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Abstract. Delivering remote healthcare services without deteriorating the 
‘patient experience’ requires building highly usable and adaptive applications. 
Efficient context data collection and management make possible to infer extra 
knowledge on the user’s situation, making easier the design of these advanced 
ubiquitous applications. This contribution, part of a work in progress which 
aims at building an operative AmI middleware, presents a generic architecture 
to provide u-healthcare services, to be delivered both in mobile and home 
environments. In particular, we address the design of the Context Management 
Component (CMC), the module that takes context data from the sensing layer 
and performs data fusion and reasoning to build an aggregated ‘context image’. 
We especially explain the requirements on data modelling and the functional 
features that are imposed to the CMC. The resulting logical multilayered 
architecture -composed by acquisition and fusion, inference and reasoning 
levels- is detailed, and the technologies needed to develop the Context 
Management Component are finally specified. 

Keywords: Semantic reasoning, context-aware architecture, data fusion, user 
experience, Ambient Intelligence. 

1   Introduction. 

Health care is a priority in Europe. The social challenge is to keep the costs of 
healthcare systems under control while maintaining a high quality service. ICTs are 
expected to contribute to addressing this challenge and to supporting a paradigm shift 
in health care delivery, by focussing on the autonomous citizen (i.e., proactive with 
respect to her/his own health, enabled to self-care, seeking services for prevention and 
disease management and aware of lifestyles) and independent living [1]. In particular, 
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the Ambient Assisted Living Joint Programme (AAL) [2] promotes strategies and 
technologies enabling elderly, chronic or disabled people to stay at their homes as 
long as possible, by increasing their autonomy and self-confidence. 

On the other hand, current design trends for innovative products and services are 
focused on how to enhance usability and user experience. User experience may be 
understood as ‘how well the user understands the product or service, how well he 
feels while using it, how well it serves his purposes, and how well it fits into the 
scenario of use’. Usability refers to how the whole interaction with the 
product/service is experienced by the user. There are multiple factors impacting on 
the user experience, but an important issue is how to adapt the services offer and their 
performance depending on the user’s preferences and his real-time situation (or his 
‘context’). 

When applying these design drivers to healthcare, the objective is to achieve the 
highest patient satisfaction, through user-centric services which improve the patient 
experience in the very different environments where they are (or might be) delivered 
(e.g. hospitals, residences, primary care centres or homes) [1]. Then, the technology 
concept behind Ambient Intelligence (AmI) [3] becomes an enabler of AAL 
ubiquitous healthcare services, as AmI sketch a medium-term scenario where people 
will live surrounded by transparent embedded technology, opportunistically 
accessible through simple and natural interactions adapted to the users’ preferences 
and context [4].  

This work combines these three paradigms (user-centric design, AAL and AmI) to 
build patient-centric services on highly sensitive and interconnected environments. In 
particular, a functional architecture to provide context-aware healthcare services is 
described, together with its subsequent technological approach. The architecture is 
built on the assumption that context data are accessible through a number of sensors, 
and its objective is to define how to gather all this information synchronizedly, to 
extract sufficient information about how the user’s context is, in order to provide him 
with suitable services. The highly adaptation of the resulting services will collaborate 
to get a positive ‘patient-experience’. 

The paper is structured as follows. Section two presents a brief review of the state-
of-the art on context-aware frameworks and services for healthcare. Section 3 offers 
an overview of the global service-oriented architecture. Afterwards, Section 3 
describes the specific logical architecture of the Context Management Component; 
the technologies that are being used to implement it are gathered in Section 4. Finally, 
Section 5 summarizes the most important issues addressed and explains some future 
lines of work. 

2   State-of-the-art: AmI frameworks and u-healthcare services. 

Several generic reference middleware architectures for Ambient Intelligence 
systems have already been defined. One of the main goals of this kind of frameworks 
is to set a common practice for building context-aware services, lessening the 
development process by decoupling sensor data acquisition and context information 
usage. In this respect, Context Toolkit [5] can be considered one of the first proposals 



facing this issue; it allows encapsulating sensor particularities and also proposes an 
architecture for applications to subscribe in order to receive customized context 
updates. 

Later developments have focused on processing the information from sensors. 
These frameworks differ in their architectural approaches, with different methods of 
context representation and reasoning engines. For example, CoBrA [6] is an agent 
based architecture which uses ontologies to model data and uses a rule based 
inference engine. CMF [7] and Gaia [8] adopt the blackboard and distributed 
middleware architectural designs respectively. Both of them handle uncertainty when 
representing and reasoning about context information. 

Platforms that use service-oriented architecture concepts are emerging recently 
with the aim of improving the dynamism and scalability of this kind of systems. In 
this sense it is worth to point out the one defined in [9], which automatically 
integrates service discovery mechanisms and gateway protocols in order to maintain a 
service definition for each sensor in a smart home environments. 

On the other hand, advanced healthcare applications have been under prototyping 
some years by now; they usually imply the target user to wear sensors, and their main 
objective is to anticipate or detect health risks. For example, Kang et al. [10] propose 
a wearable sensor system which measures the biological functions of a person to 
provide remote health monitoring and self health check. Korel and Kao [11] also 
monitor the vital signs and combine them with other context info such as environment 
temperature or person’s condition, in order to detect alarming physical states and 
preventing health risks on time.  

Medication prompting functionalities are also frequent in Ambient Intelligent 
developments. Hardware to facilitate the medication consumption in the house has 
been developed, for example, by Agarawala et al. [12] and by Fishkin and Wang [13]. 
The later have developed a prototype of a system consisting of a portable pad that 
combines Radio Frequency Identification (RFID) tags and a sensitive scale to detect 
when a bottle has been picked up. Lundell et al. [14] describe the CAMP system, a 
generator of context-aware medication reminders which tries to adapt its notifications 
to the patient activity. 

Moreover, several prototypes encompass the functionalities mentioned above: 
Rentto et al. [15], in the Wireless Wellness Monitor project, have developed a 
prototype of a smart home that integrates the context information from health 
monitoring devices and the information from the home appliances. Becker et al. [16] 
describe the amiCa project which supports monitoring of daily liquid and food 
intakes, location tracking and fall detection. Haigh et al. [17] developed an agent-
based monitoring and support system that issues reminders, alerts and notifications, 
generates summary reports of patient’s behaviour and provides an overview of 
person’s state and medication compliance. 

Although some of these systems have been evaluated for a reduced number of 
users, the review of the applications in the domain of ambient home care system 
indicates that this application area is still in its early stage. 



3   AmI architecture to provide healthcare services. 

Current technology makes possible that a convalescent person gathers his biomedical 
data through portable sensors to be sent in real time to the hospital for analysis, before 
having a remote session with the doctor. On the other hand, wireless sensors scattered 
all over a house may accurately inform about the ambient conditions where a COPD 
patient is living. A person suffering dementia may benefit for a ‘remainder’ service 
which will help him to find personal objects and remember important dates. 

These simple scenarios are just some realistic examples of how future healthcare 
services may be provided. To handle their put into operation, it is necessary to have 
an infrastructure capable of 1) handling context data acquisition and reasoning; 2) 
providing standardized interfaces to guarantee safe access to highly sensitive data 
(personal, biomedical, ambient and social information); 3) defining how integration of 
new data suppliers is made; 4) and securely interconnecting different service 
providers.  

Figure 1 describes a general AmI architecture which considers the previous issues. 
The architecture aims at decoupling the context acquisition and reasoning levels from 
the applications development. It is an environment-independent approach, considering 
mobile and infrastructure sensors, interfaces and applications. 

The lower layer (‘Network Layer’) acquires context information from different 
types of sensors (location, ambient, biometric, proximity ones) and supports the 
interaction with actuators (e.g. in a domotic system). The middle layer is the ‘Context 
Management Component’ (CMC), which hosts the algorithms needed to process the 
information from the ‘Network Layer’, in order to infer new knowledge and automate 
decision making. Finally, the upper level (‘Value-added Services’) contains the 
services using the information managed in the lower layers. The technological 
services are horizontal ones (e.g. videocall, monitoring, multimodal interaction, 
calendar, medication control, electronic prescription, etc.) which may be utilized by 
the functional services when needed.  

 
Fig. 1. AmI architecture general overview. 

 
In the next Sections, the focus of attention will be the Context Management 

Component (CMC), which receives raw data from the hybrid sensor network, infers 
complex knowledge about the user’s context –building a ‘context image’- and 
translates it to a common and understandable format for the components of the 
system. With respect to technological services, this module adopts a dual working 



mode: it can act as an information consumer, requesting data from horizontal services 
(e.g. from a positioning engine), or may work as an information provider, delivering 
data to other services (e.g. to an interaction module taking decisions on which 
interface to use to provide a given service). On the other hand, it is also capable of 
cooperating with the Network Layer to manage devices, in order to complete or 
increase the quality of the inferred information. 

4   The Context Management Component: functional analysis and 
architecture. 

4.1 General design principles for the Context Management Component. 

Next there are the main requirements to the Context Management Component: 
1) A scalable and versatile data model. Data from the sensing infrastructure, as 

well as high-level context information, needs to follow a data model which 
guarantees, on one hand, the integration of new and heterogeneous sensors, and on the 
other hand, the expressiveness needed to support reasoning processes. Apart from 
that, the data model has to be suitable for integration with off-the-shelf reasoning 
engines.  

2) A transparent solution for context data acquisition. The Context Manager 
Component should provide access to the information coming from a wide variety of 
sensors, regardless their particular characteristics. Similarly, the CMC should define 
how to integrate information coming from different external context providers, 
defining the semantic interfaces needed, and providing translation/conversion 
functions. 

3) An inference and reasoning engine. The reasoning engine, together with the 
data model, should allow opportunistic data fusion at different levels of abstraction, in 
order to transform data from deployed sensors into high-level context information. 

4) A decision-making engine. The CMC must include algorithms and techniques 
to support decision making on context data at different levels of abstraction. This 
process may provide feedback to manage sensor and communication infrastructures, 
or even determine whether it is necessary to interact with the user.  

5) A standard interface to access context information. The CMC should provide 
mechanisms to access context information through a common standard interface. This 
access may be synchronous (request – response), continuous (for a configurable 
interval of time) or event-based (subscription), depending on the needs of the 
application information requests. Again, standard access at different abstraction levels 
(signal, feature or context image level) is a must. 

6) A standard configuration interface. An interface should be provided in order 
the system administrator to be able to configure the CMC. This interface can be used, 
for example, for defining new rules of inference or to configure new sensors. 

7) Context information storage services. The CMC should provide configurable 
storage services with the objective of implementing potential mechanisms of machine 



learning, state prediction and analysis of data for multi-purpose user’s history 
processing. 

8) Quality of Context monitoring (henceforth QoC). The CMC should be able to 
set certain rules or estimators of the quality used to infer context information (both, at 
feature and at context image level). This information may be used to control the CMC 
and to provide suitable information to upper levels, so they could execute their 
actions. 

9) User policy management. Users can impose restrictions on the acquisition, use 
and dissemination of their context information, which will be managed by the CMC 
to ensure compliance. It must also ensure the safe handling and storage of 
information. 

4.2 Describing the logical architecture for the Context Management Component. 

From the design principles above, Table 1 summarizes the main functional features of 
the Context Management Component, and Figure 2 shows the multilayered approach. 

The functionality of ‘Evaluation and notification service’ will be implemented by 
the first two levels in Figure 2. At its lowest level, evaluation services will check 
context values transitions, generating events managed later by the notification 
management service, which is responsible for notifying changes to the upper levels. 
This dispatch will be supported by the subscription service that will determine what 
entity needs each information unit. 

Context inference services are designed to serve to different applications, and are 
shaped by their particular information requirements. On the one hand, they act as 
aggregators of context parameters that can be hierarchically combined to form 
aggregations of context data, that is, different ‘context images’. Different applications 
may require instantiating the same context image, so the objective is to optimize the 
acquisition and processing by applying intelligent requirements management. These 
services are also used to classify ‘context images’ through pattern recognition, fuzzy 
logic, case-based reasoning, etc. To support the process, there is a prediction service 
and a knowledge-base query service. Finally, context inference services will have a 
mechanism to report transitions between contexts to the ‘reasoning and decision’ 
level. 

Table 1. Design requirements, ordered by functional services.  

 Functional services 
Evaluation & 
Notification Service 

Data association (synchronization, completeness and consistency, etc) 
Monosensor feature extraction 
Fusion for extracting composite features. 
Error estimation 
Storage 

Context Inference 
Service 

Application registry and definition of information requirements 
Pattern matching 
Prediction 
Context image composition (situation and relation) 
Context image classification 
Storage 



Reasoning and 
Decision Service 

QoC estimation 
Conflict detection 
Privacy management 
Sensor interaction and infrastructure control 
User interaction 
Resources assignment 
Interface management 
Application notification 

 
Functionalities related to ‘reasoning and decision’ will be implemented at the 

highest level of the CMC. The prediction service and the knowledge-base query 
service will be also used, and an estimation of the QoC will be calculated to support 
reasoning reliability and ensure that applications will offer the correct quality of 
service. The knowledge-base will be also updated, which may be later used by other 
control and learning services to verify the correct operation of the system. The 
reasoning and decision service will finally activate or send requested information to 
the final services, which will be in charge of executing decisions according to the 
reasoning service. 

This approach, based on service layers, enables to modularize the processes of 
context instantiation and decision-making, adapting them consistently to the 
application that will finally consume the information. When a new application is 
integrated into the platform, its information needs have to be defined. The system will 
automatically configure the different service layers in order to deliver the information 
needed. 

 
 

 

Inputs/Outputs 
1. Raw data from sensors: signal strength, 

flight times, beacon ids, etc. 
2. Estimators: position, temperature, 

humidity, preferences, etc. 
3. Context-change events (position 

updates, user entering in zone Y, 
temperature higher than X, etc.) 

4. Selective dispatch of event notifications, 
depending on the context images that 
each ‘inference service’ composes. 
Dispatch is supported by the 
‘subscription service’, that will 
determine which ‘inference service’ 
needs each information unit. 

5. Context images classified by patterns 
(‘normality’, ‘emergency’, ‘intrusion’, 
‘medication pending’, etc.). They will 
be instantiated from aggregated context 
data (‘X,Y position’, ‘temperature > 
37º’, ‘caregiver presence’, etc.). 

6. Decisions. The ‘reasoning service’ 
assesses the quality of the context 
estimation and determines what action 
to take. 

 
Fig. 2. Service composition of the Context Manager Module. 



5   Technologies to implement the Context Management 
Component. 

An operative middleware based on the Context Management Component previously 
defined is currently being implemented as part of a global architecture to handle u-
healthcare service delivery. Following there is a brief description of the technologies 
that are being used to implement the CMC. 

The general philosophy that drives the practical implementation of the global AmI 
architecture is service oriented (SOA); in particular, the OSGi platform has been 
chosen as general framework [18]. The CMC supports semantic reasoning by using 
software agents, in order to have a scalable system where new devices and agents may 
be easily integrated. Moreover, modules developed by third parties and distributed as 
OSGi bundles can also be included without refactoring the global system. 

Then, the CMC is designed as a MultiAgent System (MAS) on the top of the OSGi 
layer. It is implemented in Java, using the Java Agent DEvelopment framework JADE 
[19], which is compliant to the FIPA standard [20]. Figure 3 shows the integration of 
the FIPA-compliant agent platform [21] with the OSGi framework.  

On the other hand, the semantic reasoner which has been selected to provide 
intelligence to the CMC is Pellet [22]. Pellet is open-source and also implemented in 
Java, so it can be easily integrated with the JADE platform. It supplies reasoning 
functionalities by using an OWL ontology and declarative rules codified in Semantic 
Web Rule Language (SWRL [23]). It is also integrated with the Jena framework [24], 
which provides easy modes for programmatic ontology management through several 
APIs. Specifically, the integration has been carried out through the Inference API and 
the Ontology API has been used to fulfil the development process, aiming to access 
and manipulate the ontology. This framework also allows creating and managing its 
persistence using database models. 

 
Fig. 3. CMC Technological Architecture. 

 

As stated above, a data model is needed to support the reasoning process. In order 
to provide the u-healthcare services, the core data model has been designed to cover 
some basic entities, such as patients, caregivers, doctors and medical staff, apart from 
a description of the environments where the services are provided, in terms of 



available devices (sensors, actuators, interfaces and communication infrastructure) or 
even physical structure (buildings, floors, rooms, etc.). Afterwards, each service 
defined in the global architecture is extending the data model depending on its 
particular needs. Data modelling has been done by using an ontology; following the 
‘reutilization rule’, this ontology combines ‘standard’ previous works, in particular 
SOUPA, FOAF or CONON ontologies which has been suitable to model entities such 
as ‘Time’, ‘Event’, ‘Location’ or ‘Policy’. 

The ontology has been designed and developed with Protégé-3.3.1 [25] with the 
Web Ontology Language OWL-DL, which can be employed to explicitly represent 
the terms significance in vocabularies and the relationships between them.  

Finally, BeanGenerator [26] has been chosen to act as an integration gateway to 
generates Java files representing the ontology that can be used with the JADE 
environment. 

All the technologies used in the CMC are summarized in the following table. 
 

Table 2. Technologies in the Context Management Component.  
 

 Functionality Technology 

Software platform Platform OSGi  
Programming Language Java 

Data Model 

Ontology OWL, OWL-DL 
Ontology Editor Protégé 
Serialization XML 
Ontology management Jena  

Inference and reasoning Rules SWRL  
Semantic Reasoner Pellet 

Multi-Agent System Platform JADE 

6   Conclusions and future work. 

Delivering a good user experience has much to do with service design (workflows, 
interaction triggers, interfaces, etc.), but in case of context-aware services has also a 
close relationship with the quality of the context information, as it is the main input 
for the service’s decision making processes. Context-aware systems often take for 
granted unreal assumptions on the context information quality. Typically, it is 
considered that the context they are dealing with is complete and valid without clear 
proofs, when actually, both sensed and interpreted context are imperfect. 

Then, from raw sensor data acquisition to inference, it is necessary to be aware of 
what the quality of the information is. Each level of abstraction needs to manage this 
issue independently, and the whole system needs to be aware of how the errors or 
irregularities are transmitted when the information moves upwards the reasoning 
layers.  

The design of the Context Manager Component architecture presented above 
includes this aspect, which has not been frequently considered in previous works. 
Nevertheless, to make the QoC control operative, it is needed to include specific data 
when modelling context (e.g. specific entities or attributes in the ontology 
representing sensors and systems), apart from designing decision algorithms to 



efficiently use and update quality parameters. Handling quality of context allows the 
system to adequately interact with the sensing layer, both to improve context 
estimates and to avoid processing overloads when not necessary. 

Nowadays, there exist several efforts trying to resolve context ambiguity. One of 
the open future lines of this work is related with the ability to handle imperfect 
context. Many researchers propose triggering direct interaction with the user as a 
reliable disambiguation mechanism. But this approach may not fit well within the 
Ambient Intelligence concept, where user interactions should be as minimum, simple 
and non intrusive as possible. Due to this, context ambiguity must be handled and 
regulated from the context estimation procedures themselves and from machine 
learning procedures having the user’s behavioural pattern as an input. For example, if 
a user refuses some services repeatedly, this information may be used to create a more 
adapted service offer. 

On the other hand, an important pending aspect is how to evaluate the performance 
of the proposed approach with respect to the patient experience. The particularities of 
the niche target users of these services (elderly, disabled and chronic patients) impose 
demanding performance requirements. We find that there is wide room for research 
on empirical user satisfaction modelling. 
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