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Abstract We examined the species richness patterns of five different species groups

(mosses, reptiles and amphibians, grasshoppers and crickets, dragonflies, and hoverflies) in

the Netherlands (41,500 km2) using sampling units of 5 9 5 km. We compared the spatial

patterns of species richness of the five groups using Spearman’s rank correlation and used a

stepwise multiple regression generalized linear modelling (GLM) approach to assess their

relation with a set of 36 environmental variables, selected because they can be related to

the several hypotheses on biodiversity patterns. Species richness patterns of the five groups

were to a certain extent congruent. Our data suggest that environmental heterogeneity (in

particular habitat heterogeneity) is one of the major determinants of variation in species

richness within these five groups. We found that for taxonomic groups comprising a low

number of species, our regression model explained more of the variability in species

richness than for taxonomic groups with a large number of species.

Keywords Conservation � Crickets � Dragonflies � Generalized linear modelling �
Grasshoppers � Hoverflies � Herpetofauna � Mosses � Species richness �
The Netherlands

M. A. Schouten (&) � A. Barendregt � P. C. de Ruiter
Department of Environmental Sciences, Copernicus Institute for Sustainable Development
and Innovation, Utrecht University, P.O. Box 80115, 3508 TC Utrecht, The Netherlands
e-mail: m.a.schouten@uu.nl

P. A. Verweij
Department of Science, Technology and Society, Copernicus Institute for Sustainable Development
and Innovation, Utrecht University, P.O. Box 80115, 3508 TC Utrecht, The Netherlands

R. M. J. C. Kleukers � V. J. Kalkman
European Invertebrate Survey – The Netherlands, P.O. Box 9517, 2300 RA Leiden, The Netherlands

P. C. de Ruiter
Soil Science Research Centre, Wageningen University, P.O. Box 47, 6700 AA Wageningen,
The Netherlands

123

Biodivers Conserv (2009) 18:203–217
DOI 10.1007/s10531-008-9467-4

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Wageningen University & Research Publications

https://core.ac.uk/display/29252683?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Introduction

Species richness is not equally distributed across the earth’s surface. Why some areas

comprise more species than others has been subject of research since the beginning of the

nineteenth century. The serious decline in species richness that has occurred over the past

century (e.g. Chapin et al. 2000; Millennium Ecosystem Assessment 2005) only increased

the urgency to acquire an understanding of species richness distribution. Knowledge of the

spatial distribution of species richness are needed to develop effective conservation

strategies. The identification of biodiversity hotspots, areas that are highly diverse in terms

of species richness, rarity and/or endemism (e.g. Margules et al. 2002), is frequently done

in support of conservation strategies as this can help to optimize conservation efforts in

response to space, time, money, and knowledge constraints (Myers et al. 2000). However, a

general understanding of the relationship between species richness and the environment is

also of great importance (Prendergast et al. 1993; Williams et al. 2002). Hence, if we are

able to identify patterns in species richness and if we are also able to identify the crucial

environmental factors underlying these patterns, we then are able to derive the require-

ments to protect biodiversity effectively and efficiently.

Species richness patterns are scale-dependent (Levin 1992, 2000). The scale of the

investigation determines the patterns and processes that will be detected (Godfray and

Lawton 2001). Latitudinal gradients in species richness (with the tropics being more

species rich than the northern and southern hemisphere) are observed for a wide range of

taxonomic groups (Gaston 2000). Numerous mechanisms that may underlie these latitu-

dinal gradients in species richness have been proposed so far. Among them are null [e.g.

the mid-domain effect (Colwell and Lees 2000)] and neutral models (Hubbell 2001), but

also explanations based on productivity (energy availability, climate), evolutionary time,

environmental stability and heterogeneity and species interactions. Even for this well-

established pattern, no consensus on the underlying mechanism has yet been reached. No

single mechanism can adequately explain all variation; it is most likely that spatial patterns

in species richness are the result of a combination of several mechanisms (Gaston and

Blackburn 1990). At a finer spatial scale species richness may vary along several envi-

ronmental gradients: altitude (e.g. Rahbek 1995); energy availability (e.g. Currie 1991;

Gaston 2000), climate (e.g. Currie 1991; Rohde 1992), habitat heterogeneity (e.g. Rahbek

and Graves 2000; Kerr 2001), and disturbance (Huston 1994) are frequently considered as

important determinants of regional patterns in species richness.

The widely reported decline of biodiversity (e.g. Millennium Ecosystem Assessment

2005) is also felt in the Netherlands, a highly industrialized and densely populated country.

The Netherlands obliged itself to preserve representative sets of biodiversity by signing the

Convention on Biological Diversity (UNCED) and nature conservation policy to imple-

ment this goal has been developed accordingly. Like in many other countries, vascular

plant species and breeding birds fulfil a key function in the conservation of biodiversity in

the Netherlands. Together, these groups comprise the majority of the target species for

nature conservation (Bal et al. 2001). However, they only represent a small part of the

42,000 species estimated to occur in the Netherlands (van Nieukerken and van Loon 1995).

Patterns of species richness do not necessarily coincide for different taxonomic groups (e.g.

Prendergast et al. 1993; Myers et al. 2000; Tardif and DesGranges 1998; Harcourt 2000)

and, therefore, it is unlikely that they represent the broad spectrum of biodiversity.

Moreover, there is no reason to assume that cryptobiota or lower taxa of plants are less at

risk or of less importance then the well-studied vascular plant, bird and vertebrate species.

It is only recently, that Red Lists are also being constructed for less conspicuous species
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groups such as molluscs and various insect taxa. However, a general understanding of the

diversity patterns of such groups is still lacking.

In order to see if the focus of nature conservation on vascular plants and breeding birds

is legitimate we aim at obtaining a broader view on biodiversity in this study. Therefore,

we focus on species richness patterns of a broad array of taxonomic groups: mosses

(Bryophyta), grasshoppers and crickets (Orthoptera), hoverflies (Syrphidae), dragonflies

(Odonata), and herpetofauna (Reptilia and Amphibia). We first compare the spatial pat-

terns in species richness among these five taxonomic groups in the Netherlands. Secondly,

we present the results of a multiple regression approach to assess how a set of 36 envi-

ronmental variables, linked to the hypotheses on biodiversity discussed above can be

related to the observed patterns in species richness. We compare the biodiversity patterns

of the five studied groups with those of plants and birds and results are discussed in the

light of nature conservation policy.

Material and methods

Research area

The Netherlands is a relatively small country (41,500 km2) located in northwestern Eur-

ope, with a diverse assemblage of habitats ranging from agricultural landscapes and

wetlands below sea level to loess hills and extensive forested areas. High population

density, industrialisation, and contemporary land-use practices have radically altered the

natural landscape. Series of major land use changes, having their peak in the 1960s, have

had a severe impact on the landscape as they have led not only to the intensification of land

use, but also to the abandonment of lands, and afforestation.

Species occurrence data

A 5 9 5 km UTM grid of the Netherlands was constructed using ArcView GIS 3.3 (ESRI,

USA). Only those grid squares consisting for more than 50% of terrestrial area (located

within the Netherlands) were taken into account (N = 1393). Species lists for all grid

squares were derived from several nationwide databases on species occurrences in the

Netherlands. Data on the distribution of dragonflies, grasshoppers and crickets, and hov-

erflies were derived from the database of the European Invertebrate Survey (EIS-

Nederland), data on the distribution of moss species came from the Bryological and

Lichenological Working Group (BLWG) and data on the occurrence of the herpetofauna

were obtained from the Reptile, Amphibian and Fish Research of the Netherlands

(RAVON). These databases comprise a diverse assortment of museum records, data from

monitoring schemes, species lists of inventory trips, and independent records collected

over a large period of time by many volunteers (see Table 1). Data are generally collected

in a rather ad hoc fashion, which may result in taxonomically, geographically and tem-

porally biased records (e.g. Rich 1998; Dennis et al. 1999; Williams et al. 2002). Data are

not freely available, for enquiries please contact VOFF (http://www.voff.nl) or the indi-

vidual organisations directly.

For all grid squares the number of species per taxonomic group was counted, discarding

records that were collected prior to 1965. Older data probably are not representative

anymore because of major land use changes that took place in the 1960s. Of course,

environmental conditions in the Netherlands have gradually changed since then, but there
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is always a trade-off between data quantity and accuracy when using this kind of species

occurrence data. By adopting 1965 as a boundary we ensure enough data and ruling out

several important environmental changes.

Environmental data

Data on land cover types were derived from the LGN4 land cover map (Alterra 2001). We

calculated habitat heterogeneity of each grid square using Shannon’s diversity index:

H0 ¼ �Rpi ln pi

where pi is the proportion of the ith land cover type. For this calculation the 39 land cover

categories of the LGN4 land cover map were lumped into 15 habitat types (agricultural

land, bare soil, coniferous forest, deciduous forest, drift sand, dune vegetation, fen areas,

freshwater, heath, marsh, natural grassland, peat bog, salt marshes, scrubland and urban-

ized area). Mean elevation and elevation range were derived from the Dutch national

digital elevation model (Rijkswaterstaat 2002). Soil types were abstracted from the Dutch

soil type map (Steur and Heijink 1992). Heterogeneity of soil types was calculated fol-

lowing the same procedure as for habitat heterogeneity. Nitrogen deposition (1995–1997

means) data were derived from the STONE model (Overbeek et al. 2002), while available

nitrogen (1991–1997 means) was obtained from Bio et al. (1999). A map of the age of the

Dutch landscape was constructed using literature and topographical maps from ca. 1850 to

2002 (Cormont et al. 2004). Data on five climatic variables were obtained from the Royal

Netherlands Meteorological Institute (KNMI 2002). Relative humidity in spring (%),

duration of sunshine (h), amount of radiation (joule/m2), temperature (�C) and precipitation

surplus (mm) are given as the long-term annual means over the period from 1971 to 2000

based on the monthly values of 283 meteorological stations.

Statistical analyses

Comparing species richness patterns between taxonomic groups

Spearman’s rank correlation was used to determine the congruence of species richness

patterns among the five taxonomic groups. A combined index of species richness for all

taxonomic groups was constructed scaling maximum species richness for each group to

100 and summing the percentages of maximum species richness of all groups except the

taxonomic group for which the comparison was made for each grid square. For this

Table 1 Number of species, number of records, approximate number of collectors, time span over which
data are collected, and origin of data (C = museum collections, F = observations in the field, L = litera-
ture, M = monitoring schemes) for the five taxonomic groups

Hoverflies Herpetofauna Grasshoppers
and crickets

Dragonflies Mosses

No. of species 327 24 45 71 507

No. of records 372,118 233,206 70,000 220,000 875,000

No. of
collectors

450 1000 NA 200 300

Origin C, F, L F, M C, F, L C, F, L, M C, F, L, M

NA no data available
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analysis we only used those grid squares (N = 528) that were sufficiently surveyed (see

modelling species diversity) for all five taxonomic groups.

Modelling species richness

We used a stepwise multiple regression approach to test the relationship between the set of

environmental variables (see Table 2) and the observed species richness of five taxonomic

groups. As species counts are discrete values we applied generalized linear modelling

(GLM; McCullagh and Nelder 1989) and selected a Poisson error distribution. The

response variable was linked to the set of predictor variables using a logarithmic link

function (Crawley 1993).

Collinearity among the predictor variables was assessed by evaluation of Pearson

correlations, using data for all grid squares (N = 1393). Spatial autocorrelation in the

dataset could cause non-significant correlations to appear as significant ones as the con-

fidence interval around a Pearson correlation coefficient estimated by the classical

procedure is narrower than when it is calculated correctly (Legendre 1993). Therefore, we

used a modified t test (Dutilleul 1993) to produce unbiased estimates of the significance of

the correlations. In order to account for the collinearity of the predictor variables we also

tested the performance of principal component analysis (PCA). The usage of PCA axes,

however, did not produce better results than the individual variables. For interpretational

reason we therefore opted for the usage of individual variables rather than PCA axes.

In order to account for sampling bias in the species occurrence datasets, we only used

the 75% most frequently surveyed grid squares from each physical geographical region in

the Netherlands (Fig. 1). In this way, grid squares that are incompletely surveyed

(N = 348) were excluded from the analysis. This subset of grid squares was then randomly

divided into an explanatory set (two-thirds of the grid squares) used for model building and

an evaluation set (one-third of the grid squares) that was used for model evaluation.

For each species group we constructed a stepwise multiple regression model based on

the forward selection of the explanatory variables (see Nicholls 1989; Austin 1980) using

S-PLUS 6.0 (Insightful Corp.). To account for possible curvilinear relationships, explan-

atory variables were included as quadratic functions. First, the variable that accounted for

the most important change in deviance was included in the model. Change in explained

variation was tested using an F ratio test with a 5% significance level. Then, a forward

stepwise procedure was used to enter the variables into the model. This means that all

remaining variables were tested for their significance, adding the variable that explained

the largest part of remaining variation. After each inclusion, we used successive exclusion

of redundant terms via stepwise backward deletion, removing terms that had become non-

significant. This procedure was repeated until no more variables remained that accounted

for a statistically significant (P \ 0.05) change in deviance.

In order to determine the accuracy of the species richness models, the percentage of

explained deviance was calculated for each model (see Dobson 1999). We evaluated the

models’ accuracy by fitting it to the evaluation set and compared the predicted and

observed species richness using Spearman’s rank correlation (Heikkinen and Neuvonen

1997; Maes et al. 2005).

Spatial autocorrelation and residuals

Spatial autocorrelation is a common feature of ecological variables measured across geo-

graphic space (Legendre 1993). Spatial dependence in species richness data can occur in the
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situation where environmental variables that determine species richness are also spatially

autocorrelated (Diniz-Filho et al. 2003). Part of the spatial dependence of species richness

can then be described by the explanatory variables in the regression model; part of the

spatial dependence will remain in the residuals. Positive autocorrelation in the residuals of

the regression model at small distances would then suggest that certain explanatory vari-

ables are missed in the analysis (Diniz-Filho et al. 2003). In order to test whether our model

residuals show spatial autocorrelation we used Moran’s I values (Diniz-Filho et al. 2003;

Table 2 Possible explana-
tory variables as used in the
stepwise multiple regression
modelling

Variable Description (units)

ALT Mean altitude (m)

ALTR Altitudinal range (m)

MLA Maximum landscape age (years)

DLA Dominant landscape age (years)

HUM Relative humidity in spring (%)

SUN Duration of sunshine (h)

RAD Amount of radiation (joule/m2)

TEMP Temperature (�C)

PREC Precipitation surplus (mm)

HST Heterogeneity of soil types (H0)

PSS Poor sandy soils (km2)

RSS Rich sandy soils (km2)

CSS Calcareous sandy soils (km2)

NCC Non-calcareous clay (km2)

CC Calcareous clay (km2)

NCL Non-calcareous loam (km2)

PS Peat soils (km2)

NDEP Nitrogen deposition (mol/ha/year)

NAV Available nitrogen (g/m2)

HLT Heterogeneity of habitat types (H0)

AGR Agricultural areas (km2)

URB Urbanized areas (km2)

DF Deciduous forest (km2)

CF Coniferous forest (km2)

SAM Salt marshes (km2)

DV Dune vegetation (km2)

OS Open sand (km2)

HV Heath vegetation (km2)

PB Peat bogs (km2)

SV Sedge vegetation (km2)

MA Marshes (km2)

FM Fen meadows (km2)

ON Other natural areas (km2)

FW Freshwater (km2)

SW Saltwater (km2)

N Nature (%)
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Overmars et al. 2003). We calculated Moran’s I values of the residuals of the species

richness models at 7 different distance classes with a lag size of 5 km using SAM software

(Rangel et al. 2006). The statistical significance (P \ 0.05) of the Moran’s I values was

assessed using randomization (Monte Carlo procedure; 200 permutations) of distances.

Results

Comparing species richness patterns among taxonomic groups

Species richness patterns of the five species groups (Fig. 2a–e) showed a clear resemblance

at first sight. In the extreme southeastern part of the country a large number of species was

encountered for all five taxonomic groups. The Pleistocene sand plateau in the centre and

to a smaller extent also the northern part of the Netherlands is species rich for all groups

except the mosses. With the exception of herpetofauna the coastal area contained large

numbers of species. For the hoverflies only few areas with truly high species diversity

Fig. 1 Physical geographical regions of the Netherlands after Gongrijp (1989) (adapted from Bal et al.
2001)
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Fig. 2 Spatial patterns of species richness of (a) dragonflies, (b) herpetofauna, (c) mosses, (d) grasshoppers
and crickets, and (e) hoverflies
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exist, the species richness is distributed more evenly across the country than for the other

groups. Overall, the northern and northwestern parts of the country (agricultural areas on

peat soils) were poor in species for all groups.

Taken together, only 40% of all grid squares can be marked as being sufficiently

sampled for all of the five taxonomic groups. For these grid squares, correlations among

species richness of the five groups tended to be high (Table 3). The species richness

patterns of grasshoppers/crickets and mosses were least congruent (correlation of 0.303,

P \ 0.01), while species diversity of herpetofauna turned out to be highly correlated with

that of the dragonflies, and that of grasshoppers/crickets (0.652, P \ 0.01 and 0.643,

P \ 0.01, respectively). The overall number of species of the other groups correlated best

with the number of herpetofauna species (0.820, P \ 0.01).

Species richness models

The stepwise multiple regression models explained between 39.8 (mosses) and 62.8%

(herpetofauna) of the variation in species richness as identified for the five taxonomic

groups (Table 4). In general, the regression models explained more of the variation in

species richness for taxonomic groups comprising a low number of species than for tax-

onomic groups with a large number of species (Table 4). When the regression models for

each taxonomic group were fitted to the evaluation sets, highly significant correlations

between observed and predicted species richness were produced (Table 4). This suggests

that the regression models described the observed variation in species richness for all five

taxonomic groups adequately.

Habitat heterogeneity was included in the model as prime explanatory variable for three

of the five species groups (Table 4). Altitudinal range accounted for most of the variation

in species richness of hoverflies. Only for herpetofauna diversity the variables related to

heterogeneity of the environment (heterogeneity of habitat or soil types and range in

altitude) were not included in an early stage in the stepwise modelling procedure. For this

group, climatic conditions (duration of sunshine) seem to be important determinants of the

observed pattern but also the percentage of natural area in a grid square explained much of

the observed variation in species diversity.

Collinearity between explanatory variables is in some cases highly significant (82

significant correlations out of 630 correlations). Heterogeneity of habitat, duration of

sunshine, mean altitude and calcareous clay were the variables that most frequently cor-

related with other environmental variables.

Table 3 Spearmans’ rank correlations for the species richness of the five taxonomic groups

All other species Dragonflies Mosses Herpetofauna Grasshoppers
and crickets

Dragonflies 0.804* –

Mosses 0.670* 0.455* –

Herpetofauna 0.820* 0.652* 0.390* –

Grasshoppers and
crickets

0.791* 0.572* 0.303* 0.643* –

Hoverflies 0.644* 0.380* 0.373* 0.381* 0.445*

For this correlation only the 528 grid squares that were surveyed sufficiently for all of the species groups are
taken into account

* Correlation is significant at the 0.01 level
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Spatial autocorrelation of residuals

The residuals of all five groups were spatially auto-correlated to a certain degree (Table 5).

For the mosses this autocorrelation was strongest and it expanded over a long distance (up

to 25 km) suggesting that additional factors not included in our analysis are needed to fully

Table 4 Percentage of explained variance of the environmental variables that were entered in the multiple
regression analysis of species diversity for each of the five taxonomic groups

Environmental variable Grasshoppers
and crickets

Hoverflies Dragonflies Mossess Herpetofauna

Geographical ALT (-) 0.4

ALTR 2.3 21.1 2.1* 1.2

MLA (2) 3.3* (-) 1.2* (-) 0.4

Climate HUM (2) 11 (-) 0.8 (-) 2.5*

SUN (-) 0.5 (2) 5.5 (-) 1.9* (2) 31.6

RAD (-) 0.4

TEMP 0.5 0.6

PREC 1.5*

Soil HST 0.3* 2.6 0.3 2.6

PSS (-) 0.6*

CSS (-) 0.8

NCC (2) 2.6 (-) 1.1*

CC (2) 8.3 (2) 5.3

NCL 2.8 (2) 18

NAV (2) 7.8* 1.3 (-) 0.5*

Habitat HLT 30.0 29.6 17.8

AGR (2) 10.8*

URB 4.4 0.5*

DF 0.9 2.1 (-) 0.4* 1.5

CF (-) 0.6* (-) 0.5 (-) 0.5

SAM (-) 0.4 2.1

DV (-) 0.8* 2.4

SV (-) 0.5* (-) 0.3

MA 0.8 1.8

ON (-) 0.4*

FW (-) 0.6 (-) 0.8

SW (-) 0.5

N 0.6 11.9

No. of species 45 327 72 507 24

No. of variables 12 10 14 11 14

Explained variance 59.7% 45.7% 60.6% 39.8% 62.8%

Spearman r evaluation set 0.741** 0.639** 0.751** 0.593** 0.765**

The four variables explaining most of the variance are given in bold. Between brackets is the effect of the
variable on species richness. For a description of the variables see Table 2

* Variable is entered in the model as quadratic term

** Correlation is significant at the 0.01 level
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account for spatial variation in species richness for this group. For all groups spatial

autocorrelation of the residuals was strongest in the first two lags (5–10 km).

Discussion

In general, patterns in species richness of the five taxonomic groups showed a high degree

of congruence. The richness in herpetofauna species correlated best with the overall

species richness of the other groups. This congruence is also expressed by the environ-

mental variables that could be held responsible for the formation of these patterns.

Our data suggest that heterogeneity of the environment (in particular habitat hetero-

geneity) is probably a major determinant of the spatial variation in species richness of the

five taxonomic groups under study at the meso-scale (5 9 5 km sampling units) in the

Netherlands. Only for herpetofauna diversity the environmental heterogeneity variables

(heterogeneity of habitat or soil types and range in altitude) were not entered at an early

stage in the stepwise modelling procedure. In general, these findings agree very well with

the work of Maes et al. (2005), who studied the species richness patterns of partly the same

taxonomic groups in Belgium. They found that for all studied groups (plants, dragonflies,

herpetofauna, butterflies and birds) the number of species was positively correlated with

biotope diversity. Furthermore, they found a high degree of congruence among the patterns

of the different groups. The major difference between the results of Maes et al. (2005) and

our study is that they did not find any of the incorporated climatic variables to be of much

importance. However, we found that for the herpetofauna the duration of sunshine was

strongly negatively correlated with the number of species. This is a remarkable result as the

exact opposite would have been more likely since herpetofauna are cold-blooded organ-

isms. It could, however, be that the relationship between herpetofauna species diversity and

climate is expressed on a much finer scale and that sandy open areas or the presence of

southern exposed slopes are more important than the overall duration of sunshine per year.

The other taxonomic group that showed a link with climate were the grasshoppers and

crickets. Totally 11% of the variation in species richness of grasshoppers and crickets can

be explained by the relative humidity in spring. Again, this is also a negative relation. The

observation that species richness gradients follow that of climate may be valid for a higher

scale level (Hawkins et al. 2003; Whittaker et al. 2007) but does not hold true for the

Netherlands. A possible explanation lies in the fact that the Netherlands is far from rep-

resenting a natural system, as 70% of the country is used for agricultural practices.

Table 5 Moran’s I values for species richness model residuals

Lags

5 10 15 20 25 30 35

Dragonflies 0.385** 0.101** 0.025 -0.006 -0.011 -0.033** -0.033**

Mosses 0.422** 0.269** 0.176** 0.105** 0.054** 0.016 -0.04**

Herpetofauna 0.276** 0.119** 0.093** 0.066** 0.038** -0.002 -0.018

Grasshoppers and crickets 0.299** 0.202** 0.075** 0.052** 0.028* 0.002 0.008

Hoverflies 0.192** 0.085** \0.001 -0.019 -0.019 -0.032* 0.007

* Correlation is significant at the 0.05 level

** Correlation is significant at the 0.01 level
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Generally, the soils rich in nutrients have been converted into agricultural land and nature

is nowadays restricted mainly to the nutrient poor sandy soils (e.g. Veluwe, dune area).

Furthermore, calcareous clay soils often coincide with newly reclaimed land where little

time has passed for succession to take place. In other words, there is a complex interplay

between natural factors determining biodiversity and environmental degradation and

disturbance.

The percentage of the explained variation in species richness was considerably high

(between 39.8 and 62.8%). However, residual analysis showed that a fair amount of spatial

autocorrelation remained present in the first two distance classes. In particular in case of

the mosses an important explanatory variable seems to be missing; the percentage of

explained variation was the lowest (39.8%) of all groups, spatial autocorrelation of the

residuals was high and the geographical pattern of moss species richness showed a low

degree of correlation with species richness of the other groups. Soil moisture and the

complexity of vegetation structure are currently not included in the regression analysis, yet

could be important factors for the presence of moss species. Besides being an indication

that important variables might have been missed, spatial autocorrelation can exaggerate

statistical significance and may even influence the order in which variables are included in

the model (Diniz-Filho et al. 2003; Whittaker et al. 2007). It might also be sign of

systematic spatial patterns in data quality (e.g. Segurado et al. 2006). Shortcomings in data

collection most likely contributed to spatial autocorrelation of the observed species rich-

ness. Although we tried to account for sampling bias in the species occurrence datasets by

selecting the 75% most frequently surveyed grid squares from each physical geographical

region, it is impossible to retrace true sampling intensity from the databases as used in this

study. Differences in sampling effort can, however, have a considerable impact on the

patterns observed (e.g. Dennis et al. 1999) and consequently on the variables held

responsible for the occurrence of these patterns.

Soil type, type of land use, altitude, and climatic variables were for most taxonomic

groups more weakly correlated with species richness than variables related to heteroge-

neity of the environment. This suggests that at the scale level of this study, specialisation

and niche differentiation (regarding e.g. physiology, habitat or diet preference, dispersal

ability) among the species of a determined taxonomic group may level out the possible

effects of environmental variables such as soil type, altitude and temperature on species

richness. These factors may have their influence on species composition (as a result of

habitat preferences) but if many subsets of species within a taxonomic group prefer dif-

ferent environmental conditions there may be no influence on overall species richness.

Heterogeneity of the environment within a grid square allows species with different habitat

preferences to occur in that grid square. This study indicates that for the meso-scale level,

environmental heterogeneity is expected to be the principle underlying mechanism of

overall spatial variation in species richness for a determined taxonomic group, thus

explaining why areas with high environmental heterogeneity (e.g. gradient situations) are

related to hotspots of biodiversity.

The positive correlation between variables related to environmental heterogeneity and

species richness can be explained from two different perspectives. On one hand, species

may co-exist because they have different habitat requirements or use different resources.

Therefore, differences in the environment are expected to promote co-occurrence of a

broad range of species (e.g. Wilson et al. 2004). On the other hand, species may also co-

exist even when they depend on the same resources. In that case, environmental hetero-

geneity may be related to the partitioning of limiting resources (more places to nest, feed,

hide, etc.), which then prevents domination by a single superior competitor (e.g.
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MacArthur and MacArthur 1961; Shmida and Wilson 1985; Pianka 1966; Rohde 1992;

Huston 1994). Whatever explanation is adopted, it is important to note that there is an

important trade-off between environmental heterogeneity and habitat fragmentation.

Chances of species survival (and, therefore, of species co-existence) decrease as a result of

habitat fragmentation, including the conversion, deterioration and isolation of natural

habitat patches (Olff and Ritchie 2002; Tews et al. 2004). Also, introducing more envi-

ronmental heterogeneity into a given area does not necessarily lead to higher species

richness as different species experience their environment in a different way. For example,

while forest gaps may increase the number of bird and butterfly species by creating habitat

heterogeneity, they may have a negative effect on beetle species richness as their habitat

became fragmented (Tews et al. 2004). Therefore, the issue of environmental heterogeneity

should be considered carefully, especially in the context of nature conservation.

Spatial patterns in species richness of these five groups can be compared to those

already described for other groups of organisms. Species richness patterns of vascular

plants (van der Meijden et al. 1989) and breeding birds (SOVON vogelonderzoek

Nederland 2002) are, for example, also described at a nationwide scale. As mentioned

earlier, these groups fulfil a key function in environmental and conservation research and

policy. Spatial pattern in species diversity of vascular plant species recorded since 1950 at

some points differed considerably from the patterns expressed by the groups studied here.

Vascular plant species richness on the sand plateau of the Veluwe in the centre of the

country is low, whereas species richness is high for the five taxa in this research. On the

other hand, vascular plant species richness is high along the IJssel valley, whereas species

richness of the five taxa studied here does not clearly express this pattern. Also, the dune

area appears as a much more strongly pronounced hotspot of diversity for vascular plants

than for the groups studied here. In some aspects though, there is congruence between the

patterns of species richness of vascular plants and those of the five taxa used in this study:

the extreme southeastern part of the country, central and southern Brabant, the Meuse

valley, and the border of the Veluwe – Utrechtste Heuvelrug – Vechtstreek region are rich

in species, while the Peel Horst region, the northern, and northwestern parts of the country

are poor in species. The spatial pattern of breeding bird diversity shows little congruence

with those of the five groups studied here. Like vascular plants, breeding birds (based on

data from 1998 to 2000) show a high concentration of species along the river IJssel. In

general, the eastern part of the country is richer in bird species than the western part, again,

with exception of the dunes. Areas rich in breeding birds generally represent gradient

situations in landscape openness and presence of freshwater bodies. Contrary to all other

groups, only few breeding bird species are present in the extreme southeastern part of the

country. The one region of the country that can be identified as being important in terms of

species diversity of all groups is the Veluwezoom (including the IJssel valley) – Utrechtse

Heuvelrug – Vecht region.

This comparison shows that hotspots of species richness do not coincide perfectly for

the different groups. This means that developing nature conservation policy upon only few,

well-known, taxonomic groups has its limits. The fact that different species groups have

different hotspots of diversity has great implications for nature conservation as for example

more area is needed in order to preserve the whole range of species.
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