}. Then,
clearly,

E[e−αB(t)(τ ≥ t)] =
∫ ∞

−K
e−αxP(B(t) ∈ dx, τ ≥ t)

=
∫ K

−∞
eαxP(B̃(t) ∈ dx, M̃(t) ≤ K).

Using [21, Proposition 1.8.1] for the joint distribution, we obtain, after some standard
calculations, that E[e−αZ(t∧τ)] satisfies (32). �

As mentioned, we need to determine the constant E[D∧τ ] for the steady-state distribution
of the Z-process. Letting α ↓ 0 in (33) and applying l’Hôspital’s rule (determining the
constant using (28) is more involved in this case) yields, for µ 6= 0,

E[D ∧ τ ] =
∫ ∞

t=0

(
tP(τ ≥ t)− K

µ
N

(
−K − µt

σ
√
t

)
(34)

+
K

µ
e−2Kµ/σ2

N

(
−K + µt

σ
√
t

))
dP(D ≤ t).
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Because the results for Brownian motion are very explicit, we also give the constant in
case φ′(0) = µ = 0. Again letting α ↓ 0 in (33) and applying l’Hôspital’s rule twice, we
obtain after lengthy calculations that, for µ = 0,

E[D ∧ τ ] =
∫ ∞

t=0

(
tP(τ ≥ t)− K2

σ2
P(τ < t) +

2K
σ

√
t√

2π
e−K

2/(2σ2t)

)
dP(D ≤ t).

Case (ii): M/G/1 and M/M/1
If X corresponds to the M/G/1 queue as described before, then it follows directly that
Φ(s), s ≥ 0, is the unique non-negative solution to rt = s + λ(1 − β(t)). By (21), this
directly describes E[e−sτ ]. In addition, the distribution of T (x) in case r = 1 can be found
in, e.g., [15], Formula (II.4.95) and [31], Formula (2.15). After some modification to adjust
for the service speed r, the formula reads, for t ≥ x/r,

P(T (x) < t) =
∫ t

u=x
r

∞∑
n=0

e−λu
(λu)n

n!
x

ru
dBn(ur − x),

where, for n ≥ 1, Bn(·) is the n-fold convolution of B(·) with itself, and B0(x) = 0 if x < 0
and B0(x) = 1 if x ≥ 0. Using (23) and (27), this determines the density of τ and the
distribution of the workload process in the second interval, respectively.
In the M/M/1 queue, with µ = r/β, Φ(·) is explicitly given by

Φ(s) =
s+ λ− µ+

√
(µ− λ− s)2 + 4µs
2

. (35)

In that case, P(T (x) = x) = e−λx, and denote by g(x, ·) the density of T (x). Then, for
x < t <∞,

g(x, t) = e−λt−µ(t−x)x

t

√
λµt

t− x
I1(2

√
λµt(t− x)),

where In(·) is the modified Bessel function of the first kind of order n, i.e.,

In(x) =
(x

2

)n ∞∑
k=0

(
x
2

)2k
k!(n+ k)!

,

see for instance [31, Section 2.8b] and [32, Theorem 4.8].

3.3 The third interval

In this subsection we analyze the third interval, i.e., the interval [D ∧ τ, τ ]. Since we use
results of the second interval in this subsection, we put the time origin at the end of the
first interval as in Subsection 3.2. This allows for the most coherent presentation. We
note that, because the timer has expired, the Lévy exponent of the process is changed into
φ∗(α). Another application of the martingale M(t), now with stopping time τ , yields

φ∗(α)E[
∫ τ

s=D∧τ
e−αZ(s)ds] = 1− E[e−αZ(D∧τ)]. (36)

As in the second interval, notice that there is no reflection term in the time interval
[D∧τ, τ). Recall that Zl denotes the value of the reflected process at the moment it leaves

12



[0,K) at the end of the first interval (Subsection 3.1). Also, E[e−αZ(D∧τ)] is given in (25).
Combining the above yields

E[
∫ τ

s=D∧τ
e−αZ(s)ds] =

1
φ∗(α)

[
1−

∫ ∞

t=0

(
PZl

(τ < t) + E[e−αZl ]eφ(α)t (37)

−
∫ t

0
eφ(α)(t−u)dPZl

(τ < u)
)

dP(D ≤ t)
]
,

where Zl is the overshoot resulting from the first interval.
Observe that τ is equal to time D∧ τ in case the process has reached the origin at the end
of the second interval before the timer D has expired. Hence, E[

∫ τ
s=D∧τ e−αZ(s)ds] = 0

with probability PZl
(τ < D). Finally, letting τ̃ := τ − (D ∧ τ) denote the length of the

third interval, we derive from (36) that

Eτ̃ =
E[Z(D ∧ τ)]

φ′
∗(0)

,

with E[Z(D ∧ τ)] presented in (30). Hence, observing that (for φ′(0) 6= 0)

Eτ = E[D ∧ τ ] + Eτ̃ =
(

1− φ′(0)
φ′∗(0)

)
E[D ∧ τ ] +

E[Zl]
φ′∗(0)

, (38)

with E[D ∧ τ ] given in (28) and E[Zl] given in (10), we have determined all terms on the
RHS of (5).

Finally, the steady-state analysis of the Z-process may be summarized by combining the
three intervals of Subsections 3.1–3.3. In particular, applying (8), (19), (36), (11), and
(38) to (5), we deduce the following theorem:

Theorem 3.1. For φ′(0) 6= 0, we have

E[e−αZ ] =
α

φ(α)EL(TK) +
(

1
φ(α) −

1
φ∗(α)

) (
EZl

[e−αZ(D∧τ)]− 1
)

1
φ′(0)EL(TK) +

(
1

φ′(0) −
1

φ′∗(0)

)
(φ′(0)E[D ∧ τ ]− EZl)

, (39)

with EL(TK), EZl, E[D ∧ τ ], and EZl
[e−αZ(D∧τ)] given by (13), (10), (28), and (25),

respectively.

Remark 3.3. In case φ(·) ≡ φ∗(·), (39) reduces to

E[e−αZ ] = φ′(0)
α

φ(α)
,

which corresponds to the LST of the steady-state version of a reflected Lévy process, see
e.g. [5, Corollary IX.3.4] or [12, 23]. �

Cases (i) and (ii): Brownian motion, M/G/1, and M/M/1
The results can be directly derived using the terms determined in the second interval. In
particular, for Brownian motion EZl

[e−αZ(D∧τ)] can be obtained from (32), with P(τ < t)
given in (31). The constant E[D∧τ ] can be found in (34) and E[Zl] = K. If X corresponds
to the M/G/1 or M/M/1 queue, then the general equations for EZl

[e−αZ(D∧τ)] and E[D∧τ ],
i.e. (25) and (28), can be further specified using the Lévy exponents φ(α) = αr−λ(1−β(α))
and φ(α) = α − λ α

µ+α , respectively, and results on first-exit times given at the end of
Section 3.2.
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4 The case of a subordinator

In this section, we consider the case in which the process X is nondecreasing (a subordina-
tor) during the first and second interval (because of stability, this is not possible during the
third interval). This case is of special interest in view of queueing models with a removable
server, see e.g. [4, 19, 24, 26, 38]. In these papers it is assumed that the server starts a
new busy period only when the total amount of work has reached the level D (D-policy;
notice that this is a different D than our timer D). The analysis in case of a monotone
process during the first two intervals is in fact very similar to the analysis in Section 3,
that is, we may consider each of the three successive intervals separately. Since the origin
is not hit during the first two intervals, this case leads to more convenient expressions.
Following [24], the Lévy exponent of the subordinator X will be defined by −η(α) =
log Ee−αX(1) = φ(α) (note the difference in the minus sign between η(α) and φ(α)). We
first consider the exit position of the process when it leaves [0,K). Denote the exit time
from [0,K) of X by TK . The exit position is then given by, see e.g. [1, Subsection 3.3],

E0[e−αZ(TK)] = E0[e−αX(TK)] = η(α)
∫ ∞

K
e−αzdU(z), (40)

where the potential measure U is defined via∫ ∞

0
e−αzdU(z) =

1
η(α)

.

We note that the potential measure U and 0-scale function W (·) are closely related, see
e.g. [1, 6, 10, 11] for details.

Remark 4.1. Of particular interest for queueing systems with a removable server is the
case that X is a compound Poisson process with rate λ and jumps having distribution
function B(·) and LST β(·). In that case, η(α) = λ(1− β(α)) and U(z) =

∑∞
n=0Bn(z)/λ,

where Bn(·) is the n-fold convolution of B(·) with itself. The distribution of X(TK) can
also be obtained from renewal theory [5, Chapter V]. �

Next, we briefly outline the analysis of the Z-process. As in Section 3, we apply the
martingale (6) with stopping times TK and TK +D ∧ τ , for the first and second interval,
respectively. Observe that, in case of a subordinator, there is no reflection yielding L(t) ≡ 0
in (6). Also, the LST of Z(TK) is given in Equation (40). As in Section 3, we denote the
value of the Z-process when it leaves [0,K) by Zl = Z(TK). This completes the analysis
of the first interval, up to a constant.
For the second interval, we note that this interval always terminates due to the expiration
of the timer, because the process is nondecreasing there. In particular, for a timer with
fixed duration t, it follows directly from the definition of the Lévy exponent that

E[e−αZ(TK+t∧τ)] = E[e−α(Z(TK)+X(t))] = E[e−αZl ]e−η(α)t,

with E[e−αZl ] given by (40). By integrating over t, we obtain the result for a general timer:

E[e−αZ(TK+D∧τ)] = E[e−αZl ]
∫ ∞

t=0
e−η(α)tdP(D ≤ t). (41)
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Finally, the third interval can easily be analyzed using another application of the martin-
gale, cf. (36), and the LST of Z(TK +D), cf. (41). The three intervals can now be easily
combined. Specifically, combining (5), (7), (19), and (36) with the above yields

E[e−αZ ] =
1

ETK + Eτ

(
1

η(α)
+

1
φ∗(α)

)(
1− E[e−αZl ]

∫ ∞

t=0
e−η(α)tdP(D ≤ t)

)
,

where E[e−αZl ] is given by (40). The constant ETK + Eτ can be determined by letting
α ↓ 0 and applying l’Hôspital’s rule, yielding

ETK + Eτ =
(

1
η′(0)

+
1

φ′∗(0)

)(
EZl + η′(0)ED

)
.

To obtain the constant EZl, we may use the definition of U to rewrite (40) as E0[e−αZl ] =
1 − η(α)

∫K
0 e−αzdU(z). Differentiating with respect to α and letting α ↓ 0 then gives

EZl = η′(0)
∫K
0 dU(z).

5 Exponential timer

In Section 3, we determined the LST of the workload in the model where the duration of
the timer has a general distribution function (and the process in not monotone during the
first two intervals). In the special case (i) of Brownian motion, tractable expressions for
the steady-state workload appear. However, for the M/G/1 queue and even for the M/M/1
queue, the results become cumbersome, involving the complicated transient behavior of
those queues. To obtain more tractable analytical results, we consider the case of an
exponential timer in this section. The results can also readily be extended to cases where
the duration of the timer consists of a mixture of exponential terms, as for Coxian (with
different intensity parameters) and Hyperexponential distributions (see the end of this
section).
Thus, in this section we first assume that D is exponentially distributed with intensity
ξ, i.e., P(D < x) = 1 − e−ξx. The analysis in the first interval does not depend on
the distribution of the timer. For convenience we put the time origin at the end of this
first interval and let Zl again denote the overshoot over K. For the second interval, the
integrals on the RHS of (25) and (27) can now easily be determined. After interchanging
the integrals on the RHS of (25) and (27) and some straightforward calculations, it follows
that, for α ≥ 0 such that φ(α) < ξ,

EZl
[e−αZ(D∧τ)] = E[e−αZl ]

ξ

ξ − φ(α)
− EZl

[e−ξτ ]
φ(α)

ξ − φ(α)
, (42)

and

E[
∫ D∧τ

s=0
e−αZ(s)ds] =

−EZl
[e−ξτ ]

ξ − φ(α)
+

E[e−αZl ]
ξ − φ(α)

, (43)

with E[e−αZl ] given by (9) and the constant EZl
[e−ξτ ] given by (22). By analytic contin-

uation, the results can be extended to all values of α ≥ 0. Note that this also holds for
the α for which φ(α) = ξ, after an application of l’Hôspital’s rule to (43). We note that,
using (42), it is easy to analyze the third interval.
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Finally, the constant E[D ∧ τ ] can be either obtained from Equation (28), or by taking
α = 0 in (43), yielding

E[D ∧ τ ] =
1
ξ

(
1− EZl

[e−ξτ ]
)
. (44)

Now, combining the above with (39), the LST of the steady-state workload in case of an
exponential timer is summarized in the following corollary:

Corollary 5.1. Assume that P(D < x) = 1− e−ξx. Then, for φ′(0) 6= 0,

E[e−αZ ] =
α

φ(α)EL(TK) +
(

1
φ(α) −

1
φ∗(α)

)(
ξ

ξ−φ(α)E[e−αZl ]− φ(α)
ξ−φ(α)EZl

[e−ξτ ]− 1
)

1
φ′(0)EL(TK) +

(
1

φ′(0) −
1

φ′∗(0)

)(
φ′(0)
ξ − φ′(0)

ξ EZl
[e−ξτ ]− EZl

) ,

with EL(TK), EZl, E[e−αZl ], and EZl
[e−ξτ ] given by (13), (10), (9), and (22), respectively.

Remark 5.1. Another way to analyze the LST of the workload in the second interval,
that is Equation (26) of Section 3, is to consider the case of an exponential timer first
and exploit the lack-of-memory property of an exponential timer. More specifically, let D
denote a generic exponential random variable with mean 1/ξ. Using (20), it follows that

EZ(0)[e
−αZ(D∧τ)] = PZ(0)(τ < D) + E[e−α(Z(0)+X(D))]− EZ(0)[e

−α(Z(0)+X(D))(τ < D)]

= EZ(0)[e
−ξτ ] + E[e−αZ(0)]

ξ

ξ − φ(α)
− EZ(0)[e

−ξτ ]
ξ

ξ − φ(α)
,

where the last term in the second step follows from the fact that at time τ , that is the
first epoch at which Z(0)+X(τ) = 0, the time until the timer expires is still exponentially
distributed. Using the above it is easily seen that E[

∫ D∧τ
s=0 e−αZ(s)ds] is given by (43).

Finally note that integrating over an exponential timer is equivalent to multiplying by ξ
and taking LST. It may be checked that dividing by ξ and inverting (43) with respect to
ξ provides Equation (26). �

Case (i): Brownian motion
For Brownian motion, a generally distributed timer already yields explicit results, see
Section 3. For an exponential timer, the result can be further simplified to the transform
given in Corollary 5.1, with Ee−αZl = e−αK , EZl = K, and φ(α) and EL(TK) given in
Section 3.1. Finally, see Section 3.2,

EZl
[e−ξτ ] = e−

µ+
√

µ2+2σ2ξ

σ2 K .

Case (ii): M/G/1 and M/M/1
In the M/G/1 case the scale function W (·) has an explicit form, related to the steady-state
workload distribution in the M/G/1 queue, see Section 3.1. As noted there, in the M/M/1
queue we have the simple form Ee−αZl = e−αK µ

µ+α and EZl = K+1/µ. Also, EL(TK) can
be obtained from the results in Section 3.1. Finally, the constant EZl

[e−ξτ ] in the M/M/1
case is given by

EZl
[e−ξτ ] = e−Φ(ξ)K µ

µ+ Φ(ξ)
,

16



with Φ(ξ) presented in (35). We note that

µ

µ+ Φ(ξ)
=
ξ + λ+ µ+

√
(µ+ λ+ ξ)2 − 4λµ
2λ

,

corresponding to the LST of the M/M/1 busy period (having parameter ξ).

The results for an exponential timer can also be extended to cases where the distribution
of the timer duration consists of a mixture of exponential terms. This extension is rather
straightforward in cases where all exponentials have a different intensity parameter, as for
e.g. Coxian (with different parameters) and Hyperexponential distributions. In particular,
assume that P(D < x) = 1−

∑k
i=1 pie

−ξix, with
∑k

i=1 pi = 1 (where some pi’s are allowed
to be negative). In that case, Equation (25) reduces to

EZl
[e−αZ(D∧τ)] =

k∑
i=1

pi

(
E[e−αZl ]

ξi
ξi − φ(α)

− EZl
[e−ξiτ ]

φ(α)
ξi − φ(α)

)
.

After similar calculations as in the case of an exponential timer, cf. Corollary 5.1, we
deduce the following corollary:

Corollary 5.2. Assume that P(D < x) = 1−
∑k

i=1 pie
−ξix, with

∑k
i=1 pi = 1. Then, for

φ′(0) 6= 0,

E[e−αZ ] =
α

φ(α)EL(TK) +
(

1
φ(α) −

1
φ∗(α)

)∑k
i=1 pi

(
ξi

ξi−φ(α)E[e−αZl ]− φ(α)
ξi−φ(α)EZl

[e−ξiτ ]− 1
)

1
φ′(0)EL(TK) +

(
1

φ′(0) −
1

φ′∗(0)

)(
φ′(0)

∑k
i=1

pi

ξi
(1− EZl

[e−ξiτ ])− EZl
) ,

with EL(TK), EZl, E[e−αZl ], and EZl
[e−ξτ ] given by (13), (10), (9), and (22), respectively.

Finally, the expressions become more involved in case the distribution of the timer involves
the sum of two exponentials with the same intensity parameter. As an example, assume
that dP(D < x)/dx = ξ2xe−ξx, i.e., the duration of the timer has an Erlang-2 distribution
function. Instead of direct substitution into (25) and (28), we may use the results for the
case of an exponential timer. More specifically, interchanging integral and differentiation,
we have the relation

∫∞
0 te−ξtf(t)dt = −d/dξ(

∫∞
0 e−ξtf(t)dt). Thus, in case of an Erlang-2

timer, dividing (42) by ξ, taking derivatives with respect to ξ, and finally multiplying by
ξ2 yields

E[e−αZ(D∧τ)] =
1

ξ − φ(α)

(
ξ2

ξ − φ(α)
E[e−αZl ]− ξφ(α)E[τe−ξτ ]− φ(α)

2ξ − φ(α)
ξ − φ(α)

E[e−ξτ ]
)
.

Similarly, from (44), we obtain the constant

E[D ∧ τ ] =
2
ξ

(
1− E[e−ξτ ]

)
− E[τe−ξτ ].

The LST of the steady-state workload in case of an Erlang-2 timer follows directly by
substituting the above in (39).
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6 Future research

We end this paper by mentioning a few related problems that may be worth investigating.
(i) We are assuming that the process reverses to its original Lévy exponent as soon as
the origin is reached. Instead, one might assume that this reversal takes place when the
process downcrosses a level K∗ < K, or that this reversal only occurs after some delay.
We may distinguish three cases:
(a) There is no delay for switching the Lévy exponent both at upcrossing K and at
downcrossing K∗. This corresponds to hysteretic control.
(b) There is delay at upcrossing K, but not at downcrossing K∗. In case a possible active
delay signal becomes obsolete at downcrossing K∗, this case may be handled along the
same lines as followed in the present paper, considering three intervals; the overshoot over
K is still given by Corollary 2.1. In the other case, there can be multiple outstanding
delay signals, see also (c).
(c) There is delay both at upcrossing K and at downcrossing K∗. This might be a very
complex problem, due to the possibility of having multiple delay signals.
(ii) In a queueing context, one might focus on queue length instead of workload. In that
setting, the timer would be activated when the number of customers first reaches a level
K. For the analysis of this problem, the results (and martingale methods) of Roughan
and Pearce [33, 34, 35] are relevant. In [33], the author considers an M/G/1 queue which
initially has service time distribution A(·), which changes into distribution B(·) if the
number of customers in the system exceeds a certain level after a service completion.
The system switches back to the old service time distribution when it becomes empty.
[35] extends this to the case of N phases, with service time distribution Aj(·) in phase
j. Phase changes occur at ends of services and are stopping times. In [34] an M/G/1
queue with two arrival rates and hysteretic overload control is considered. If the number
of customers after a service completion exceeds K0, the arrival rate changes from the
original λu to λc. It changes back to λu when the number of customers after a service
completion falls back below a level Ka.
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