188 research outputs found

    Building a case for FIPA Compliant Multiagent Approaches for Wireless Sensor Networks

    Full text link

    Practical applications of multi-agent systems in electric power systems

    Get PDF
    The transformation of energy networks from passive to active systems requires the embedding of intelligence within the network. One suitable approach to integrating distributed intelligent systems is multi-agent systems technology, where components of functionality run as autonomous agents capable of interaction through messaging. This provides loose coupling between components that can benefit the complex systems envisioned for the smart grid. This paper reviews the key milestones of demonstrated agent systems in the power industry and considers which aspects of agent design must still be addressed for widespread application of agent technology to occur

    Smart Sensor Webs For Environmental Monitoring Integrating Ogc Standards

    Get PDF
    Sensor webs are the most recent generation of data acquisition systems. The research presented looks at the concept of sensor webs from three perspectives: node, user, and data. These perspectives are different but are nicely complementary, and all extend an enhanced, usually wireless, sensor network. From the node perspective, sensor nodes collaborate in response to environmental phenomena in intelligent ways; this is referred to as the collaborative aspect. From the user perspective, a sensor web makes its sensor nodes and resources accessible via the WWW (World Wide Web); this is referred to as the accessible aspect. From the data perspective, sensor data is annotated with metadata to produce contextual information; this is referred to as the semantic aspect. A prototype that is a sensor web in all three senses has been developed. The prototype demonstrates theability of managing information in different knowledge domains. From the low-level weather data, information about higher-level weather concepts can be inferred and transferred to other knowledge domains, such as specific human activities. This produces an interesting viewpoint of situation awareness in the scope of traditional weather data

    Multi-Agent Systems Applications in Energy Optimization Problems: A State-of-the-Art Review

    Get PDF
    [EN] This article reviews the state-of-the-art developments in Multi-Agent Systems (MASs) and their application to energy optimization problems. This methodology and related tools have contributed to changes in various paradigms used in energy optimization. Behavior and interactions between agents are key elements that must be understood in order to model energy optimization solutions that are robust, scalable and context-aware. The concept of MAS is introduced in this paper and it is compared with traditional approaches in the development of energy optimization solutions. The different types of agent-based architectures are described, the role played by the environment is analysed and we look at how MAS recognizes the characteristics of the environment to adapt to it. Moreover, it is discussed how MAS can be used as tools that simulate the results of different actions aimed at reducing energy consumption. Then, we look at MAS as a tool that makes it easy to model and simulate certain behaviors. This modeling and simulation is easily extrapolated to the energy field, and can even evolve further within this field by using the Internet of Things (IoT) paradigm. Therefore, we can argue that MAS is a widespread approach in the field of energy optimization and that it is commonly used due to its capacity for the communication, coordination, cooperation of agents and the robustness that this methodology gives in assigning different tasks to agents. Finally, this article considers how MASs can be used for various purposes, from capturing sensor data to decision-making. We propose some research perspectives on the development of electrical optimization solutions through their development using MASs. In conclusion, we argue that researchers in the field of energy optimization should use multi-agent systems at those junctures where it is necessary to model energy efficiency solutions that involve a wide range of factors, as well as context independence that they can achieve through the addition of new agents or agent organizations, enabling the development of energy-efficient solutions for smart cities and intelligent buildings

    Acdmcp: An adaptive and completely distributed multi-hop clustering protocol for wireless sensor networks

    Full text link
    Clustering is a very popular network structuring technique which mainly addresses the issue of scalability in large scale Wireless Sensor Networks. Additionally, it has been shown to improve the energy efficiency and prolong the life of the network. The suggested protocols mostly base their clustering criteria on some grouping attribute(s) of the nodes. One important attribute that is largely ignored by most of the existing multi-hop clustering protocols is the reliability of the communication links between the nodes. In this paper, we suggest an adaptive and completely distributed multi-hop clustering protocol that incorporates different notions of reliability of the communication links, among other things, into a composite metric and uses it in all phases of the clustering process. The joining criteria for the nodes, which lie at one hop from the elected cluster heads, to a particular cluster not only consider the reliability of their communication link with their cluster head but also other important attributes. The nodes that lie outside the communication range of cluster heads become cluster members transitively through existing cluster members utilizing the end-to-end notion of link reliability, between the nodes and the cluster heads, along with other important attributes. Similarly, inter-cluster communication paths are selected using a set of criteria that includes the end-to-end communication link reliability with the sink node along with other important node and network attributes. We believe that incorporating link reliability in all phases of clustering process results in an efficient multi-hop communication hierarchy that has the potential of bringing down the total communication costs in the network

    Moving forward on u-healthcare: A framework for patient-centric

    Get PDF
    Delivering remote healthcare services without deteriorating the ‘patient experience’ requires building highly usable and adaptive applications. Efficient context data collection and management make possible to infer extra knowledge on the user’s situation, making easier the design of these advanced ubiquitous applications. This contribution, part of a work in progress which aims at building an operative AmI middleware, presents a generic architecture to provide u-healthcare services, to be delivered both in mobile and home environments. In particular, we address the design of the Context Management Component (CMC), the module that takes context data from the sensing layer and performs data fusion and reasoning to build an aggregated ‘context image’. We especially explain the requirements on data modelling and the functional features that are imposed to the CMC. The resulting logical multilayered architecture -composed by acquisition and fusion, inference and reasoning levels- is detailed, and the technologies needed to develop the Context Management Component are finally specifie

    Wide-Area Time-Synchronized Closed-Loop Control of Power Systems And Decentralized Active Distribution Networks

    Get PDF
    The rapidly expanding power system grid infrastructure and the need to reduce the occurrence of major blackouts and prevention or hardening of systems against cyber-attacks, have led to increased interest in the improved resilience of the electrical grid. Distributed and decentralized control have been widely applied to computer science research. However, for power system applications, the real-time application of decentralized and distributed control algorithms introduce several challenges. In this dissertation, new algorithms and methods for decentralized control, protection and energy management of Wide Area Monitoring, Protection and Control (WAMPAC) and the Active Distribution Network (ADN) are developed to improve the resiliency of the power system. To evaluate the findings of this dissertation, a laboratory-scale integrated Wide WAMPAC and ADN control platform was designed and implemented. The developed platform consists of phasor measurement units (PMU), intelligent electronic devices (IED) and programmable logic controllers (PLC). On top of the designed hardware control platform, a multi-agent cyber-physical interoperability viii framework was developed for real-time verification of the developed decentralized and distributed algorithms using local wireless and Internet-based cloud communication. A novel real-time multiagent system interoperability testbed was developed to enable utility independent private microgrids standardized interoperability framework and define behavioral models for expandability and plug-and-play operation. The state-of-theart power system multiagent framework is improved by providing specific attributes and a deliberative behavior modeling capability. The proposed multi-agent framework is validated in a laboratory based testbed involving developed intelligent electronic device prototypes and actual microgrid setups. Experimental results are demonstrated for both decentralized and distributed control approaches. A new adaptive real-time protection and remedial action scheme (RAS) method using agent-based distributed communication was developed for autonomous hybrid AC/DC microgrids to increase resiliency and continuous operability after fault conditions. Unlike the conventional consecutive time delay-based overcurrent protection schemes, the developed technique defines a selectivity mechanism considering the RAS of the microgrid after fault instant based on feeder characteristics and the location of the IEDs. The experimental results showed a significant improvement in terms of resiliency of microgrids through protection using agent-based distributed communication

    Multi-agent systems applications in energy optimization problems: a state-of-the-art review

    Get PDF
    This article reviews the state-of-the-art developments in Multi-Agent Systems (MASs) and their application to energy optimization problems. This methodology and related tools have contributed to changes in various paradigms used in energy optimization. Behavior and interactions between agents are key elements that must be understood in order to model energy optimization solutions that are robust, scalable and context-aware. The concept of MAS is introduced in this paper and it is compared with traditional approaches in the development of energy optimization solutions. The different types of agent-based architectures are described, the role played by the environment is analysed and we look at how MAS recognizes the characteristics of the environment to adapt to it. Moreover, it is discussed how MAS can be used as tools that simulate the results of different actions aimed at reducing energy consumption. Then, we look at MAS as a tool that makes it easy to model and simulate certain behaviors. This modeling and simulation is easily extrapolated to the energy field, and can even evolve further within this field by using the Internet of Things (IoT) paradigm. Therefore, we can argue that MAS is a widespread approach in the field of energy optimization and that it is commonly used due to its capacity for the communication, coordination, cooperation of agents and the robustness that this methodology gives in assigning different tasks to agents. Finally, this article considers how MASs can be used for various purposes, from capturing sensor data to decision-making. We propose some research perspectives on the development of electrical optimization solutions through their development using MASs. In conclusion, we argue that researchers in the field of energy optimization should use multi-agent systems at those junctures where it is necessary to model energy efficiency solutions that involve a wide range of factors, as well as context independence that they can achieve through the addition of new agents or agent organizations, enabling the development of energy-efficient solutions for smart cities and intelligent buildings

    Multi-Agent Systems

    Get PDF
    This Special Issue ""Multi-Agent Systems"" gathers original research articles reporting results on the steadily growing area of agent-oriented computing and multi-agent systems technologies. After more than 20 years of academic research on multi-agent systems (MASs), in fact, agent-oriented models and technologies have been promoted as the most suitable candidates for the design and development of distributed and intelligent applications in complex and dynamic environments. With respect to both their quality and range, the papers in this Special Issue already represent a meaningful sample of the most recent advancements in the field of agent-oriented models and technologies. In particular, the 17 contributions cover agent-based modeling and simulation, situated multi-agent systems, socio-technical multi-agent systems, and semantic technologies applied to multi-agent systems. In fact, it is surprising to witness how such a limited portion of MAS research already highlights the most relevant usage of agent-based models and technologies, as well as their most appreciated characteristics. We are thus confident that the readers of Applied Sciences will be able to appreciate the growing role that MASs will play in the design and development of the next generation of complex intelligent systems. This Special Issue has been converted into a yearly series, for which a new call for papers is already available at the Applied Sciences journal’s website: https://www.mdpi.com/journal/applsci/special_issues/Multi-Agent_Systems_2019
    corecore