1,349 research outputs found

    Framework for Evaluating the Readiness of Cyber First Responders Responsible for Critical Infrastructure Protection

    Get PDF
    First responders go through rigorous training and evaluation to ensure they are adequately prepared for an emergency. As an example, firefighters continually evaluate the readiness of their personnel using a defined set of criteria to measure performance for fire suppression and rescue procedures. From a cyber security standpoint, however, this same set of criteria and rigor is severely lacking for the professionals that must detect, respond to and recover from a cyber-based attack against the nation\u27s critical infrastructure. This research provides a framework for evaluating the readiness of cyber first responders responsible for critical infrastructure protection. The framework demonstrates the development of evaluation environment, criteria and scenarios that are modeled from NFPA 1410 standards concept that is used for assessing the readiness of firefighters. The utility of framework is exhibited during a military cyber training exercise and demonstrates the ability to evaluate the readiness of cyber first responders for industrial control systems when responding to the cyber-based attacks in the scenarios. Although successful, the results and analysis provide a context to develop a physical processes simulation tool, called Y-Box. The Y-Box creates more accessible, representational, realistic and evaluation-friendly environment to enhance the framework. The Y-Box demonstrates its application through the simulation of the first two stages in a wastewater treatment plant. Its performance test demonstrates its ability to interface with different types of signals from multiple programmable logic controllers with an acceptable range of error. The utility of simulation is extended with the development of potential attacks that can be used in a cyber exercise involving industrial control systems

    Framework for Evaluating the Readiness of Cyber First Responders Responsible for Critical Infrastructure Protection

    Get PDF
    First responders go through rigorous training and evaluation to ensure they are adequately prepared for an emergency. As an example, firefighters continually evaluate the readiness of their personnel using a defined set of criteria to measure performance for fire suppression and rescue procedures. From a cyber security standpoint, however, this same set of criteria and rigor is severely lacking for the professionals that must detect, respond to and recover from a cyber-based attack against the nation\u27s critical infrastructure. This research provides a framework for evaluating the readiness of cyber first responders responsible for critical infrastructure protection. The framework demonstrates the development of evaluation environment, criteria and scenarios that are modeled from NFPA 1410 standards concept that is used for assessing the readiness of firefighters. The utility of framework is exhibited during a military cyber training exercise and demonstrates the ability to evaluate the readiness of cyber first responders for industrial control systems when responding to the cyber-based attacks in the scenarios. Although successful, the results and analysis provide a context to develop a physical processes simulation tool, called Y-Box. The Y-Box creates more accessible, representational, realistic and evaluation-friendly environment to enhance the framework. The Y-Box demonstrates its application through the simulation of the first two stages in a wastewater treatment plant. Its performance test demonstrates its ability to interface with different types of signals from multiple programmable logic controllers with an acceptable range of error. The utility of simulation is extended with the development of potential attacks that can be used in a cyber exercise involving industrial control systems

    Intentional dialogues in multi-agent systems based on ontologies and argumentation

    Get PDF
    Some areas of application, for example, healthcare, are known to resist the replacement of human operators by fully autonomous systems. It is typically not transparent to users how artificial intelligence systems make decisions or obtain information, making it difficult for users to trust them. To address this issue, we investigate how argumentation theory and ontology techniques can be used together with reasoning about intentions to build complex natural language dialogues to support human decision-making. Based on such an investigation, we propose MAIDS, a framework for developing multi-agent intentional dialogue systems, which can be used in different domains. Our framework is modular so that it can be used in its entirety or just the modules that fulfil the requirements of each system to be developed. Our work also includes the formalisation of a novel dialogue-subdialogue structure with which we can address ontological or theory-of-mind issues and later return to the main subject. As a case study, we have developed a multi-agent system using the MAIDS framework to support healthcare professionals in making decisions on hospital bed allocations. Furthermore, we evaluated this multi-agent system with domain experts using real data from a hospital. The specialists who evaluated our system strongly agree or agree that the dialogues in which they participated fulfil Cohen’s desiderata for task-oriented dialogue systems. Our agents have the ability to explain to the user how they arrived at certain conclusions. Moreover, they have semantic representations as well as representations of the mental state of the dialogue participants, allowing the formulation of coherent justifications expressed in natural language, therefore, easy for human participants to understand. This indicates the potential of the framework introduced in this thesis for the practical development of explainable intelligent systems as well as systems supporting hybrid intelligence

    The use of seismic techniques to identify hazardous ground conditions associated with cavities

    Get PDF
    The identification of civil engineering hazards such as cavities, mine shafts, etc., is an integral part of site investigations carried out prior to the construction of roads, tunnels and other civil engineering structures. The use of geophysical methods to identify these hazards is becoming increasingly important. An investigation into the effectiveness of three seismic methods to delineate the possible anomalous ground conditions associated with the presence of cavities has been evaluated. The three methods are: surface, interborehole and a single hole method. The surface seismic method (refraction) was used successfully over a disused railway tunnel to identify the presence of a cavity, and a technique was developed to generate images of a theoretical model, which can be compared to a field survey. The interborehole seismic method was used across a disused railway tunnel to study the effect of a cavity on changes in seismic parameters, such as compressional wave velocity and attenuation. Both of these parameters were sensitive to the presence of a large cavity, and the successful application of the technique is demonstrated in the Maidstone survey, where the presence of loosely packed sand (due to sinkholes in the vicinity) was located under a house. The use of the single hole method for detecting cavities is a new technique (ACDER) in seismics, and it is analogous to methods of radar detection. A sparker source, directional receiver and associated instrumentation were developed in the laboratory before field trials at East Fleet. Of the three methods, the interborehole technique was the most successful, followed by the surface method. The single hole method looks promising but requires further work in the design of directional receiving transducers, followed by more field trials

    An integrated discrete event simulation and particle swarm optimisation model for optimising efficiency of cancer diagnosis pathways

    Get PDF
    The National Health Service (NHS) constitution sets out minimum standards for rights of access of patients to NHS services. The ‘Faster Diagnosis Standard’ (FDS) states that 75% of patients should be told whether they have a diagnosis of cancer or not within 28 days of an urgent GP referral. Timely diagnosis and treatment lead to improved outcomes for cancer patients, however, compliance with these standards has recently been challenged, particularly in the context of operational pressures and resource constraints relating to the COVID-19 pandemic. In order to minimise diagnostic delays, the National Physical Laboratory in collaboration with the Royal Free London (RFL) NHS Foundation Trust address this problem by treating it as a formal resource optimisation, aiming to minimise the number of patients who breach the FDS. We use discrete event simulation and particle swarm optimisation to identify areas for improving the efficiency of cancer diagnosis at the RFL. We highlight capacity-demand mismatches in the current cancer diagnosis pathways at the RFL, including imaging and endoscopy investigations. This is due to the volume of patients requiring these investigations to meet the 28-day FDS target. We find that increasing resources in one area alone does not fully solve the problem. By looking at the system as a whole we identify areas for improvement which will have system-wide impact even though individually they do not necessarily seem significant. The outcomes and impact of this project have the potential to make a valuable impact on shaping future hospital activity

    Query-Based Multicontexts for Knowledge Base Browsing

    Get PDF

    Research reports: 1985 NASA/ASEE Summer Faculty Fellowship Program

    Get PDF
    A compilation of 40 technical reports on research conducted by participants in the 1985 NASA/ASEE Summer Faculty Fellowship Program at Marshall Space Flight Center (MSFC) is given. Weibull density functions, reliability analysis, directional solidification, space stations, jet stream, fracture mechanics, composite materials, orbital maneuvering vehicles, stellar winds and gamma ray bursts are among the topics discussed

    Avion 2001-09-10

    Get PDF
    https://commons.erau.edu/avion/1987/thumbnail.jp

    Sensitivity and clay mineralogy of weathered tephra-derived soil materials in the Tauranga region

    Get PDF
    Soil sensitivity is defined as the ratio of peak to remoulded shear strength. Problem soil materials are those that show large strength losses on disruption, resulting in catastrophic failure, liquefaction and long run-out distances. This study focussed on sensitive, weathered, mainly tephra-fall derived soils of mid-Pleistocene age in the Tauranga region. The liquefiable character of these soils is well known, but little detailed study has been directed towards the reasons for sensitivity. The objective of this work was to examine soil sensitivity by investigating geomechanical properties, clay mineralogy, and microfabric, and to determine how these factors combine to develop sensitivity. To achieve these objectives a combination of both field and laboratory investigations was undertaken. Field investigations indicated that sensitive soils are common in the Tauranga region. Sampling was undertaken at sites in Tauriko and Otumoetai. Selected samples ranged across high (76) and low (≈8) field sensitivity. Stratigraphically, samples from Otumoetai lie below the Rangitawa Tephra (ca. 0.34 Ma), and those from Tauriko underlie the Te Ranga Ignimbrite (ca. 0.27 Ma). Geomechanical investigation revealed that the sensitive soils had high moisture contents (gt; 60 %), low dry bulk density (lt; 966kg m-3), and high porosity (gt; 60 %). Liquidity index values ranged between 0.27 and 2.41. Plasticity index values ranged from 13.2 % to 42.7 %, with all samples plotting below the A line. Strength tests indicated effective friction angles from 25.7 to 38.5 , effective cohesion from 4.7 kPa to 34.5 kPa, residual friction angles of 19.34 to 33.18 , and cohesions of 0 kPa to 4.87 kPa. Remoulded vane shear strengths ranged between 1 kPa and 36 kPa. Clay minerals were dominantly hydrated halloysite. Scanning electron microscopy indicated that clay morphology was in the form of hollow tubes, spheres, plates, and platy vermiforms ('books'). Tubes and spheres represent characteristic forms of halloysite in soils, plates are less common, and books have never previously been observed. Hence, these books represent a new morphology for halloysite. Individual plates in each of the books appear to show structural Fe enrichment (~5.2 %). This enrichment indicates that Fe had replaced Al in octahedral positions reducing the mismatch with the tetrahedral sheet, lessening layer curvature and thus generating flat plates. All microfabrics were continuous with larger sand and silt grains supported in a background of clay minerals. Microfabrics ranged from extremely open with components being loosely packed to those which were dense and tightly packed. A feature common to all structural types was an abundance of extremely small pores (lt; 20 μm) which are capable of tightly retaining water. The loosely packed microfabrics had void ratios that allowed moisture content to exceed liquid limits, producing a liquidity index gt; 1. These open microfabrics are probably a result of quick burial by subsequent pyroclastic beds; hence weathering to clays occurred as a process of subsurface diagenesis. Dense microfabrics with low void ratios and high liquid limits did not have liquidity indexes gt; 1. These dense microfabrics arose as a result of the deposits being at, or near, the land surface for a considerable time, thus allowing strong pedogenic processes to occur, which promoted clay formation and clay migration (illuviation) and reduced void ratios. Liquidity index was a major control on remoulded strength and sensitivity. Liquidity index is controlled by clay type and content, void ratio, and natural moisture content. When remoulded, structures with natural moisture contents exceeding the liquid limit release a large amount of water, which both dilutes the plasticity of binding clays and supports grains and broken aggregates of clay, allowing the material to flow. The development of sensitivity with low remoulded strength requires a number of factors. These include: a void ratio that is sufficiently high to allow natural moisture content to exceed the liquid limit; the presence of halloysite, which encourages samples to retain a coherent structure when saturated and to ensure the liquid limit remains sufficiently low so that it can be exceeded by natural moisture content; and a saturated environment, which ensures the liquid limit is exceeded
    corecore