14,504 research outputs found

    Acoustic activity of bats at power lines correlates with relative humidity: a potential role for corona discharges

    Get PDF
    With the ever-increasing dependency on electric power, electrical grid networks are expanding worldwide. Bats exhibit a wide diversity of foraging and flight behaviours, and their sensitivity to anthropogenic stressors suggests this group is very likely to be affected by power lines in a myriad of ways. Yet the effects of power lines on bats remains unknown. Here we assessed the responses of insectivorous bats to very high voltage power lines (VHVPL; greater than 220 kV). We implemented a paired sampling design and monitored bats acoustically at 25 pairs, one pair consisting of one forest edge near to VHVPL matched with one control forest edge. Relative humidity mediates the effects of power lines on bats: we detected bat attraction to VHVPL at high relative humidity levels and avoidance of VHVPL by bats at low relative humidity levels. We argue that the former could be explained by insect attraction to the light emitted by VHVPL owing to corona discharges while the latter may be owing to the physical presence of pylons/cables at foraging height and/or because of electromagnetic fields. Our work highlights the response of bats to power lines at foraging habitats, providing new insight into the interactions between power lines and biodiversity

    Grand challenges in entomology: Priorities for action in the coming decades

    Get PDF
    Entomology is key to understanding terrestrial and freshwater ecosystems at a time of unprecedented anthropogenic environmental change and offers substantial untapped potential to benefit humanity in a variety of ways, from improving agricultural practices to managing vector-borne diseases and inspiring technological advances. We identified high priority challenges for entomology using an inclusive, open, and democratic four-stage prioritisation approach, conducted among the membership and affiliates (hereafter ‘members’) of the UK-based Royal Entomological Society (RES). A list of 710 challenges was gathered from 189 RES members. Thematic analysis was used to group suggestions, followed by an online vote to determine initial priorities, which were subsequently ranked during an online workshop involving 37 participants. The outcome was a set of 61 priority challenges within four groupings of related themes: (i) ‘Fundamental Research’ (themes: Taxonomy, ‘Blue Skies’ [defined as research ideas without immediate practical application], Methods and Techniques); (ii) ‘Anthropogenic Impacts and Conservation’ (themes: Anthropogenic Impacts, Conservation Options); (iii) ‘Uses, Ecosystem Services and Disservices’ (themes: Ecosystem Benefits, Technology and Resources [use of insects as a resource, or as inspiration], Pests); (iv) ‘Collaboration, Engagement and Training’ (themes: Knowledge Access, Training and Collaboration, Societal Engagement). Priority challenges encompass research questions, funding objectives, new technologies, and priorities for outreach and engagement. Examples include training taxonomists, establishing a global network of insect monitoring sites, understanding the extent of insect declines, exploring roles of cultivated insects in food supply chains, and connecting professional with amateur entomologists. Responses to different challenges could be led by amateur and professional entomologists, at all career stages. Overall, the challenges provide a diverse array of options to inspire and initiate entomological activities and reveal the potential of entomology to contribute to addressing global challenges related to human health and well-being, and environmental change

    The stumbling block in ‘the race of our lives’: transition-critical materials, financial risks and the NGFS climate scenarios

    Get PDF
    Several ‘critical’ raw materials, including metals, minerals and Rare Earth Elements (REEs), play a central role in the low-carbon transition and are needed to expand the deployment of low-carbon technologies. The reliable and affordable supply of these resources is subject to supply-side risks and demand-induced pressures. This paper empirically estimates the material demand requirements for ‘Transition-Critical Materials’ (TCMs) implied under two NGFS Climate Scenarios, namely the ‘Net Zero by 2050’ and ‘Delayed Transition’ scenarios. We apply material intensity estimates to the underlying assumptions on the deployment of low-carbon technologies to determine the implied material demand between 2021 and 2040 for nine TCMs. We find several materials to be subject to significant demand-induced pressures under both scenarios. Subsequently, the paper examines the possible emergence of material bottlenecks for three materials, namely copper, lithium and nickel. The results indicate possible substantial mismatches between supply and demand, which would be further exacerbated if the transition is delayed rather than realised immediately. We discuss these findings in the context of different possible transmission channels through which these bottlenecks could affect financial and price stability, and propose avenues for future research

    Towards a unified eco-evolutionary framework for fisheries management: Coupling advances in next-generation sequencing with species distribution modelling

    Get PDF
    The establishment of high-throughput sequencing technologies and subsequent large-scale genomic datasets has flourished across fields of fundamental biological sciences. The introduction of genomic resources in fisheries management has been proposed from multiple angles, ranging from an accurate re-definition of geographical limitations of stocks and connectivity, identification of fine-scale stock structure linked to locally adapted subpopulations, or even the integration with individual-based biophysical models to explore life history strategies. While those clearly enhance our perception of patterns at the light of a spatial scale, temporal depth and consequently forecasting ability might be compromised as an analytical trade-off. Here, we present a framework to reinforce our understanding of stock dynamics by adding also a temporal point of view. We propose to integrate genomic information on temporal projections of species distributions computed by Species Distribution Models (SDMs). SDMs have the potential to project the current and future distribution ranges of a given species from relevant environmental predictors. These projections serve as tools to inform about range expansions and contractions of fish stocks and suggest either suitable locations or local extirpations that may arise in the future. However, SDMs assume that the whole population respond homogenously to the range of environmental conditions. Here, we conceptualize a framework that leverages a conventional Bayesian joint-SDM approach with the incorporation of genomic data. We propose that introducing genomic information at the basis of a joint-SDM will explore the range of suitable habitats where stocks could thrive in the future as a function of their current evolutionary potential.Fundação para a CiĂȘncia e Tecnollogia - FCT; ARNETinfo:eu-repo/semantics/publishedVersio

    Temporal and spatial change of habitat quality and its driving forces: The case of Tacheng region, China

    Get PDF
    Habitat quality assessment is an important basis for ecological restoration practice. Taking the Tacheng region as an example, the InVEST model was used to evaluate the habitat quality of the Tacheng region in five periods from 2000 to 2020, and analyze the reasons for its changes, to provide theoretical guidance for ecological restoration practice in arid areas. The conclusions were that from 2000 to 2020, the habitat quality in the Tacheng region improved slightly, and the value of the habitat index in the Tacheng region was the highest in 2010, which was 0.577, and then decreased slightly. The habitat quality in the Tacheng region was significantly influenced by land use type conversion and precipitation. The change in land use type directly affected the change in habitat quality. The study region is located in an arid area; the forest land and grassland native to the region have more vegetation communities and genera of species and can be self-sustaining and resilient to disturbance, having high scores for habitat quality. The species of arable land is a monoculture; it cannot be self-sustaining and resilient to disturbance, and though it has high vegetation cover, the value of habitat quality is lower than that of forestland and grassland. The vegetation of unused land is rare, and the ecosystem of unused land is sensitive and vulnerable; the habitat quality scores are very low. The conversion of forest land, grassland, arable land, and unused land would directly affect the value of habitat quality, and conversion was the main factor affecting the change in habitat quality. In addition, precipitation was also an important factor affecting the change in habitat quality in the Tacheng region, which affected the biomass of natural vegetation and then affected the habitat quality. The results provided the temporal and spatial change of habitat quality and its driving forces in the Tacheng region, which helps determine appropriate measures and sites in ecological restoration projects

    Radiation and temperature dominate the spatiotemporal variability in resilience of subtropical evergreen forests in China

    Get PDF
    Forest resilience is crucial to the mitigation of climate change, due to the enormous potential of forests to reduce atmospheric carbon dioxide concentrations and the possible conversion of forests from net carbon sinks into carbon sources following external disturbances. Subtropical forests are suffering the highest rates of forest change, but how they are evolving in response to climate change is little known. In this study, we estimated the spatial pattern and temporal trend of the resilience of subtropical evergreen forests in China by applying the lag-one autocorrelation (AC1) method to satellite kernel normalized difference vegetation index (kNDVI) data over the past two decades and identified the influential environmental factors that affect the ecosystem resilience by developing random forest (RF) regression models. The computed long-term AC1 based on kNDVI for the 2001–2020 period depicts considerable spatial variability in the resilience of the subtropical evergreen forests in China, with lower resilience at lower latitudes. The RF regression analysis suggests that the spatial variability in the forest resilience can be re-established by forest and climatic variables, and is largely affected by climate, with the three most influential variables being solar radiation (SR, %incMSE = 20.7 ± 1.8%), vapor pressure deficit (VPD, %incMSE = 13.8 ± 0.2%) and minimum temperature (Tmin, %incMSE = 13.3 ± 1.2%). Higher forest resilience is more likely to be located in areas with less radiation stress, adequate water availability, and less warming. Trend analysis shows a declining trend for the resilience of subtropical evergreen forests in China since the 2000s but an increasing forest resilience in the last decade, which is mainly dominated by temperature changes, including average and minimum temperatures. Considering the expected warming-dominated period in times of rapid climatic change, we suggest potential critical responses for subtropical forest productivity to the disturbances should be of greater concern in the future

    Urban endoliths: incidental microbial communities occurring inside concrete

    Get PDF
    Concrete is now a prevalent type of synthetic rock, and its production and usage have major environmental implications. Yet, assessments of ordinary concrete have rarely considered that concrete itself is potential habitat for a globally important microbial guild, the endolithic microbes, which live inside rocks and other mineralized substrates. We sought evidence that many common concrete structures harbor endolithic microbial communities and that these communities vary widely depending on the conditions imposed by the concrete. In Summer 2022, we obtained samples from various concrete structures found throughout Lubbock, Texas, USA and subjected the internal (non-surface) portions of each sample to controlled microbial life detection tests including culture tests, DNA quantifications, DNA amplification tests, and ATP assays. The great preponderance of positive life detection results from our concrete samples suggests that most modern concrete hosts cryptic endolith communities composed of bacteria, sometimes co-occurring with fungi and/or archaea. Moreover, many of these microbes are viable, culturable, and identifiable via genetic analysis. Endolith signatures varied widely across concrete samples; some samples only yielded trace evidence of possibly dormant microbes while other samples contained much more microbial biomass and diversity, on par with some low-biomass soils. Pre-cast masonry units and fragments of poured concrete found underwater generally had the most endolith signatures, suggesting that concrete forms and environmental positioning affect endolithy. Endolith biosignatures were generally greater in less dense and less alkaline concrete samples. So, concrete endolith communities may be as ubiquitous and diverse as the concrete structures they inhabit. We propose further research of concrete endoliths to help clarify the role of modern concrete in our rapidly urbanizing biosphere
    • 

    corecore