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Abstract. In the paper the MX/G/1 queueing system with the N -policy and setup times
is considered. An explicit formula for the Laplace transform of the transient queue-size
distribution is derived using the approach consisting of few steps. Firstly, a “special” mod-
ification of the original system is investigated and, using the formula of total probability,
the analysis is reduced to the case of the corresponding system without limitation in the
service. Next, a renewal process generated by successive busy cycles is used to obtain the
general result. Sample numerical computations illustrating theoretical results are attached
as well.
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1. Introduction

Applications of queueing systems with different-type restrictions in the service pro-
cess are evident. They can model real-life situations occurring in the operation
of telecommunication and computer networks, like temporary suspension of data
transmission due to server’s switchings off or breakdowns. Such systems can also be
used in modelling of random interruptions in the manufacturing process or delays
in transport caused e.g. by road works or fixed ferries timetable.

In the paper we deal with an infinite-buffer system with the N -policy and setup
times “working” in the exhaustive service regime. In such a system a new busy
period is initialized only if at least N customers are accumulated in the system, and
the first service is preceded by a random setup time. Introducing the threshold of
N customers present, beyond which the server is only activated, can be helpful in
reducing the costs of system’s operation. One can change the critical value N in
dependence on the arrival rate. A setup time that begins each new busy period can
be interpreted as a time “for server” needed to obtain its full readiness for service.

An overview of results related to systems with Poisson arrivals and different-
type service restrictions (like single and multiple vacations, the N -policy etc.) can
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be found in [21]. The analysis of the stationary queue-size distribution in the system
with Poisson arrivals, setup times and the N -policy is done in [5]. In [8], for the
system of the M/G/1 type, the optimal value of the threshold N is found to minimize
operating costs in the stationary state of the system. Three different arrival rates
are used in dependence on server’s status. A system of the MX/G/1 type with
batch arrivals is investigated in [20]. Two thresholds are considered: the lower
(under which the server is deactivated) and the upper (ordinary) one. Formulae for
the steady-state queue-size distribution and means of busy and idle time durations
are derived. Further results for such a system can be found in [2], where the cost
structure is investigated and close-down periods occur. In [7] a discrete-time system
is considered in that, except for setup times and the N -policy, the Bernoulli feedback
is implemented such that the service of a customer can be “successful” or not. The
finite-buffer system with the N -policy and setup times is considered in [22] where
the queue-size distribution and the mean waiting time are obtained in the stationary
case. Different variants of vacation policies in the steady state of the system are
analyzed in [9, 10, 11, 12, 13, 14].

It is easy to note that majority of the results relate to the stationary “regime”
of the system. However, considering different real-life situations in which queueing
models can be applied, one can see that, due to overloading of the system or per-
manently changing arrival and/or service rates, the stationary state does not occur
in practice. Besides, from the mathematical point of view, the convergence rate of
transient characteristics to stationary ones can be so slow that the steady state does
not describe the real system behavior. These arguments are the motivation for the
non-stationary (at fixed time t) analysis of the system.

One can find transient analysis of different characteristics in queueing systems
with service limitations in [15, 16, 17, 18, 19]. In particular, in [15] the joint transform
of the first busy period, the first idle time and the number of customers served
during the first busy period is found for the general-type system with batch arrivals
and single exponential vacations. Another approach to the same characteristics is
presented in [16]. In [17] the departure counting process is studied for the system
of the MX/G/1 type with single vacations. The queue-length distribution for the
system with multiple vacations, the N -policy and setup times is analyzed in [18]. In
[19] the transient departure counting process in the batch arrival queueing system
with single vacations and setup times is investigated.

In the article, we consider the transient queue-size distribution in the MX/G/1
system with batch arrivals, the N -policy and setup times. Our main aim is to find an
explicit formula for the LT (Laplace transform) of the number of customers present
in the system at fixed moment t. The main idea of the method we propose is to
reduce the analysis to the case of the corresponding system of the MX/G/1 type
without restrictions in the service process. The approach consists of a number of
stages and can be described as follows.

Firstly, we consider the original system working in the non-standard “special”
regime in that the initial moment does not coincide with the first batch arrival but
with the beginning of the idle time of the system. In such a way, a “special” system
starts working empty and waits for customers, and next, after reaching the level N,
begins a busy period. Using the formula of total probability we reduce the analysis
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to the case of the corresponding ordinary system without limitations in service.
We define a busy cycle in a non-standard way: it consists of an idle time followed
by a busy period. Finally, applying independence of successive cycles, we use the
renewal-theory approach to obtain the general result.

Thus, the paper is organized as follows. In the next Section 2 we give a pre-
cise description of queueing models (the original, “special” and ordinary one) and
introduce necessary notations. In Section 3 we state results for the ordinary system
without limitations in the service process. Section 4 is devoted to the analysis of
the queue-size distribution in the “special” system on its first busy cycle. In Section
5 we obtain the main result for the original system. Section 6 contains sample nu-
merical computations which illustrate theoretical results, in particular the influence
of “input” parameters of the system (the arrival and service rates, and setup times
duration).

2. Description of queueing models

In the original (main) system of the MX/G/1 type batches of customers arrive
according to a Poisson process with rate λ and the size of the arriving batch equals k
with probability pk,

∑∞
k=1 pk = 1. Customers are served individually with a general-

type d.f. (distribution function) F (·) of the service time. The system starts working
in the standard way, i.e. at time t = 0 the first group of customers enters into the
empty system and the service process begins immediately. Each successive busy
period (except for the initial one) starts only when the system accumulates at least
N customers (the N -policy). The first service in each busy period is preceded by a
random setup time that is generally distributed with a d.f. T (·). So, the evolution
of the original system can be observed during successive busy cycles Ci defined as
follows:

Ci = δi + τi, i = 0, 1, ..., (1)

where δi denotes the ith idle time of the system and τi stands for the ith busy
period. Besides, it is assumed that δ0 = 0. In fact, we will often identify a particular
period in the evolution of the system (busy period, idle time or busy cycle) with
its duration. Note that we define busy cycles in a non-standard way: each of them
begins with an idle time that is followed by a busy period.

We assume that all interarrival times, service times, arriving batch sizes and
durations of successive setup times are totally independent random variables.

In addition to the original system, we will also consider the corresponding ordi-
nary system of the MX/G/1 type (with the arrival and service processes described
by the same d.fs as in the original one) without limitations in the service process.

Moreover, we introduce a “special” modification of the original system with the
N -policy and setup times. A “special” system begins its evolution with the busy
cycle C1, thus the idle time δ1 begins at the initial moment of the operation of the
system. All probabilities relating to the “special” system will be denoted by PS{·}.

We end this section with introducing some necessary notation and facts. Define

f(s) =
∫∞
0

e−sxdF (x), Re(s) > 0, p(θ) =
∑∞

k=1 θkpk, |θ| ≤ 1. (2)
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In [3], one can find the following theorem:

Theorem 1. For any µ > 0 the following factorization identity of Wiener-Hopf type
holds true:

1− λp
(
f(µ− s)

)

λ + s
= f+(s, µ)f−(s, µ), 0 ≤ Re(s) ≤ µ. (3)

In the formula above the functions f±(s, µ) are regular and non-zero in half-planes
Re(s) > 0, Re(s) < µ, respectively. The condition f±(∞, λ) = 1 ensures the unique-
ness of factorization (3).

The inverses of functions f±(s, µ) can be written as follows (see [3]):

1
f±(s,µ) = 1± ∫ ±∞

0
e−sxdP±(x, µ), ±Re(s) ≥ 0, (4)

where functions P±(x, µ) have bounded variations for any positive µ.
Additionally, let us define

P
(0)
− (x, µ) = −I{x < 0}+ P−(x, µ), (5)

P
(0)
+ (x, µ) = I{x > 0}+ P+(x, µ), (6)

where the notation I{A} stands for the indicator of a random event A.
In some formulae in the article we use the positive projector I+ defined on the

LT of a function h(·) in the following way:

I+

[∫∞
−∞ e−sxh(x)dx

]
=

∫∞
0

e−sxh(x)dx, (7)

if only
∫∞
0

e−Re(s)x|h(x)|dx < ∞.
Finally, denote by pn∗

j the jth term of the n-fold convolution of the sequence (pj)
with itself and, similarly, by Fn∗(·) - the n-fold convolution of the d.f. F (·) with
itself.

3. Queue-size distribution in the ordinary system

Let us take into consideration the ordinary system of the MX/G/1 type correspond-
ing to the original one. We will investigate such a system on condition that the size
(number of customers) of the first group that enters into the empty system at time
t = 0 is fixed. Probabilities and means on this condition we denote by PO

n {·}, re-
spectively and EO

n {·}, where the superscript O indicates the ordinary system and n
stands for the size of the first arriving group.

Let us put

QO
n (m,µ) =

∫∞
0

e−µtPO
n {X(t) = m, t ∈ τ1}dt, µ > 0, (8)

where X(t) stands for the number of customers present in the system at time t and
τ1 denotes the first busy period of the system. In [18], one can find the following
theorem:
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Theorem 2. For any m ≥ 1, n ≥ 1 and µ > 0 the following representation is true:

QO
n (m,µ) =

1
µ(λ + µ)

∞∑

k=0

pk∗
m−n

( λ

λ + µ

)k

+ D1(m,n, µ)

−f+(µ, µ)
µ

m∑

i=0

( λ

λ + µ

)i

(pi∗
m − p(i+1)∗

m )D2(n, µ) + D3(m,n, µ), (9)

where

D1(m,n, µ) =
m∑

i=0

∫ 0

−∞

[∫ +0

−∞

∫ ∞

0

e−µtΘ(t− x− y, m− i, µ)dH(t, i)dP
(0)
− (x, µ)

]

×dy

[∫ ∞

−min (0,y)

e−µv

∫ y+v

−0

(1− e−λ(y+v−u))dP
(0)
+ (u, µ)dFn∗(v)

]
,(10)

D2(n, µ) =
∫ 0

−∞
eµt

[∫ −t

−0

e−µxdP
(0)
+ (x, µ)

]

×dt

(∫ ∞

−min (0,t)

(1− e−λ(t+y))e−µydFn∗(y)
)
, (11)

D3(m,n, µ) =
n∑

i=0

∫ ∞

0

e−µtΘ(t,m− i, µ)dF (n−i)∗(t) (12)

and besides

H(t, i) =
∞∑

j=i+1

pjF
(j−i)∗(t), (13)

Θ(t, k, µ) = −
k∑

i=0

(
pi∗

k−1 − pi∗
k

) ∫ ∞

0

e−(λ+µ)y

(
λ(t + y)

)i

i!
dy. (14)

As we will see in the next section, the queue-size distribution in the “special”
system with the N -policy and setup times will be, in fact, largely determined by the
same characteristic in the ordinary system with fixed number of customers present
just after the initial moment.

4. Analysis of the “special” system on the first busy cycle

In this section, we deal with the queue-size distribution in the “special” system on
its first busy cycle C1. The “special” system is a modification of the original one in
that C0 = 0. For a fixed moment t let us define the following random events:

• A1 – the threshold N is reached before t and the first setup time also ends
before t (thus, the time t is “inside” the first busy period τ1);

• A2 – the threshold N is reached before t but the setup time ends after t;

• A3 – the threshold N is reached after time t.



290 W.M.Kempa

It is easy to note that A1, A2 and A3 are separable in pairs and
∑3

i=1 P(Ai) = 1, so
we have

PS{X(t) = m, t ∈ C1} =
∑3

i=1 PS{(X(t) = m, t ∈ C1) ∩Ai}. (15)

For particular summands on the right side of (15) the following representations are
true (to comment these formulae we state them in non-simplified forms):

PS{(X(t) = m, t ∈ C1) ∩A1} = I{m ≥ 1}
( ∞∑

j=N

pj

∫ t

0

λe−λydy

∞∑
r=0

∞∑

l=r

pr∗
l

×
∫ t−y

0

(λu)r

r!
e−λuPO

j+l{X(t− y − u) = m, t− y − u ∈ τ1}dT (u)

+
N−1∑

i=1

N−1∑

k=i

pi∗
k

∫ t

0

λi

(i− 1)!
xi−1e−λxdx

∞∑

j=N−k

pj

∫ t−x

0

λe−λydy

×
∞∑

r=0

∞∑

l=r

pr∗
l

∫ t−x−y

0

(λu)r

r!
e−λu

×PO
k+j+l{X(t− x− y − u) = m, t− x− y − u ∈ τ1}dT (u)

)
, (16)

PS{(X(t) = m, t ∈ C1) ∩A2}

= I{m ≥ N}
(

m∑

j=N

pj

m−j∑
r=0

pr∗
m−j

∫ t

0

λe−λy
(
1− T (t− y)

)

×
(
λ(t− y)

)r

r!
e−λ(t−y)dy

+
N−1∑

i=1

N−1∑

k=i

pi∗
k

∫ t

0

λi

(i− 1)!
xi−1e−λxdx

m−k∑

j=N−k

pj

∫ t−x

0

λe−λy

×(
1−T (t−x−y)

)m−k−j∑
r=0

pr∗
m−k−j

(
λ(t− x− y)

)r

r!
e−λ(t−x−y)dy

)
, (17)

PS{(X(t) = m, t ∈ C1) ∩A3} = I{m ≤ N − 1}
m∑

k=0

pk∗
m

(λt)k

k!
e−λt, (18)

where we take on the agreement p0∗
0 = 1.

Let us briefly comment identities (16)–(18). The first summand on the right
side of (16) presents the situation in which the level N of customers present in the
system is reached just at the arrival epoch (denoted by y) of the first group, at which
j ≥ N customers enters into the empty system. During the setup time (that ends
before t), next l customers arrive and, beginning with the completion epoch of the
setup time, the evolution of the original system coincides with the evolution of the
corresponding ordinary system that starts working with j+l customers present. The
second summand on the right side of (16) gives the representation for the situation
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in which the threshold N is reached for the first time at the (i + 1)th arrival epoch,
where i ≥ 1. This event occurs at time x + y where x denotes a directly preceding
arrival epoch. At time x + y the number of customers present in the system equals
k + j (k customer enters before the “critical” moment x + y, at which (the level N
is reached) for the first time, and j customers arrive in the group entering at the
moment x + y). During the setup time next l customers occur, thus at the end of
the setup time the system starts the service process with k+j + l customers present.

The first summand on the right side of (17) describes the case in which the
threshold N is obtained just at the first arrival epoch (denoted by y). If at time
y the number of j ≥ N customers arrive, then - since the setup ends after t - the
number of customers entering in the period (y, t] equals exactly m − j. The second
summand of (17) can be explained similarly, with the difference that the level N is
reached at least at the second arrival epoch.

The formula (18) is obvious: until the time t exactly m ≤ N customers arrive,
where successive batches occur according to a Poisson process with intensity λ.

Denote

QS,i(m,µ) =
∫∞
0

e−µtPS{(X(t) = m, t ∈ C1) ∩Ai}dt, µ > 0, i = 1, 2, 3 (19)

and introduce the following functionals:

αk(µ) =
∫ ∞

0

e−(µ+λ)t (λt)k

k!
dt, (20)

βk(µ) =
∫ ∞

0

e−(µ+λ)t (λt)k

k!
dT (t), (21)

γk(µ) =
∫ ∞

0

e−(µ+λ)t (λt)k

k!
(
1− T (t)

)
dt, (22)

δk(µ) =
λk

(k − 1)!

∫ ∞

0

tk−1e−(µ+λ)tdt. (23)

Note that the following identities hold:

∫ ∞

0

e−µtdt

∫ t

0

λe−λydy

∫ t−y

0

(λu)r

r!
e−λu

×PO
j {X(t− y − u) = m, t− y − u ∈ τ1}dT (u) = βr(µ)δ1(µ)QO

j (m,µ), (24)

∫ ∞

0

e−µtdt

∫ t

0

λi

(i− 1)!
xi−1e−λxdx

∫ t−x

0

λe−λydy

∫ t−x−y

0

(λu)r

r!
e−λu

×PO
j {X(t−x−y−u) = m, t− x− y − u ∈ τ1}dT (u)

= βr(µ)δ1(µ)δi(µ)QO
j (m,µ) = βr(µ)δi+1(µ)QO

j (m,µ), (25)

where the identity δ1(µ)δi(µ) = δi+1(µ) is a consequence of the fact that δi(µ) is
the LT of the p.d.f. (probability density function) of the i-Erlang distribution with
parameter λ.
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Similarly, we have

∫∞
0

e−µtdt
∫ t

0
λe−λy

(
1− T (t− y)

)(
λ(t−y)

)r

r! e−λ(t−y)dy = γr(µ)δ1(µ) (26)

and
∫ ∞

0

e−µtdt

∫ t

0

λi

(i− 1)!
xi−1e−λxdx

×
∫ t−x

0

λe−λy
(
1− T (t− x− y)

)(
λ(t− x− y)

)r

r!
e−λ(t−x−y)dy

= γr(µ)δ1(µ)δi(µ) = γr(µ)δi+1(µ). (27)

Now the formulae (16)–(18) and (24)–(27) lead to the following representations:

QS,1(m,µ) = I{m ≥ 1}

×
N−1∑

i=0

δi+1(µ)
N−1∑

k=i

pi∗
k

∞∑

j=N−k

pj

∞∑
r=0

βr(µ)
∞∑

l=r

pr∗
l QO

k+j+l(m,µ), (28)

QS,2(m,µ) = I{m ≥ N}
N−1∑

i=0

δi+1(µ)
N−1∑

k=i

pi∗
k

m−k∑

j=N−k

pj

m−k−j∑
r=0

pr∗
m−k−jγr(µ) (29)

and

QS,3(m,µ) = I{m ≤ N − 1}∑m
k=0 pk∗

m αk(µ). (30)

Denoting

QS(m,µ) =
∫∞
0

e−µtPS{X(t) = m, t ∈ C1}dt, µ > 0, (31)

since

QS(m, µ) =
∑3

i=1 QS,i(m,µ), (32)

we obtain from (28)–(30) the following theorem:

Theorem 3. The LT of the queue-size distribution in the “special” system on its
first busy cycle C1 is given by the following formula:

QS(m,µ) =
∫ ∞

0

e−µtPS{X(t) = m, t ∈ C1}dt

= I{m ≥ 1}
N−1∑

i=0

δi+1(µ)
N−1∑

k=i

pi∗
k

∞∑

j=N−k

pj

∞∑
r=0

βr(µ)
∞∑

l=r

pr∗
l QO

k+j+l(m, µ)

+I{m ≥ N}
N−1∑

i=0

δi+1(µ)
N−1∑

k=i

pi∗
k

m−k∑

j=N−k

pj

m−k−j∑
r=0

pr∗
m−k−jγr(µ)

+I{m ≤ N − 1}
m∑

k=0

pk∗
m αk(µ), (33)
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where µ > 0, m = 0, 1, 2, .., sequences
(
αk(µ)

)
,

(
βk(µ)

)
,

(
γk(µ)

)
and

(
δk(µ)

)
are

defined in (20)–(23), respectively, and the representation for QO
k+j+l(m, µ) for fixed

k, j and l is given in (9).

In the case of the system with individual arrivals (p1 = 1) from the last Theorem
we obtain the following corollary:

Corollary 1. For the “special” system with individual arrivals the following formula
for the LT of the queue-size distribution on the first busy cycle C1 is true:

QS(m,µ) = I{m ≥ 1}δN (µ)
∞∑

r=0

βr(µ)QO
N+r(m, µ)

+I{m ≥ N}δN (µ)γm−N (µ) + I{m ≤ N − 1}αm(µ). (34)

Similarly, for the system with group arrivals but without the N -policy (with
N = 1) we get

Corollary 2. For the “special” system with batch arrivals and without the N -policy
(N = 1): the formula for the LT of the queue-size distribution on the first busy cycle
C1 is following:

QS(m,µ) = I{m ≥ 1}δ1(µ)

( ∞∑

j=1

pj

∞∑
r=0

βr(µ)
∞∑

l=r

pr∗
l QO

j+l(m,µ)

+
m∑

j=1

pj

m−j∑
r=0

pr∗
m−jγr(µ)

)
+ I{m = 0}α0(µ). (35)

In the probabilistic sense the behavior of the queue-size distribution on each of
busy cycles C1, C2 etc. is the same. Hence, applying Theorem 3 and the renewal
process defined by successive cycles, in the next section we obtain a general result
for the original system.

5. Queue-size distribution in the original system

Let us return to the original system of the MX/G/1 type with the N -policy and setup
times. From the memoryless property of interarrival times it follows that, taking
into consideration the evolution of the process X(t), start epochs of successive busy
cycles C0, C1, ... are renewal moments. Denote by B0(·) and B(·) d.fs of random
variables C0 and Ci, i ≥ 1, respectively. Similarly, let for µ > 0

b0(µ) =
∫∞
0

e−µtdB0(t), b(µ) =
∫∞
0

e−µtdB(t). (36)

It is obvious that the busy cycle C0 in the original system coincides with the first
busy period τ1 in the corresponding ordinary system that begins working in the
standard way (it is empty before the initializing and comes into operation at t = 0
when the first group of customers arrives). In [3], the following representation can
be found:

b0(µ) = E{e−µC0} = EO
std{e−µτ1} = 1− f+(0, µ), (37)
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where f+(0, µ) was defined in (3) and the subscript std denotes standard initial
conditions for the ordinary system.

Similarly, in [4] the following formula is derived:

EO
n {e−µτ1} =

(
f(µ)

)n−f+(0, µ)
∫ ∞

0

e−µt

∫ t

−0

(
1− e−λ(t−x)

)
dP

(0)
+ (x, µ)dFn∗(t). (38)

The representation for b(µ) can be found using the formula of total probability.
Indeed, we have

b(µ) = E{e−µC1}

=
∞∑

j=N

pj

∫ ∞

0

λe−λydy

∞∑
r=0

∞∑

l=r

pr∗
l

∫ ∞

0

(λu)r

r!
e−λue−µ(y+u)EO

j+l{e−µτ1}dT (u)

+
N−1∑

i=1

N−1∑

k=i

pi∗
k

∫ ∞

0

λi

(i− 1)!
xi−1e−λxdx

∞∑

j=N−k

pj

∫ ∞

0

λe−λydy

×
∞∑

r=0

∞∑

l=r

pr∗
l

∫ ∞

0

(λu)r

r!
e−λue−µ(x+y+u)EO

k+j+l{e−µτ1}dT (u)

=
N−1∑

i=0

δi+1(µ)
N−1∑

k=i

pi∗
k

∞∑

j=N−k

pj

∞∑
r=0

βr(µ)
∞∑

l=r

pr∗
l EO

k+j+l{e−µτ1}, (39)

where EO
k+j+l{e−µτ1} is defined in (38). The interpretation of (39) is similar to

(16)–(18).
Introduce the following notation:

QO
std(m,µ) =

∫∞
0

e−µtPO
std{X(t) = m, t ∈ τ1}dt, µ > 0, m = 1, 2, .... (40)

Let us note that

PO
std{·} =

∑∞
n=1 pnPO

n {·} (41)

and hence

QO
std(m, µ) =

∑∞
n=1 pnQO

n (m,µ), (42)

where the representation for QO
n (m,µ) was found in (9).

The main theorem below gives a representation for the LT of the queue-size
distribution in the original system with the N -policy and setup times.

Theorem 4. For m ≥ 0 and µ > 0 the following representation holds true:

∫∞
0

e−µtP{X(t) = m}dt = QO
std(m,µ) + QS(m,µ) b0(µ)

1−b(µ) , (43)

where the formulae for QO
std(m,µ), QS(m, µ), b0(µ) and b(µ) are given in (42), (33),

(37) and (39), respectively.
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Proof. The proof follows immediately from the fact that successive busy cycles
C0, C1, ... form a delayed renewal process. Indeed, we have

∫ ∞

0

e−µtP{X(t) = m}dt

=
∞∑

k=0

∫ ∞

0

e−µtP{X(t) = m, t ∈ Ck}dt

=
∫ ∞

0

e−µtPO
std{X(t) = m, t ∈ τ1}dt

+
∞∑

k=1

∫ ∞

0

e−µtP{X(t) = m, t ∈ Ck}dt

=
∫ ∞

0

e−µtPO
std{X(t) = m, t ∈ τ1}dt

+
∫ ∞

0

e−µt
∞∑

k=1

∫ t

0

PS{X(t− y) = m, t− y ∈ C1}d(B0 ∗B(k−1)∗)(y)dt

= QO
std(m, µ) + QS(m,µ)

∞∑

k=1

b0(µ)bk−1(µ)

= QO
std(m, µ) + QS(m,µ)

b0(µ)
1− b(µ)

. (44)

6. Numerical examples

In this section, we present sample numerical computations which illustrate the main
result (43) from Theorem 4. In particular, we are interested in what is the influence
of “input” parameters of the system (e.g. the arrival and service rates, and the mean
of the setup time) for the transient queue-size distribution. The representations for
successive components of the right side of (43) are very complex, but it is easy to
note that the main problem in numerical treatment of all theoretical results stated
above is connected with the components f±(s, µ) (and next the functions P±(x, µ))
of the factorization identity (3). It is clear that, since the left side of (3) depends
on the arrival rate λ and the distributions of service times and batch sizes, it is
impossible to find the universal formulae for f+(s, µ) and f−(s, µ).

As an example, let us consider the system with individual arrivals (p1 = 1) in
which all “input” distributions are exponential (i.e. apart from interarrival times,
service times and setup times are exponentially distributed random variables). Let
us denote the means of service times and setup times by EF = λ−1

F and ET = λ−1
T ,

respectively. Moreover, let us assume that the threshold level needed to activate the
service process after the idle time is N = 2. Since

f(s) = λF

λF +s , (45)
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then the left side of the factorization identity (3) takes the form

1− λ
λ+s · λF

λF +µ−s = −s2+(λF +µ−λ)s+λµ
(λ+s)(λF +µ−s) . (46)

The numerator on the right side of (46) has the following roots:

s1,2(λ, λF , µ) = (λF +µ−λ)±
√

(λF +µ−λ)2+4λµ

2 . (47)

Since f±(s, µ) should be regular and non-zero in the half-planes Re(s) > 0 and
Re(s) < µ, respectively, and f±(∞, λ) = 1 (see Theorem 1), then we obtain the
following unique representations:

f+(s, µ) =
s− (λF +µ−λ)−

√
(λF +µ−λ)2+4λµ

2

λ + s
, (48)

f−(s, µ) =
−

(
s− (λF +µ−λ)+

√
(λF +µ−λ)2+4λµ

2

)

λF + µ− s
. (49)

In fact, in all analytical formulae we need only f+(s, µ) and P+(s, µ), for which the
LT can be written as follows (see (4)):

∫∞
0

e−sxP+(x, µ)dx = 1−f+(s,µ)
sf+(s,µ) . (50)

Let us note that for the considered queueing system the following simplified forms
of some functionals hold true:

b0(µ) = 1− f+(0, µ) =
λF + µ + λ−

√
(λF + µ− λ)2 + 4λµ

2λ
, (51)

b(µ) = δ2(µ)
∞∑

r=0

βr(µ)EO
2+r{e−µτ1}, (52)

where

βr(µ) = λT

∫∞
0

e−(µ+λ) (λt)r

r! e−λT tdt, δ2(µ) = λ2
∫∞
0

te−(µ+λ)tdt (53)

and

EO
n {e−µτ1} =

( λF

λF + µ

)n

− f+(0, µ)

×
∫ ∞

0

e−µt

(∫ t

0

(
1− e−λ(t−x)

)
dP+(x, µ) + 1− e−λt

)

× λn
F

(n− 1)!
tn−1e−λF tdt. (54)

Let us take into consideration the probability that the system is empty (m = 0)
at time t. Since then the component QO

std(m,µ) in the formula (43) vanishes and
moreover (see (34)) QS(0, µ) = α0(µ) = 1

µ+λ , then from (43) we obtain
∫∞
0

e−µtP{X(t) = 0}dt = b0(µ)

(µ+λ)
(
1−b(µ)

) . (55)
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To obtain P{X(t) = 0} as a function of t, we approximate the right side of (55)
using the algorithm of numerical Laplace transform inversion described in [1]. The
algorithm is based on the Bromwich inversion integral of the form

ϕ(t) = 1
2πi

∫ ∆+i∞
∆−i∞ estϕ̂(s)ds, (56)

which allows for finding the value of the function ϕ at a fixed point t by means of
its transform ϕ̂. In (56) ∆ ∈ R is located on the right to all singularities of the
transform ϕ̂.

Introducing the following notation:

qk(t) = eA/2L

2Lt ωk(t), k ≥ 0, (57)

where

ω0(t) = ϕ̂
(

A
2Lt

)
+ 2

∑L
j=1 Re

[
ϕ̂
(

A
2Lt + ijπ

Lt

)
eijπ/L

]
(58)

and

ωk(t) = 2
∑L

j=1 Re
[
ϕ̂
(

A
2Lt + ijπ

Lt + ikπ
t

)
eijπ/L

]
, k ≥ 1, (59)

we obtain the following approximation (see [1] for more details):

ϕ(t) ≈ ∑m
k=0

(
m
k

)
1

2m

∑n+k
j=0 (−1)jqj(t), (60)

where typical values of parameters are the following (see [1]): m = 38, n = 11, A =
19, L = 1.

A precise evaluation of the error of approximation (60) is difficult. In practice,
we obtain a sufficiently good estimation of the error executing the calculation twice,
changing by 1 one of the parameters: m,n, A or L. The difference between results
gives a rough error of approximation (60) (see discussion on this topic in [1] or [6]).

6.1. Queue-size distribution dependence on the setup duration

In the considered example of the M/M/1 queueing system with the threshold N = 2
and exponentially distributed setup times, let us fix λ = λF = 1 and take three
different values of the parameter λT : 1, 2 and 5 which give the means ET of the
setup duration equal to 1, 0.5 and 0.2, respectively. In Table 1, we present the values
of probabilities P{X(t) = 0} for five different time moments: 0.05, 1, 5, 20 and 100.

Means ET t
of setup duration 0.05 1 5 20 100

1.0 0.0464111 0.265251 0.0839149 0.00966544 0.00976325
0.5 0.0464111 0.26549 0.0967537 0.0282864 0.0145028
0.2 0.0464111 0.265941 0.107777 0.0399178 0.0187605

Table 1: Probabilities P{X(t) = 0} for λ = λF = 1 and different means of the setup duration
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Figure 1: Transient distribution P{X(t) = 0} for λ = λF = 1 and ET = 1.0

Figure 2: Transient distribution P{X(t) = 0} for λ = λF = 1 and ET = 0.5

Figure 3: Transient distribution P{X(t) = 0} for λ = λF = 1 and ET = 0.2

Transient distributions P{X(t) = 0} for ET = 1, 0.5 and 0.2 are presented in
Figures 1, 2 and 3, respectively.

It is easy to note that the probability that the system is empty, for small t, is
similar in all three cases. Moreover, as the time increases, the smaller the mean of
the setup time, the greater the probability P{X(t) = 0}.
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6.2. Queue-size distribution dependence on the arrival rate

To investigate the impact of the arrival rate on the probability P{X(t) = 0} let
us fix now the values of parameters of exponentially distributed service times and
setups, taking λF = λT = 2, and let us leave the threshold for the N -policy on the
same level, i.e. N = 2. In Table 2, probabilities P{X(t) = 0} for t = 0.05, 1, 5, 20
and 100 are given for three different values of the arrival rate λ : 1, 2 and 8.

Arrival rates t
λ 0.05 1 5 20 100
1 0.090595 0.391514 0.210829 0.203117 0.203022
2 0.0862467 0.183933 0.0627603 0.0266888 0.0122143
8 0.0642058 0.0109123 0.00753159 0.0022155 0.000000330912
Table 2: Probabilities P{X(t) = 0} for λF = λT = 2 and different arrival rates

Distribution functions P{X(t) = 0} for λ = 1, 2 and 8 are presented in Figures
4, 5 and 6, respectively.

5 10 15 20

0.1

0.2

0.3

0.4

Λ=1

Figure 4: Distribution function P{X(t) = 0} for λF = λT = 2 and λ = 1

5 10 15 20

0.05

0.1

0.15

0.2

0.25

Λ=2

Figure 5: Distribution function P{X(t) = 0} for λF = λT = 2 and λ = 2

As one can observe, if the arrival rate λ is greater than the service rate λF , the
probability P{X(t) = 0} decreases as t increases (Fig. 6). It is intuitively clear:
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Figure 6: Distribution function P{X(t) = 0} for λF = λT = 2 and λ = 8

in the case of the increasing number of packets waiting for service (λ > λF ), the
probability that the system is empty at time t is getting smaller as the time increases.
For λ = 2 (when the arrival and service rates are equal), the decrease of values of
the function P{X(t) = 0} is smaller (Fig. 5). If the service “overtakes” the arrival
process (λ = 1), then the equilibrium of the system exists and the probability that
the system is empty at time t stabilizes as t increases, tending to the stationary
probability (Fig. 4).

6.3. Queue-size distribution dependence on the service rate

Finally, let us examine the influence of the service rate on the probability P{X(t) =
0}, fixing the values of the arrival rate and the mean of setup time. Let us assume
that λ = λT = 3 and take three different values of the service rate λF : 1, 3, and
6 (which are equivalent to the values EF = 1, 0.333 and 0.167 of the mean of the
service time, respectively). Taking the same level N = 2 we obtain the values of the
function P{X(t) = 0} for five moments t = 0.05, 1, 5, 20 and 100, which are given in
Table 3.

Service rate t
λF 0.05 1 5 20 100
1 0.0420291 0.0485438 0.0135558 0.00301106 0.000000950186
3 0.120324 0.124706 0.0584651 0.029244 0.013274
6 0.224636 0.186035 0.183104 0.182741 0.182737

Table 3: Probabilities P{X(t) = 0} for λ = λT = 3 and different service rates

In Figures 7, 8 and 9, transient distributions P{X(t) = 0} are presented for
EF = 1, 0.333 and 0.167, respectively.

For λF = 1 and λF = 3 (or, equivalently, for EF = 1 and EF = 0.333), as the
time increases, the distribution function P{X(t) = 0} decreases (see Fig. 7 and 8),
slower in the latter case (in which the arrival and service rates are equal - Fig. 8). If
the stationary state of the system exists, for λF = 6 (or EF = 0.167), the probability
that the system is empty at time t stabilizes, tending (as t tends to infinity) to the
stationary probability (Fig. 9).
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Figure 7: Transient distribution P{X(t) = 0} for λ = λT = 3 and EF = 1

Figure 8: Transient distribution P{X(t) = 0} for λ = λT = 3 and EF = 0.333

Figure 9: Transient distribution P{X(t) = 0} for λ = λT = 3 and EF = 0.167
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