
Moving forward on u-healthcare: A framework for
patient-centric context management.

Ana Isabel Calvo-Alcalde1, Ana M. Bernardos Barbolla2, Josué Iglesias Álvarez2,
Juan José Andrés-Gutiérrez3, Esteban Pérez-Castrejón3, José R. Casar Corredera2

1 Universidad de Valladolid,

Escuela Técnica Superior de Ingeniería Informática
Campus Miguel Delibes s/n, 47011, Valladolid, Spain

anaisabel.calvo@alumnos.uva.es
2 Universidad Politécnica de Madrid,

ETSIT, Ciudad Universitaria s/n, 28040, Madrid, Spain
{abernardos, josue, jramon}@grpss.ssr.upm.es

3 Telefónica I+D
Parque Tecnológico de Boecillo

47151 Boecillo, Valladolid, Spain
{jjangu, esteban}@tid.es

Abstract. Delivering remote healthcare services without deteriorating the
‘patient experience’ requires building highly usable and adaptive applications.
Efficient context data collection and management make possible to infer extra
knowledge on the user’s situation, making easier the design of these advanced
ubiquitous applications. This contribution, part of a work in progress which
aims at building an operative AmI middleware, presents a generic architecture
to provide u-healthcare services, to be delivered both in mobile and home
environments. In particular, we address the design of the Context Management
Component (CMC), the module that takes context data from the sensing layer
and performs data fusion and reasoning to build an aggregated ‘context image’.
We especially explain the requirements on data modelling and the functional
features that are imposed to the CMC. The resulting logical multilayered
architecture -composed by acquisition and fusion, inference and reasoning
levels- is detailed, and the technologies needed to develop the Context
Management Component are finally specified.

Keywords: Semantic reasoning, context-aware architecture, data fusion, user
experience, Ambient Intelligence.

1 Introduction.

Health care is a priority in Europe. The social challenge is to keep the costs of
healthcare systems under control while maintaining a high quality service. ICTs are
expected to contribute to addressing this challenge and to supporting a paradigm shift
in health care delivery, by focussing on the autonomous citizen (i.e., proactive with
respect to her/his own health, enabled to self-care, seeking services for prevention and
disease management and aware of lifestyles) and independent living [1]. In particular,

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Servicio de Coordinación de Bibliotecas de la Universidad Politécnica de Madrid

https://core.ac.uk/display/148655882?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

the Ambient Assisted Living Joint Programme (AAL) [2] promotes strategies and
technologies enabling elderly, chronic or disabled people to stay at their homes as
long as possible, by increasing their autonomy and self-confidence.

On the other hand, current design trends for innovative products and services are
focused on how to enhance usability and user experience. User experience may be
understood as ‘how well the user understands the product or service, how well he
feels while using it, how well it serves his purposes, and how well it fits into the
scenario of use’. Usability refers to how the whole interaction with the
product/service is experienced by the user. There are multiple factors impacting on
the user experience, but an important issue is how to adapt the services offer and their
performance depending on the user’s preferences and his real-time situation (or his
‘context’).

When applying these design drivers to healthcare, the objective is to achieve the
highest patient satisfaction, through user-centric services which improve the patient
experience in the very different environments where they are (or might be) delivered
(e.g. hospitals, residences, primary care centres or homes) [1]. Then, the technology
concept behind Ambient Intelligence (AmI) [3] becomes an enabler of AAL
ubiquitous healthcare services, as AmI sketch a medium-term scenario where people
will live surrounded by transparent embedded technology, opportunistically
accessible through simple and natural interactions adapted to the users’ preferences
and context [4].

This work combines these three paradigms (user-centric design, AAL and AmI) to
build patient-centric services on highly sensitive and interconnected environments. In
particular, a functional architecture to provide context-aware healthcare services is
described, together with its subsequent technological approach. The architecture is
built on the assumption that context data are accessible through a number of sensors,
and its objective is to define how to gather all this information synchronizedly, to
extract sufficient information about how the user’s context is, in order to provide him
with suitable services. The highly adaptation of the resulting services will collaborate
to get a positive ‘patient-experience’.

The paper is structured as follows. Section two presents a brief review of the state-
of-the art on context-aware frameworks and services for healthcare. Section 3 offers
an overview of the global service-oriented architecture. Afterwards, Section 3
describes the specific logical architecture of the Context Management Component;
the technologies that are being used to implement it are gathered in Section 4. Finally,
Section 5 summarizes the most important issues addressed and explains some future
lines of work.

2 State-of-the-art: AmI frameworks and u-healthcare services.

Several generic reference middleware architectures for Ambient Intelligence
systems have already been defined. One of the main goals of this kind of frameworks
is to set a common practice for building context-aware services, lessening the
development process by decoupling sensor data acquisition and context information
usage. In this respect, Context Toolkit [5] can be considered one of the first proposals

facing this issue; it allows encapsulating sensor particularities and also proposes an
architecture for applications to subscribe in order to receive customized context
updates.

Later developments have focused on processing the information from sensors.
These frameworks differ in their architectural approaches, with different methods of
context representation and reasoning engines. For example, CoBrA [6] is an agent
based architecture which uses ontologies to model data and uses a rule based
inference engine. CMF [7] and Gaia [8] adopt the blackboard and distributed
middleware architectural designs respectively. Both of them handle uncertainty when
representing and reasoning about context information.

Platforms that use service-oriented architecture concepts are emerging recently
with the aim of improving the dynamism and scalability of this kind of systems. In
this sense it is worth to point out the one defined in [9], which automatically
integrates service discovery mechanisms and gateway protocols in order to maintain a
service definition for each sensor in a smart home environments.

On the other hand, advanced healthcare applications have been under prototyping
some years by now; they usually imply the target user to wear sensors, and their main
objective is to anticipate or detect health risks. For example, Kang et al. [10] propose
a wearable sensor system which measures the biological functions of a person to
provide remote health monitoring and self health check. Korel and Kao [11] also
monitor the vital signs and combine them with other context info such as environment
temperature or person’s condition, in order to detect alarming physical states and
preventing health risks on time.

Medication prompting functionalities are also frequent in Ambient Intelligent
developments. Hardware to facilitate the medication consumption in the house has
been developed, for example, by Agarawala et al. [12] and by Fishkin and Wang [13].
The later have developed a prototype of a system consisting of a portable pad that
combines Radio Frequency Identification (RFID) tags and a sensitive scale to detect
when a bottle has been picked up. Lundell et al. [14] describe the CAMP system, a
generator of context-aware medication reminders which tries to adapt its notifications
to the patient activity.

Moreover, several prototypes encompass the functionalities mentioned above:
Rentto et al. [15], in the Wireless Wellness Monitor project, have developed a
prototype of a smart home that integrates the context information from health
monitoring devices and the information from the home appliances. Becker et al. [16]
describe the amiCa project which supports monitoring of daily liquid and food
intakes, location tracking and fall detection. Haigh et al. [17] developed an agent-
based monitoring and support system that issues reminders, alerts and notifications,
generates summary reports of patient’s behaviour and provides an overview of
person’s state and medication compliance.

Although some of these systems have been evaluated for a reduced number of
users, the review of the applications in the domain of ambient home care system
indicates that this application area is still in its early stage.

3 AmI architecture to provide healthcare services.

Current technology makes possible that a convalescent person gathers his biomedical
data through portable sensors to be sent in real time to the hospital for analysis, before
having a remote session with the doctor. On the other hand, wireless sensors scattered
all over a house may accurately inform about the ambient conditions where a COPD
patient is living. A person suffering dementia may benefit for a ‘remainder’ service
which will help him to find personal objects and remember important dates.

These simple scenarios are just some realistic examples of how future healthcare
services may be provided. To handle their put into operation, it is necessary to have
an infrastructure capable of 1) handling context data acquisition and reasoning; 2)
providing standardized interfaces to guarantee safe access to highly sensitive data
(personal, biomedical, ambient and social information); 3) defining how integration of
new data suppliers is made; 4) and securely interconnecting different service
providers.

Figure 1 describes a general AmI architecture which considers the previous issues.
The architecture aims at decoupling the context acquisition and reasoning levels from
the applications development. It is an environment-independent approach, considering
mobile and infrastructure sensors, interfaces and applications.

The lower layer (‘Network Layer’) acquires context information from different
types of sensors (location, ambient, biometric, proximity ones) and supports the
interaction with actuators (e.g. in a domotic system). The middle layer is the ‘Context
Management Component’ (CMC), which hosts the algorithms needed to process the
information from the ‘Network Layer’, in order to infer new knowledge and automate
decision making. Finally, the upper level (‘Value-added Services’) contains the
services using the information managed in the lower layers. The technological
services are horizontal ones (e.g. videocall, monitoring, multimodal interaction,
calendar, medication control, electronic prescription, etc.) which may be utilized by
the functional services when needed.

Fig. 1. AmI architecture general overview.

In the next Sections, the focus of attention will be the Context Management

Component (CMC), which receives raw data from the hybrid sensor network, infers
complex knowledge about the user’s context –building a ‘context image’- and
translates it to a common and understandable format for the components of the
system. With respect to technological services, this module adopts a dual working

mode: it can act as an information consumer, requesting data from horizontal services
(e.g. from a positioning engine), or may work as an information provider, delivering
data to other services (e.g. to an interaction module taking decisions on which
interface to use to provide a given service). On the other hand, it is also capable of
cooperating with the Network Layer to manage devices, in order to complete or
increase the quality of the inferred information.

4 The Context Management Component: functional analysis and
architecture.

4.1 General design principles for the Context Management Component.

Next there are the main requirements to the Context Management Component:
1) A scalable and versatile data model. Data from the sensing infrastructure, as

well as high-level context information, needs to follow a data model which
guarantees, on one hand, the integration of new and heterogeneous sensors, and on the
other hand, the expressiveness needed to support reasoning processes. Apart from
that, the data model has to be suitable for integration with off-the-shelf reasoning
engines.

2) A transparent solution for context data acquisition. The Context Manager
Component should provide access to the information coming from a wide variety of
sensors, regardless their particular characteristics. Similarly, the CMC should define
how to integrate information coming from different external context providers,
defining the semantic interfaces needed, and providing translation/conversion
functions.

3) An inference and reasoning engine. The reasoning engine, together with the
data model, should allow opportunistic data fusion at different levels of abstraction, in
order to transform data from deployed sensors into high-level context information.

4) A decision-making engine. The CMC must include algorithms and techniques
to support decision making on context data at different levels of abstraction. This
process may provide feedback to manage sensor and communication infrastructures,
or even determine whether it is necessary to interact with the user.

5) A standard interface to access context information. The CMC should provide
mechanisms to access context information through a common standard interface. This
access may be synchronous (request – response), continuous (for a configurable
interval of time) or event-based (subscription), depending on the needs of the
application information requests. Again, standard access at different abstraction levels
(signal, feature or context image level) is a must.

6) A standard configuration interface. An interface should be provided in order
the system administrator to be able to configure the CMC. This interface can be used,
for example, for defining new rules of inference or to configure new sensors.

7) Context information storage services. The CMC should provide configurable
storage services with the objective of implementing potential mechanisms of machine

learning, state prediction and analysis of data for multi-purpose user’s history
processing.

8) Quality of Context monitoring (henceforth QoC). The CMC should be able to
set certain rules or estimators of the quality used to infer context information (both, at
feature and at context image level). This information may be used to control the CMC
and to provide suitable information to upper levels, so they could execute their
actions.

9) User policy management. Users can impose restrictions on the acquisition, use
and dissemination of their context information, which will be managed by the CMC
to ensure compliance. It must also ensure the safe handling and storage of
information.

4.2 Describing the logical architecture for the Context Management Component.

From the design principles above, Table 1 summarizes the main functional features of
the Context Management Component, and Figure 2 shows the multilayered approach.

The functionality of ‘Evaluation and notification service’ will be implemented by
the first two levels in Figure 2. At its lowest level, evaluation services will check
context values transitions, generating events managed later by the notification
management service, which is responsible for notifying changes to the upper levels.
This dispatch will be supported by the subscription service that will determine what
entity needs each information unit.

Context inference services are designed to serve to different applications, and are
shaped by their particular information requirements. On the one hand, they act as
aggregators of context parameters that can be hierarchically combined to form
aggregations of context data, that is, different ‘context images’. Different applications
may require instantiating the same context image, so the objective is to optimize the
acquisition and processing by applying intelligent requirements management. These
services are also used to classify ‘context images’ through pattern recognition, fuzzy
logic, case-based reasoning, etc. To support the process, there is a prediction service
and a knowledge-base query service. Finally, context inference services will have a
mechanism to report transitions between contexts to the ‘reasoning and decision’
level.

Table 1. Design requirements, ordered by functional services.

 Functional services
Evaluation &
Notification Service

Data association (synchronization, completeness and consistency, etc)
Monosensor feature extraction
Fusion for extracting composite features.
Error estimation
Storage

Context Inference
Service

Application registry and definition of information requirements
Pattern matching
Prediction
Context image composition (situation and relation)
Context image classification
Storage

Reasoning and
Decision Service

QoC estimation
Conflict detection
Privacy management
Sensor interaction and infrastructure control
User interaction
Resources assignment
Interface management
Application notification

Functionalities related to ‘reasoning and decision’ will be implemented at the

highest level of the CMC. The prediction service and the knowledge-base query
service will be also used, and an estimation of the QoC will be calculated to support
reasoning reliability and ensure that applications will offer the correct quality of
service. The knowledge-base will be also updated, which may be later used by other
control and learning services to verify the correct operation of the system. The
reasoning and decision service will finally activate or send requested information to
the final services, which will be in charge of executing decisions according to the
reasoning service.

This approach, based on service layers, enables to modularize the processes of
context instantiation and decision-making, adapting them consistently to the
application that will finally consume the information. When a new application is
integrated into the platform, its information needs have to be defined. The system will
automatically configure the different service layers in order to deliver the information
needed.

Inputs/Outputs
1. Raw data from sensors: signal strength,

flight times, beacon ids, etc.
2. Estimators: position, temperature,

humidity, preferences, etc.
3. Context-change events (position

updates, user entering in zone Y,
temperature higher than X, etc.)

4. Selective dispatch of event notifications,
depending on the context images that
each ‘inference service’ composes.
Dispatch is supported by the
‘subscription service’, that will
determine which ‘inference service’
needs each information unit.

5. Context images classified by patterns
(‘normality’, ‘emergency’, ‘intrusion’,
‘medication pending’, etc.). They will
be instantiated from aggregated context
data (‘X,Y position’, ‘temperature >
37º’, ‘caregiver presence’, etc.).

6. Decisions. The ‘reasoning service’
assesses the quality of the context
estimation and determines what action
to take.

Fig. 2. Service composition of the Context Manager Module.

5 Technologies to implement the Context Management
Component.

An operative middleware based on the Context Management Component previously
defined is currently being implemented as part of a global architecture to handle u-
healthcare service delivery. Following there is a brief description of the technologies
that are being used to implement the CMC.

The general philosophy that drives the practical implementation of the global AmI
architecture is service oriented (SOA); in particular, the OSGi platform has been
chosen as general framework [18]. The CMC supports semantic reasoning by using
software agents, in order to have a scalable system where new devices and agents may
be easily integrated. Moreover, modules developed by third parties and distributed as
OSGi bundles can also be included without refactoring the global system.

Then, the CMC is designed as a MultiAgent System (MAS) on the top of the OSGi
layer. It is implemented in Java, using the Java Agent DEvelopment framework JADE
[19], which is compliant to the FIPA standard [20]. Figure 3 shows the integration of
the FIPA-compliant agent platform [21] with the OSGi framework.

On the other hand, the semantic reasoner which has been selected to provide
intelligence to the CMC is Pellet [22]. Pellet is open-source and also implemented in
Java, so it can be easily integrated with the JADE platform. It supplies reasoning
functionalities by using an OWL ontology and declarative rules codified in Semantic
Web Rule Language (SWRL [23]). It is also integrated with the Jena framework [24],
which provides easy modes for programmatic ontology management through several
APIs. Specifically, the integration has been carried out through the Inference API and
the Ontology API has been used to fulfil the development process, aiming to access
and manipulate the ontology. This framework also allows creating and managing its
persistence using database models.

Fig. 3. CMC Technological Architecture.

As stated above, a data model is needed to support the reasoning process. In order
to provide the u-healthcare services, the core data model has been designed to cover
some basic entities, such as patients, caregivers, doctors and medical staff, apart from
a description of the environments where the services are provided, in terms of

available devices (sensors, actuators, interfaces and communication infrastructure) or
even physical structure (buildings, floors, rooms, etc.). Afterwards, each service
defined in the global architecture is extending the data model depending on its
particular needs. Data modelling has been done by using an ontology; following the
‘reutilization rule’, this ontology combines ‘standard’ previous works, in particular
SOUPA, FOAF or CONON ontologies which has been suitable to model entities such
as ‘Time’, ‘Event’, ‘Location’ or ‘Policy’.

The ontology has been designed and developed with Protégé-3.3.1 [25] with the
Web Ontology Language OWL-DL, which can be employed to explicitly represent
the terms significance in vocabularies and the relationships between them.

Finally, BeanGenerator [26] has been chosen to act as an integration gateway to
generates Java files representing the ontology that can be used with the JADE
environment.

All the technologies used in the CMC are summarized in the following table.

Table 2. Technologies in the Context Management Component.

 Functionality Technology

Software platform Platform OSGi
Programming Language Java

Data Model

Ontology OWL, OWL-DL
Ontology Editor Protégé
Serialization XML
Ontology management Jena

Inference and reasoning Rules SWRL
Semantic Reasoner Pellet

Multi-Agent System Platform JADE

6 Conclusions and future work.

Delivering a good user experience has much to do with service design (workflows,
interaction triggers, interfaces, etc.), but in case of context-aware services has also a
close relationship with the quality of the context information, as it is the main input
for the service’s decision making processes. Context-aware systems often take for
granted unreal assumptions on the context information quality. Typically, it is
considered that the context they are dealing with is complete and valid without clear
proofs, when actually, both sensed and interpreted context are imperfect.

Then, from raw sensor data acquisition to inference, it is necessary to be aware of
what the quality of the information is. Each level of abstraction needs to manage this
issue independently, and the whole system needs to be aware of how the errors or
irregularities are transmitted when the information moves upwards the reasoning
layers.

The design of the Context Manager Component architecture presented above
includes this aspect, which has not been frequently considered in previous works.
Nevertheless, to make the QoC control operative, it is needed to include specific data
when modelling context (e.g. specific entities or attributes in the ontology
representing sensors and systems), apart from designing decision algorithms to

efficiently use and update quality parameters. Handling quality of context allows the
system to adequately interact with the sensing layer, both to improve context
estimates and to avoid processing overloads when not necessary.

Nowadays, there exist several efforts trying to resolve context ambiguity. One of
the open future lines of this work is related with the ability to handle imperfect
context. Many researchers propose triggering direct interaction with the user as a
reliable disambiguation mechanism. But this approach may not fit well within the
Ambient Intelligence concept, where user interactions should be as minimum, simple
and non intrusive as possible. Due to this, context ambiguity must be handled and
regulated from the context estimation procedures themselves and from machine
learning procedures having the user’s behavioural pattern as an input. For example, if
a user refuses some services repeatedly, this information may be used to create a more
adapted service offer.

On the other hand, an important pending aspect is how to evaluate the performance
of the proposed approach with respect to the patient experience. The particularities of
the niche target users of these services (elderly, disabled and chronic patients) impose
demanding performance requirements. We find that there is wide room for research
on empirical user satisfaction modelling.

Acknowledgments. This work has been supported by the Spanish Ministry of
Industry, Trade and Commerce through the CENIT AmIVital Programme and by the
Government of Madrid under grant S-0505/TIC-0255.

References

1. Aarts, E.H.L., Encarnação, J.L.: “True Visions: The Emergence of AmI”. Springer. 2009.
2. Ambient Assisted Living Joint Programme. http://www.aal-europe.eu. 2008.
3. Weber, W., Rabaey, J.M., Aarts, E.: “Ambient Intelligence”. 2005.
4. Information Society Technologies Advisory Group: http://cordis.europa.eu/ist/istag.htm
5. A. K. Dey, G. D. Abowd, D. Salber, “A Conceptual Framework and a Toolkit for

Supporting the rapid Prototyping of Context-Aware Applications”, Human-Computer I. J.,
Vol. 16 (2-4), 2001, pp. 97-166.

6. Chen, H. “An Intelligent Broker Architecture for Pervasive Context-Aware Systems”, PhD
Dis., University of Maryland, Baltimore County. 2004

7. Korpipää, P., Mantyjarvi, J.: “Managing context information in mobile devices. Pervasive
Computing”, IEEE, vol. 2, págs. 42-51. 2003

8. Ranganathan, A., Al-Muhtadi, J.: “Reasoning about uncertain contexts in pervasive
computing environments”. Pervasive Computing, IEEE, vol. 3, págs. 62-70. 2004

9. Helal, S., Mann, W., El-Zabadani, H., King, J., Kaddoura, Y., Jansen, E.: “The Gator Tech
Smart House: A programmable pervasive space”, IEEE Computer Society Press, Volume
38, Issue 3, pp. 50-60. 2005.

10. D-O. Kang, H-J. Lee, E-J. Ko, K. Kang, J. Lee, “A Wearable Context Aware System for
Ubiquitous Healthcare”, Proc. of the 28th IEEE, EMBS Annual Int. Conf., New York, USA,
Aug-Sep 2008, pp.5192-5195.

11. B. T. Korel, S. G.M. Kao, “Addressing Context Awareness Techniques in Body Sensor
Networks”, 21st International Conference on Advanced Information Networking and
Applications Workshops 2007, Volume 2, Niagara Falls, Canada, May 2007, pp.798 - 803.

12. A. Agarawala, S. Greenberg, G. Ho, “The Context-Aware Pill Bottle and Medication
Monitor”, In Video Proceedings and Proceedings Supplement of the UBICOMP 2004,
Nottingham, England, September 2004.

13. K. Fishkin, M. Wang, “A Flexible, Low-Overhead Ubiquitous System for Medication
Monitoring”, Intel Research Seattle Technical Memo IRS-TR-03-011, October 2003.

14. J. Lundell, T.L. Hayes, S. Vurgun, U. Ozertem, J. Kimel, J. Kaye, F. Guilak, M. Pavel.
“Continuous Activity Monitoring and Intelligent Contextual Prompting to Improve
Medication Adherence”. Proc. 29th Annual Int. Conf. of the IEEE EMBS, Lyon, France,
August 23-26, 2007.

15. K. Rentto, I. Korhonen, A. Vaatanen, L. Pekkarinen, T. Tuomisto, L. Cluitmans, R.
Lappalainen, “Users’ Preferences for Ubiquitous Computing Applications at Home”, First
European Symposium on Ambient Intelligence 2003, Veldhoven, The Netherlands,
November 2003.

16. M. Becker, E. Werkman, M. Anastasopoulos, T. Kleinberger, “Approaching Ambient
Intelligent Home Care System”, Pervasive Health Conference and Workshops 2006,
Innsbruck, Nov-Dec 2006, pp. 1-10,.

17. K. Z. Haigh, L. M. Kiff, J. Myers, V. Guralnik, C. W. Geib, J. Phelps, T. Wagner, “The
Independent LifeStyle AssistantTM (I.L.S.A)”, 16th Innovative Apps of Artificial
Intelligence C, San Jose, CA, July 2004.

18. Open Service Gateway Initiative (OSGi) at (http://www.osgi.org)
19. Java Agent DEvelopment Framework (JADE) at (http://jade.tilab.com/)
20. Foundation for Intelligent Physical Agents (FIPA) at (http://www.fipa.org)
21. Bellifemine, F., Rimassa, G., Poggi, A., “JADE - A FIPA-compliant Agent Framework”. In

Proceedings of the 4th International Conference and Exhibition on The Practical Application
of Intelligent Agents and Multi-Agents, London. 1999.

22. Pellet, open source reasoner for OWL 2 DL in Java at (http://clarkparsia.com/pellet)
23. SWRL, a Semantic Web Rule language at (http://www.w3.org/Submission/SWRL/)
24. Jena, a Semantic Web Framework for Java at (http://jena.sourceforge.net/)
25. Protégé Home Page at (http://protege.stanford.edu)
26. BeanGenerator at (http://protege.cim3.net/cgi-bin/wiki.pl?OntologyBeanGenerator)

