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Abstract  
Soil sensitivity is defined as the ratio of peak to remoulded shear strength. Problem 

soil materials are those that show large strength losses on disruption, resulting in catastrophic 
failure, liquefaction and long run-out distances. This study focussed on sensitive, weathered, 
mainly tephra-fall derived soils of mid-Pleistocene age in the Tauranga region. The 
liquefiable character of these soils is well known, but little detailed study has been directed 
towards the reasons for sensitivity. The objective of this work was to examine soil sensitivity 
by investigating geomechanical properties, clay mineralogy, and microfabric, and to 
determine how these factors combine to develop sensitivity. To achieve these objectives a 
combination of both field and laboratory investigations was undertaken.  
 

Field investigations indicated that sensitive soils are common in the Tauranga region. 
Sampling was undertaken at sites in Tauriko and Otumoetai. Selected samples ranged across 
high (76) and low ( 8) field sensitivity. Stratigraphically, samples from Otumoetai lie below 
the Rangitawa Tephra (ca. 0.34 Ma), and those from Tauriko underlie the Te Ranga 
Ignimbrite (ca. 0.27 Ma).  

 
Geomechanical investigation revealed that the sensitive soils had high moisture 

contents (> 60  %), low dry bulk density (< 966 kg  m-3), and high porosity (> 60  %). 
Liquidity index values ranged between 0.27 and 2.41. Plasticity index values ranged from 
13.2  % to 42.7 %, with all samples plotting below the A line. Strength tests indicated 
effective friction angles from 25.7 ° to 38.5 °, effective cohesion from 4.7 kPa to 34.5 kPa, 
residual friction angles of 19.34 ° to 33.18 °, and cohesions of 0  kPa to 4.87 kPa. Remoulded 
vane shear strengths ranged between 1 kPa and 36 kPa.  
 

Clay minerals were dominantly hydrated halloysite. Scanning electron microscopy 
indicated that clay morphology was in the form of hollow tubes, spheres, plates, and platy 

oils, 
plates are less common, and books have never previously been observed. Hence, these books 
represent a new morphology for halloysite. Individual plates in each of the books appear to 
show structural Fe enrichment (~ 5 . 2 %). This enrichment indicates that Fe had replaced Al 
in octahedral positions reducing the mismatch with the tetrahedral sheet, lessening layer 
curvature and thus generating flat plates.     
 

All microfabrics were continuous with larger sand and silt grains supported in a 
background of clay minerals. Microfabrics ranged from extremely open with components 
being loosely packed to those which were dense and tightly packed. A feature common to all 

tightly retaining water. The loosely packed microfabrics had void ratios that allowed moisture 
content to exceed liquid limits, producing a liquidity index > 1. These open microfabrics are 
probably a result of quick burial by subsequent pyroclastic beds; hence weathering to clays 
occurred as a process of subsurface diagenesis. Dense microfabrics with low void ratios and 
high liquid limits did not have liquidity indexes > 1. These dense microfabrics arose as a 
result of the deposits being at, or near, the land surface for a considerable time, thus allowing 
strong pedogenic processes to occur, which promoted clay formation and clay migration 
(illuviation) and reduced void ratios.     

 
Liquidity index was a major control on remoulded strength and sensitivity. Liquidity 

index is controlled by clay type and content, void ratio, and natural moisture content. When 
remoulded, structures with natural moisture contents exceeding the liquid limit release a large 
amount of water, which both dilutes the plasticity of binding clays and supports grains and 
broken aggregates of clay, allowing the material to flow. The development of sensitivity with 
low remoulded strength requires a number of factors. These include: a void ratio that is 
sufficiently high to allow natural moisture content to exceed the liquid limit; the presence of 
halloysite, which encourages samples to retain a coherent structure when saturated and to 
ensure the liquid limit remains sufficiently low so that it can be exceeded by natural moisture 
content; and a saturated environment, which ensures the liquid limit is exceeded.  
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Chapter 1 

Introduction 

 

1.1 Introduction 
Sensitivity is defined as the ratio of peak to remoulded shear strength, and 

many naturally coherent soils show sensitivity on disturbance (Mitchell & Soga 

2005). Particularly Problematic and hazardous soils are those which show large 

strength losses on disruption, through low remoulded strength, allowing soil 

liquefaction, long run out distances, and retrogressive failures (Lefebvre 1996). 

However, soils with high shear strength will allow steep slopes to form, which 

may show a dramatic strength decrease on disruption, failing catastrophically 

(Torrance 1996). Whilst the soil may not liquefy, high sensitivities will be 

recorded.  

  
 Most research focusing on sensitive soils has been directed towards the 

glaciomarine clays of Scandanavia and Canada (Selby 1993; Lefebvre 1996; 

Rannka et al. 2004). These soils typically have extremely low remoulded strength 

retrogressive failures with long run out distances (Gregersen 1981; Geertsema & 

Torrance 2005; Geertsema et al. 2006b). The works of numerous authors have 

been summarised into both pre- and post-depositional requirements for the 

development of sensitivity (Torrance 1983; 1995; 1996), and also basic factors 

which contribute to sensitivity (Mitchell & Soga 2005), in glaciomarine clays.  

 
Receiving less international interest are sensitive soils observed in 

weathered, clayey pyroclastic material from New Zealand (Smalley et al. 1980; 

Jacquet 1987; 1990; Cong 1992; Keam 2008). Work which has specifically 

investigated the sensitive volcanic/pyroclastic deposits of the Taranaki and 

Waikato regions suggested that sensitivity manifests as high undisturbed rather 

than low remoulded strength (Jacquet 1987; Torrance 1992; 1995; 1996), with 

soils having a non-liquid-like character once remoulded. However, in the clayey 

pyroclastic deposits of the Bay of Plenty, the long run out distances and 

liquefiable character of mass wasting events suggest that sensitivity manifests as 

low remoulded strength. Many authors have made mention of the sensitivity of 
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pyroclastic deposits and associated volcaniclastic sediments of the Tauranga 

region (Prebble 1983; 1986; 2001), typically during the course of investigation 

into mass wasting events (Gibb 1979; Tonkin & Taylor 1980; Bird 1981; Hatrick 

1982; Oborn et al. 1982; Oborn 1988; Burns & Cowburne 2003; Hegan & Wesley 

2005; Wesley 2007). Locations of studies which have identified sensitive soils in 

volcanic ash material are presented in Figure 1.1.   

 
Figure 1.1: Map of the upper North Island, New Zealand, showing the proximity of the study area (Inset A) 
to the Coromandel and Taupo volcanic zones. In both the main figure and inset, the numbered locations 
indicate previous studies which mention sensitive volcanic deposits. These are (1) Gibb (1979), Tonkin & 
Taylor (1980), Smalley et al. (1980); (2) Bird (1981); (3) Hatrick (1982), Oborn et al. (1982); (4) Jacquet 
(1987); (5) Jacquet (1990); (6) Cong (1992); (7) Wesley (2007); (8) Keam (2008). These studies are 
discussed in Chapter 2. The principal study sites are located at Tauriko  T  and Otumoetai  O . Geomorphic 
mapping and slip descriptions were undertaken at Ranginui Road (Ran) and Welcome Bay (Wel) (Chapter 4). 
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1.2 Thesis aims  
The aim of this thesis is to develop an understanding of the causes of 

sensitivity in volcanic/pyroclastic deposits from the Tauranga region. 

Furthermore, an underlying aim is to provide a geotechnical characterisation of 

these soils.  

 

Objectives to achieve this aim are to: 

 

1) identify a number of highly sensitive soils in the field; 

 

2) determine a range of geomechanical properties of selected sensitive soils 

using a combination of standard field and laboratory analyses;   

 

3) qualitatively assess the mineralogy of selected sensitive soils, in both the 

clay-size (< 2 µm) fraction and bulk sample (includes clay, silt and sand); 

 
4) describe the microstructure of selected sensitive soils using scanning 

electron microscopy; and 

 
5) indentify the key aspects of geomechanics, mineralogy and microstructure 

which control sensitivity, especially that which manifests in low 

remoulded strength. 

 

1.3 Study setting   
The study area is in the Tauranga region (Figure 1.1). It comprises a 

portion of the Tauranga Basin and is at an approximate mid-point between the 

Late Miocene to Pliocene Coromandel Volcanic Zone (CVZ) to the north and the 

currently active Taupo Volcanic Zone (TVZ) to the south (Briggs et al. 2005) 

(Figure 1.1). Transition between these two volcanic zones occurred between 1.90 

and 1.55 Ma (Briggs et al. 2005). The study area lies within the Tauranga 

Volcanic Centre, which was active between 2.69 1.90 Ma (Briggs et al. 2005) 

(Figure 1.1 (Inset A)). To the west of the study area is the Kaimai Range which 

represents and upfaulted block of Miocene Pliocene basaltic to rhyolitic rocks 

(Briggs et al. 1996). The small Kaimai Volcanic Centre (2.87  2.09 Ma; Briggs 

et al. 2005) is also located within these ranges.  To the east of the study area is the 
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barrier island, Matakana Island, which confines the shallow estuary of Tauranga 

Harbour (Figure 1.1, Inset A). 

 

The close proximity to several volcanic centres has resulted in the study 

area being dominated by volcanic and pyroclastic materials. These include older 

andesitic lavas and breccias, Pliocene Quaternary ignimbrites, which are 

intercalated with Quaternary volcaniclastic sediments, and a thick cover of 

younger Pleistocene Holocene silicic tephras (Briggs et al. 2005). Of most 

interest in this study are mid to late Pleistocene pyroclastic deposits (including ash 

fall or pyroclastic flow deposits), either primary or reworked, which have become 

weathered.      

 

Within the study area a number of NE and NNE trending terraces exist 

which typically extend as peninsulas into the Tauranga Harbour (e.g. Omokoroa, 

and Otumoetai) (Figure 1.1, Inset A). These terraces are typically between 20 40 

m high, are intersected by broad valleys and terminate seawards in the form of 

shallow cliffs and steep slopes (Briggs et al. 1996).  

 

1.4 Thesis outline 
In Chapter 2 a literature review discusses sensitivity in overseas 

glaciomarine sediments, describes clay mineralogy and sensitivity in volcanic ash 

soils, and provides details of the stratigraphy of the study area and notable mass 

wasting events within the region. Both field and laboratory methods are described 

in Chapter 3. A summary of field investigations, including justification for site 

selection, site stratigraphy and field strength and sensitivity results, is presented in 

Chapter 4. 

 

The main results are given in chapters 5, 6 and 7. In Chapter 5, results 

from geotechnical characterisation of samples, including effective strength testing, 

are outlined. Qualitative mineralogical analyses of both bulk material (clay, silt 

and sand) and clay-size fractions (< 2 µm) for each sample are presented in 

Chapter 6. The results of microfabric investigations undertaken using scanning 

electron microscopy are described in Chapter 7. 
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Chapter 8 is a discussion drawing together all the main findings of this 

study. The discussion describes the nature and geological development of each 

unit sampled, relationships between measured and observed properties, and 

concludes with a possible explanation for the development of sensitivity. Chapter 

9 concludes the study and presents a summary of findings in regards to the main 

aims and objectives, followed by recommendations for further research 
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Chapter 2  

Literature review  
 

2.1 Introduction  
Sensitive soils have unique properties which are a result of their mode of 

origin and subsequent geological history. The aim of this chapter is to introduce 

the idea of sensitivity both internationally and on a local scale. The chapter is 

divided into six sections: (1) defining sensitivity; (2) classical glaciomarine quick 

clays; (3) the volcanic stratigraphy of the study area; (4) the structure of typical 

clay minerals (allophane and halloysite) derived from volcanic parent materials. 

Sections 3 and 4 will clearly differentiate the soils of this study from classical 

quick clays; (5) sensitivity in volcanic soils both internationally and locally; (6) 

sensitive soils already observed within the study area and their relationship with 

notable mass wasting events.   

 

2.2 Soil sensitivity  
 

2.2.1 General Definition  

Sensitive soils remain stable for thousands of years, and then suddenly 

lose strength, often with catastrophic consequences. Disturbance can occur with 

little increase in moisture content (Selby 1993). When remoulded strength is very 

low, disturbed material behaves as a fluid, moving away from the failure scarp 

leaving the new slope unsupported. Subsequent failures may then occur (Lefebvre 

1996). However, high undisturbed strengths allow steep slopes to form and to be 

stable. These soils may not liquefy on failure but the subsequent loss in strength 

can be catastrophic (Torrance 1995). Therefore, two types of sensitive soils exist: 

 

1) those which show a large loss of strength on remoulding, but may not 

necessarily liquefy; and 

 

2) those which display very low, liquid-like remoulded strength.       

 

2.2.2 Numerical definition of sensitivity 

Sensitivity can be defined as the ratio of undisturbed strength over 

remoulded strength (Selby 1993) and is presented by the equation:         
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Because equation 2.1 is simply a ratio, soil materials with identical 

sensitivities may exhibit different undisturbed and remoulded strengths (Torrance 

1987). Within the literature a wide range of terminologies and divisions between 

different levels of sensitivity exists (i.e. non-sensitive, medium and quick) 

(Skempton & Northey 1952; Rosenqvist 1953; Norsk Geoteknisk Forening 1974; 

Rankka et al. 2004; New Zealand Geotechnical Society 2005). In all studies 

samples which display values of unity (1) are termed insensitive. Because this 

study is being undertaken in New Zealand the classification system set out by the 

New Zealand Geotechnical Society (2005) will be used (Table 2.1).  

 

Table 2.1: Soil sensitivity categories as determined by the New Zealand Geotechnical society 

(2005).   

Descriptive term Shear strength ratio 

(Undisturbed strength / Remoulded strength) 

Insensitive, normal <2 

Moderately sensitive 2-4 

Sensitive 4-8 

Extra sensitive 8-16 

Quick >16 

 

One problem with the New Zealand classification is that it does not have 

an upper limit for remoulded strength. This is important when deciding whether 

because 

undisturbed strength is very high but because remoulded strength is extremely low 

(Mitchell & Soga 2005). Swedish and Canadian authors use an upper value for 

remoulded strength of 0.4 kPa (Karlsson & Hansbo 1989; Rannka et al. 2004) or 

0.5 kPa (Torrance 1996), typically combined with a sensitivity value of between 

30 and 50, when defining a soil as quick. A Swedish drop or sensitive laboratory 

vane are typically used to derive such low values (Rannka et al. 2004; Geertsema 

& Torrance 2005). Whilst it is recognised that low remoulded strength values are 

important, the field vane used in this study to directly measure remoulded strength 

(Chapter 3) was unable to measure such low values (Chapter 4). Therefore, a 
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classification which uses the upper limits of remoulded strength suggested by 

previous authors could not be employed.     

 

2.3 International sensitive soils  
Internationally, highly sensitive sediments have been observed in fine 

grained, post-glacial marine and brackish water sediments of eastern Canada, 

Scandinavia and Alaska (Torrance 1996; Mitchell & Soga 2005). Sensitive glacial 

clays of freshwater origin have also been reported (Soderblom 1966). Sensitive 

Holocene age volcanic materials deposited in a marine environment have been 

observed in Ariake Bay, Japan (Torrance & Ohtsubo 1995). Sensitivities up to 

1500 and 895, often quick in nature, have been reported in Canadian glacial 

marine Leda clay (Smalley 1971) and Ariake Bay sediments (Torrance & Ohtsubo 

1995), respectively. The following will describe the causes and origins of 

sensitivity in these soils. 

 

Glacial marine clays are geologically young, typically deposited in pre-

glacial and post-glacial bodies of water during the retreat of the Wisconsin ice 

sheet some 18 000 to 6 000 14C years before present (Lefebvre 1996). Unloading 

and subsequent isostatic rebound has meant these soils are above present-day sea-

level (Lefebvre 1996). The erosive activity of rivers has cut into these uplifted 

sediments, exposing sensitive material and allowing retrogressive slope failure to 

occur (Torrance 1996).      

 

Slow sedimentation in a marine or brackish environment has promoted an 

open, flocculated structure (Smalley et al. 1984), with initially high salt 

concentrations in soil pore water (Torrance 1987; 1992). Mitchell & Soga (2005) 

description implies clay particles are in edge-to-edge and edge-to-face contacts, 

forming an open cardhouse arrangement. This structure can carry effective 

stresses at a void ratio higher than if particles were in a parallel array (Mitchell & 

Soga 2005). Sensitivity is also enhanced by the linking of large particles (i.e. 

sand, silt and clay aggregates) with unstable connectors (Mitchell & Soga 2005). 

 

Sensitive marine clays are dominated by low activity (< 0.5) minerals. 

These include the clay minerals illite, chlorite and sometimes kaolinite. Non-clay 
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minerals, typically representing glacial flour, are quartz, feldspar, amphiboles and 

carbonates (Torrance 1992; Mitchell & Soga 2005). Often primary minerals are in 

greater abundance in the clay-size fraction than phyllosilicates (Torrance 1996). In 

contrast, sediments at Araike Bay, Japan, are dominated by low swelling and low-

activity smectite with lesser amounts of kaolinite, illite and vermiculite (Egashira 

& Ohtsubo 1982; Torrance 1996). An abundance of low activity material will 

result in a system dominated by short-range bonds, as opposed to long-range 

bonding typical of high activity clays. Short range bonds are weak and are lost 

when particles lose contact (Smalley 1971). This bond loss promotes dramatic 

strength decrease on disturbance. Furthermore, leaching (discussed below) may 

decrease long-range bonding encouraging short-range bonds to dominate and 

sensitivity to occur (Smalley 1971). The concept of short-range bonding 

et al. 1980).    

 

A post-depositional reduction in remoulded strength leading to high 

sensitivity is often attributed to salt leaching from pore water (Torrance 1992). 

Three leaching processes exist, including water from rain and snow percolating 

through a deposit, water seeping upwards as a result of artesian pressure, and 

diffusion of salt along a concentration gradient (Rankka et al. 2004). A reduction 

in salinity affects both individual particles and the forces between them; however, 

the flocculated structure is largely preserved (Brand & Brenner 1981). Leaching 

can reduce the liquid limit of the soil but water content and void ratio will remain 

constant (Torrance 1983; 1987; Mitchell & Soga 2005). Leaching affects the 

ability of particles to re-flocculate into large aggregates following remoulding 

(Rannka et al. 2004), thus causing a large loss in strength (Torrance 1987; 1992).     

 

Other lesser factors also contribute to sensitivity. A high proportion of the 

ions Na+ and K+, in comparison with Ca2+ and Mg2+, in pore water solutions will 

promote high sensitivity. The abundance of these monovalent ions will lead to a 

large double diffuse layer around clay particles which will result in larger 

repulsive forces between particles, hence preventing re-flocculation following 

remoulding (Rannka et al. 2004).  
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Cementation increases undisturbed strength but by itself is not enough to 

produce highly sensitive clays because it does not affect remoulded strength 

(Torrance 1983; 1987). Cementing agents may include carbonates, iron oxides, 

alumina and organic matter, and these bind soil material together at inter-particle 

contacts (Mitchell & Soga 2005). Addition of organic or inorganic dispersants to a 

low activity soil can lower the liquid limit, decreasing remoulded strength 

(Torrance 1983; 1987). Organic dispersants were believed to have decreased the 

liquid limit of a freshwater glacial deposit, enhancing its sensitivity (Soderblom 

1966).    

 

The shape of clay particles may also be important for the development of 

quick clay. Pusch (1962), as cited in Rannka et al. (2004), stated that large, thin 

plates will become more dispersed on remoulding than particles with more 

uniform dimensions. 

 

In glacial marine clays, the following factors inhibit the development of 

quick clay; presence of swelling minerals, high degree of weathering, presence of 

high valence cations, deep burial and consolidation (Torrance 1987). In glacial 

marine clays, weathering to produce a soil alters mineralogy, structure, sensitivity 

and strength. Typically both undisturbed and remoulded strength increase with 

progressed weathering.  

 

2.4 Stratigraphy of the Tauranga region  
The classic quick clays frequently described in international literature have 

a different geological history and mineralogy than soils observed in the study 

area. Thus, the following section will introduce the volcanic stratigraphy of the 

study area. Furthermore, this stratigraphy is important in later sections where 

mass wasting events and sensitivity in the Tauranga region are discussed.  

 

Strata observed in the Tauranga Basin include deposits of both primary 

volcanic origin (including pyroclastic) and reworked volcanic materials. All the 

primary deposits were derived from eruptive events occurring in the southern 

Coromandel Volcanic Zone (CVZ), the Tauranga Volcanic Centre, the Kaimai 

Volcanic Centre and the Taupo Volcanic Zone (TVZ), and appear to be 

dominantly rhyolitic in composition.  The eruptive events, especially pyroclastic 
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flows (density currents) that produced ignimbrites, were often voluminous, 

providing material to be reworked by fluvial, lacustrine and estuarine processes, 

which were then redeposited in sequences intercalated with primary volcanic 

deposits (Briggs et al. 1996).  Figure 2.1 presents a graphical summary of the 

stratigraphic sequence which occurs in the Tauranga region.  This sequence is 

then discussed in the following section with the most emphasis placed on the 

tephra-fall deposits and Matua Subgroup material.  

 

2.4.1 Volcanics  

The underlying volcanics range from early andesitic lavas (Otawa 

Volcanics, 2.95 to 2.54 Ma) and volcanic breccias through to materials of dacitic 

to rhyolitic composition (Figure 2.1). These are, however, of little significance to 

this study.  

 

2.4.2 Ignimbrites  

Ignimbrite sheets are prominent features in the Tauranga region forming a 

series of extensive plateaux (Briggs et al. 2005). The Waitekauri Ignimbrite is the 

oldest (2.18 to 2.13 Ma) and underlies the Tauranga Basin to depths of 50  150 

m. It is encountered in drill holes throughout the Tauranga Harbour and urban 

area (Briggs et al. 2005). The Papamoa Ignimbrite consists of multiple flow and 

interbedded tephra-fall deposits (Briggs et al. 2005).  

 

The Ongatiti Ignimbrite (1.34 Ma) was erupted from the Mangakino 

Volcanic Centre and in the Tauranga region it is typically partially to densely 

welded (Briggs et al. 1996). The Te Puna Ignimbrite (0.93 Ma) is non to partially 

welded and is derived either locally (Briggs et al. 1996; 2005) or is a correlative 

with Kidnappers Ignimbrite (Keam 2008). 
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Figure 2.1: Stratigraphy of the Tauranga Region after Briggs et al. (1996), Briggs et al. (2005), 

and Briggs et al. (2006). *Ma = millions of years ago, ka = thousands of years ago. 
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The Te Puna ignimbrite is eroded and overlain by cross bedded fluvial 

pumiceous sands, lacustrine diatomaceous silts and sand, lignites and tephra fall 

beds (Pahoia tephras, Hamilton Ash) (Briggs et al. 1996). The Te Ranga (0.27 

Ma) ignimbrite is a light grey, non welded, crystal-poor, sandy textured 

ignimbrite. This ignimbrite is not known outside the central Tauranga Basin and is 

therefore suggested to be locally derived (Briggs et al. 1996). The Te Ranga 

Ignimbrite has been observed intercalated with lacustrine silts, overlying Matua 

Subgroup (~ 60 ka to 2.09 Ma) materials and also overlain by the Hamilton Ash 

Formation (0.1 to 0.35 Ma) and Rotoehu Ash (~ 60 ka) (Briggs et al. 1996; 2005). 

The Waimakariri Ignimbrite (0.22 to 0.32 Ma) is a large volume, welded 

ignimbrite (Briggs et al. 1996). The Mamuku Ignimbrite (0.22 Ma) is a partially to 

weakly welded unit and, with the Waimakariri Ignimbrite, forms the upper surface 

of the Mamaku Plateau which dips 1  2 º northwards towards the Tauranga Basin 

(Briggs et al. 2005).   

 

2.4.3 Matua Subgroup  

The Matua Subgroup (~ 60 ka to 2.09 Ma) is a member of the Tauranga 

Subgroup (as defined by Kear & Schofield 1978) and includes all terrestrial and 

estuarine sedimentary materials deposited after the emplacement of the 

Waitekauri Ignimbrite (2.09 ± 0.03 Ma) and before Rotoehu Ash deposition (~ 60 

ka). This excludes those fluvial and other sediments of the late Pleistocene and 

Holocene age (Brigg et al. 1996). Briggs et al. (1996) defined the upper limit of 

the Matua Subgroup as the Mamaku Ignimbrite. However, at Maketu, Briggs et 

al. (2006) extended it to the base of the Rotoiti Tephra, of which Rotoehu Ash is a 

member. The Matua Subgroup was deposited during a period of intense and 

voluminous activity in both the CVZ and TVZ (Briggs et al. 2006).  

 

A range of lithologies occurs within the Matua subgroup including fluvial 

pumiceous and rhyolitic silts, sands and gravels, lacustrine and estuarine muds, 

lignites and peats intercalated with tephra fall units and thin distal ignimbrites 

(Briggs et al. 1996). Sedimentary structures include cross-bedding, planar 

stratified and massive units, and massive slump and water escape structures 

mostly derived from reworked volcaniclastic material (Briggs et al. 1996). Matua 

Subgroup materials infill the Tauranga Basin to a depth of ~ 150 m (Harmsworth 

1983) and form terraces up to 80 m high (Briggs et al 1996). Matua Subgroup 
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sediments are exposed in sections at Maungatapu, Matapihi, Omokoroa and at the 

the base of Mt Maunganui (Briggs et al. 1996).  

 

2.4.4 Pahoia tephras  

Pahoia tephras (0.35 to 2.18 Ma), originally named tuffs by Pullar & 

Birrell (1973), is a portmanteau term for highly weathered ashes older than the 

Hamilton Ash. Pahoia tephras are believed to be rhyolitic (Harmsworth 1983). 

Kirkman & Pullar (1978) observed 13 beds with associated paleosols near 

Opotiki. These were light coloured (pink, white and pale yellow) and comprised 

almost entirely of halloysite. Harmsworth (1983) observed 14 light coloured 

clayey to sandy tephra beds at Omokoroa Peninsula which formed a sequence ~ 5 

metres thick. Paleosols were observed in four units. Across the Tauranga Basin 

the sequence has been recorded between 1 and 15 metres thick, and included both 

tephra fall but also pyroclastic flow deposits (ignimbrites) (Harmsworth 1983). 

The Pahoia tephras are often intercalated with the Matua Subgroup materials and 

distal ignimbrites (Briggs et al. 1996).  

 

The Pahoia tephras may in part, represent correlatives of the Kauroa Ash 

et al. 2001) (Briggs et al. 1996). The 

Kauroa Ash sequence is well known in the Waikato region (Ward 1967; Salter 

1979; Briggs et al. 1994) and is up to 12 m thick and includes multiple tephra 

deposits and associated paleosols sometimes interbedded with loess material 

(Briggs et al. 1994; Lowe et al. 2001).  The beds are assumed to be predominantly 

rhyolitic and possibly relate to either late CVZ or early TVZ eruptions, or both 

(Lowe et al. 2001).    

 

The Pahoia tephras have been observed at Greerton, Maungatapu, 

Matapihi, the base of Mount Maunganui, along the Waikareao expressway, Matua 

and Omokoroa (Brigg et al.1996).   

 

2.4.5 Hamilton Ash   

The Hamilton Ash Formation ( ~ 0.1 to 0.35 Ma) is a sequence of highly 

weathered clayey ash beds, with associated paleosols, which were originally 

identified in the Waikato region (Ward 1967) and which are also recognised in the 

South Auckland and Coromandel regions (Bakker et al. 1996; Lowe et al 2001). 
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In the Waikato region this sequence is up to 6 m thick and comprises up to 7 

members (H1  H7). At some sites, fall deposits may be intercalated with loess 

beds (Lowe et al. 2001; 2008c). Only the origin of member H1 is known with any 

certainty, and it is a correlative of the Rangitawa Tephra. The Rangitawa Tephra 

is a correlative of the Whakamaru-group ignimbrites derived from the 

Whakamaru caldera volcano (0.35  0.32 Ma; Lowe et al. 2001). Whilst the 

source of the remaining members is unknown (H2  H7), they are thought to be of 

rhyolitic origin (Lowe & Percival 1993; Briggs et al. 1994; Lowe et al. 2001). In 

the Waikato region, Shepherd & Gibbs (1984) suggested an origin in the rhyolitic 

Taupo  Maroa volcanic centres. Lowe et al. (2001) stated that a number of 

rhyolitic centres in the TVZ were active during the emplacement of the Hamilton 

Ash sequence and hence the beds may have multiple origins.  

 

In the Tauranga region a similar composite sequence, up to 2.5 m thick, 

has been observed so the term Hamilton Ash has also been employed (Briggs et 

al. 1996; 2005). These beds often appear yellowish to dark brown in which 

paleosols are developed with a polyhedral to blocky structure (Harmsworth 1983).  

 

2.4.6 Rotoehu Ash 

The Rotoehu Ash is a shower bedded tephra-fall unit overlying the 

Hamilton Ash beds and typically found at depths of between ~ 1.2 and ~ 2.2 m in 

the Tauranga region. Multiple white to greyish beds 0.02 to 0.2 m thick are 

observed which have a sandy texture (Harmsworth 1983). The Rotoehu Ash has 

an age of ~ 60 ka (c. calendar [cal] ka) and is derived from the Okataina Volcanic 

Centre (Froggatt & Lowe 1990; Lowe & Hogg 1995; Wilson et al. 2007). Part of 

the unit may have been deposited from phreatic eruptions when the co-eval 

Rotoiti Ignimbrite entered the sea (Walker 1979 as cited in Briggs et al. 1996).  

 

2.4.7 Post-Rotoehu Ash tephras  

Overlying the Rotoehu Ash sequence is a cover of tephra deposits which 

represent the dominant pedological soil forming parent materials in the Tauranga 

region. These tephras have been summarised in Briggs et al. (1996) (see also 

Briggs et al. 2006) and include: Mangaone (0.6 to 3 m), Kawakawa (0.3 to 0.6 m), 

Te Rere (0.15 to 0.3 m), Okareka (0.15 to 0.5 m), Rotorua (0.15 to 0.45 m), 

Mamaku (0.1 m), Tuhua (0.1 m), Taupo (0.1 m) and Kaharoa (0.1 m) tephras. The 
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tephras, with the exception of the Tuhua, are from the Okataina and Taupo 

volcanic centres. The Tuhua is from Mayor Island (Briggs et al. 1996). All ages 

are summarised in Froggat & Lowe (1990) and Lowe et al. (2008c). 

 

2.4.8 Holocene sediments  

Holocene sediments comprise a number of deposits, including sediments 

deposited in the large barrier-enclosed estuary of Tauranga Harbour, 

progradational dune ridges which tie the tombolos of Mt Maunganui and 

Bowentown to the mainland, and alluvial deposits which have formed low 

terraces of Holocene and late-Pleistocene age. These sediments are composed of 

silts, sands, clays, gravels and carbonaceous material (Briggs et al. 1996).  

 

2.5 Clay minerals, structures and formation 
Pyroclastic materials comprise a variety of materials, including non-

crystalline volcanic glass, feldspars, quartz and heavy minerals including Fe-Ti 

oxides and ferromagnesian minerals (Churchman 2000). Following dissolution, 

neogenesis and then crystallisation a variety of clay minerals is formed from 

dissolution products of these materials. Clay minerals typically associated with 

central and upper North Island volcanic deposits include both halloysite and 

allophane (Salter 1979; Shepherd 1984; Lowe & Nelson 1983; Lowe & Percival 

1993; Lowe 1995). The following section will discuss the structure of kaolinite, 

because of its importance to this study, and then halloysite and allophane. The 

subsequent section will then explain the formation of both allophane and 

halloysite.  

 

2.5.1 Clay mineral structures 

 
2.5.1.1 Kaolinite 

The structure of kaolinite comprises a single 1:1 layer consisting of a Si4+ 

tetrahedral sheet and Al3+ octahedral sheet (Figure 2.2). However, the ideal lateral 

dimension of Si tetrahedral sheet is larger than the Al octahedral sheet, causing a 

size misfit in the b dimension (Bates et al. 1950; White & Dixon 2002). The 

misfit in size is overcome by either alternate tetrahedra rotating in opposite 

directions, tilting or changes in their ideal shape (White & Dixon 2002). This 
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Figure 2.2: The typical structure of a 1:1 layer, in this instance the octahedral cation is Al3+ (blue 

sphere) and the tetrahedral cation is Si4+ (red sphere). This layer structure represents that typically 

observed in kaolinite and dehydrated halloysite and has a thickness of 7 Å (0.7 nm) (image 

adapted from Schultz 2002). Note that the apex of the individual tetrahedra point inwards towards 

the octahedral sheet.  

 

In a kaolinite crystal the flat 1:1 layers stack above each other (Olson et al. 

2000; Schultze 2002). The stacks of layers are held together by hydrogen bonding 

between basal oxygens of the tetrahedral sheet (shown as light blue spheres in 

Figure 2.2) and the hydroxyls of the adjacent plane of the octahedral sheet (shown 

as light green spheres in Figure 2.2) (Schultze 2002; White & Dixon 2002). 

Because the misfit in size of sheets is corrected, stacks of 1:1 kaolinite are 

commonly observed as pseudo hexagonal plates or in some cases vermiforms 

(books) (White & Dixon 2002).   

 

2.5.1.2 Halloysite 

Halloysite has the same structure as kaolinite (Figure 2.2). However, in 

hydrated halloysite a water molecule is intercalated between adjacent 1:1 layers 

(Olson et al. 2000; Schultze 2002). Thus, a single water molecule and a 1:1 layer 

give hydrated halloysite, a thickness of 10 Å (1 nm). However, this water 

molecule is easily lost, causing halloysite cell layer thickness to reduce to 7 Å, 

forming dehydrated halloysite (Olson et al. 2000). Dehydrated halloysite has the 

same unit thickness as kaolinite (7 Å).     

 

Unlike kaolinite, hydrated halloysite is typically observed as spheres and 

tubes (Schultze 2002). This curvature and hence layer rolling is believed to 

originate from the misfit in size between the octahedral and tetrahedral sheets, 

which, unlike kaolinite, is not corrected (Churchman 2000). A mechanism which 

facilitates layer rolling is the water between the adjacent 1:1 layers. This water 

relaxes the hydrogen bonding between adjacent 1:1 layers and acts as a lubricant, 

allowing the halloysite crystal to curl (Costanzo & Giese 1985; Singh 1996). 

Rolling is also assisted by interlayer water blocking tetrahedral rotation (Bailey 

1990). Blocking tetrahedral rotation means the structural changes which prevent 
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layer rolling in kaolinite cannot occur. This disruption results in the larger 

tetrahedral sheet curling around the outside of the octahedral sheet (Bates et al. 

1950; Singh 1996; Churchman 2000), forming the common tube-like morphology.  

 

2.5.1.3 Allophane  

The structure of allophane differs from that of kaolinite and halloysite 

because it has a short-range order. In New Zealand three types of allophane exist 

(Parfitt 1990; Lowe 1995): 

 

1) Al-rich allophane with an Al:Si 

referred to as imogolite-like allophane. 

 

2) Si-rich allophane with an Al:Si 

halloysite-like allophane. 

 

3) Stream-deposit allophane with an Al:Si 

hydrous feldspathoid allophane.    

 

Both the Al- and Si-rich variety are found in soils, but the Al-rich 

allophane is predominant in New Zealand soils (Parfitt 1990). The structure of 

both Al- and Si-rich allophane consist of small imogolite-like fragments. These 

fragments combine to form a hollow porous spherule which is 4  5 nm (40  50 

Å) in diameter and has water molecules in the centre of the spherules and also 

adsorbed onto their surface (Lowe 1995). Rao (1995) stated that the water within 

the spheres is inactive during soil deformation and has no influence on the 

mechanical behaviour of allophane. The structure of Al-rich allophane is shown 

schematically in Figure 2.3.       

 

Figure 2.3: Schematic diagram indicating how imogolite fragments make up Al-rich allophane. 

The triangles represent Si4+ tetrahedra and the shaded rectangles represent Al3+ octahedra. The 

schematic diagram is from Lowe (1995).  
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2.5.2 Allophane and halloysite formation  

In volcanic deposits the most important factors involved in the process of 

clay formation are environmental conditions coupled with the composition of 

parent material (Lowe 1986). Environmental conditions are exceptionally 

important for allophane and halloysite considering it is possible for them to 

weather directly from the same primary mineral (Churchman 2000; Joussien et al. 

2005). 

 

2.5.2.1 Allophane  

Concentrations of silicon in soil are a significant factor in determining 

whether, and which type of allophane, will form (Lowe 1995); 

 

1) Where Si in soil solution is low (< 10 g m-3), Al-rich allophane may be 

formed;  

 

2) Where Si in soil solution is high (> 10 g m-3), halloysite or Si-rich 

allophane may form.      

 

Silica in soil solution is controlled mainly by drainage and leaching, the 

latter governed mainly by rainfall. For example, Parfitt et al. (1984) considered at 

least ~ 250 mm yr-1 of through drainage is important for the formation of Al-rich 

allophane because this will leach sufficient Si to favour Al-rich allophane forms. 

Parent material is also important because rhyolitic tephras are more siliceous (and 

less Al-rich) than andesitic tephras (Lowe 1986), creating an environment of 

potentially high Si content. Under the same rainfall conditions and drainage, soils 

of andesitic origin will typically yield Al-rich allophane whereas those of rhyolitic 

origin may yield halloysite (Harsh et al. 2002). The rate of weathering 

(dissolution) in andesitic glass is faster than that of rhyolitic glass under similar 

conditions (Lowe 1995). Therefore more Si will be released into soil solution 

quicker by weathering of andesite glass compared to rhyolitic glass (and hence 

liable to loss in drainage waters) which will affect the rate of allophane formation 

(Churchman 2000).  The amount of Al available to precipitate can affect 

allophane formation. For example, Dahlgren et al. (1993) (as cited in Lowe 1995) 

indicated that metal-humus complexes (found in soils rich in organic matter 

especially in Japan, for example) effectively compete for Al (the so called anti-

allophane affect). This competition can leave very little Al in the soil available for 
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inorganic allophane formation, mostly being bound on Al-humus complexes. 

Allophane forms at pH > 4.8 (Lowe 1995).         

 

2.5.2.2 Halloysite  

The weathering sequence vol

occasions (Joussien et al. 2005). Prior to 1980, the transformation of allophane to 

halloysite was largely accepted, however more recently this transformation has 

been overturned (Parfitt et al. 1980; Lowe et al. 1986; Churchman 2000; Joussien 

et al. 2005). Allophane and halloysite have been shown to form directly from 

similar volcanic parent material (Joussien et al. 2005) and transformation would 

require the reorganization of atomic structures involving the re-precipitation and 

dissolution of both Al and Si (Parfitt 1990; Lowe & Percival 1993; Joussien et al. 

2005). Reorganisation of structure to form halloysite from allophane is required 

because in allophone, the tetrahedra occur on the inner surface of hollow spheres 

and their apices point away from the octahedral sheet (Figure 2.3). This is reverse 

to their situation in kandic clays (Figure 2.2) (Lowe 1986; Churchman 2000). 

Thus it is more likely that halloysite will form directly from dissolution of 

primary minerals rather than via an allophane transitional step.    

 

The formation of halloysite directly from volcanic materials is related to a 

Si-rich environment (Harsh et al. 2002; Joussien et al. 2005). McIntosh (1979) 

showed halloysite could form in very young (~1800 year old) tephra material 

under certain conditions in New Zealand. Environmental conditions which favour 

the formation of halloysite include a humid tropical climate, a short dry season (1 

to 3 months) and moderate rainfall regimes. Moderate rainfall regimes will lead to 

less desilication when compared with high rainfall conditions which promote 

strong leaching (Joussien et al. 2005). An essential requirement for the formation 

of hydrated halloysite is the abundance of water (Churchman 2000; Joussien et al. 

2005) and hence halloysite is more common in the lower wetter parts of soil 

profiles (Churchman 1990). Halloysite formation is also believed to be favoured 

-burden (Wada 

1989). The stagnant moisture regime ensures that Si in soil solution will not be 

leached thus remaining high. Wada (1989) suggested the thick overburden acts as 

a silica source for the resilication of allophane, which may then form halloysite. 
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However, considering the comments regarding the transformation of allophane to 

halloysite, this overburden may act as a rich source of silica for the direct 

formation of halloysite (Lowe 1986).  

 

2.6 Sensitivity in volcanic ash materials    
The following will describe sensitivity in volcanic ash material both 

internationally and in New Zealand.  

 

2.6.1 Internationally sensitive volcanic ash 

Sensitivity in volcanic ash soils is not widely reported in the engineering 

geology literature. Furthermore, it seems that volcanic soils typically have very 

good engineering properties. For example, slopes in volcanic ash soils tend to be 

steeper than deposits with similar clay contents in sedimentary soils (Wesley 

1973). Furthermore, Wesley & Matuschka (1988) stated that, typically, volcanic 

ash soils are of high strength and low compressibility, with properties which are 

not greatly influenced by natural water content or Atterberg limits.   

 

Volcanic ash materials which have subsequently weathered to soils 

dominated by either allophane or halloysite have been recorded with sensitivities 

of ~ 1 and ~ 2, respectively, in the soils of Indonesia (Wesley 1973). These soils 

have high clay contents, 70  90 %, and can maintain the same amount of water 

year round regardless of environmental conditions. However, Wesley (1973) 

indicated that volcanic ash soils with sensitivities up to 20 occur in Indonesia.  

 

Investigating the tropical volcanic soils of Teneriefe, Gonzalez et al. 

(1981), without recording sensitivity values, suggested large strength decreases 

following remoulding occurred in soils containing halloysite but not in those 

dominated by montmorillonite.  The authors suggested that the strength decrease 

in halloysite was a result of the disruption of a highly organised interwoven fabric. 

It was believed that disturbance caused little alteration to the already random 

fabric observed in montmorillonite-containing soils.  

 

Volcanic ashes from Papua New Guinea, containing allophane, have been 

reported with sensitivities between reported between 2 and 6. This sensitivity 
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manifested in high undisturbed strength, as soils were observed supporting 

cuttings up to 10 m high (Moore & Styles 1988).   

  

2.6.2 New Zealand  

Jacquet (1987) summarised a comprehensive bibliography by stating that 

volcanic ash soils in New Zealand have unique properties. These include 

sensitivity, physical changes on drying (aggregation and loss of plasticity), high 

liquidity indexes, high preconsolidation pressures and elevated moisture contents. 

These properties were a consequence of either structure or mineralogy, or both. 

Allophane, and to a lesser extent, halloysite were considered to contribute to the 

unusual properties observed, with imogolite and ferrihydrite playing a role in 

some cases.  

 

andesitic origin ranged between 4 and 21. However, extreme values of 60 and 140 

at Ruahihi and Omokoroa, respectively in the Tauranga area were reported (more 

detail on these soils is presented in section 2.7). It was concluded that in their 

undisturbed state, volcanic ash soils behave very well as engineering soils, but 

that structural collapse and water release on remoulding resulted in large strength 

losses (Jacquet 1987).  

 

Following the bibliography of Jacquet (1987) the only study which has 

exclusively investigated sensitivity in New Zealand volcanic ash soils is that by 

Jacquet (1990).  However, his ideas have been developed and discussed by 

Torrance (1992, 1995, 1996). The study of Jacquet (1990) focused on the 

allophane- and halloysite-dominated soils from the Taranaki and Waikato regions. 

Jacquet (1990) reported sensitivities between 5 and 55. The presence or 

abundance of either clay mineral did not explain the sensitivity encountered 

(Jacquet 1990).  

 

study occurred for a number of reasons, including aggregation of allophane 

particles (Torrance 1992), the fibre reinforcing effect of imogolite (Jacquet 1990), 

and the tubular shape of halloysite particles promoting physical interaction of 

aggregates (Torrance 1992; 1996). Furthermore, Jacquet (1990) found a positive 
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relationship between ferrihydrite and apparent over-consolidation ratio indicating 

a cementing action.  

 

Void ratios in Jacquet`s (1990) samples were high, between 2.11 and 3.59. 

The high void ratio was a consequence of tephra fall origin, loss of soluble 

material during diagenesis and weathering, and high strength created by clay 

bonding (Jacquet 1990; Torrance 1992; 1996). The maintenance of high void ratio 

potentially predisposed soil to low remoulded strength upon disturbance 

(Torrance 1992).   

 

Remoulded shear strengths between 1.5 and 8.5 kPa were reported by 

Jacquet (1990) with the lowest value being from a halloysite-bearing sample.  A 

decrease in strength resulted from the rupture of electrostatic bonds in halloysite 

and allophane. This rupture resulted in the structure being completely destroyed. 

Destruction of the imogolite network, observed during scanning electron 

microscopy (SEM), in allophane rich samples also assisted in strength reduction 

(Jacquet 1990). Whilst natural moisture contents in his samples were high (55 to 

108 %), these values did not exceed liquid limits (63  127 %), and therefore 

remoulded material did not flow (Jacquet 1990). Furthermore, strength was 

analysed using a uniaxial compression apparatus (shear strength = uniaxial 

compressive strength / 2; see Chapter 3), indicating remoulded samples were at 

least plastic and able to form coherent specimens. Considering the upper limit for 

remoulded strength suggested in 

volcanic ash soils manifest sensitivity in high remoulded strength (Torrance 

1996).  

 

In summarising the work of Jacquet (1990), Torrance (1992) presented a 

basic model for the development of sensitivity in volcanic ash soil (Table 2.2), 

giving both depositional and post-depositional factors. One error in this model is 

that it indicates that allophane is present on deposition and then transforms to 

halloysite. This can not be the case, because normally one would expect primary 

material to be present initially (i.e. glass, pumice, feldspar, rock fragments and 

heavy minerals) and then weather to form either allophane or halloysite or both 

depending on conditions. 
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Table 2.2: Depositional and post depositional factors causing the manifestation of sensitivity in 

volcanic ash soils, after Torrance (1992).  

Depositional  Post depositional  

Factors producing a high undisturbed strength  

Mineralogy:  

 Allophanic*  

Diagenesis and weathering to produce:  

 Halloysite 

 Imogolite 

 Ferrihydrite  

Factors producing a low remoulded strength  

Fall out origin:  

 To produce a high void ratio 

 

Mineralogy:  

 Allophanic  

Void ratio increase:  

 Dissolution of soluble material during 

weathering and diagenisis  

 

Dispersing agents  

*see text.  

 

2.7 Landslides and sensitivity in the Tauranga region   
Most of the studies involving sensitive soils in the Tauranga region were 

undertaken during the investigation of landslides, so are not to the same detail as 

the studies by Jacquet (1990). Furthermore, remoulded strengths in Tauranga soils 

are typically more liquid-like than those presented by Jacquet (1990). The liquid-

like remoulded strength typically results in mass wasting events which flow. 

Therefore the following section will discuss the more notable mass wasting events 

in the Tauranga region, making comment on the contribution of sensitivity and 

unique soil properties where appropriate.  

 

2.7.1 General observations 

Undertaking a relict slip investigation, Houghton & Hegan (1980) divided 

mass wasting events of the Tauranga region into two categories: deep seated and 

superficial failures. Both failure types were associated with intense periods of 

precipitation. Superficial failures were more widespread and occurred in regolith 

material < 2 m deep. Deep-seated failures were confined to high sea cliffs 

flowed out like a 

flat tongue.  

Rotoehu Ash, i.e. the tephra beds and associated buried soils of the Hamilton Ash 

and Pahoia tephras. One example of a deep-seated failure was the large August 

1979 failure at Bramley Drive, Omokoroa. Deep-seated failures resulted from the 

liquefaction of deep sensitive soil layers, due to pore water pressure (PWP) 



Chapter 2: Literature Review 

26 

the water table, Houghton & Hegan (1980) concluded that a small change in 

ground water conditions initiated failure condition. In conclusion, Houghton & 

Hegan (1980) defined a cliff top regression hazard zone with a ratio of 1V:2H, 

measured from the base of the slope. Adding to this hazard zone, Bell et al. (2003) 

suggested a runout angle ratio of 1V:4H, measured from the scarp crest to failure 

toe, to account for landslide mobility. 

 

2.7.2 Omokoroa  

Reports indicated that Omokoroa Peninsula has a history of mass wasting 

events following intense rainfall (Tonkin & Taylor 1980; Shrimpton & Lipinski 

1998; Keam 2008). The event at Bramley Drive during August 1979 was the 

largest in recent history. The landslide occurred in a 40 m high cliff section which 

comprised ~ 25 m of volcanic ash materials overlying ~ 15 m of volcanic breccias 

and weathered ignimbrite. The slip was retrogressive and deep-seated, being ~ 50 

m wide, ~ 30 m deep with a run out lobe of ~ 150 m. Keam (2008), using the 

classification of Cruden & Varnes (1996), termed the failure as complex with a 

transition from compound earth slide to flow. Coastal erosion was ruled out as a 

causal factor because it was too slow (0.15 m yr-1) (Gibbs 1979). During 

investigation, the impermeable basal ash bed within the Pahoia tephras was 

observed dipping 15° towards the centre of the scarp, indicating an ancient stream 

gully, and a paleo-topographical control of ground water (Gibbs 1979).  

 

Investigation undertaken during landslide investigations (Tonkin & Taylor 

1980; Smalley et al. 1980) and an MSc thesis project (Keam 2008) recorded some 

interesting soil properties at Omokoroa Peninsula. Sensitive soils had high natural 

moisture contents (60 to > 100 %) which were typically above their respective 

liquid limits (Tonkin & Taylor 1980; Smalley et al. 1980; Keam 2008). 

Sensitivity was typically > 16 but values up to 140 were reported (Tonkin & 

Taylor 1980). Keam (2008) reported remoulded strength as low as 2 kPa. A 

highly sensitive unit investigated by Tonkin & Taylor (1980) was composed of  

85 % hydrated halloysite. The halloysite plotted below the A line, therefore 

having properties of silt. Halloysite crystals were small (~0.2 µm), spherical, and 

had an Al:Si ratio of 1 (Smalley et al. 1980; Tonkin & Taylor 1980). Cementation 

was absent and the halloysite occurred as single crystals rather than aggregates. 
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Fabric was termed metastable (see section 2.3) with water loosely held in voids 

(Tonkin & Taylor 1980). Smalley et al. (1980) attributed the high sensitivity and 

low activity of the halloysite to slight inter-particle interactions between halloysite 

crystals (see inactive particle theory section 2.3). This weak bonding allowed 

brittle failure and structural collapse. Furthermore, an abundance of water 

supported material once failure had occurred. Tonkin & Taylor (1980) stated that 

PWP pressure increase facilitated the Bramley Drive event, as a result of the 

delicate sensitive material becoming overstressed and creating a basal slip plane. 

 

Keam (2008) suggested that irregularly shaped spherical material similar 

to that described by Tonkin & Taylor (1980) represented small, crystalline quartz 

grains. This material had an open porous nature, delicate structure, low plasticity 

and cohesion. Therefore, Keam (2008) suggested that in an undisturbed state, 

negative pore pressures or electrostatic forces, or both, provide temporary strength 

for sensitive material. On saturation and disturbance negative pore water pressures 

are lost within sensitive material and basal slip planes are formed. Keam (2008) 

also stated that on failure the porous nature of pumice adds moisture to the debris, 

enhancing its runout distance.  

 

2.7.3 Maungatapu 

Two authors have investigated mass wasting at Maungatapu Peninsula. 

Bird (1981) indicated that coastal cliff mass wasting events were facilitated by 

tide- and wave-driven basal erosion which caused cliff retreat and steepening. 

Subsequent failure occurred during long wet periods, as pore water pressure built 

up in lensoidal silty sands overlying an impermeable clay bed, and this process 

culminated in failure following intense rainfall events. Oliver (1997) identified 

four types of failure across the peninsula, including; 1) large scale block failures, 

2) piping-triggered block failures, 3) wave-erosion triggered block failure, and 4) 

shallow regolith failures. The piping-triggered block failures resulted from aquifer 

recharge, increasing PWP, and discharge at the cliff face. The pressure from 

discharge caused piping up to 5 metres deep, which reduced support for the 

overlying block. These failures typically do not involve the full height of the slope 

(Oliver 1997).      
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Hydrated halloysite has been identified as the dominant clay mineral at 

Maungatapu Peninsula (Bird 1981; Oliver 1997). Oliver (1997) recorded 

allophane using NaF testing in Hamilton Ash and Matua Subgroup material. Only 

Bird (1981) discussed sensitivity. Sensitive materials were identified in clayey 

marker beds, possibly the Pahoia tephras, with values up to 200 and remoulded 

strengths down to ~ 0.5 kPa. However, the remoulded strength may have been 

much lower because of laboratory equipment limitations. Rapidity number values 

suggested a large amount of energy was required to liquefy samples, indicating 

that the sensitivity of the clays played little part in the instigation of mass 

movement (Bird 1981). Oliver (1997) stated that the flow-like nature of failures 

was a result of soils moisture content and tide height.  

 

2.7.4 Ruahihi 

A less natural mass wasting event, but heavily influenced by an abundance 

of water, was the canal collapse at Ruahihi during September 1981 (Oborn 1988). 

This event destroyed 600 m of the canal and caused more than one million cubic 

metres of liquid mud and rubble to flow over adjacent farmland into the Wairoa 

River (Hatrick 1982). The physical properties of volcanic soils (including the clay 

lining and underlying material) and paleotopographic controls influenced canal 

failure (Oborn 1988; Burns & Cowburne 2003).   

 

Materials within the failure chasm were identified as tephra (Hamilton Ash 

material and younger) which overlayed non-welded ignimbrite (Oborn et al. 1982; 

Oborn 1988; Burns & Cowburne 2003). Allophane occurred in material younger 

than the Hamilton Ash. The Hamilton Ash was considered the most stable 

material and had the highest clay content. The non-welded ignimbrite had low 

clay content and consisted of spherical hydrated halloysite, arranged with a large 

amount of porosity both between individual grains and aggregates (Oborn et al. 

1982). Soils had high natural water contents, porosities, sensitivity and low bulk 

density. Moisture values often exceeded liquid limits allowing soils to liquefy and 

flow on disturbance (Parton & Olsen 1980). Subaerial deposition and low particle 

density produced materials with low dry bulk density (Oborn 1988). Prebble 

(1983) reported high sensitivities in stiff to brittle clay seams within the 

ignimbrite, but, Oborn et al. (1982) indicated that many of the units at Ruahihi are 

sensitive. Sensitivities reached values up to 60, but had remoulded strength of 1 to 
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2 kPa (Oborn et al. 1982; Prebble 1983). Sensitivity was attributed to the 

metastable fabric and poor cementation (as described in section 2.3) (Oborn et al. 

1982). Prebble (1986) suggested that the open, porous, honeycomb like structure 

of halloysite and allophane at Ruahihi may collapse when disturbed. Furthermore, 

high sensitivity may have been produced as a result of intervening cycles of 

weathering (Prebble 1986). 

  

2.7.5 Otumoetai 

Following a large storm during May 2005, a number of landslides 

occurred across the Tauranga region, most notably in the suburb of Otumoetai. 

Typically slips had the attributes of shallow arc features, which did not occur 

across the full height of the slope (Wesley 2007). An exception was one large slip 

which occurred behind a property on Vale Road, Otumoetai. It had a more bowl 

shape or deep-seated character (Figure 2.4). Failures occurred in relict coastal 

cliffs and valley heads, typically where overland flow was concentrated. Debris 

disintegrated as they moved, became intermixed with water, and thus flowed. Run 

out distances fell within the 1V:4H line projected by Bell et al. (2003). 

 

Wesley (2007) examined a slip at 198 Grange Road in some detail. He 

observed sensitivities between 3.5 and 97, with remoulded strengths between 1 

and 60 kPa. The highest sensitivities occurred in light coloured material between 

dark brown buried soil horizons, below the Rangitawa Tephra (H1). The darker 

buried soil units were considered to have good engineering properties much like 

typical brown ashes (see Wesley 1973; 1977) and the Hamilton Ash Formation. It 

was believed that the dominant clay mineral was predominantly either halloysite 

or kaolinite, with very little allophanic material (Hegan & Wesley 2005). Highly 

sensitive material had natural moisture contents which were close to or exceeded 

liquid limits (60  96 %). The ease of sample disturbance ranged between a lot of 

applied pressure and very little (Wesley 2007).  
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Figure 2.4: Slip at Vale Road, Otumoetai. Note little debris remains in the scarp and the house 

with the red roof has been pushed off its foundations (Photo courtesy of Tauranga City Council).    

 

Wesley (2007) stated that the role of sensitive soils in slope instability is 

not very well understood. It is clear that sensitivity influences post-failure 

behaviour, through liquefaction and flow. However, sensitive soils do not lose 

strength when they become wet nor do they liquefy. Failure was believed to occur 

as a result of increasing PWP, which is consistent with other observations. Wesley 

(2007) added that sensitivity is an interesting property of Tauranga soils and 

promotes the flow-like nature of slides. He suggested much work could be 

undertaken investigating their geomechanical properties and weathering histories.   

 

2.8 Summary  
 Sensitivity is defined as the decrease in strength on remoulding. 

Remoulded strength has an effect on the characteristics of post-failure behaviour, 

i.e. soils with extremely low strength will flow. Sensitivity is reasonably well 

understood in the chlorite- and illite-dominated glacial marine clays of the 

Northern Hemisphere. Less is known about the sensitive volcanic soils of New 

Zealand. Glacial marine clays are young and have been deposited in a saline 

environment, then isostatically uplifted. Sensitive volcanic clays are derived by 

weathering of pyroclastic fall materials experiencing minimal consolidation. 
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Therefore, each has different properties. Clay fractions of volcanic soils are 

typically comprised of allophane and halloysite. It is unknown whether allophane 

or halloysite offers a greater contribution to sensitivity. However, in the Tauranga 

region halloysite is associated with those mass wasting events which flow on 

failure. The remoulded strength of volcanic ash soils has yet to be recorded with 

Therefore, past authors considered that the sensitivity in volcanic ash soils 

manifests as high undisturbed strength. To date little work has provided reliable 

and specific laboratory data on sensitive volcanic soils in the Tauranga region. 

Furthermore, little is known about the weathering pathways which lead to 

sensitivity and the liquid-like nature of these soils.  
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Chapter 3  

Methods 
 

3.1 Introduction 
This chapter will give a description of the methods used in the field and 

laboratory. Emphasis will be placed on testing which has followed non-standard 

practice, or is derived from in-house methods.  

 

3.2 Field methods 
This section describes methods used in the field during the initial stages of 

this study. These methods, especially sensitivity testing, played an essential role in 

the selection of samples for later analysis. Methods involved field logging, shear 

vane testing and geomorphic mapping.  

 

3.2.1 Soil description  

Engineering geological soil descriptions were undertaken at all potential 

published by the New Zealand Geotechnical Society (2005). Descriptions of soils 

included the logging of soil colour, grain size, moisture content, strength and 

plasticity. Weathering terms were derived from the guidelines set out in Bell & 

Pettinga (1984). For ease in the field, basic terms and requirements for description 

were summarised in a flow chart (Appendix 3.1).     

 

3.2.2 Penetration resistance  

A pocket penetrometer (Figure 3.1 (A)) was used to measure the 

penetration resistance of selected units during soil profile description. Readings 

were taken every 30 cm down a profile, or at smaller intervals when units became 

noticeably thinner.  Results are reported in kilograms on a scale of 1 to 10 but 

these values should be considered approximates because the penetrometer was not 

recently calibrated. Data were internally consistent and thus gave relative 

penetration values.    
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3.2.3 Vane shear strength  

 A direct field measurement of undrained shear strength was obtained using 

a calibrated Geotechnics shear vane (Figure 3.1 (B)), following the methods 

presented by the New Zealand Geotechnical Society (2001). As with penetration 

resistance, shear strength was recorded every 30 cm down the profile or at smaller 

intervals when units were noticeably thinner or different. The vane was pushed 

into the soil approximately 70  80 mm and rotated at the rate of one revolution 

per minute. On most occasions the 19 mm vane (Figure 3.1 (C)) was used. 

However, in particularly weak soils the 33 mm vane was used (Figure 3.1 (D)). 

As the vane was turned, a spring inside became tighter providing greater force for 

shear. The soil then failed once its yield strength was reached. The strength value 

recorded from the face of the vane at failure was converted to kPa by 

multiplication with the shear strength constant determined during calibration. 

Shear strength constants were 1.562 and 0.289 for the 19 and 33 mm vanes 

respectively.   

 

 

Figure 3.1: Image displaying a pocket penetrometer (A) and a Geotechnics shear vane (B) with 19 
(C) and 33 mm (D) vanes.   

 

3.2.4 Field sensitivity testing   

Sensitivity represents the ratio of undisturbed to remoulded strength. In 

this study two methods were employed for field sensitivity testing. The first 

followed the methods set out by the New Zealand Geotechnical Society (2001), 

and hereafter will be called the standard method. The second was developed after 

discussion with a colleague at Auckland University (L. Wesley pers. comm. 2008) 

A B 

C 

D 
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and will be called the adapted method. Once sensitivity was measured it was 

correlated with standards from the New Zealand Geotechnical Society (2005), as 

presented in the Table 2.1 in Chapter 2.  

 

Both sensitivity methods used the shear vane, and undisturbed strength 

was determined by the same means as the vane shear strength method outlined in 

section 3.2.3.  However, the difference between methods occurs at the remoulding 

stage of the test. The following will outline the techniques used for each type of 

test:  

 

Standard method  

1. The soil was sheared as per section 3.2.3; 

2. Once the soil had sheared the vane was turned five complete rotations at a 

speed of approximately one rotation every 10 seconds, in the same 

direction that shearing occurred; 

3. Rotation was ceased for ~ 30 seconds to allow pore water pressures to 

dissipate; 

4. The sample was re-sheared as per the method in section 3.2.3. 

Adapted method  

1. The soil was sheared as per section 3.2.3; 

2. The vane was removed and a rubber mallet and block of wood were used 

to gently insert a 10cm long steel ring;  

3. The ring and intact core were extracted and the sample was then pushed 

into a plastic sample bag;  

4. The sample was remoulded in the bag for approximately 1 minute, or until 

it was clear that the structure had been completely disturbed;  

5. If after remoulding the sample was a soft paste or almost liquid it was 

placed into the steel ring. However if it was of thicker consistency it was 

placed back into the hole from which it was extracted; 

6. The soil was then sheared as per section 3.2.3, either inside the ring or 

hole.  

 

Because two methods were used to measure sensitivity some basic testing 

was undertaken to determine the comparability of the results. A silty CLAY unit 

which appeared homogenous and did not display extreme sensitivities was divided 
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into a grid of 12 blocks (4 x 3). Within each block either a standard or adapted 

sensitivity test was undertaken, with a total of 6 tests being completed for each 

method. Raw results are presented in Appendix 3.2. A summary of the results 

from comparison testing is presented in Figures 3.2, 3.3 and 3.4.  

 

 

Figure 3.2: Peak vane strength results from comparison testing in a homogenous silty CLAY unit 
from Tauriko, Tauranga. The black square indicates the mean value.  

 

The range of peak strength values recorded for both the standard and 

adapted method of testing was similar (Figure 3.2). However, the mean, and data 

which occurred between the first and third quartile were slightly higher for the 

adapted method than the standard method. Because the methods to measure peak 

strength were identical, the variation could only arise from either variation in the 

unit examined or the small sample size. However, a t-test indicated that the two 

sets of data were not significantly different (p = 0.58). 

 

When the same material was remoulded (Figure 3.3) the standard method 

recorded a lower mean, first and third quartile, and minimum value than the 

adapted method. The standard method also displayed a greater range of values 

than the adapted method. The narrow range of values recorded for adapted 

remoulded strength compared to the standard method may indicate that the 

adapted method provided a more consistent measure of remoulded strength 

(Figure 3.3). A t-test indicates that the data for remoulded strength were not 

significantly different (p = 0.29). 
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Figure 3.3: Remoulded strength results from comparison testing in a homogenous silty CLAY 
unit from Tauriko, Tauranga. The black square indicates the mean value.  

 

 

 
Figure 3.4: Sensitivity results from comparison testing in a homogenous silty CLAY unit from 
Tauriko, Tauranga. The black square indicates the mean value.  

 
When sensitivity was calculated for the material in Figures 3.2 and 3.3 the 

mean and data between the first and third quartile were higher in the standard than 

the adapted method (Figure 3.4). The Range of values was also greater for the 

standard method. The large relative distance which occurred between the first 

quartile and minimum value for the standard method indicated a possible outlier 

which had pulled the mean value towards a lower sensitivity than if the outlier 

was not present (Figure 3.4). Examination of the raw data indicated that most 

4

9

14

19

24

29

Standard Adapted 

R
em

o
u

ld
ed

 s
tr

en
g

th
 (

k
P

a
)

Method

4

5

6

7

8

9

10

11

12

Standard Adapted 

S
en

si
ti

v
it

y
  

Method 



Chapter 3: Methods 

38 

manual sensitivity values lay between 10 and 11 however, one value of was 5 

reported. The influence of a single low value is a consequence of small sample 

size. Considering all values measured a t-test indicated that the data were not 

significantly different at the 95% confidence interval (p = 0.09), indicating that, 

based on the data collected, the adapted method was comparable with the standard 

method and was an acceptable way of measuring sensitivity.  

 

Whilst undertaking field work it was noted that the adapted method often 

appeared more sensitive, recording more extreme values than the standard 

method. For example, in a profile at Grange Road Otumoetai (Figure 3.5), three 

instances of extremely high sensitivity were identified by the adapted but not the 

standard method. In each of these cases, material was highly dilatant when 

extracted and remoulded giving a much lower remoulded strength by the adapted 

method. It is possible that the standard method does not remould the soil enough 

to cause the required amount of disturbance. For example, Lancelotta (1995) 

recommended the shear vane be turned 25 times before remoulded strength is 

recorded, whilst Keam (2008) rotated the vane 30 times before taking a 

remoulded measurement (compared with the 5 revolutions used here as per the 

standard method).  

 

The adapted method ensures that soil structure is completely destroyed, which 

is analogous to a highly disruptive failure event. Furthermore, sensitivity was 

determined after physical remoulding of samples in unconfined compression 

(Head 1994), triaxial compression Fredericksen (1988), cone penetration (Kezdi 

1980; Bird 1981) and shear box tests (Chandler & Rogers 1980). Craig (1997) 

states that remoulding for test purposes is normally brought about by the process 

of kneading. Therefore it is logical that sensitivity using a field shear vane should, 

where possible, be determined by physically remoulding the sample. In this study, 

both methods were used in the field but because the adapted method clearly 

destroyed the structure of the soil, it was heavily consulted for the selection of 

samples for further laboratory work. 
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Figure 3.5: Comparison of sensitivity values for the standard and adapted method down a soil 
profile at Grange Road, Otumoetai. The graph indicates that on 9 occasions the adapted method 
recorded higher sensitivities than the standard and on 8 occasions the standard method was higher 
than the adapted. Note the peak strength values were identical because the remoulded material for 
the adapted method was removed from the same location as the standard method. This means that 
any variation in sensitivity will manifest in remoulded strength.     
 

3.2.5 Geomorphic mapping 

At sites of interest, geomorphic mapping was undertaken. This was done 

to give the area investigated a landscape perspective. The symbols used in the 

production of a geomorphic map were taken from Gardiner & Dackombe (1983) 

0 5 10 15 20 25 30 35 40

3.4

4

4.6

5.2

5.8

6.4

7

7.6

8.2

8.8

9.4

10

10.6

11.2

11.8

12.4

13

Sensitivity 

D
ep

th
 (m

)

Adapted  

Standard  



Chapter 3: Methods 

40 

and are summarised in Appendix 3.3. Slope profiling for geomorphic mapping 

was undertaken using a Suunto optical reading clinometer. Because field 

investigation was undertaken independently a rigid steel pole was used for 

sighting which had specific eye level markings.   

 

3.2.6 Field sampling 

 Samples taken in the field for laboratory analysis included bulk samples 

for moisture content, Atterberg limits, and mineralogy, and core samples for 

strength testing. Description of the protocol followed during sample collection can 

be found in Appendix 3.4.  

 

3.3 Laboratory methods  
The following section presents laboratory methods used to characterise 

samples that were selected as a result of field testing.   

 

3.3.1 Moisture content 

Field moisture content was determined using the method set out in New 

Zealand Standard (NZS) 4402 (2.1) (1986). The procedure followed was for fine 

soils, because greater than 90% of the sample would have passed through a 2mm 

sieve. Moisture content was calculated by: 

 

(%)100
soilofweightdryoven

soilofweightinloss
contentMoisture     (3.1) 

 

Moisture factor was calculated for converting wet to dry bulk density. 

Moisture factor was calculated by:  

 

soilofweightdryoven

soilofweightmoist
factorMoisture

     (3.2) 
 

3.3.2 Bulk density  

New Zealand Standard 4402 (5.1.3) (1986) was followed as closely 

possible for the determination of bulk density. In the laboratory fine sand was 

used to correct for the absence of any missing soil; this is not a requirement of 

NZS 4402. Bulk density was calculated from:   
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)( 3mkg
soilofvolume

soilofmass

      (3.3)
 

3.3.3 Particle density  

The method used for soil particle density was outlined by both Head 

(1992) and Vickers (1978). The density bottle method was used as it is suited to 

soils with particles of less than 2 mm in diameter (Head 1992). Particle density 

was found by the equation: 

 

)()( 3mkg
particlesofvolume

soildryofmass
densityParticle s

   (3.4)
 

3.3.4 Porosity 

Porosity was calculated using dry bulk density and average particle density 

for each sample (McLaren & Cameron 1996). Porosity was calculated by: 

 

(%)
)(

)(
1

3

3

mkgdensityparticle

mkgdensitybulk
porositySoil

   

 (3.5)

 

 
Note that void ratio is inversely related to porosity through the equation:  
 

=  
1  

   and   =  
1 + 

       (3.6) 

 

where; 

e = void ratio; 

 

 

3.3.5 Degree of saturation  

The degree of saturation represents the volume of water contained in void 

spaces between soil particles and is expressed as a percentage of total voids (Head 

1994): 
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      =   (%)                                                                                           (3.7) 

where; 

Sr = the saturation ratio (typically expressed as a %); 

s = particle density (kg m-3); 

w = moisture content (%). 

 

3.3.6 Particle size 

A Malvern Mastersizer laser particle sizer was used to measure particle 

sizes. An in-house method was used for sample preparation, which involved the 

removal of organic matter using H2O2 and dispersion of clay particles with calgon 

(Appendix 3.5). Following analysis, particle sizes were categorized using size 

classes from NZS 4402 (1986) (Table 3.1).  

 

Table 3.1: Particle size divisions which are in accordance with NZS 4402 (1986).   

Description Particle Size (mm)  

Clay 0.000060 - 0.002 0.060  2 

Silt 0.002  0.06 2  60 

Sand 0.06 - 2 60 - 2000 

 

Because the Malvern Mastersizer measures particles as equivalent spheres 

results are volume based. This is important because one would need one thousand 

1 µm particles to have the same volume as a single 10 µm particle. Furthermore 

results from sieving and sedimentation are based on the narrowest dimension and 

total surface area respectively.  

 

When using the Mastersizer it is important to optimise the experimental 

method and calculation constants for the material being examined. In particular, 

optical parameters and sample size (obscuration) must be considered, as changes 

in these can have a large impact on apparent size distributions. These parameters 

will be discussed in turn.  

 

The Malvern Mastersizer uses the Mie theory to predict the light scattering 

behaviour of particles (Malvern 1999). A requirement of this theory is that the 

material properties of refractive indices (RI) and adsorption (A) must be entered 

into the Mastersizer. The Mastersizer then creates an optical model using the RI 
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and A parameters. The selection of appropriate RI and A values is important 

because variations in optical properties can significantly alter estimated grain size 

distributions (Sperazza et al. 2004). RI values for single materials can be found in 

the manual provided with the instrument (Malvern 1997). Because the soils in this 

study were comprised of a variety of minerals, with different optical properties, no 

single value was appropriate. The Mastersizer has default optical parameters for 

soil with an RI of 1.56 and an A of 0. Unfortunately the A value of 0 implies that 

all particles in the samples are semi transparent and perfectly spherical, which is 

typically not the case for soil samples (Bryn McDonagh pers. comm. 2008). 

Therefore the default soil settings in the Mastersizer were initially employed and 

then improved using the data fit package supplied with the machine.  

 

The data fit program calculates the residuals between fitted (from the 

optical model) and measured data. The fit package also compares residuals from 

weighted and unweighted data, where weighting takes into account the fact that 

smaller particles scatter less light than larger ones. Values are presented 

numerically as weighted and un-weighted residuals and also graphically. The 

graphical plot displays light energy recorded by each detector in the Mastersizer 

and presents lines of measured and fitted data. These can be used to decide which 

parameters (i.e. RI or A) need altering; typically the closer the lines are to each 

other the better the fit. The general rule is that a bad fit in low detector channels 

indicates a poor choice of RI, and a bad fit in high detector channels represents a 

poor choice of A. An example showing a good fit with low residuals (~ 0.5) is 

presented in Figure 3.6. 

 

 

Figure 3.6: Graph of detector number versus light energy showing plots of measured (green line) 
and fit data (red line) for a soil sample from Tauriko Tauranga.  
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Numerically a good fit occurs when the weighted and unweighted residuals are of 

similar magnitude and both are low, e.g. a value of < 1 is adequate (Malvern 

1999). However the results derived must be believable, in terms of what is being 

examined. For example, a sample which is visibly sandy (quartz grains etc) should 

not display a distribution of entirely clay.  

 

Table 3.2 indicates the impact of changing optical parameters on estimated 

clay fraction material (<2 µm), for soils of this study. Table 3.2 indicates that the 

residual values provided by the default model (RI = 1.56) are good but can be 

improved by adjusting RI to 1.57 and A to 0.01. This adjustment increased the 

clay fraction by ~ 3 % (Table 3.2). Interestingly if RI was changed to 1.38 and the 

clay fraction increased by ~ 76%, the residuals recorded were very bad. This 

exceptionally high value indicates the importance of selecting appropriate optical 

properties. Therefore, for the sample in Table 3.2 an RI of 1.57 and an A of 0.01 

was employed.  

 

Table 3.2: Effect of changing the optical parameters RI and A for a sample of material from 
Tauriko examined in this study.   

Refractive 

Index 
Absorption Residual 

Weighted 

Residual 

< 2 µm material 

recorded (%) 

1.56 0 0.405 0.461 4.81 

1.57 0.01 0.180 0.178 7.21 

1.44 

1.38 

0.01 

0.01 

0.255 

2.705 

0.916 

7.083 

26.87 

80.75 

 

All samples in this study were tested at RI values between 1.52 and 1.57, 

with an A of 0.01. The RI values chosen gave very good unweighted and 

weighted residual fits, with maximum values of 0.757 and 0.966 respectively. The 

RI values used are sensible considering that volcanic glass, feldspar and quartz 

have RI values of 1.50, 1.52  1.59, 1.54  1.56 respectively (Malvern 1997). 

These materials were recorded by XRD in samples of this study (see Chapter 6). 

No RI value for halloysite, also observed in this study, could be found but an 

associated kaolin group mineral, kaolinite, has an RI between 1.53 and 1.57 

(Malvern 1997).  

 

Obscuration represents the amount of sample added to the Mastersizer 

chamber. The manual recommends that for samples with a diverse size range, 



Chapter 3: Methods 

45 

such as soil, obscuration should be ~ 25% (Malvern 1999). The general guideline 

at Waikato University is to never test samples at an obscuration above 20%, due 

to the risk of re-scattering light. However, re scattering of light does not typically 

occur until obscuration is > 30 % (Bryn McDonagh pers. comm. 2008). 

Investigating fine grained sediments, Sperazza et al. (2004) found that results 

were most repeatable at an obscuration of ~ 20%.  

 

Because of this contradiction all samples were examined across a range of 

obscuration values, typically 0  35 %, to see if this had an impact on the mass 

median diameter (d = 0.5). Using a manual analysis material was added to the 

mastersizer chamber at obscuration increments of 2 %. After each increment of 

material was added to the sample chamber a reading was taken. The sample 

chamber was not flushed out between subsequent 2 % increments of material. Not 

flushing the sample chamber meant material which was measured at 2 % 

obscuration was still present for a measurement at 32 %. The results from this 

examination were then plotted as obscuration versus median diameter. An 

example is presented in Figure 3.7 and results for each sample are presented in 

Appendix 3.6.    

 

 

Figure 3.7: Graph of obscuration versus median particle size (d = 0.5) for a soil sample taken 

from Tauriko.  

 

With the exception of one sample, it was found that at low obscuration 

median particle size was greater than that observed at higher obscurations. Often, 

as shown in Figure 3.7, median particle size would remain stable until a certain 
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obscuration (17 % in Figure 3.7) and then suddenly decrease. However, one 

sample from Tauriko displayed a steady decrease in median particle size from low 

to high obscuration (Figure 3.8). A sample from Otumoetai displayed a sudden 

decrease in median particle size at and obscuration of ~ 16 % (Figure 3.9), yet the 

overall trend displayed a decrease.  

 

 

Figure 3.8: Graph of obscuration versus median particle size (d = 0.5) for a soil sample taken 

from Tauriko.  

 

 

Figure 3.9: Graph of obscuration versus median particle size (d = 0.5) for a soil sample taken 

from Otumoetai.  

 

This phenomenon is potentially the result of smaller particles being more 

significant, on a volumetric basis, at higher levels of obscuration. This is a 

problem when samples with a range of size classes are being investigated (Bryn 
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McDonagh pers. com. 2008). To determine the obscuration value to test samples 

at, a number of methods were employed depending on the shape of the 

obscuration versus median particle size graph. The following method was used to 

determine the obscuration to analyse samples which displayed the phenomenon 

observed in Figure 3.7, and an example is given in Figure 3.10. Two lines were 

drawn, one along the flat section of the graph and then another along the sloped 

section. The point where these two lines intersected represented the inflection of 

the curve. This point was used to determine the obscuration to test samples at 

(Figure 3.10). This method ensured that the samples were tested at the highest 

possible obscuration to ensure a fair representation of grain sizes, but not to 

represent a point where estimated mean diameter was unstable.    

 

 

Figure 3.10: Graph of obscuration versus median particle size (d = 0.5) for a soil sample taken 

from Tauriko showing the method used to determine the obscuration to be used for particle size 

analysis.  
 

Where the median size steadily decreased or remained the same across a range of 

obscuration, samples were analysed at obscuration values between 22 and ~ 24 %. 

These obscuration levels took into consideration the values recommended by 

Malvern (1999) (25 %) and the findings of Sperazza et al. (2004) (20 %). 

 

Following the determination of optical parameters and obscuration levels 

new samples were prepared and tested at the values calculated. Each test was 

repeated 3 to 5 times, depending on sample availability, and results were averaged 

to account for the variability within samples.  
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3.3.7 Atterberg limits  

Atterberg limits were determined following methods outlined by both 

Head (1992) and NZS 4402 (1986). Soils were not sieved because particle size 

analysis indicated that, with the exception of one sample, ~ 95% of material 

would pass through a 425 µm test sieve. In the one exception 90 % of material 

would have passed through a 425 µm test sieve. This soil was tested unaltered 

because the value was not exceptionally low and it was more representative to 

analyse the material as a whole soil. Furthermore, soils were not dried because the 

content of allophane was not known with any certainty and it was thought that air 

drying may have an irreversible effect on Atterberg limits (Allbrook 1983).  

 

3.3.7.1 Plastic limit  

NZS 4402 (2.3) (1986) was used to determine the plastic limit, which is 

the moisture content were the soil passes from a plastic to solid state (Head 1992). 

In this method the temperature of the hands was used to decrease the moisture 

content of the sample so it sheared longitudinally and laterally when rolled into a 

3mm thread.  

 

3.3.7.2 Liquid limit  

The liquid limit was determined using the cone penetration limit as set out 

in NZS 4402 (2.5), which was also found in Head (1992) specifically as a liquid 

limit test. Liquid limit is the theoretical water content when a soil passes from a 

plastic to a liquid state (Selby 1993), and is found at moisture content when the 

cone penetrates 20 mm into the sample. Cone penetration measurements at 

different moisture contents above and below the liquid limit (20 mm) were taken. 

The values were plotted on a graph of moisture content versus cone penetration 

and a line of best fit was plotted. The moisture content at 20 mm penetration 

representing the liquid limit was then read off the graph.      

 

3.3.7.3 Plasticity Index 

Plasticity index was calculated following the guideline in NZS 4402 (2.4) 

and is the numerical difference between the liquid and plastic limit (sections 

3.3.7.1 and 3.3.7.2). This is presented in the equation below: 

 

Plasticity index (PI) = liquid limit (LL)  plastic limit (PL)    (3.8) 
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3.3.7.4 Liquidity index 

plasticity index (Selby, 1993). If the liquidity index is 0 then the soil is at its 

plastic limit, at 1 the soil is at its liquid limit, and above 1 means the natural 

moisture content of the soil is greater than its liquid limit. Liquidity index is 

calculated from: 

 

PI

PLNMCcontentmoisturenatural
IndexLiquidity

)(

   (3.9)
 

 

3.3.8 Activity   

Activity measures the plasticity of clay-size particles in a sample, and is 

calculated from the following equation:  

 

contentclay

PI
Activity

%
        (3.10) 

 

3.3.9 Rapidity number 

Whilst the basic classification of sensitivity has been set out in Chapter 2, 

it does not take into account the energy required to mobilise soil material. 

Soderblom (1975) developed the rapidity number which gives an estimate of the 

amount of energy required to produce the drop in strength, from peak to 

remoulded, indicated by a classification number (Table 3.3). A low value 

indicates a large amount of energy would be required to cause sample disturbance, 

whereas a high number indicates only a small amount of energy is required. The 

importance of this is that an exposed, highly rapid layer would be more likely to 

transport material than a layer of equal sensitivity, but lower rapidity (Geertsema 

et al. 2006b).  

 

In this study the determination of rapidity number was undertaken using 

the method outlined by Soderblom (1975). An undisturbed core sample (40mm in 

height and 60mm in diameter) was dropped from a height of 10 mm 250 times, 

classified on a scale of 1- 10 (Table 3.3).  
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Table 3.3: Rapidity number classification scale, where 1 represents a sample which is hardly 

affected after 250 blows in the Casagrande device and 10 indicates the sample has completely 

liquefied. Table is taken from Soderblom (1975).  

Rapidity number Rn Degree of Disturbance 

1 Samples not visually affected. 
  

2 Hardly visually affected. 
  

3 About 1 mm of the bottom part deformed to a gelatinous mass. 
  

4 About 5 mm of bottom part deformed, gelatinous mass formed. 
Upper part usually visually unchanged. 

  
5 About 5mm of the bottom part deformed, gelatinous mass and liquid 

mass formed. Upper part visually unchanged. 
  

6 About 10mm of bottom part deformed, gelatinous mass of liquid 
formed. Upper part visually unchanged. 

  
7 Bottom part highly deformed, liquid mass formed. Upper part 

visually unchanged. 
  

8 Whole sample begins to deform, liquid mass formed. Sharp edges 
and irregularities disappear. 

  
9 Whole sample highly deformed, liquid mass forms and begins to 

flow out of the vessel. 
  

10 Whole sample transformed into a liquid mass.  

 

3.3.10 X-ray diffraction  

X-ray diffraction (XRD) was used to identify crystalline species present in 

the clay and bulk fraction of each sample. The method relies on the principle that 

each crystalline substance has a characteristic arrangement of atoms which 

diffracts x-rays in a unique pattern (Whitton & Churchman, 1987). Observed 

patterns are then correlated with known patterns to determine the mineral species 

present.  The machine used was a Philips PW analytical defractometer. The 

scanning range in the study wa

analysed including all sand, silt and clay size classes. The clay fraction of each 

sample was also investigated separately.  

 

No pre-treatment was undertaken on bulk samples as they were dried and 

crushed before testing in aluminium holders. In preparing the clay fraction 

Whitton & Churchman (1987) recommend perioxidation using H2O2 and 

deferration by dithionite (CBD) extraction to remove organic matter and Fe 

oxides respectively. Because of the volcanic origin of the soil in this study, these 

treatments were not used as it was thought that the chemicals may cause 

degradation and dissolution of constituent clay minerals (Lowe 1981; Lowe & 
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Nelson, 1983). Samples intended for XRD analysis of the clay fraction were 

separated using settling towers and Stokes law. In order to disperse samples, prior 

to placing in the settling tower, samples were soaked in calgon and mixed in an 

end-over-end shaker overnight and then treated with ultra-sonication for 5 

minutes. Once samples were placed in the settling tower Stokes law was used to 

determined the time it would take for only clay sized material (< 2 µm) to remain 

in the top 12 cm of the tube. Stokes law is represented by the following equation:       

 

2.)(

9

2 rg
V Ls

        (3.11)
 

 

where;  

V = velocity of the falling particle (cm/s); 

s = mass density of particles (g/cm3); 

L = mass density of the water (g/cm3);      

g = acceleration due to gravity (cm/s2); 

r = radius of the particle (cm); 

 = viscosity of the liquid (poise or g/cm/s).  

 

Once the calculated time had elapsed the top 12 cm was decanted off the 

settling tower into a separate beaker. The solution in the beaker was saturated with 

MgCl to encourage flocculation as per the method of Whitton and Churchman 

(1987).  

 

Once the clay fraction was separated and flocculated, an eye dropper was 

used to place samples on glass slides and porous ceramic tiles. The glass plates 

were dried over distilled water for ~ 24 hours to ~ 48 hours in an attempt to stop 

low temperature dehydration of 10 Å to 7 Å halloysite (Kirkman & Pullar 1978; 

Lowe 1981). Ceramic tiles were used because their high porosity meant that any 

free water was drawn away from the surface of the clay and thus samples could be 

scanned in a field-moist condition. Samples prepared on ceramic tiles also 

appeared in better condition than those on glass. For example samples on glass 

slides tended to crack, which is a consequence of the dropper on glass slide 

method (Lowe & Nelson 1983) while those on ceramic tiles remained whole.  
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The benefit of preventing sample dehydration allows differentiation 

between species of halloysite and kaolinite. Samples can also be assessed in their 

actual field hydration state (Lowe 1981). Once halloysite inter-layer water is lost 

the mineral cannot be rehydrated with the application of water (Joussein et al. 

2006).  

 

Following sample preparation of the clay fraction and bulk sample a 

number of treatments were undertaken to help with identification of different 

minerals, these are presented in table 3.4. Treatment 1 (Table 3.4) was a scan of 

the dried bulk fraction in an aluminium holder. Treatment 2 in Table 3.4 involved 

sample heating; this helped to determine the types of kaolin species present and 

excluded the presence of mica, chlorites, smectites and vermiculite (Brindley & 

Brown, 1980; Lowe and Neslon, 1983; Mitchell & Soga 2005). The application of 

formamide following the methods of Churchman et al. (1984), as in treatment 3, 

enabled the distinction between kaolinite and dehydrated halloysite.  

 
Table 3.4: Three different treatment types which each sample was subject to. Each sample began 

analyses at step 1 and then proceeded through to steps 2, 3, 4 etc. until analysis was complete. 

Treatment Step 1 Step 2 Step 3 Step 4 Step 5 Step 6 

1 

Dried 

Bulk 

Sample 

untreated 

Scan 

Sample 
    

       

2 

MgCl 

saturated 

clay + air 

Scan 

Sample 

Heated to 

110°C for 

1 hr 

Scan 

Sample 

Heated to 

550°C for 

1 hr 

Scan 

Sample 

       

3 

MgCl 

saturated 

clay + air 

Scan 

Sample 

1 drop of 

formamide 

added 

Scan 

Sample 
  

 

Classification of peaks, and hence mineralogy, was interpreted using 

tables and text presented in Brindley & Brown (1980), Lowe & Nelson (1983) and 

Moore & Reynolds (1997). 

 



Chapter 3: Methods 

53 

3.3.11 Allophane and Ferrihydrite identification  

The testing of soil samples for the determination of allophane and 

ferrihydrite was undertaken by Landcare Research in Palmerston North. The basic 

laboratory methods used by Landcare and the calculations used to determine 

allophane and ferrihydrite will be described in the following section.   

 

3.3.11.1 Allophane  

In the laboratory a quantitative estimation of allophane was obtained using 

acid oxalate Al and Si extraction (Parfitt 1990). XRD analysis indicates that acid 

oxalate is an effective reagent for dissolving allophane (Campbell & 

Schwertmann 1985). Imogolite also dissolves in acid oxalate but the amount in 

New Zealand soils is usually very small (Parfitt 1990; Lowe & Percival 1993). To 

account for organically bound Al, pyrophosphate extractable Al was measured 

(Parfitt 1990).  All measured values were used in the following equation to 

calculate the Al:Si ratio of each sample:  

 

: =
   

        (3.12) 

 

where: 

Al:Si = Al to Si ratio; 

Alo = Acid oxalate extractable Al; 

Alp = Pyrophosphate extractable Al; 

Sio = Acid oxalate extractable Si.  

   

The Al:Si ratio was used to find the factor in Table 3.5 which was 

multiplied by acid oxalate extractable Si to determine allophane content (%) in 

each sample. 

 
Table 3.5: Al:Si atomic ratios of allophane and the factor (A) to be used in estimating allophane 

table taken from Parfitt (1990).  

Al:Si Factor
A
 Al:Si Factor

A 

1.0 5 2.5 10 

1.5 6 3.0 12 

2.0 7 3.5 16 
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3.3.11.2 Ferrihydrite   

Ferrihydrite was estimated by multiplying acid oxalate extractable Fe by 

1.7 as described by Parfitt & Childs (1988).   

 

3.3.12 Grain mounts  

Grain mounts were used to analyse mineralogy, especially non-clay minerals. 

Grain mounts were made from the fine sand fraction of each sample. To separate 

out the fine sand fraction (60  200 µm) samples were dispersed using similar 

preparation techniques as particle size (see Appendix 3.5) and then wet sieved.  

Samples were mounted in resin on a glass slide and then viewed using a 

petrographic microscope.  

 

3.3.13 Scanning electron microscopy 

The Scanning Electron Microscope (SEM) has the ability to allow 

description of clay, sand and silt particles and their interactions directly. Therefore 

the SEM was used in this study to help determine both mineralogy and 

microstructure of the samples under investigation.    

 
Because the SEM requires an evacuated sample chamber, specimens were 

observed in a dry state. Specimens were mounted on carbon tape as either crushed 

powder, for mineralogy, or as intact blocks, for microstructure and mineralogy. 

Following mounting, carbon paint was applied to the edges of the intact block and 

all samples were coated with platinum. The use of platinum coating, carbon paint 

and carbon tape prevents charging and loss of resolution by providing a 

conduction pathway for electrons. Initially samples were tested at an acceleration 

rate of 20 kV, however the high porosities meant charging was a problem so the 

acceleration rate was decreased to 5 kV.  

 

A number of samples, especially clay minerals, were investigated using 

energy dispersive x-ray analysis. This technique allowed the determination of 

elemental compositions of material under investigation. However, for this to be 

undertaken the sample had to be scanned at an accelerating voltage of 20 kV, 

which had a detrimental impact on image quality.    
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3.3.14 Unconfined compressive strength  

Unconfined compressive strength of a sample was measured using a 

drained triaxial cell following the method of Head (1994) and NZS 4402 (1986). 

Samples tested were 100 mm tall with a diameter of 50 mm and tested at a 

compression rate of 2 mm min-1, which is the appropriate speed for a sample of 

the stated diameter (Head 1994). Because the number of specimens was limited 

each sample was tested only once.  

 

Load was recorded using an electronic cell and failure was considered to 

occur at peak stress. All calculations were completed by the WINCLISP program.  

The WINCLISP programme converted unconfined compressive strength to shear 

strength using the equation from Head (1994): 

 

=  
1

2
         (3.13) 

 

where: 

Cu = unconfined compressive shear strength (kPa);  

qu = unconfined compressive strength (kPa). 

 

3.3.15 Calculated determination of remoulded shear strength  

During field testing the remoulded strength was often very low (< 1 kPa), 

making accurate measurement difficult. The method of Sharma & Bora (2003; 

2005) was employed to estimate undrained shear strength of a remoulded soil 

based on moisture content, liquid and plastic limit (Sharma & Bora 2003). The 

method assumes that the undrained shear strength for any soil at its liquid limit is 

1.7 kNm2 (Sharma & Bora 2003; 2005). The equation is presented below: 

 

)/(
)/(

2
wwLog

wwLog
LogLog L

PL

LL

    (3.14) 

where:  

 

LL = Undrained shear strength at the liquid limit (kPa);  

w = Water content (%); 

wL = Liquid limit (%); 

wP = Plastic limit (%). 
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Sharma and Bora (2003) recommend that a 3.92 N, 30 degree cone is used 

for plastic limit and a 0.59 N, 60 degree cone is used to determine liquid limit. 

However these were not available at the University of Waikato, so the values 

entered into the equation are based on liquid limits derived from a 0.78 N, 30 

degree cone. Plastic limits have been 

described in section 3.3.7.1. Therefore results should be considered estimates.  

 

3.3.16 Direct shear test  

An important property of soil is its strength. One simple measure of this is 

the determination of the Mohr-Coulomb parameters cohesion (c) and friction 

angle ( ) using a laboratory shear box. Cohesion is dependent on inter particle 

forces and friction angle is dictated by structural roughness within a specimen. 

Whilst effective stresses can be measured with the shear box only total stresses 

were required for this study, thus undrained unconsolidated tests were undertaken. 

 

A Wykeham Farrence shear box was used (model number 25000), which 

sheared 60 mm circular samples along a predetermined horizontal plane. Sample 

slippage was prevented by placing two grooved plates perpendicular to the 

direction of shear. Shear strength was measured using a calibrated proving ring 

and vertical deformation was measured with a dial gauge. Specimen analysis was 

undertaken at a strain rate of 0.3 mm min-1. Detailed shear box methods can be 

found in Chandler & Rodgers (1980), however the following will outline the 

determination of normal load and area correction applied.   

 

Normal load was applied through a dead weight system directly above the 

specimen. Selection of the normal load was based on what would best bracket in 

situ overburden pressure. For example sample OS4 is 8 m deep; considering 

approximate wet bulk density above the sample (~ 1400 kg m3) the in situ over 

burden pressure was calculated as ~109 kN m-2. Therefore specimens were tested 

at approximately 7, 20, 50, 100 and 180 kN m-2. The lower normal loads (~ 7 and  

~ 20 kN m-2) were used in an attempt to accurately estimate cohesion (c), the 

value at 100 kN m-2 was close to the estimated overburden value. The upper load 

(~ 180 kN m-2) was ~ 50% larger than the estimated in situ value. However, 

consideration was given to the fact that the material under investigation may be at 
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a different depth at other locations. Other shallower units were tested at similar 

values. Full equations are given in Appendix 3.7. 

 

Because the area of soil to soil contact decreases during shear, an area 

correction was applied to allow for the displacement of material at either end of 

the specimen. Area corrections were only applied to the shear stress readings; the 

calculation used is presented below and can be found in Bareither et al. (2008):    

 

 

2

1 1
2

cos
90

1

DDD
AA hhh

ICS

      (3.15)

 

 

where: 

ACS = Corrected area (mm2); 

AI = Initial area (mm2); 

h = horizontal displacement (mm); 

D = diameter of the shear box (mm).  

 

3.3.17 Triaxial  

 A triaxial apparatus was used to obtain both effective and total strength 

parameters for selected samples. The triaxial allows control of stresses along three 

principal axes and stress application under conditions of axial symmetry (Craig, 

1997). Unlike the shear box, the triaxial does not impose a plane of failure on a 

sample and allows the characteristics of natural failure to be closely observed 

(Bird 1981). The general principles and methods followed for triaxial testing in 

this study are comprehensively discussed in British Standard (BS) 1377 (1990) 

and Head (1994; 1998). It should be noted that all samples tested had a height of ~ 

100 mm and a diameter of ~ 50 mm giving a height to diameter ratio of 2. The 

following section will briefly outline the system used, give justification to the type 

of test undertaken, and describe the production of Mohr-Coulomb parameters.  

 

3.3.17.1 Apparatus description  

Testing was conducted using a VJ tech strain controlled triaxial. The test is 

strain controlled because the base platen is driven up at a predetermined rate of 

displacement, so that the sample is deformed at a constant rate of strain (Head 
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1998). The system was fully electronic with load, strain, volume change and pore 

water pressure readings all being recorded on a 16 Channel VJ Tech MPX3000 

data logger. De-aired water was supplied from a DeNold Deaerator, water was 

considered completely de-aired when bubbles had ceased to appear in the closed 

vacuum cell. Using a Mettler Toledo oxygen meter dissolved oxygen was 

measured at 1.38 ± 0.15 mg/L (or ppm), which is below the 2 ppm maximum 

recommended for de-aired water (Head 1998).  

 

Cell and back pressure were provided by two air-water cells with butyl 

rubber bladders. A regulated level of compressed air was passed into the butyl 

rubber bladders which inflated to increase either cell or back pressure. 

Compressed air was provided via a piped line from a main supply. However, this 

supply did not provide enough pressure (750 kPa) to undertake certain pre-test 

checks required in BS 1377 (1990), nor did it allow enough cell pressure to be 

applied following saturation and consolidation. This was overcome by installing a 

2:1 in-line air pressure amplifier.  

 

The pore water pressure (PWP) transducer was calibrated using a DHT 

920 portable calibrator. Both zero (0 bar and 0 mV) and maximum output (10 bar 

and 100 mV) were applied using the calibrator to determine the span of the PWP 

transducer. The recorded values were entered into the data logger which divided 

the span value by 1000 kPa (10 bar). Originally both cell and back pressure were 

read off a dial gauge on the wall; this could not be calibrated either individually or 

with the PWP transducer. This proved problematic because during the saturation 

stage both readings from the dial gauge and PWP transducer were entered into an 

equation to calculate the pore pressure coefficient B. To have confidence in this 

calculation all pressure measurement devices should be calibrated. To overcome 

this problem, it was decided to connect the cell and back pressure lines into the 

calibrated PWP transducer as shown in Figure 3.11. During operation, taps could 

be closed to isolate either the pore water, back or cell pressure systems. This 

represents a modification of the original VJ Tech apparatus 
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Figure 3.11: Image of Pore Water Pressure transducer with inlet taps A and B. Tap A is closed 

and B is left open to make a PWP pressure measurement. However to make a cell or back pressure 

measurement tap A is closed and B is opened. C represents the block which the PWP transducer is 

attached to.  

 

3.3.17.2 Triaxial test type  

  Three standard triaxial tests were attempted during this study; 

unconsolidated undrained (UU), consolidated undrained (CU) and consolidated 

drained (CD). The main differences between each test type are outlined in Table 

3.6. 

 

Table 3.6: The main differences between unconsolidated undrained, consolidated undrained and 

consolidated drained for triaxial testing. Parameters entered under each category are compiled 

from Craig (1997) and Head (1994; 1998).   

 
Unconsolidated 

Undrained 

Consolidated 

Undrained 

Consolidated 

Drained 

Pore water pressure 

measurement, during 

testing 

No Yes Yes 

    
Saturate 

Sample until B = 95% 
No Yes Yes 

    
Consolidate until 95% 

PWP dissipation 
No Yes Yes 

    

Drainage No 
Only during 

consolidation 
During consolidation 

and shear. 
    

Normal stresses Cell Pressure 
Cell Pressure  
Back Pressure 

Cell Pressure  Back 
Pressure 

    

Strain rate 
Failure within 

minutes 

Slow enough to 
allow pore water 

pressure 
equalisation and 

measurement 

Slow enough to 
prevent pore water 
pressure build up. 

    
Duration test time per 

sample 
Minutes to Hours Day to days Days to a week 

    
Cohesion Total Total and Effective Total and Effective 

    

Friction Angle Total Total and Effective 
Total and Effective 
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The UU method, whilst quick, only allows the measurement of total stress 

parameters c and . Because soils under investigation were almost fully saturated 

(see Chapter 5)  was very low. An example of this is presented in Figure 3.12 

where the sample has a friction angle of 4.5° and cohesion of 10 kPa.   

 

 

Figure 3.12: Mohr circle plot from an unconsolidated undrained triaxial test of a saturated sample 

examined during the course of this study.   

 

The phenomenon presented in Figure 3.12 is not uncommon in saturated 

samples tested under UU conditions, because in a saturated undrained test 

1  3) at failure is independent of cell pressure (Bishop & 

Henkel 1962). When cell pressure is increased the response from PWP within the 

saturated specimen is almost identical. Therefore, no matter the amount of 

increase in cell pressure the effective stresses in the specimen will remain 

unchanged. Because the effective stresses are the same deviator stress will remain 

3). This results in 

Mohr circles of similar sizes at different positions along the total stress axis (Craig 

1997). Therefore UU tests were not undertaken on samples in this study. 

Furthermore, total stress values can be obtained from both consolidated undrained 

and drained tests.   

 

The consolidated drained (CD) test provides long term values of shear 

strength (Selby 1993), however it was not used to test more than one sample. The 

results of this test were not analysed. Because the test times were long (one 

specimen took a week) in all three specimens examined, peak deviator stress was 

not reached before 20 % strain. Considering that up to 7 samples were intended to 

be tested, the operator was relatively inexperienced, and the time frame for this 

study, it was decided that this type of test was inappropriate.  
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Consolidated undrained (CU) tests were relatively quick (1  2 days per 

specimen) and a peak in deviator stress was observed in most samples. Therefore, 

consolidated undrained tests were undertaken on all samples and provide both 

effective and total strength parameters examined in this study. Whilst drained tests 

are relevant for slope failures which are slow and progressive, consolidated 

undrained tests are more appropriate for rapid failures (Selby 1993). This is 

applicable to the Tauranga region as failures are typically rapid (Tonkin & Taylor 

1980; Hatrick 1982; Wesley 2007). Furthermore, results from consolidated 

undrained tests are typically similar to those of a drained test (Selby 1993); 

differences become most apparent in heavily consolidated clays (Head 1998).   

 

3.3.17.3 General test protocol  

The type of CU test employed was a single stage multiple specimen test as 

opposed to a multiple stage single specimen test. CU triaxial testing has three 

main steps, including saturation, consolidation and compression. A brief outline 

of the processes followed is presented here, but more detail and equations are 

available in both BS 1377 (1990) and Head (1998).  

 

During testing, specimens were typically saturated using increments of cell 

and back pressure. The aim of this process was to dissolve any air remaining in 

the pore system of the sample (Craig 1997) and also eliminate any air bubbles in 

the drainage line and pore pressure connections (Head 1998). Cell and back 

pressure increases were stopped when the pore water pressure coefficient (B) was 

> 95%, as required by BS 1377 (1990). BS 1377 (1990) recommends the use of 

side drains to speed up the saturation process, but these were not required for our 

samples due to the high porosity (see Chapter 5). Once saturation was complete, 

effective stress was applied. Effective stress is the difference between the back 

pressure and the cell pressure. Typically back pressure was always at 300 kPa or 

greater during consolidation and testing as required by BS 1377 (1990). Effective 

confining pressures were based on in situ conditions, and the same principles were 

followed as for the shear box. However, for some specimens, higher confining 

pressures (> 300 kPa) were limited by the ability of the system to supply adequate 

pressure.   
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Specimens were consolidated under isotropic conditions until 95% PWP 

dissipation had been achieved. Time to failure was estimated from the 

consolidation curve. Test run times were calculated from both time to failure and 

an estimated value of strain at failure, which was typically less than 5 %. 

Specimens in this study consolidated rapidly often having time to failure values of 

< 10 minutes, and hence very quick test times. Because BS 1377 (1990) 

recommends that specimens are not be allowed to fail until compression has 

proceeded for ~ 2 hours, the test times were dramatically increased from those 

calculated. This gave test speeds between ~ 0.015 and 0.030 mm min-1. The slow 

compression speeds ensured PWP equalisation through the specimen, so effective 

stresses could be calculated with accuracy (Head 1998).  During compression 

testing information was logged about every 3 minutes. This logging time meant 

that up 350 individual measurements of strain, PWP and deviator stress were 

taken during each test.   

 

Compression of each specimen was run until 20% axial strain was 

achieved (BS 1377 1990; Head 1998). Above 20% strain the specimen may 

become severely distorted and can result in dubious values of calculated axial 

stress (Head 1998). Typically, during the first ~ 0.5 % of axial strain no deviator 

stress recording occurred. Deviator stress remained at 0 because a small gap 

existed between the load cell and triaxial frame at test start up. Therefore it took a 

small amount of compression travel before any increase in deviator stress was 

recorded. The effect of this gap is shown as a flat section on the stress strain curve 

in Figure 3.13. Because a number of equations, corrections and interpretations 

require accurate values of axial strain during certain times of the test this flat 

section was always subtracted from the total axial strain recorded.   
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 Figure 3.13: Axial strain which needs to be subtracted for stress strain curves. Example is from a 

sample from Otumoetai tested at a confining stress of 25 kPa. A and B represent the excess strain 

which was deleted during triaxial calculations. 

 

Upon test completion a correction had to be applied to the calculated 

deviator stress value which accounted for the restraining effect of the membrane 

used. BS 1377 (1990) presented a chart of correction values versus axial strain. 

However the chart presented was difficult to read with accuracy and was not 

suitable when corrections for large data sets were required. Therefore, a third 

order polynomial equation was developed which replicates this graph, and is 

presented below: 

 

1596.0107.4104 2335Mc     (3.16) 
 
where:  

Mc = membrane correction;  

 = strain (%). 

 
The value derived from equation 3.16 was then subtracted from the raw 

deviator stress values.  
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3.3.17.4 Mohr-Coulomb plots  

Ultimately the most important parameters derived from a triaxial test are 

the effective and total cohesion (c', c) and friction angle ( ', ) values. The 

typical way to derive these parameters is by drawing stress circles for each 

specimen analysed, at least 3, and then plotting a line tangential to the circles (e.g. 

Figure 3.12). Plotting tangents is subjective, causing questionable accuracy 

especially when stress circles do not form an idealised failure envelope. In this 

study total stress parameters at failure were plotted using s = [1/2 1 3)] and t = 

[1/2  1  3)]. Effective stress parameters are plotted as s' = [1/2 1 3')] and t' = 

[1/2 1  3 1  3) is the same for both total and effective 

stresses because PWP cancels out, therefore the same calculation is used for t and 

t' in both plots (Head 1998).  

 

rather than a stress circle. Once a series of analyses were completed a line of best 

fit, which treats all samples equally, was plotted (Frederickson 1988). This line is 

termed the Kf o (Head 1998). An 

example for a single stress circle (specimen) is given in Figure 3.14.  

   

 

 

Figure 3.14:  f line which plots through the top most point of the circle 

at point P denoted by s`= 1/2(Q1' + Q3') and t  = 1/2 (Q1  Q3). For total stress, s becomes  

s = 1/2(Q1 + Q3) and t does not change (refer to text). Also presented is the Mohr-coulomb line 

plotted as a tangent to the stress circle.   
 
 
Figure 3.14 indicates that the Kf line passes through the apex of the circle whereas 

the stress circle line passes at a tangent. Therefore, the slope and intercept values 
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of the Kf and tangental line are different. The slope and intercept calculated from 

the Kf line has a mathematical relationship with both total and effective c and  

(see Head 1998). Therefore the Mohr parameters can be derived from the Kf line 

using the following equations (BS 1377 1990):        

 
= sin 1(tan )            (3.17) 

 

=
cos

         (3.18) 

 

where: 

to = y axis intercept of the Kf line;  

f line.        

 

The total stress parameters c and  can be derived from similar equations 

using a plot of s and t. 

 

3.3.18 Ring shear test 

Ring shear testing enables the measurement of residual shear strength 

parameters on remoulded soil specimens for the determination of effective 

residual cohesion (cr)  and friction angle ( r) (Law 1980). Unlike the shear box, 

the ring shear allows unlimited deformation to be applied. Furthermore the rate of 

displacement applied is not critical because the fully drained condition will be 

reached eventually (Head 1994).  

 

A Wykeham Farrence, model number 25850, ring shear apparatus was 

used, which confines a 5mm thick specimen vertically between two bronze 

platens and radially between two concentric rings (Head 1994). Shearing occurs 

close to the upper platen in an annulus (circular) mould with an internal diameter 

of 70 mm and an outer diameter of 100 mm. The thin specimen size allows perfect 

and rapid pore pressure dissipation (Law 1980). 

 

Specimens were set up following methods laid out by Law (1980) and 

Head (1994). Before testing, the specimens were dried to just above the plastic 

limit. Head (1994) recommended that specimens should be tested at moisture 

contents wetter than the plastic limit. On testing volcanic ash soils Wesley (1992) 
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adjusted the moisture content to just above the plastic limit. It seems the main 

reason for doing this is that excessively wet specimens will extrude from the 

annular cavity when consolidated and sheared, therefore this method was adopted 

in this study.  

 

The following two sections will set out methods for specimen 

consolidation and strain rate selection, because a brief survey of laboratory 

manuals (Law 1980; Bromhead 1986; Head 1994) indicated that there was no 

clear method which should be followed.  

 

3.3.18.1 Sample Consolidation 

Specimen consolidation immediately followed test preparation and 

required the application of normal loads to be used during testing. Normal loads 

used were those which best bracket in situ conditions. The method of load 

selection was the same as for the shear box and the equation used to derive the 

appropriate normal load weights can be found in Appendix 3.7.   
 

Under conditions of consolidation the specimen was compressed vertically 

between platens by means of a 10:1 lever loading system loaded with dead 

weights (Law 1980). Specimen compression readings were taken using a vertical 

dial. Readings were frequent at first (e.g. 2, 6, 15 seconds), to accurately capture 

the start of the consolidation curve, and then became more spaced as 

consolidation progressed (e.g. 45, 60, 90 minutes). Recordings were then plotted 

as settlement versus square root time. The equation used to convert time recorded 

during consolidation to root time is presented below: 

 

60

x
t

         (3.19)
 

 

where: 

 t  =  root time; 

  x =  recorded time (seconds).  

 

A specimen was considered to be fully consolidated when the vertical dial 

reading remained constant over a period of at least one hour.  
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3.3.18.2 Strain rate selection  

Specimens in the ring shear were tested under drained conditions; 

therefore the rate of shearing was slow enough to allow any pore water pressure 

generated to escape from the specimen (Bromhead 1986). To determine the rate of 

shear, a time to failure was calculated. Bromhead (1986) recommended the 

equation given in Bishop & Henkel (1962) which is typically used for calculating 

the time to failure for a triaxial specimen with drainage from both ends. The 

equation is: 

 

)1(3

2

f

f
UCv

H
T           (3.20) 

 
where: 

 Tf = time to failure; 

 H
 = half the sample height; 

 Cv = coefficient of consolidation;  

 Uf = pore pressure conditions allowed at failure.  

 

Allowing 5% pore water to remain (Uf = 0.95), as recommended by  

Bromhead (1986), the equation becomes more simply: 

 

 
Cv

H
T f

3

20 2

         (3.21)
 

 
 

The consolidation coefficient (Cv) was calculated using the t90 root time 

method presented in Craig (1997). The equation used for Cv is: 

  

90

2848.0

t

H
Cv

        (3.22) 
 
Where: 

t90 = time for 90% consolidation; 

H = half sample height; 

0.848 = time factor.  

 
The t90 component was found using the following method, which is shown 

graphically in Figure 3.15. A line was drawn down the linear portion of the 
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consolidation graph, representing the line AB. Starting at point A another line was 

drawn with an abscissa 1.15 times that of line AB, which is line AC. The time on 

90. Because 

90 is required in equation 3.22 it must be 

squared before use.   

 
Figure 3.15: Example of consolidation versus root time graph showing how to determine t90.  

 

Most specimens fail at a displacement of 2 mm or less, which represents a 

rotation of 2.7° in the ring shear apparatus (Law 1980). This was used in 

combination with the estimated time to failure to derive a speed at which to run 

the ring shear.    

 

Because a large number of the specimens being tested were highly 

compressible, it was often difficult to differentiate between initial compression 

and the linear section of primary consolidation, making determining t90 difficult. 

When this occurred, a strain rate of 0.048 deg min-1 was used. A strain of 0.048 

deg min-1 has been indicated by both Bromhead (1986) and Head (1994) as a safe 

speed which provides a safety factor against strain sensitivity. Once the testing 

programme was complete it was found that other workers used strain rates as high 

as 0.12 deg min-1 with no regard to consolidation rates, stating that the influence 

on measured strengths is negligible (Skempton 1985; Wesley 1992).  
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A check on strain rate sensitivity during testing was made by stopping the 

drive motor for one hour after testing had commenced, if the reading did not drop 

significantly over this period the strain rate was deemed acceptable (Head 1994). 

Unfortunately the value which corresponds to significant change is not defined by 

Head (1994). For this study, a > 2 % decrease in the proving ring reading was 

considered to be significant. This never occurred during the course of this study.    

 

3.3.18.3 Sample Shearing 

Before the shear stage was run, a shear plane was formed. Normally the 

sample would be set up in the evening with a rate of strain set at 0.048 deg. min-1. 

and let run overnight unrecorded (Bromhead 1986). This method was followed 

because it was found that a fast manual shear as recommended by Law (1980) 

caused a large amount of sample extrusion.  

 

Once a shear plane was formed the torque was released from the proving 

rings and the sample was let sit for at least the period taken to achieve t90. This let 

any excess pore water pressure generated during the shear stage dissipate. 

Following this the proving ring and vertical dials were set to zero and the test was 

begun proper. The proving ring and vertical dials were read at regular intervals 

(between 30 seconds and 5 minutes), however the frequency of readings 

decreased once failure had occurred (the proving ring readings were no longer 

increasing). As the test proceeded results were plotted on a stress strain graph. 

Residual strength was determined at the point where the value recorded by the 

individual proving rings remained relatively stable.  

 

3.3.18.4 Further application of normal load 

The specimens were run as multistage tests where the same sample was 

tested under increasing normal loads. Detail of this process can be found in Law 

(1980) and Head (1994). At least three readings were taken to derive a Mohr-

Coulomb plot. These were then used to calculate residual friction angle and 

cohesion.  
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3.3.19 Error treatment 

 
Errors are presented as:  
 

xx          (3.23) 
 
where: 
 
x = is the best estimate of the true value;  

x = is the precision of this value. 
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Chapter 4 

Stratigraphy and  

field properties 
 

4.1 Introduction  
This chapter presents information collected during field investigations. 

This information includes the purpose of field investigations, justification for site 

selection, and the stratigraphy and geomechanical properties of selected sites. The 

aim of this chapter is to provide detailed field information regarding the samples 

collected for laboratory investigation.    

 

4.2 Initial field investigations 
The main purpose of field investigations was to locate sites with soils of 

16) and have low, dilatant, remoulded strength. The identification of highly 

sensitive soils then provided the basis for site selection. Through the course of 

field investigation, the geomorphology of three slips which displayed soils of 

elevated sensitivity were investigated in detail in an attempt to add information 

regarding the role of sensitive soils in mass wasting events in the Tauranga area. 

These results are also presented in this section. Methods employed during field 

investigation can be found in Chapter 3. Field logs and geomorphic maps are 

presented in Appendix 4.1.  

 

4.2.1 Sensitivity observations  

Highly sensitive soils were observed in weathered pyroclastic and 

associated deposits in cuttings at McLarens Falls, Tauriko and Pyes Pa; in slips at 

Oropi, Welcome Bay, and Otumoetai; and at a coastal cliff section at Omokoroa 

(Appendix 4.1).  

 

Sensitivity values ranged from 2 to 29 using the standard method and 2 to 

160 using the adapted method. However, sensitivities between 5 and 10 were 

typical at most sites, with values up to 15 not uncommon. Both the maximum 

standard (29) and adapted (160) sensitivity values occurred at Tauriko, but were 
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not recorded in the same unit. Extremely high sensitivities (> 30) measured using 

the adapted method were typically the result of low remoulded strength (< 3 kPa). 

Unfortunately, low remoulded strength (< 3 kPa) values were close to the limit of 

precision for the shear vane and could only be considered estimates. However, it 

was obvious from visual investigation that remoulded material in these samples 

was extremely soft and liquid-like (Figure 4.1). During adapted sensitivity method 

remoulding samples took varying degrees of effort to liquefy, with some requiring 

a full minute of kneading before they were fully softened. Samples which became 

liquid-like on remoulding were typically pale coloured (pale orange, greys, 

browns and pinks) and very wet. These soils ranged across both SILT and CLAY 

textures.  

 

 
Figure 4.1: Remoulded clayey SILT (labelled) from Tauriko showing a dilatant character. 

 

Redoximorphic features, including manganese (pyrolusite) concretions 

(Vepraskas 1994) (also known as redox segregations: Hewitt 1998) were observed 

in soils of both high and low sensitivity. Manganese dioxides (presumably mainly 

pyrolusite, MnO2) were expected because many soils in the Tauranga region, with 

the exception of material near the surface, are close to saturation for a large part of 

the year (Wesley 2007) but dry sufficiently for oxidation to occur and hence 

concretionary material to form.  

 

4.2.2 Geomorphic observations  

The following presents the geomorphic information of three slips at 

Welcome Bay, which occurred during a storm event in May 2005. Field logs and 

geomorphic maps for each are presented in Appendices 4.1 and 4.2, respectively.  
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The first slip at Ranginui Road (U14 927 817; Appendix 4.2a) (grid 

references of the 1: 50,000 New Zealand topographical map series NZMS 260) 

was a deep bowl shape (Figure 4.2). During failure, material slumped, 

disintegrated and flowed. Run out distance was ~ 20 m, with material lapping 

against an adjacent slope. However, material also flowed ~ 55 m down slope  

(< 10 º) to the west of the scarp. The slip had a width of ~ 20 m and a length of  

~ 22 m, with a near vertical head scarp of ~ 5 m. The failure occurred with a slope 

of ~ 27 º. Within the scarp, both the Rotoehu Ash and Hamilton Ash beds were 

identified (Figure 4.2). The basal slip plane was ~ 3.5 m below the contact 

between the Hamilton and Rotoehu Ash beds. Sensitivity increased towards the 

base of the slip. At the base, a light yellowish brown clay with a peak vane 

strength of 42 kPa and an adapted sensitivity of 42 was encountered (remoulded 

strength = 1 kPa). The centre of the slip scarp was water logged and muddy.  

 

 
Figure 4.2: Slip at Ranginui Road. The dashed line represents the contact between the Rotoehu 
Ash and Hamilton Ash Formation.   

 

The other slips occurred on a property adjacent to Welcome Bay Road 

(U14 937 818; Appendix 4.2b) and are referred to as slip 1 and slip 2 (Figure 4.3).  

 

Both slips occurred as single events and had steep translational 

appearances (Figure 4.3). Figure 4.3 indicates that both slips liquefied following 

failure, with run out lobes of up to 90 m. The inclination of the failed surface in 

slip 1 was ~ 30 º. Slip 1 had a width of ~ 12 m, a length of 24 m and a back scarp 

of ~ 2 m. However, the slip walls were up to 3.5 m high. Slip 2 was wider at ~ 19 
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m, with a length of ~ 14 m, and was up to 2 m high. Both slips occurred from 

unfailed surfaces of ~ 30 º. Sensitivities at Welcome Bay Road were lower than 

those at Ranginui Road. Sensitivities up to 10 were recorded in slip 1 and values 

up to 28 were recorded near the base of slip 2. The lowest remoulded strength 

recorded was 3 kPa.    

 

 
Figure 4.3: Slips on Welcome Bay Road at Welcome Bay. Note the distinction between slip 1 and 
slip 2 and the run out distances of each slip (Photo courtesy of Tauranga City Council). 

 

The general features of the slip at Otumoetai are not further discussed here 

because information has already been presented by Wesley (2007) and comments 

are made in section 4.4.2. Limited detailed information was collected on the slips 

at Oropi or Omanawa. 

 

As noted in Chapter 2, the slips observed in this study occurred as a single 

event associated with intense rainfall (and thus pore water pressure increase), 

typically flowed on failure leaving little debris in the scarp, had units of elevated 

sensitivity, occurred from steep slopes and were small with either a bowl shape or 

shallow translational appearance.    
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4.3 Site selection  
Two sites were selected for further analysis; a cutting at an earthworks site 

in Tauriko (U14 832 789), and a slip at Grange Road, Otumoetai (U14 875 863). 

The slip at Otumoetai is a remnant of the May 2005 storm event. The location of 

these two sites relative to the rest of the study area is presented in Figure 1.1. For 

the remainder of this thesis, the sampling sites will be referred to as Tauriko and 

Otumoetai.   

 

Tauriko was selected because it had units of high sensitivity which 

manifested in low remoulded strength (based on the adapted method). The site 

was easily accessible and, being an earthworks site, an unlimited amount of 

freshly exposed material could be sampled. The abundant amount of material 

provided the basis for establishing a laboratory programme, especially triaxial 

testing. 

 

 Otumoetai had units of high and low sensitivity in close vertical proximity 

(within ~ 1 metre) and represented a site of previous investigations (see Wesley 

2007). The fluid nature of slip material meant that little debris remained in the 

scarp zone, ensuring that undisturbed samples could be collected with minor 

excavation. Finally, Otumoetai and Tauriko represented sites in different 

geographic locations and age. 

 

4.4 Site geomorphology  
 

4.4.1 Tauriko  

The site at Tauriko was formerly agricultural land, which was being 

excavated and developed at the time of sampling. The general area is dominated 

by a number of plateaux which fall away, often steeply, to broad shallow valleys. 

These raised areas represent pyroclastic constructional surfaces which have been 

modified by erosion (Briggs et al. 1996). At the base of the broad valleys a 

number of small natural watercourses were observed, including the Kopurererua 

Stream near the Tauriko site. The cutting investigated at Tauriko was on an 

elevated plateau surface, was approximately 30 m high and had a north-easterly 

aspect.  
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4.4.2 Otumoetai 

 The site at Otumoetai is on a NE-trending peninsula which extends into 

the Tauranga Harbour. The surface of the peninsula is an elevated plateau largely 

covered by residential development. The site under investigation was the scarp of 

a slip generated during the May 2005 storm event, which occurred in a remnant 

sea cliff bounding the peninsula. The remnant sea cliff was about 20 m high and 

the base was separated from the harbour by approximately 600 m of terrestrial and 

aquatic vegetation. The slip under investigation occurred on the lower half of the 

coastal cliff and had a shallow circular appearance. A small slip also occurred on 

the upper half of the cliff however, this had been covered by a retaining structure 

and vegetation. The lower slip was relatively free of debris because much of the 

material disintegrated and flowed into the marshy area below, having a run out 

distance of approximately 100 m. Slips are not uncommon in this location, with 

three others recorded within 500 m of the sampling site following the May 2005 

storm event.  

 

4.5 Site stratigrahpy  
The stratigraphy of the sampling sites at Tauriko and Otumoetai are 

presented in Figures 4.4 and 4.5, respectively, and described in the following 

section.  It should be noted that the depths recorded are based on actual measured 

distances and have not been corrected for slope inclination. Furthermore, 

manganese dioxides were observed in most units at both Tauriko and Otumoetai, 

the exceptions typically being units dominated by sand.  
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Figure 4.4: Stratigraphic column from Tauriko. Also included are peak vane strength and adapted 
and remoulded sensitivity values for each unit. TS represents the approximate Tauriko sample 
position  
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Figure 4.5: Stratigraphic column from Otumoetai. Also included are peak vane strength and 
adapted and remoulded sensitivity values for each unit. MOIS = marine oxygen isotope stage (see 
text), OS = Otumoetai sample positions, the black hexagons represent flakes of micaceous 
material.  



Chapter 4: Stratigraphy and field properties 

79 

4.5.1 Tauriko 

At Tauriko, the Rotoehu Ash (c. 60 calendar [cal] ka) was represented by a 

thin (0.2 m) well-sorted, fine to coarse SAND which lay between two thin (0.25 m 

and 0.05 m) SILT units. Underlying the Rotoehu Ash was a dark brown clayey 

paleosol (Figures 4.4 and 4.6) representing a strongly-developed buried soil on the 

uppermost member of the Hamilton Ash sequence, possibly the Tikotiko Ash 

Member (H6 and H7) (Lowe et al. 2001). The dark paleosol represents 

development probably during the Last Interglacial (Briggs et al. 2006; Lowe 

2008a). The base of the Hamilton Ash Formation could not be defined, and the 

entire unit was expected to be no thicker than about 2.5 m (Briggs et al. 1996). 

Figure 4.6 displays light and dark coloured beds making up part of the Hamilton 

Ash Formation. The Hamilton Ash sequence, which may include loess beds at 

some locations, has an age range estimated between ~350 ka at the base (H1 or 

Rangitawa Tephra, not observed at Tauriko) and ~100 ka at the top (Lowe et al. 

2001; Lowe 2008a). 

 
Figure 4.6: Sequence of post-Rotoehu Ash, Rotoehu Ash amd Hamilton Ash beds at Tauriko.  
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Below the Hamilton Ash beds was a ~16 m thick unit comprising 

alternating sandy SILTS, clayey SILTS, and silty CLAYS (Figure 4.4). These 

layers were not correlated and were reported as undifferentiated weathered tephric 

(pyroclastic) material derived from tephra fall deposits, pyroclastic flow deposits, 

reworked material, or combinations of these. This sequence could, in effect, 

represent part of the Matua Subgoup (60 cal. ka to 2.1 Ma; Briggs et al. 1996; 

2006). Within the undifferentiated material changes in peak strengths did not 

always correlate with different layers based on colour and texture (Figure 4.4). 

The maximum sensitivity value in the undifferentiated material was 29 (Figure 

4.4) (derived from the standard method) and it had a remoulded strength of 3 kPa. 

This same sample, on extraction and remoulding following the adapted method, 

did not have a liquid-like consistency, and returned a remoulded strength of 15 

kPa.  

 

Underlying the undifferentiated material was a sequence of light grey, 

massive, silty SAND and SAND units (Figure 4.4). These sands totalled ~ 2 m in 

thickness, and charcoaled logs, up to 0.3 metres long, were identified at the base 

(Figure 4.7). The presence of charcoal represents hot emplacement and a 

pyroclastic flow origin (Briggs et al. 1996). Charcoal is typical of the Te Ranga 

Ignimbrite (0.274 Ma) which is found in the Tauriko region (Briggs et al. 1996).  

 

Further investigation of this unit using thin sections identified coarse glass 

shards with lunate, cuspate and platy textures, showing little deformation (Figure 

4.8). These glass shard textures are characteristic of the Te Ranga Ignimbrite 

(Briggs et al. 1996) and so this identification was ascribed to the unit at Tauriko. 

The Te Ranga Ignimbrite overlay a sequence of light coloured sensitive SILT 

units (Figure 4.4) up to 0.5m thick (Figure 4.9).  
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Figure 4.7: Base of Te Ranga Ignimbrite (0.274 Ma) at Tauriko overlying sensitive silt deposits. 
Note the piece of charcoal to the left of the image. The spade is approximately 1.2 m long.   
 

 

 
Figure 4.8: Glass shard textures from the Te Ranga Ignimbrite at Tauriko. Note the coarse y-

shaped shard in the centre of the image. 
 

Assuming the charcoal layers represent the base of the Te Ranga 

Ignimbrite, the underlying sensitive silt layers may represent either fallout tephras 

associated with the Te Ranga eruptive sequence which deposited the ignimbrite, 

or fall deposits, from an earlier unrelated eruption. If the sensitive material is not 

associated with the Te Ranga Ignimbrite then it represents a unit of the Matua 

Subgroup (60 cal. ka to 2.1 Ma; Briggs et al. 1996; 2006). This material was soft 

 



Chapter 4: Stratigraphy and field properties 

82 

to firm, became extremely dilatant on remoulding, and had adapted sensitivities 

up to 160 (Figure 4.1); samples were collected from this unit.   

 

 

Figure 4.9: Sensitive silt from Tauriko overlying bedded and massive sands. Note the camera lens 
cap ( ~ 5 cm) for scale.  

 

The silt units unconformably overlay a sequence of dense pumiceous 

SANDS (Figures 4.4 and 4.9), each less than 0.2 m thick. Sedimentary structures 

observed within these sands included both massive units and laminar planar 

bedded layers. These sand units represent fluvially derived members of the Matua 

Subgroup, and are most likely derived from reworked rhyolitic ignimbrites and 

tephra fall units (Briggs et al. 1996; 2006).         

     

4.5.2 Otumoetai  

The full stratigraphic sequence of the relict coastal cliff could not be obtained 

in this study because vegetation and a retaining structure obscured the upper 

section (section 4.4.2). Fortunately, before the retaining structure was built, 

Wesley (2007) investigated the site and described the sequence. He identified the 

top of the Hamilton Ash Formation and stated that it was mostly likely overlain by 
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the Rotoehu Ash (a widespread and distinctive unit in the area). These units have 

been included in Figure 4.5.  

 

The following description comes from investigations made during this 

study (see also Wesley 2007) and focuses only on the lower slip (see section 

4.4.2). The description presented herein will proceed from the break in slope, 

which represents the top of the lower slip; both are identified in Figure 4.5.   

 

At the top of the lower slip (8 m depth in Figure 4.5) two thin, silty CLAY 

and CLAY units were observed and classified as moderately sensitive. Neither 

unit displayed dilatancy following remoulding. Below these units was a pale 

yellow, non-plastic sandy SILT unit, with distinctive golden sand-sized flakes. 

These features are indicative of the Rangitawa Tephra (~350 ka) and the golden 

flakes are likely to be 2:1:1 partially random interstratified micaceous-kaolinite 

intergrades (T.G Shepherd in Lowe and Percival 1993). Furthermore, Wesley 

(2007) identified this unit as the Rangitawa Tephra. The Rangitawa tephra 

represents the earliest member (H1) of the Hamilton Ash Formation (Lowe et al. 

Ash Formation at ~ 2 m, it appeared that the sequence of beds was ~ 7 m thick. 

This is thicker than the typical maximum of 2.5 m (Briggs et al. 1996) in the area 

and therefore reworked tephra material and possibly weathered loess (e.g. as 

described by Briggs et al., 2006, at Maketu) are likely to be included within the 

unit described as Hamilton Ash. It is also possible that the thickness of Hamilton 

Ash beds have been exaggerated because the individual beds are inclined rather 

than flat.  

 

Below the Rangitawa Tephra, alternating layers of two dark brown CLAY 

paleosols and paler CLAYS, silty CLAYS and clayey SILTS were observed 

(Figures 4.5 and 4.10). Paleosols may indicate periods of either warm interglacial 

climates (when topdown soil formation is likely to result in strongly developed 

pedogenic features) or soil formation that has occurred during upbuilding 

pedogenesis on accumulating loess and/or thin ash beds during glacial climates 

(Manning 1996; Lowe et al. 2008c). Paleosols also represent periods of hiatus in 

volcanic activity (or when any deposits are sufficiently thin to be subsumed into 

the surface soil horizon). Because the Rangitawa Tephra has been correlated with 
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the end of Marine Oxygen Isotope Stage (MOIS) 10 (Kohn et al. 1992; Lowe et 

al. 2001), the upper and lower paleosols can be tentatively associated with MOIS 

11 and 12, respectively (ca. 360 470 ka). These paleosols and associated 

sediments are best referred to as components of the Matua Subgroup, which 

includes in effect the Pahoia tephras or tuffs (Briggs et al. 1996). 

 
Figure 4.10: Site at Otumoetai, displaying location of the Rangitawa Tephra (~ 0.35 Ma), 
underlying two paleosols and paler coloured units. The spade at the base of the image is ~ 1.2 m in 
length.    

 

Typically the paleosols were very stiff and had sensitivities between 4 and 

11, using both adapted and standard methods (Figure 4.5). However, sensitivity 

manifested in high undisturbed strength (107 to 214 kPa) rather than low 

remoulded strength (13 to 32 kPa). The paler units ranged between firm and very 

stiff, displayed a range of sensitivities and some contained micaceous flakes 

(Figure 4.5). Using the standard and adapted method, sensitivity ranged between 3 

to 21 and 3 to 37, respectively. A number of the high (29 to 37) adapted 

 

 

Between the paleosol at 13.9 m depth and the overlying pale unit, a thin  

(~ 0.1 m) pale grey clay layer was observed (Figures 4.5 and 4.11). This pale layer 

contained extensive coatings of manganese dioxide (pyrolusite), indicating that 
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redox conditions have originated partly because of the lower permeability of the 

underlying paleosol. High sensitivity (37) (Figure 4.5) with low remoulded 

strength (2 kPa) was recorded directly above this unit.    

 
Figure 4.11: Light grey clay and manganese dioxide (pyrolusite) layer above the paleosol unit at 
13.9 metres depth at Otumoetai.  

 

4.6 Field geomechanical properties  
Soil logging, strength and sensitivity testing were undertaken for each 

sample during collection. This investigation occurred sometime after initial 

logging which was used to compile Figures 4.4 and 4.5, and hence results may be 

slightly different. The results from this investigation are presented in the 

following section, and raw values can be found in Appendix 4.3.  

 

4.6.1 Tauriko  

 Three samples were collected from Tauriko and these were labelled as 

TS1, TS2 and TS3. TS3 was from below the Te Ranga Ignimbrite (Figure 4.4). 

TS1 and TS2 were from a location ~ 150 m north of TS3 and were vertically only 

~ 300 mm apart in a unit which was wetter than TS3. Like TS3, TS1 and TS2 

were from a SILT unit below the Te Ranga Ignimbrite. At the time of sampling, 

both TS1 and TS2 were considered to be extremely wet lateral correlatives of 

TS3.   

 

Samples from Tauriko were selected because of their depth below the 

ground surface (Table 4.1), silt texture, firm undisturbed strength, high sensitivity, 

and dilatancy following remoulding.   
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All samples collected from Tauriko had similar field characteristics, being 

pale grey, slightly plastic, clayey SILTS (Table 4.1). TS1 and TS2 were very wet 

and firm but became dilatant after remoulding. The dilatancy of TS1 and TS2 was 

typical of silt. However, both samples were very sticky, indicating high layer-

silicate clay content. TS3 had the highest plasticity, peak vane strength (151 kPa) 

and cone penetration (9.5 kg) of all three samples (Table 4.1). Like the other 

samples, TS3 became dilatant after remoulding.   

 
Table 4.1: Depth, mean vane shear strength (kPa), cone penetrometer (Pen.) readings and field 

soil descriptions for samples collected from Tauriko. Vane shear strength values presented in 

parentheses represent the range of values recorded. Sensitivities described in text are from the 

standard method in keeping with NZGS (2005). For peak vane strength the minimum error 

accepted was 3 kPa which represents 2 divisions on the vane.      

Label Depth 

(m) 

Vane 

shear 

strength 

(kPa) 

Pen. 

(kg) 

Description 

TS1 ~ 22.6 58 ± 3 

(49  62) 

4 Clayey SILT, trace fine sand, light pink with black 

flecks (MnO2), firm but soft on remoulding, very wet, 

non-plastic, extra sensitive, dilatant without the 

addition of water, very weakly allophanic, moderately 

weathered, coarse pebbles which represent pumiceous 

flecks are present but these disintegrate on contact 

     

TS2 ~ 22.9 45 ± 3 

(39  50) 

4 Clayey SILT, light pink with black flecks (MnO2), 

firm but soft on remoulding, very wet, non-plastic, 

quick, dilatant without the addition of water, very 

weakly allophanic, moderately weathered, coarse 

pebbles which represent pumiceous flecks are present 

but these disintegrate on contact    

     

TS3 ~ 22.9 151 ±  3 

(149  152) 

9.5 Clayey SILT, trace fine sand, light grey becoming  

light yellow with depth, firm but soft on remoulding, 

moist to wet, very slightly plastic, sensitive, dilatant 

without the addition of water, very weakly allophanic, 

moderately weathered, coarse pebbles which represent 

pumiceous flecks are present but these disintegrate on 

contact    

 

Remoulding and sensitivity testing indicated that all samples from Tauriko 

had extremely low strength (1  2 kPa) after extraction and remoulding (Table 

4.2). This low strength resulted in extremely high adapted sensitivities (50  76) 

(Table 4.2). Using the standard method, TS2 recorded low remoulded strength  

(2 kPa), thus resulting in high sensitivity (20). TS3 had the highest remoulded 

values yet it recorded the highest adapted sensitivity (Table 4.2), a result of high 

peak strength (Table 4.1).  
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Table 4.2: Remoulded vane strength and sensitivity values and ranges derived from the standard 

and adapted method for samples from Tauriko. For remoulded vane strength, the minimum error 

accepted was 3 kPa which represents 2 divisions on the vane. The errors for sensitivity are 

calculated as a combination of peak and remoulded vane strength values. For TS2 and TS3 the 

ranges for each category are the same as the mean because one test was undertaken.          

Sample Adapted 

remoulded vane 

strength 

Standard 

sensitivity 

Adapted 

remoulded vane 

strength 

Adapted 

sensitivity 

 

TS1     

 Range 5  8 8  10 1  58  60 

 Mean  6 ± 3 9 ± 0.5 1 ± 3 59 ± 3 

TS2     

 Range  2 20 1  50 

 Mean  2 ± 3 20 ± 1.5 1 ± 3 50 ± 3 

TS3     

 Range  34 5 2 76 

 Mean  34 ± 3 5 ± 0.5 2 ± 3 76 ± 1.5 

 

4.6.2 Otumoetai  

Four samples were collected from Otumoetai, OS1, OS2, OS3 and OS4. 

Sampling locations are presented in Figure 4.5. Using Figure 4.5 as the basis of 

16) using adapted sensitivity. Furthermore, these samples typically had low 

remoulded strength and were dilatant when disturbed. Contrastingly, OS3 

represented a paleosol unit which was sensitive (8  11), but which had high 

undisturbed strength (> 227 kPa). Whilst OS3 had different strength and 

sensitivity properties, it may also be from the same depostional event as OS4. 

Therefore, OS3 was selected to provide comparison between samples of both low 

and high remoulded strength.     

 

OS3 had the greatest strength of all samples from Otumoetai (>227 kPa) 

and was the most plastic, representing a clayey paleosol unit. Comparatively OS1, 

OS2 and OS4 were siltier, had lower plasticity, peak vane strength and showed 

greater strength variability (Table 4.3). For example, OS2 had maximum and 

minimum vane shear strength values ~ 38 % either side of the mean (Table 4.3). 

This wide range reflects the variable geomechanical nature of deposits under 

investigation. 
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Table 4.3: Depth, mean vane shear strength, cone penetrometer (Pen.) readings and field soil 

descriptions for samples collected from Otumoetai. Vane shear strength values presented in 

parentheses represent the range of values recorded. Depths are recorded from below the top of the 

bench rather than the top of the slope (as in Figure 4.5). Sensitivities described in text are from the 

standard method in keeping with NZGS (2005). For peak vane strength the minimum error 

accepted was 3 kPa which represents 2 divisions on the vane.          
Label Depth 

(m) 

Vane 

shear 

strength 

(kPa) 

Pen. 

(kg) 

Description 

OS1 4 101 ± 6 

(73  123) 

7.5 Silty CLAY, trace coarse sand, light orange-ish brown 

with black flecks (MnO2), firm, wet, slightly plastic, 

sensitive  extra sensitive, dilatant without the 

addition of water, highly weathered, sticky, flakes of 

  

     

OS2 6.3 125 ± 7 

(78  172) 

NR Clayey SILT, trace fine sand, light yellowish brown 

with black flecks (MnO2), grades to whitish grey 

immediately above next unit (OS3), firm, wet, non-

plastic, extra sensitive, slightly dilatant without the 

addition of water, highly weathered, flakes of 

micaceous material present, roots present which may 

affect the strength of the sample  

     

OS3 6.9 >227 >10 CLAY, dark greyish brown with black flecks (MnO2), 

very stiff, wet, homogenous, highly plastic, sensitive, 

highly weathered, paleosol  

     

OS4 8 72 ± 8 

(58  84) 

9.5 Silty CLAY, trace fine sand, light yellowish brown 

with black flecks (MnO2), stiff, very wet, very slightly 

plastic, extra sensitive, dilatant without the addition of 

water, highly weathered, flakes of micaceous material 

present  

 

OS3 had the highest remoulded vane shear strength values using both the 

adapted and standard method (Table 4.4). Much like peak shear strength, 

variability in remoulded strength was high, resulting in sensitivities with a large 

range of values (Table 4.4). For example, OS1, using the adapted method, 

displayed remoulded strengths between 2 kPa and 11 kPa. Thus it appeared that 

sensitivity was not only variable between units but also within them.       
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Table 4.4: Remoulded vane strength and sensitivity values and ranges derived from the standard 

and adapted method for samples from Otumoetai. For remoulded vane strength, the minimum error 

accepted was 3 kPa which represents 2 divisions on the vane. The errors for sensitivity are 

calculated as a combination of peak and remoulded vane strength values.         

Sample Standard 

remoulded vane 

strength 

Standard 

sensitivity 

Adapted 

remoulded vane 

strength 

Adapted 

sensitivity 

 

OS1     

 Range 10  23 5  11 2  11 10  51 

 Mean  13 ± 4 8 ± 0.5 7 ± 3 23 ± 0.5  

OS2     

 Range  6  21 6  15 3  8 13  33 

 Mean  15 ± 3 10 ± 0.5  7 ± 3 19 ± 0.5 

OS3     

 Range  34  37 > 6  > 7 23  49 > 5  > 10 

 Mean  36 ± 3 > 6  36 ± 18 > 8  

OS4     

 Range  

 Mean 

5 

5 ± 3  

12  17 

14 ± 0.5 

1  2 

2 ± 3 

42  62 

52 ± 1.5 

 

4.7 Normal load above samples  
The following will present a brief description of in situ consolidation 

pressures experienced by each sample. These values are then employed during 

direct shear, triaxial and ring shear testing.   

 

4.7.1 Tauriko  

 Because the cutting at Tauriko was broken into sloped batters the actual 

depth to each sample was less than that measured and presented in Table 4.1. 

Instead of ~ 22 m, it was estimated that the depth to Tauriko samples was between 

16 and 18 m. Considering a wet bulk density of ~ 1400 kg m-3, the in situ over-

burden was between 220 and 250 kPa.  

 

4.7.2 Otumoetai 

The break in slope at Otumoetai represented a flat benched section of ~ 8 

m width, thus depths to each sample were measured from the top of this flat 

section and are presented in Table 4.3. Considering a wet bulk density of ~ 1400 

kg m-3, the in situ overburdens for OS1, OS2, OS3 and OS4 were 55, 86, 94 and 

109 kPa, respectively.  These overburdens may even be less as the slip scarp had a 

slight inclination (thus depth to the samples was less), especially below OS1.   
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4.8 Summary  
Field investigations indicated that sensitive soils were common in the 

Tauranga region and those which had high adapted sensitivity values (> 30) 

typically had low remoulded strength (< 3 kPa). The landslides observed and 

mapped occurred as a single event and were associated with heavy rainfall and 

flowed on failure. Sites at Tauriko and Otumoetai were selected for further 

laboratory analysis, and seven samples in total were collected. Tauriko 

represented a large cutting and Otumoetai was a slip site. Samples from Tauriko 

underlay the Te Ranga Ignimbrite (0.274 Ma) and those from Otumoetai were 

below the Rangitawa Tephra (0.35 Ma). A large amount of variability in both 

peak vane strength and sensitivity was observed between and within single 

samples. At both Otumoetai and Tauriko peak strengths ranged from 45 kPa to > 

227 kPa and sensitivities were between > 6 to 76. Considering the adapted 

method, samples TS1, TS2, TS3 and OS4 had low remoulded strengths (< 2 kPa), 

OS1 and OS2 moderate remoulded strength (7 kPa), and OS3 high remoulded 

strength (36 kPa). Those samples with low and moderate remoulded strength were 

dilatant on disturbance.  
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Chapter 5 

Geotechnical  

Properties  
 

5.1 Introduction  
This chapter presents geotechnical data for sampled units from Tauriko 

(TS1, TS2, TS3) and Otumoetai (OS1, OS2, OS3, OS4). The aim of this chapter is 

to geotechnically characterise these sensitive soils. Values for particle size, 

moisture content, bulk density, particle density and Atterberg limits are reported, 

as are strength data from unconfined compression, direct shear, ring shear and 

triaxial testing.  

 

5.2 Particle size 
Samples from Tauriko and Otumoetai have been divided into clay  

- -

presented in Table 5.1. Silt is divided into fine (2  6 µm), medium (6  20 µm) 

and coarse (20  60 µm) fractions. Sand has also been divided into fine (60  200 

µm), medium (200  600 µm) and coarse (600  2000 µm) size distributions. Raw 

particle size distributions can be found in Appendix 5.1.       

 

Table 5.1: Clay, silt and sand particle fractions, as a volume percentage, from Tauriko and 

Otumoetai, including division into fine, medium and coarse size classes for sand and silt (size 

classes are presented in the text).  

 
Clay 

 

Silt 

(2 -  

Sand 

(60   

Sample 
Total 

(%) 

Fine 

(%) 

Medium 

(%) 

Coarse 

(%) 

Total 

(%) 

Fine 

(%) 

Medium 

(%) 

Coarse 

(%) 

Total 

(%) 

TS1 5.70 24.37 38.48 18.36 81.22 7.20 4.78 1.10 13.08 

TS2 7.21 25.56 40.10 17.20 82.86 6.85 3.01 0.07 9.93 

TS3 8.30 30.78 34.10 15.47 80.35 9.98 1.32 0.05 11.34 

OS1 9.98 14.64 23.11 27.64 65.39 15.08 6.86 2.58 24.52 

OS2 6.39 7.40 14.22 18.98 40.59 25.84 22.21 4.87 52.91 

OS3 33.54 18.58 21.40 14.95 54.93 6.64 3.04 1.25 10.93 

OS4 1.98 8.81 17.19 25.15 51.15 30.53 14.17 2.17 46.87 
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All samples have high silt contents (> 40 %) (Table 5.1). OS3 had the 

highest clay content with ~ 34 %, whilst all other samples have < 10 % (Table 

5.1). Silt content is higher in Tauriko samples (~ 81 %) than Otumoetai samples  

(~53 %). OS2 had the highest sand content (~ 53 %) and samples from Otumoetai 

typically have higher sand content than those from Tauriko (Table 5.1). Typically, 

the coarse sand fraction comprised only a low proportion of all samples (< 5%). In 

all Tauriko samples, ~ 70 % of the particle size distribution was less than 20 µm 

(Table 5.1). Approximately 50 % of the particle size distribution for the paleosol 

in OS3 was less than 6 µm and ~ 70 % was less than 20 µm (Table 5.1). Field 

texture for OS1 and OS4 have been recorded as dominantly clay, however particle 

size results contradict this (see Chapter 4).  

 

5.3 Moisture, bulk density and porosity  
The following section will describe moisture content (w), wet bulk density 

( ), dry bulk density ( D), particle density ( s), porosity (n), void ratio (e) and 

saturation state (Sr) of each sample. Measured values are presented in Table 5.2, 

described and then compared with published values which have been summarised 

in Table 5.3. All raw data can be found in Appendix 5.2. 

 
Table 5.2: Bulk soil properties for samples collected from Tauriko and Otumoetai. 

Sample w (%) 
-3

) D (kg m
-3

) s  (kg m
-3

) n (%) e Sr (%) 

TS1 115 ± 0.5 1280 ± 24 656 ± 41 2532 ± 9 74.1 2.86 102.2 

TS2 109 ± 0.7 1273 ± 18 589 ± 13 2591 ± 5 77.3 3.40 83.5 

TS3 64 ± 0.9 1581 ± 15 966 ± 10 2542 ± 5 62.0 1.63 99.3 

OS1 104 ± 3 1358 ± 8 656 ± 8 2636 ± 8 75.1 3.02 91.1 

OS2 69 ± 4 1497 ± 30 893 ± 51 2664 ± 8 66.5 1.98 93.0 

OS3 66 ± 3 1515 ± 19 920 ± 15 2667 ± 2 65.5 1.90 92.4 

OS4 86 ± 0.3 1407 ± 9 743 ± 9 2686 ± 3 72.3 2.62 87.8 

 

Moisture contents between ~ 64 % to > 100 % have been measured across 

both sites (Table 5.2). The lowest value occurred in sample TS3 and the highest in 

TS1. Table 5.3 indicated that it was not unusual for volcanic silts and clay to have 

moisture contents close to and exceeding 100 %.  

 

Wet bulk density values ranged from ~ 1273 kg m-3 to ~ 1581 kg m-3. Dry 

bulk densities were between ~ 45 % and ~ 60 % of wet values. TS1 and TS2 

results were lower than the wet and dry bulk density values presented for volcanic 
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silts in Table 5.3. All samples had wet bulk densities within the range of those 

presented for volcanic soils overall (Table 5.3). Dry bulk densities for all samples 

except TS2 fell within the range of values previously reported for volcanic soils 

(Table 5.3). The clayey OS3 had wet and dry density properties which fell in the 

range for those presented in Table 5.3 for the Hamilton Ash. 

 
Table 5.3: Published index values for volcanic silts, allophane (Al) and halloysite (Ha) clays and 

Hamilton Ash. NR indicates that no results could be found.  

Material Dominant 

mineral 

Location w (%) 
-3

) D (kg m
-3

) s  (kg m
-3

) n (%) 

Volcanic 

silt
1 

Ha Auckland, 

Tauranga 
32 106 1348-1820 759 972 2275 2365 43 70 

Volcanic 

clay
2 

Ha Indonesia, 

Waikato 
31 89 NR 1084 1313 2720 2890 53 61 

Volcanic 

clay
3 

Al Indonesia, 

Taranaki 
55 180 NR 610 965 2580-2880 66 - 80 

Hamilton 

Ash
4
 

Ha, Al Waikato, 

Waihi 
29-109 1250-1680 790-1210 2200 2700 36 - 69 

Notes: 
1) Values from Keam (2008) and Cong (1992) 
2) Values from Wesley (1973) and Jacquet (1990) 
3) Values from Wesley (1973) and Jacquet (1990) 
4) Values from Nicholson (1986)  

 

Particle density values presented in Table 5.2 from Tauriko were lower 

than those for Otumoetai, with mean values of 2555 kg m-3 and 2662 kg m-3 

respectively. All samples had higher particle densities than volcanic silts and 

values lower than volcanic halloysite clays presented in Table 5.3. All values 

except TS3 fell within the range of particle density values presented for allophanic 

clays. Particle densities for all samples fit into the wide range of values listed for 

the Hamilton Ash (Table 5.3).  

 

Porosity values from both sites were high, ranging from ~62 % to ~77 %. 

Porosities were at the upper limit or greater than those presented for volcanic silts 

and volcanic halloysite clays in Table 5.3, and were more analogous to allophanic 

clays. OS3 fell into the wide range of values presented for the Hamilton Ash.  

 

Void ratios presented in Table 5.2 were within the range of values (0.5 to 

4.0) considered by Mitchell & Soga (2005) to be the normal range for typical 

mineral soils. However, Hillel (2004) stated that void ratios typically range 
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between 0.3 and 2.0 and Azizi (2000) indicated that sands typically have void 

ratios between 0.5 and 0.8, with clays ranging between 0.7 and 1.3. Considering 

these values it would seem that all samples in this study had high void ratios, yet 

TS1, TS2, OS1 and OS4 had extremely high values. Jacquet (1990) reported void 

ratios between ~ 2.1 and ~ 3.6 for allophane and halloysite dominated volcanic 

soils; only samples TS3, OS2 and OS3 did not fall within this range.  

 

Saturation states for samples were high with all values between ~ 84 % 

and > 100 %. Considering that 100 % represents a fully saturated soil then all 

samples were either completely or almost saturated and had either a small amount 

or no air filled porosity. Saturated soils in the Tauranga region are not uncommon, 

with Meyer et al. 2005 reporting ~ 100 % saturation at depths between 2.5 and 5.8 

metres. These high results are interesting considering samples were collected at 

the end of summer. However samples from Tauriko were collected from depths of 

~ 16 to 18 m so it possible these samples were below the water table before the 

cutting was exposed; this was not case for Otumoetai samples.  

 

Compared with similar published values, these samples from Tauriko and 

Otumoetai were characterised by low bulk density, yet relatively high particle 

density and thus very high porosity and void ratio. In situ materials were at or near 

full saturation.    

 

5.4 Atterberg limits 
The following section will present Atterberg limits and associated indices 

for samples from Tauriko and Otumoetai. Values are presented in Table 5.4 and 

raw data can be found in Appendix 5.3.   

 
Table 5.4: Atterberg limit values for samples collected from Tauriko and Otumoetai.  

Sample Liquid Limit 

(%) 

Plastic Limit 

(%) 

Plasticity Index 

(%) 

Liquidity 

Index (%) 

Activity 

TS1 81.25 56.89 24.36 2.39 4.27 

TS2 72.67 46.66 26.01 2.41 3.61 

TS3 51.97 38.74 13.23 1.88 1.59 

OS1 90.02 47.32 42.70 1.33 4.28 

OS2 57.40 32.44 24.96 1.46 3.91 

OS3 96.40 54.41 41.99 0.27 1.25 

OS4 72.96 36.80 36.18 1.35 18.27 
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Liquid and plastic limits ranged from ~ 52 % to ~ 97 % and ~ 32 % to  

~ 57 % respectively. Liquid limit had a much greater range of values than plastic 

limit (Table 5.4). Plasticity index values ranged from ~ 13 % to ~ 42 %. The high 

clay (~ 34 %) paleosol sample (OS3) represented the upper bound for liquid and 

plastic limits. OS1 also had a comparable liquid and plastic limits yet it had low 

clay content (~ 10 %). TS3 had lower liquid limit and plasticity index values than 

all other samples. OS2, with a clay content of ~ 6 %, also had low liquid and 

plastic limits; interestingly it had the highest sand content. Most soils, except 

OS3, had liquidity indexes greater than 1 indicating that natural moisture content 

was higher than the liquid limit at both Tauriko and Otumoetai. Typically all low 

clay (< 10 %) samples are highly active with values greater than 2 (Head 1992). 

OS4 had an exceptionally high value of 18. Selby (1993) stated that soils with an 

activity >1.25 are dominated by either allophane or smectite. OS3 is the only 

sample which had activity in the range of normal clays (0.75  1.25) (Head, 

1992).  

 

When the values from Table 5.4 were plotted on a plasticity chart (Figure 

5.1) values ranged from high to extremely high plasticity and fell below the A 

line, in the silt category, regardless of clay content.  

 

Figure 5.1: Samples from Tauriko and Otumoetai Atterberg values, (Table 5.4), plotted on a 
plasticity chart. The A line represents a differentiation between silt (M) and clay (C) and the B line 
represents an upper limit for all soils. The graph is divided into plasticity based on liquid limit with 
extremely high (E), very high (V), high (H), intermediate (I) and low (L). The basis of the 
plasticity division is that liquid limit is based on the total surface area of clay particles, which links 
to clay content. Thus a higher liquid limit indicates greater clay content and hence higher 
plasticity.      
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It is not uncommon for volcanic ash soils to plot below the A line, as 

Figure 5.2 shows.   

 

Figure 5.2: Liquid limit and plasticity index values obtained for volcanic ash soils, from local and 

international sources. These materials have been divided into those dominated by either allophane 

or halloysite. Data were obtained from this study, Wesley (1973, 1977), Jacquet (1990), Nicholson 

(1986) and Keam (2008). 

 

When plotted against published Atterberg limit data for both allophane and 

halloysite dominated materials, samples from this study occupied a similar 

position to soils dominated by halloysite (Figure 5.2), though a distinction 

between allophane and halloysite dominated soils was not definite.    

 

5.5 Rapidity number  
Table 5.5 presents rapidity number values for all samples from Tauriko 

and Otumoetai.  

 

Table 5.5: Rapidity numbers for samples collected from Tauriko and Otumoetai. 1 represents 
minimal disturbance and 10 indicates complete liquefaction after 250 blows of the Casagrande 
apparatus. Also included are moisture contents taken from samples immediately after testing.   

Sample Rapidity number Moisture (%) 

TS1 3 110.6 

TS2 4 96.96 

TS3 2 61.32 

OS1 3 101.16 

OS2 2 61.84 

OS3 2 52.28 

OS4 3 67.34 
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Rapidity numbers were low ranging from 2 (hardly visually affected) to 4 

(about 5 mm of bottom part deformed to a gelatinous mass, upper part visually 

unchanged). However, all of the moisture contents presented in table 5.5 are lower 

than those presented in table 5.2 (between 2 and 13 % difference), this lower 

moisture content may make the samples less rapid than they actually are. In 

keeping with this study, Bird (1981) also reported rapidity numbers between 3 and 

5 for volcaniclastic materials from the Tauranga region. Bird (1981) suggested a 

large amount of energy would be required for mobilisation when low rapidity 

values are reported.   

 

5.6 Unconfined compressive strength  
Unconfined compressive strength (UCS) was used to compare the strength 

of individual samples. Failed specimens were remoulded and retested in an 

attempt to derive sensitivity values. Values obtained from UCS testing of 

undisturbed and remoulded specimens are presented in Table 5.6, raw results can 

be found in Appendix 5.4. Too few samples were available for repeat 

measurements, so values are presented with unknown error values. 

 

Table 5.6: Peak unconfined compressive strength (UCS) values for undisturbed and remoulded 
values for samples from Tauriko (TS1 and TS3) and Otumoetai (OS1, OS2, OS3 and OS4) *.  

Sample Peak UCS 

(Cu) (kPa ) 

Remoulded UCS 

(Cu) (kPa)
 

UCS 

Sensitivity 

Undisturbed 

failure type 

TS1 27.93 NR NR Shear 

TS3 81.04 NR NR Shear 

OS1 56.74 NR NR Shear 

OS2 50.54 0.87 58 Shear 

OS3 42.35 40.55 1 Shear 

OS4 40.46 NR NR Shear 

*Remoulded UCS shear strength values have been obtained in an attempt to derive sensitivity. 

Failure type is also presented and uses the descriptions provided by Head (1994). It should be 

noted that shear strength (Cu) is used rather than compressive strength (qu) for data derived from 

UCS testing (see Chapter 3 section 3.3.14 for calculation).  NR represents no recording, because 

samples were too soft to form a remoulded specimen.  

  

Peak UCS ranged from ~ 27 kPa to ~ 81 kPa. The highest measured value 

was recorded for TS3 (~ 81 kPa). In this study, failure type was divided into three 

groups; barrel, intermediate and shear failures (schematic examples are presented 

in Figure 5.3). All samples showed shear or brittle type failure. Figure 5.4 

presents TS1 (Tauriko) and OS4 (Otumoetai) as examples of shear failure.  
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Figure 5.3: Schematic diagram depicting modes of failure resulting from compression testing. 
These are (A) barrel failure where the sample bulges into a barrel shape, (B) shear failure where 
the specimen shear along one or more clearly defined surfaces, and (C) intermediate failure which 
is a combination of both barrel and shear failures. Adapted from Head (1994).  

 

 

Figure 5.4: UCS samples from TS1 (Tauriko) and OS4 (Otumoetai) showing brittle type failure 

patterns. OS4 displays some vertical cracking to the right of the sample.  

 

Only OS2 and OS3 were measured in their remoulded state, as all other 

samples were extremely dilatant (liquid-like) and could not form self supporting 

cores (Figure 5.5). The sensitivities of OS2 (58) and OS3 (1), from Table 5.6, 

would be categorised as quick (> 16) and insensitive (< 2) respectively under the 

guideline presented by the New Zealand Geotechnical Society (2005). Figure 5.5 

shows samples from TS1 and OS4 after remoulding, highlighting their inability to 

form cores for testing and giving an indication of extremely low remoulded 

strength.  

 

A B C 
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Figure 5.5: Remoulded UCS samples from TS1 (Tauriko) and OS4 (Otumoetai) displaying an 

inability to support cores because of extremely low remoulded strength. When tested with the 

shear vane both these samples had remoulded strength of < 2 kPa.  

 

Previous workers have reported a range of compressive strength values for 

volcanic soils (Table 5.7). Results from this study (Table 5.6) were similar to UCS 

peak shear strength data for allophanic soils, yet at the lower end of halloysite 

soils (Table 5.7). Remoulded strength for OS3 (~ 41 kPa) was much higher than 

remoulded strength values for both allophanic and halloysite dominated volcanic 

materials. Interestingly, the highest sensitivity recorded by Jacquet (1990) for 

halloysite soils was similar to the sensitivity recorded for OS2; however OS2 had 

lower remoulded strength than any of the reported halloysite soils (Table 5.7).      

 

Table 5.7: Uniaxial compressive strength and sensitivity values for allophanic and halloysite soils 

from the Taranaki (Jacquet 1990), Waikato (Jaquet 1990), Bay of Plenty (Keam 2008) and 

Auckland (Cong 1992) regions.*  

Dominant 

Mineral 

Peak UCS 

(Cu) (kPa )
 

Remoulded UCS 

(Cu) (kPa)
 

UCS 

Sensitivity 

Reference 

Allophane 28 - 58 1.5  8.5 5 - 39 Jacquet (1990) 

Halloysite 75 - 190 4  9.5 8 - 55 Jacquet (1990) 

Halloysite 16 - 363 - - Cong (1992) 

Halloysite 141 - 310 - - Keam (2008) 

*Note that shear strength (Cu) is used rather than compressive strength (qu) for data derived from 

UCS testing (see chapter 3 for calculation). 

 

5.7 Remoulded strength calculation  
The following presents remoulded strength using the calculations from 

Sharma and Bora (2003; 2005), which are based on moisture content, liquid limit 

and plastic limit.  
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Table 5.8 indicates that most samples, with the exception of OS3, have 

very low remoulded strengths (< 1 kPa). The high value for OS3 is consistent with 

field testing and remoulded UCS values. Tauriko samples have lower remoulded 

strengths that those from Otumoetai this is consistent with field testing. Low 

remoulded strengths are not uncommon in Tauranga soils as reported in chapter 2.  

 

Table 5.8: Remoulded strength calculations using the equation of Sharma and Bora (2003; 2005).  

Sample 
Remoulded Strength 

(kPa) 

TS1 < 0.3 

TS2 < 0.3 

TS3 < 0.3 

OS1 0.6 

OS2 0.4 

OS3 35.9 

OS4 0.6 

 

5.8 Shear box 
Unconsolidated undrained shear box data was obtained for samples TS1 

and TS3 from Tauriko and all samples from Otumoetai (OS1, OS2, OS3 and 

OS4). Basic data from testing is presented in Table 5.9 and raw results are 

presented in Appendix 5.5. It should be noted that for shear box, triaxial and ring 

shear TS2 has been omitted due to time constraints. TS2 was omitted because 

field logging, early laboratory results, and scanning electron microscopy indicated 

that it was similar to TS1.      

 

Table 5.9: Unconsolidated undrained shear box values including the number of samples tested, 
normal loads applied, shear displacement at failure and the range of peak shear stress with the area 
correction applied (see Chapter 3, section 3.3.16).   

Site 

Number 

of 

Samples 

tested 

Range of n  

(kPa) 

Range of peak 

f  (kPa) with 

area correction 

TS1 7 15.2  188.7 26.59  142.38 

TS3 5 15.2  216.4 25.75  167.4 

OS1 5 20.1  150.5 41.72  113.44 

OS2 5 20.3  154.0 38.76  124.79 

OS3 5 35  150.5 36.71  144.8 

OS4 6 7.5  181.7 29.2  146.5 
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The number of specimens tested in the shear box ranged between 5 and 7 

(Table 5.9). This was primarily dictated by sample availability and the 

requirement to obtain at least three peak strength values at different normal loads 

to define the Mohr-Coulomb failure envelope. Normal load selection for 

Otumoetai samples was based on an attempt to represent in situ confining 

pressures (Chapter 3, section 3.3.16). Estimated in situ normal loads for Tauriko 

samples (TS1 and TS3) were extremely high (220 kPa); the upper limits of the 

load required during testing could not be replicated on the device used.  

 
Strain at failure was typically higher at larger normal loads (Table 5.10). 

All samples had tests which failed at strains of less than ~ 3 mm, which typically 

occurred at normal loads of < 50 kPa (Table 5.10). Shear displacement at failure 

for OS1 and OS3 remained low even at high confining pressures (Table 5.10). In 

TS1, TS3 and OS4 a number of specimens typically tested at confining pressures 

above 50 kPa failed at strain rates > 8 mm (Table 5.10). These specimens 

displayed continued strain hardening and did not show a peak in shear stress, thus 

failure was taken when the shear box reached the end of its travel (Head 1994). 

Figure 5.6 is presented as an example.     

 
Table 5.10: Values of shear displacement (mm) at failure across different normal loads for 
specimens from Tauriko and Otumoetai.  All stress versus strain plots can be found in Appendix 
5.5.     

Approximate 

normal loads 

n) (kPa) 
TS1 TS3 OS1 OS2 OS3 OS4 

10 

     
3.28 

15 1.49 2.85 
    20 2.18 

 
2.58 5.62 2.47 2.92 

30 7.6 
  

2.98 
  40 5.79 

   
2.28 

 50 

 
2.87 4.34 3.34 2.31 6.23 

70 8.05 
 

4.09 
   100 

 
3.51 

 
6.72 2.56 8.49 

120 

  
3.01 

   135 9.72 
     150 

 
8.23 2.98 6.09 3.04 8.86 

180 9.66 
    

9.63 

190 

      215 

 
8.27 

     

Specimens from all samples tested at different normal loads typically 

displayed compaction before failure. All samples had at least one specimen which 
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displayed at least minor dilation before peak shear stress. Figure 5.7 from 

Otumoetai is presented as an example of dilation and compaction. Specimens 

which displayed dilation prior to peak shear stress only occurred at confining 

pressures  < 50 kPa.  

 

 

Figure 5.6: Shear displacement versus (mm) versus shear stress (kPa) for shear box tests from 
sample TS3 Tauriko. The specimens tested at confining pressures of 153.95 and 216.4 kPa do not 
display a peak in shear strength.      

 

Following failure, compacted specimens typically continued to decrease in 

volume. All specimens analysed at or above confining pressures of 150 kPa 

always continued to compact sharply (Figures 5.7 and 5.8). Typically all 

specimens analysed below 150 kPa either compacted sharply or flattened. Figure 

5.7 from OS1 is presented as an example of post failure volume change. Only 

samples TS3, OS2 and OS4 had specimens which dilated following failure, this 

occurred at normal loads below (50 kPa) (Figure 5.8) and only in 5 out of 34 

specimens.  
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Figure 5.7: Shear displacement (mm) versus vertical displacement (mm) for shear box tests from 
sample OS1. The crosses (x) indicate failure. Specimens tested at normal loads of 49.86, 74.12, 
119.25 and 150.5 kPa represent compaction prior to failure. The specimen tested at a normal load 
of 20.12 kPa displays dilation prior to failure. Following failure (x), all specimens compact on 
further shearing. Following failure sample 150.5 kPa displays the strongest compaction.   
 

 

Figure 5.8: Shear displacement versus (mm) versus vertical displacement (mm) for shear box tests 
from sample OS2. Specimens observed dilating following failure are those with confining 
pressures of 20.25, 34.87, and 49.86 kPa.   

 

Mohr  Coulomb parameters for the unconsolidated undrained shear box 

tests were based on the area corrected data and presented in Table 5.11. Samples 

from Tauriko (TS1 and TS3) had lower cohesion (mean of 13 kPa) than those 

from Otumoetai (mean 26 kPa). While OS3 had the largest clay content of all 

samples (34%), it had the highest friction angle (~ 42º) of all samples, and was at 
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the lower end of cohesion. Friction angles for most samples were similar to each 

other (32  36º) with the exception of OS3 (Table 5.11).       

 

Table 5.11: Mohr-Coulomb strength parameters for shear box data for samples from Tauriko and 
Otumoetai. All Mohr  Coulomb plots are presented in Appendix 5.5.   

Sample c (kPa)  (º) r
2 

TS1 15.34 33.93 0.99 

TS3 11.27 35.90 1.00 

OS1 33.71 32.62 0.95 

OS2 27.99 33.16 0.99 

OS3 16.64 42.49 0.95 

OS4 24.73 33.38 0.99 

 

Most investigations employing the shear box have measured effective 

cohesion and friction angle (for example Bird 1981; Nicholson 1986; Oliver 

1996) rather than total values as measured here. However, in the Waikato region 

Frederickson (1988) measured total cohesion and friction angle values from 

allophanic material above the Rotoehu Ash (c. 60 calender (cal) ka). Results for 

field moist samples had a friction angle of 36° and cohesion of 16 kPa. The 

friction angle presented by Frederickson (1988) was similar to most samples 

except OS3, and cohesion was similar to TS1 and OS3 (Table 5.11).  

 

5.9 Triaxial 
The following section presents total and effective strength parameters 

measured using a triaxial device for samples TS1 and TS3 and all samples from 

Otumoetai. Triaxial results are divided into separate sections: initial sample 

properties and testing conditions, consolidation characteristics, compression 

testing results and Mohr-Coulomb strength parameters. Triaxial samples were 

tested under consolidated undrained (CU) conditions using a strain controlled 

triaxial apparatus. All raw data for triaxial testing can be found in Appendix 5.6  

 

5.9.1 Triaxial sample properties and testing conditions   

Initial testing conditions and the properties of samples obtained for triaxial 

testing are presented in Table 5.12. The following will compare triaxial sample 

values in Table 5.12 with original field samples in Table 5.2. This will add to the 

data presented in Table 5.2 and confirm that material collected for triaxial testing 

is similar, with some natural variation, to original samples. This is important 
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because samples were collected from what appeared to be the same units but at 

different time periods.   

 

Table 5.12: Bulk soil properties for samples from Tauriko (TS1 and TS3) and Otumoetai (OS1, 
OS2, OS3 and OS4) measured as a result of triaxial testing.* 

Sample Samples 

tested 

Range of 

 3' (kPa) 
w (%) 

 

(kg m
3
) 

D 

(kg m
3
) 

e Sr (%) 

TS1 3 50 - 300 98 ± 3 1409 ± 10 711 ± 12 2.56 ± 0.06 97 ± 2 

TS3 3 100  300 58 ± 7 1530 ± 47 971 ± 74 1.6 ± 0.2 90 ± 1 

OS1 5 25 - 150 102 ± 9 1368 ± 19 679 ± 39 2.9 ± .2 93 ± 2 

OS2 4 25  150 79 ± 10 1475 ± 18 831 ±59 2.2 ± 0.2 92 ± 4 

OS3  3 25 - 160 62 ± 0.4 1541 ± 8 952 ± 4 1.78 ± 0.01 91.9 ± 0.9 

OS4  4 20  150 77 ± 3 1432 ± 18 808 ± 22 2.34 ± 0.09 89.3 ± 0.6 

* This table includes the number of samples tested and the range of 3) used 

during testing. The values presented are directly comparable to those in Table 5.2. 

 

The number of triaxial test results obtained for each sample ranged 

3') were 

based on the same justification as normal loads selected for the shear box.  

 

Moisture contents for triaxial samples presented in Table 5.12 were similar 

to those in Table 5.2. TS1 had the largest moisture difference when compared 

with Table 5.2, showing a decrease of ~ 17 % in the triaxial specimen. Samples 

were collected at different times so the variations may be the result of antecedent 

moisture regimes. However, samples were saturated during testing so this 

difference was negated.  

 

Wet density values, with the exception of TS1, displayed < 4% difference 

between results presented in Table 5. 2 and those in Table 5.12. The wet bulk 

density for the TS1 triaxial sample was ~ 10 % higher than the original value. 

Samples TS1, OS2 and OS4 recorded > 5% variation in mean dry bulk densities 

between original and triaxial samples. These differences were + 8, - 7 and + 9 % 

respectively. Frederickson (1988), citing sample disturbance as a reason, stated 

that triaxial samples with dry bulk density values showing > 5% variation from 

the original sample should be discarded. Using a t-test to investigate the 

difference between original and triaxial dry bulk densities for TS1, OS2 and OS4 

p values of 0.21, 0.40 and 0.03 were calculated respectively. The p values 

indicated that the original and triaxial values from TS1 and OS2 were from the 
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same population but those from OS4 were not. However, because of the 

variability observed within individual samples in the field (see Chapter 4) it was 

possible that the difference observed in OS4 represented natural variation rather 

than sampling error.        

 

Typically, triaxial samples were greater than or close to the required 

saturation state of 95% (Table 5.12), which was consistent with Table 5.2. Even 

though saturation values were naturally high, samples were still saturated by way 

of back pressure. Saturation times were rapid and samples often reached a B value 

of 0.95 within a matter of hours.  

 

5.9.2 Consolidation conditions  

As a requirement of the CU test, specimens were consolidated under 

isotropic stress conditions after saturation. A range of values were measured. 

Highly sensitive material (TS1, TS3, OS1, OS2 and OS4) had coefficient of 

consolidation (Cv) values between 45 and 6944 m2 yr and coefficient of 

compressibility (Mv) results were between 0.01 and 0.64 m2 MN. Ranges of Cv 

and Mv values for the paleosol sample (OS3) were 3.93 to 1346.7 m2 yr and 0.03 

to 0.1 m2 MN respectively.  

 

Compared to other sensitive material from the Tauranga region (TCC 

2005; OPUS 2006), also tested with a triaxial apparatus, the upper limit of values 

in this study were very high. Previous Cv and Mv results range from 3.2 to 590 m2 

yr and 0.12 to 0.22 m2 MN respectively (TCC 2005; OPUS 2006). The high 

values in this study may be expected considering porosity and void ratio results. 

However, the upper limit of Cv (6944 m2 yr) for this study is an order of 

magnitude greater than those previously reported.  

 

5.9.3 Undrained compression results  

The following will describe results and trends from the compression stage of 

triaxial testing. The parameters examined in this section will include deviator 

1- 3), pore water pressure (PWP), axial strain, stress paths, PWP 

coefficient at failure (Af) and maximum effective principle stress ra 1 3').  
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5.9.3.1 Stress strain characteristics 

The following presents stress versus axial strain characteristics from 

triaxial compression.  

 

5.9.3.1.1 Peak characteristics  

Two distinctively different forms of stress stain curves can be recognised 

from triaxial specimens. When peak deviator stress occurred at strains of 

approximately < 3%, the stress strain curve increased steadily, reached a peak and 

then the curve abruptly flattened, resulting in an angular appearance suggesting 

brittle type failure. When axial strain at peak deviator stress increased, the 

curvature of the stress strain relationship increased. Slight curvature occurred for 

axial strains at peak deviator stresses of between ~3 and ~7 %, and strong 

curvature was observed beyond this. Increasing axial strain and curvature at peak 

deviator stress suggested a greater amount of strain hardening during compression 

and plastic type failures. Figure 5.9 presents examples of angular and curved 

stress strain relationships from sample OS2 tested at confining pressures of 150 

and 25 kPa respectively.   

 

 

Figure 5.9: Deviator stress ( 1  3

tests at confining pressures of 150 kPa and 25 kPa for sample OS2. The sample tested at 25 kPa 
displays a highly curved stress strain curve, failing at an axial strain of 13.65 %. The sample tested 
at a confining pressure of 150 kPa displays a sharp transition from increasing deviator stress to a 
post failure flattening; failure has occurred at an axial strain of 2.47 %.    

 

Curve shape and strain at failure for all specimens is summarised in Table 

5.13. In samples TS1, OS2 and OS4 sharp stress strain curves were typically 

3') greater than 50 kPa. Curved or 
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highly curved shapes are exhibited at confining pressures below 50 kPa. OS1 

displayed sharp stress strain curves for all specimens. The stress strain curves for 

OS3 all exhibited strong curvature.  

 

Table 5.13: Description of stress strain curve shape, axial strain at peak deviator stress and the 
value for peak deviator stress at each confining pressure for samples from Tauriko (TS1 and TS3) 
and Otumoetai (OS1, OS2, OS3, OS4).The letters indicate the shape of the stress strain curve; S 
indicates the transition from a linear increase in deviator stress to post failure is sharp, C indicates 
there is some curvature in the stress strain curve, and HC indicates that the stress strain curve is 
highly curved. Axial strain (%) at peak deviator stress is shown in parentheses. Peak deviator 
stress (kPa) is presented below both curve shape and axial strain at failure..* 
Approximate 

confining 

pressure (kPa) 

TS1 TS3 OS1 OS2 OS3 OS4 

20 - - 
S (1.8) 
116.4 

HC (13.7) 
102.4 

HC (20.1) 
144.3 

C (3.0) 
64.2 

       

50 
C (4.9) 

73.4 
- - 

HC (11.7) 
116.6 

HC (13.2) 
285.4 

C (4.5) 
81.4 

       

80 - - 
S (2.3) 

136 
- 

HC (20.2) 
234 

- 

       

100 - 
C (6.4) 
196.5 

S (2) 
169.6 

S (2.8) 
129.6 

- 
S (1.8) 
114.10 

       

150 - - 
C (3.4) 
157.2 

S (2.5) 
137.3 

HC (17.6 & 15.7) 
249.4 & 368.4 

S (1.7) 
144.33 

       

200 
S (2.4) 
141.2 

C (7.2) 
250.6 

- - - - 

       

300 
S (2.1) 
191.6 

C (5.1) 
294.5 

- - - - 

* Note confining pressure is only approximate and actual values may deviate up to 5 kPa. Sample 

OS3 at a confining pressure of ~150 kPa includes two specimens the first test at 150 kPa and the 

second at 160 kPa.  All stress strain curves are presented in Appendix 5.6. The line represents a 

division between specimens which were tested above and below estimated in situ confining 

pressures. 

 

Sample TS1, OS1, OS4, and OS2 tested at high confining pressures 

displayed peak deviator stress prior to 5% axial strain which is synonymous with 

brittle soils (Head, 1998). Furthermore, axial strain at peak deviator stress for TS3 

was only just above 5 %, with values of 5.1, 7.2 and 6.4 %, suggesting that failure 

at peak deviator stress was more brittle than plastic. Considering strains at peak 

deviator stress, TS3 displayed a more plastic manner than TS1 (Table 5.13). OS2 

and OS3, tested low confining pressures, reached peak deviator stress at strains 

between ~ 12 and 20 % (Table 5.13). According to Head (1998) failure strains of 

8 to 15 % are associated with compacted sandy silts and those between 15 and 

3' = 
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20 and 50 kPa did not reach peak deviator stress before 20 % axial strain, which is 

the test termination point recommended by BS1377 (1990) and Head (1998). 

Failure strains > 20 % are associated with over-consolidated clays (Head 1998).   

 
Table 5.13 clearly shows that, within each sample, different confining 

3) influences axial strain at failure and as a corollary the shape of each 

stress strain curve. Although the relationship was not particularly clear, Table 5.13 

indicated that peak deviator stress was likely to occur at lower axial strains when a 

higher confining pressure was applied. The obvious exception to this was sample 

OS1 which showed a higher axial strain at larger confining pressures (Table 5.13).   

 

1  3) values recorded in each test are presented in 

Table 5.13. As expected, deviator stress typically increased positively with 

1 - 3 was for sample 

OS3, even though the maximum confining pressures were less than those for 

Tauriko (Table 5.13). This suggested that OS3 had the greatest undisturbed 

strength, which was consistent with field vane shear testing but not unconfined 

compressive strength results. 

 

5.9.3.1.2 Post failure curves 

Stress versus strain curves for specimens from Otumoetai and Tauriko 

typically displayed little reduction in strength following peak deviator stress. The 

curves would characteristically flatten and then decrease slowly. The rate or 

amount of strain softening following peak deviator stress did not appear to be 

affected by effective confining pressure. Post failure flattening is typical in 

consolidated undrained triaxial tests (Bishop & Henkel 1962; Craig 1997). An 

example from TS3 is presented in Figure 5.10.  

 

3') of 100 kPa was the only sample 

which displayed a pronounced deviator stress peak at failure followed by a sudden 

reduction (Figure 5.11). The large amount of strain softening following peak 

deviator stress implies either dense sands or over-consolidated clay (Craig 1997; 

Head 1998; Azizi 2000). However Table 5.12 indicated that OS1 had the lowest 

dry density (~ 679 kg m-3) and was predominantly silt. Furthermore, axial strain at 

failure was less than what is normally considered applicable to over-consolidated 

clays (Head 1998).  
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Figure 5.10 Deviator stress ( 1  3

3   
     

 

Figure 5.11: Deviator stress ( 1  3

tested at an effective confining pressure ( 3') of 100 kPa displaying a pronounced peak in deviator 
stress followed by sudden strain softening.   

 

5.9.3.2 Pore water pressure characteristics  

Pore water pressure (PWP) characteristically increased steadily during 

compression testing and then flattened. An example from TS3 is presented in 

Figure 5.12. The PWP characteristics indicate sample compaction and are similar 

to those observed for normally consolidated clays (Craig 1997).  
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Figure 5.12: PWP (kPa) less back pressure (kPa) as a datum versus s

Tauriko. Values of 3' include 103, 200 and 303 kPa.       
 

Some specimens diverged from the typical PWP characteristics observed 

in Figure 5.12. Otumoetai samples OS1, OS2 and OS4 tested at low confining 

3'), between 20 and 25 kPa, displayed a definite peak in pore water 

pressure followed by a steady decrease. This phenomenon was also observed in 

3' = 25 kPa and two tests for 

3' = 25 and 55 kPa) PWP decreased below the initial back pressure value, 

3' = 25 kPa) is given as an example in 

Figure 5.13.  

 

 

Figure 5.13: 
Otumoetai tested at a 3' of 25 kPa.   

0.00

50.00

100.00

150.00

200.00

250.00

0.00 5.00 10.00 15.00 20.00

P
W

P
 -

B
a

ck
 P

re
ss

u
re

 (
k

P
a

) 

Strain ( ) (%)

103 kPa

200 kPa

303 kPa

-5.00

0.00

5.00

10.00

15.00

20.00

0.00 5.00 10.00 15.00 20.00

P
W

P
 -

B
a

ck
 P

re
ss

u
re

 (
k

P
a

) 

Strain ( ) (%)



Chapter 5: Geotechnical properties 

112 

A decrease in PWP following a clear peak indicates compaction followed 

by dilation. This phenomenon is not unique to this study, as Fredrickson (1988) 

observed similar PWP patterns in allophanic soils from the Waikato, where during 

tests at low 3' = 6 kPa) PWP became negative following an 

obvious peak (Fredrickson 1988). This behaviour is often interpreted as a 

characteristic of over-consolidated clays. Larger decreases in pore water pressure 

represent higher over-consolidation ratios (Craig 1997). However in the case of 

Frederickson (1988) this was attributed to desiccation rather than geological 

history. 

 

5.9.3.3 Stress path characteristics 

A stress path can be represented by a series of Mohr circles, in a plot of s' 

versus t', or in a less confusing way as a series of points which form a line. This 

line presents a clear representation of successive states of stress during testing 

(Craig 1997). Stress path plots are generally indicative of the stress history of the 

soil being tested (Frederickson 1988).  Thus the shape of the stress path plot is 

typically used to describe consolidation, or compaction and dilation characteristics 

during analysis.  

 

A total stress path always plots as a 45° line and the horizontal difference 

between the total and effective stress path represents the value of PWP at the 

stresses in question (Head 1998). If the effective stress path deviates to the left 

this indicates an increase in PWP as a result of compaction which is associated 

with normal consolidation. Alternatively, if the effective stress path deviates to 

the right this indicates a decrease in PWP due to dilatancy and over-

consolidation(Head 1998). Examples of typical stress path plots are given in 

Figure 5.14.  

 

Stress paths from Tauriko and Otumoetai, displayed a number of 

characteristics. Figure 5.15 indicated that when TS1 was tested at high confining 

3' = 207 and 297 kPa) stress paths curved heavily to the left, more than 

all other samples. A left trending curvature indicates properties of normally 

consolidated clays and possibly sensitive soils. In sensitive soils the heavy left 

trending curve occurs because as the soil shears its structure is destroyed and 

collapses causing excessive pore pressures to develop (Frederickson 1988).    
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Figure 5.14: Example of a total and effective stress path plots (s' versus t). The space between the 
two represents the difference in PWP. The effective stress path plot can deviate in two directions 
from the total stress path. Deviation to the left indicates compaction and normal consolidation and 
to the right indicates dilation and over-consolidation.   

 

 

 
Figure 5.15: Stress path plot from TS1 (Tauriko) for triaxial specimens analysed at confining 

pressures ( 3') of 55, 207 and 297 kPa.    

 

OS3 from Otumoetai displayed stress paths which all trended to the right 

which typically suggests over-consolidation and dilation (Figure 5.16). This 

indicated that prior to and after failure pore water pressure decreased as a result of 

sample dilation. Figure 5.16 indicated that the magnitude of curvature was similar 

for all specimens.  
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Figure 5.16: Stress path plot from OS3 (Otumoetai) for specimens analysed at confining pressures 

( 3') of 25, 54, 85, 150 and 160 kPa.    

 

Aside from the two extremes presented in Figures 5.15 and 5.16 all other 

samples followed a typical pattern. Figure 5.17 presents OS2 as an example. It 

3'), typically < 50 

kPa, displayed properties of over-consolidated clays and hence dilation, whereas 

those tested at higher confining pressures displayed properties of normally 

consolidated clays and hence compaction. Interestingly, curvature was less 

pronounced in specimens analysed at intermediate confining pressures, possibly 

representing a transition between normal (compaction) and over-consolidated 

(dilation) stress path states. 

 

Table 5.14 is presented to summarise all stress path plots from each 

specimen. Aside from what has been previously described it appeared that, with 

the exception of OS3, all specimens tested at high confining pressures tended to 

compact having properties of normally consolidated clays. As confining pressures 

decrease stress paths are more likely to represent dilation. 
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Figure 5.17: Stress path plot from OS2 (Otumoetai) for triaxial tests run at confining pressures 

( 3') of 25, 50, 100 and 150 kPa. 
 

Table 5.14: Description of stress path (s` and t`) plots, indicating samples which dilated (dilat.) 
during analysis appearing to have properties of over-consolidated (OC) specimens and those which 
compacted (comp.) appearing to have properties of normally consolidated (NC) clays. Specimens 

with an M in parentheses had a less pronounced curve, as shown for 3' = 100 kPa in Figure 5.17.*  
Approximate 

confining 

pressure (kPa) 

TS1 TS3 OS1 OS2 OS3 OS4 

20 - - 
OC 

dilat. 

OC 

dilat. 

OC 

dilat. 

OC 

dilat. 

       

50 
OC 

dilat. 
- - 

OC 

dilat. 

OC 

dilat. 

(M) OC 

dilat. 

       

80 - - 
(M) OC 

dilat. 
- 

OC 

dilat. 
- 

       

100 - 
OC 

dilat. 

(M) OC 

dilat. 

(M) NC 

comp. 
- 

NC 

comp. 

       

150 - - 
NC 

comp. 

NC 

comp. 

OC 

dilat. 

NC 

comp. 

       

200 
NC 

comp. 

(M) OC 

dilat. 
- - - - 

       

300 
NC 

comp. 

NC 

comp. 
- - - - 

* All effective stress path plots are presented in Appendix 5.6. The line represents a division 

between specimens which were tested above and below estimated in situ confining pressures. 

 

Table 5.14 indicated that compaction was more likely to occur in samples 

tested above their estimated in situ confining pressure and dilation was more 

likely to occur below.   
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5.9.3.4 Pore water pressure coefficient at failure (Af) 

The pore water pressure coefficient at failure (Af ) adds to the data 

obtained from stress path testing, because it numerically describes the condition of 

PWP at the time of failure. Therefore Af is often used to define stress history and 

hence apparent consolidation states (Head 1998). The pore water pressure 

coefficient at failure is calculated as:  

 

=
( 1  3)

                                                     (5.1) 

 

where: 

Af = pore water pressure coefficient (A) at failure; 

uf = change in PWP;  

1- 3)f = change in deviator stress at failure.  

 

Typical values, from Head (1998), are presented in Table 5.15 and will be 

compared with values from this study presented in Table 5.16  

 

Table 5.15: Typical values of pore pressure coefficient Af for a range of saturated soils (taken 
from Head (1998) after Skempton (1954)). 

Type of Soil Volume Change due 

shear 

Af 

Highly sensitive clay Large contraction + 0.75 to + 1.5 

Normally consolidated clay Contraction + 0.5 to + 1 

Compacted Sandy Clay Slight contraction + 0.25 to + 0.75 

Lightly over-consolidated clay None 0 to + 0.5 

Compacted clay gravel Expansion - 0.25 to + 0.25 

Heavily over-consolidated clay Expansion -0.5 to 0 

 

Interpreting Table 5.15 further, negative values indicate that at peak 

deviator stress pore water pressure is less than the applied back pressure, while 

large positive values indicate that PWP pressure has increased to a level well 

above back pressure. Table 5.15 also presents descriptions of volume change due 

to shear which relate to the pore water pressure coefficient at failure (Af). The 

association relies on the assumption that a sample will change in volume on the 

application of deviator stress. In a saturated soil tested under drained conditions, 

volume change will result in either water being expelled or sucked into the 

sample. In an undrained test volume change is prohibited because drainage is 

blocked. Therefore any volume change which would have occurred is represented 



Chapter 5: Geotechnical properties 

117 

by a change in PWP. Typically, loose sands and soft clays collapse (compact) 

causing a positive change in PWP and dense sands and stiff clays expand (dilate) 

resulting in a decrease in PWP (Head 1998). 

 
Table 5.16: Values of pore pressure coefficient (Af) for a range of saturated samples examined 

during triaxial testing at a range of confining pressures ( 3'). HSC = highly sensitive clay, NC = 
normally consolidated clay, LOC = lightly over-consolidated clay, HOC = highly over-
consolidated clay, as per table 5.15.*  
Approximate 

confining 

pressure (kPa) 

TS1 TS3 OS1 OS2 OS3 OS4 

20 - - 
LOC 
0.18 

HOC 
- 0.01 

HOC 
- 0.13 

LOC 
0.12 

       

50 
LOC 
0.49 

- - 
LOC 
0.18 

LOC 
0.03 

LOC 
0.44 

       

80 - - 
LOC 
0.41 

- 
LOC 
0.26 

- 

       

100 - 
LOC 
0.25 

LOC 
0.45 

NC 
0.52 

- 
NCC 
0.62 

       

150 - - 
NC 
0.69 

HSC 
0.82 

LOC 
0.089 

HSC 
0.80 

       

200 
HSC 
1.01 

LOC 
0.49 

- - - - 

       

300 
HSC 
1.09 

NC 
0.69 

- - - - 

*The line represents a division between specimens which were tested above and below estimated 

in situ confining pressures.       

 

All samples had at least one triaxial specimen which displayed some 

degree of apparent over-consolidation (Table 5.16), which was most evident in 

3') increased so did 

the pore water pressure coefficient Af, with the exception of OS3. The observed 

3') it was 

easier for the soil to dilate, because less energy is required for expansion against 

low pressures than high (Mitchell & Soga 2005).  

 

3 = 200 and 300 3 = 150 kPa) had 

very high PWP coefficient ratios which fell into the category of sensitive clays  

(Af > 0.75) (Table 5.16). This indicates that during shear there is a large increase 

in pore water pressure resulting from a large amount of compaction.  

 



Chapter 5: Geotechnical properties 

118 

3' = 20 kPa) displayed 

negative pore water pressure coefficient values (Table 5.16). Negative values 

indicate that the tendency to dilate is so strong pore water pressure at failure has 

fallen below the initial value of back pressure (Head 1998). This is not desirable 

because air which was originally dissolved in pore water may start coming back 

out of solution.     

 

Plots of PWP versus axial strain, stress paths, and the pore water pressure 

coefficient Af at failure value all indicated that Otumoetai samples tested at low 

3' and all of OS3 behaved like over-consolidated clays and dilate during shear. 

Firstly, all samples, with the exception of OS3, had high silt contents, so the 

classification of clay may be slightly misleading. Secondly, an over-consolidated 

state in these samples is unusual, because the material being investigated has not 

been subjected to a large overburden pressure which has been subsequently 

eroded. Jacquet (1990) reported volcanic soils comprised of either allophane or 

halloysite with over-consolidation ratios between 2.5 and 17. It was suggested that 

the apparent over-consolidation was caused by a positive relationship with 

ferrihydrite content rather than geological history. Furthermore the over-

consolidation reported may simply represent dilation during testing and not the 

consolidation state. Thus the over-consolidation reported here should be termed 

apparent over-consolidation.    

 

1 3')  

The principal effective 1 3') represents the ratio of the 

1 3') effective principal stresses at any point during 

compression testing. In some instances the principal effective stress ratio is used 

instead of peak deviator stress to define f 1 3') 

was plotted against axial strain during testing. A summary of peak principal stress 

ratios for all samples from Tauriko and Otumoetai is presented in Table 5.17. 

Typically the peak principal effective stress ratio is between 4 and 5 for Tauriko 

samples and 4 and 9 for Otumoetai samples. However, sample OS1 tested at a 

confining pressure of ~ 20 kPa recorded a principal effective stress ratio of 38.3.     
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Table 5.17: Values of peak effective stress ratio ( 1'/ 3') for samples from Tauriko and 
Otumoetai. OS3 analysed at a confining pressure of ~150 kPa includes two samples: the first 
tested at 150 kPa, and the second at 160 kPa.*  
Approximate 

confining 

pressure (kPa) 

TS1 TS3 OS1 OS2 OS3 OS4 

20 - - 38.3 8.1 8.23 6.9 

50 4.9 - - 5.9 8.01 6.0 

80 - - 6.6 - 4.48 - 

100 - 5 8.7 5.1 - 6.21 

150 - - 5.17 5.3 4.5 & 6.41 4.53 

200 4.3 4.3 - - - - 

300 4.39 4.1 - - - - 

*All effective stress ratio versus axial strain plots presented in Appendix 5.6. The line represents a 
division between specimens which were tested above and below estimated in situ confining 
pressures.   

 
Figure 5.18 presents an example of an effective stress ratio versus axial 

strain plot. Two tests from different confining pressures are displayed. The first at 

3' of 82 kPa represents a typical effective stress ratio plot with a peak value of 

6.6. The second represents the plot which produced the extremely high value of 

3' of 25 kPa.   

 

 

Figure 5.18: Effective stress ratio ( 1'/ 3') versus strain for sample OS1 tested at an effective 

confining pressure of 3` = 25 kPa and 82 kPa.   
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The exaggerated peak in Figure 5.18 was a result of the low effective 

confining pressure, deviator stress ( 1- 3), and PWP. In this situation effective 

1- 3 

3 3' for the 25 

3 1- 3 

and hen 1 increased at a rate similar to specimens tested at higher effective 

3 1- 3 caused 

the effective stress ratio to increase to an exceptional value (~38). This value then 

1-  3 settled and PWP decreased. This phenomenon occurred, to a 

lesser extent, in samples OS2, OS3 and OS4 tested at low confining pressures. 

This suggested that a high effective stress ratio was the result of increasing 

deviator stress and PWP combined with low confining pressure during the initial 

stages of the test, therefore, making it a property of test conditions rather than the 

specimen.  

 

5.9.4 Specimen failure condition  

Failure type is considered to be a significant feature of soil properties 

(Head 1994) but there seems to be little published material which outlines what 

this significance is. In this study failure type was divided into three groups: barrel, 

intermediate and shear failures, which are the same as those used for unconfined 

compression testing. Schematic examples are presented in Figure 5.3. Table 5.18 

described each of the failure types (Figure 5.3) for each of the specimens from 

Tauriko and Otumoetai. 

 

Table 5.18 indicated the most common failure type was by barrelling, with 

the least common being shear failure. Specimens from Tauriko typically failed by 

3 of 200 kPa displayed 

intermediate failure with both barrelling and the formation of a brittle shear plane. 

The angle of this shear plane was ~ 30°. Both a general plastic failure and the 

single intermediate failure are presented in Figure 5.19.  
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Table 5.18: Typical failure shapes for each sample from Otumoetai and Tauriko at different 

confining pressures ( 3'). B = Barrel failure, I = intermediate failure and S = shear failure, 
examples of which are given in Figure 5.3. Also included in this table is axial strain at failure for 
each sample in parentheses.*  
Approximate 

Confining 

pressure 

(kPa) 

TS1 TS3 OS1 OS2 OS3 OS4 

20 - - I (1.76) I (13.65) I (20.07) I (3.02) 

50 B (4.9) - - B (11.7) B (13.2) B (4.5) 

80 - - B (2.26) - B (20.2) - 

100 - B (6.37) S (1.97) I (2.82) - I (1.81) 

150 - - I (3.4) S (2.47) B/S (14.45) I (1.66) 

200 B (2.36) I (7.15) - - - - 

300 B (2.12) B (5.1) - - - - 

*. All failure images are included in Appendix 5.6. The line represents a division between 

specimens which were tested above and below estimated in situ confining pressures. 
 

 
Figure 5.19: (A) Example of a barrel failure from TS1, 3 = 300 kPa, and (B) intermediate failure 

from TS3, 3 = 200 kPa.    

 
Specimens from Otumoetai did not display any clear single failure type 

nor were any apparent trends observed in Table 5.18. However intermediate 

failures were the most common and shear failures the least. Figure 5.20 displays 

the three different failure types which were observed at Otumoetai. Shear planes 

for Otumoetai samples, when they occurred, ranged from 45  65°.  
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Figure 5.20: Examples of failure from Otumoetai including: (A) barrel failure from sample OS4 

3' = 55kPa: (B) intermediate failure from OS2 3' = 25kPa; and (C) shear failure from OS3 3' = 
160.  

 
Also presented in Table 5.18 are axial strains at peak deviator stress. One 

would expect shear type failures to occur when axial strain at failure is low, and  

barrel type failures to occur when axial strain is high, but this was not the case for 

the Tauriko or Otumoetai samples. Furthermore, Fredrickson (1988) observed 

shear type failure at low confining pressures, between 6 and 26 kPa and barrel 

failures between 48 and 96 kPa. Similar trends were not observed in the samples 

from this study. This may result from the fact that most specimens were 

compressed well past their axial strain at failure values of < 5% because most tests 

were typically terminated at 20%.   

 

5.9.5 Mohr - Coulomb failure envelopes  

 
5.9.5.1  Effective Mohr - Coulomb parameters  

To plot Mohr-Coulomb failure envelopes for each sample, at different 

3'), the parameter used to determine failure must 

be chosen. For effective stress tests BS 1377 (1990) recommended that failure can 

be determined under three separate stress conditions, which are: peak deviator 

1- 3 1 3'), or when shearing 

continues at constant pore water pressure and shear stress. It is thought that the 

1- 3) or maximum 

1'/ 3') could not be easily defined.   

 

Unfortunately little guidance was given in the literature as to which 

parameter should be used and when. However, it is well known that peak deviator 

stress and maximum principal stress ratio seldom occur at the same axial strain 
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(Head 1998). Bishop & Henkel (1962) recommended the use of peak deviator 

stress as a failure criteria. Head (1998) presented peak deviator stress as a failure 

option, but Head (1998) also stated that maximum effective principal stress ratio 

may provide better correlation with other parameters and be suitable for tests 

where peak deviator stress occurs at large strains. Lambe & Whitman (1979) and 

Lee et al. (1983) recommended using peak effective stress ratio in the case of 

consolidated undrained tests, especially when pore water pressure decreases after 

peak stress ratio has been measured. This is because further increases in shear 

strength may be a result of the decrease in PWP (Fredrickson 1988), which in turn 

3. In some situations, previous workers have found little difference 

between failure envelopes created using either peak deviator stress or effective 

stress ratio (Lo 1962; Fredrickson 1988). In this study effective cohesion and 

friction angle values derived using the two methods were not comparable, thus 

Table 5.19 presents those derived from both peak deviator stress and maximum 

effective stress ratio.  

 

Table 5.19: Mohr-Coulomb parameters of effective cohesion (c') (kPa) and friction angle ( ') (º) 
derived from peak deviator stress and maximum principal stress ratio. The table also includes r2 
values derived from s' and t' plots. All source data and raw calculations are presented in Appendix 
5.6.  

 Deviator Stress Effective  Stress Ratio 

Sample c' (kPa) ' (º) r
2 

c' (kPa) ' (º) r
2 

TS1 11.8 27.3 0.99 4.7 36.6 0.99 

TS3 24.0 31.1 0.99 20.3 32.7 1.00 

OS1 34.5 25.7 0.81 31.9 27.6 0.82 

OS2 4.7 38.5 0.99 9.6 36.9 0.99 

OS3 8.3 35.4 0.99 4.3 43.8 0.97 

OS4 13.7 28.5 0.99 9.2 34.3 0.97 

 

Correlation coefficient (r2) values in Table 5.19 were derived from s` and 

t` plots. Because c' and ' were calculated from the s` and t` plots, the r2 values 

were applicable and indicated that all data fit their respective trend lines well. 

With the exception of OS2, effective cohesion was greater for failure envelopes 

derived from peak deviator stress than maximum effective principle stress ratio. 

However, the opposite was true for effective friction angle, also with the 

exception of OS2 (Table 5.19). When comparing methods the difference between 

effective cohesion values ranged from 2.6 to 7.1 kPa and the range in friction 
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angle was between 1.6 and 9.3°. The greatest difference between methods for both 

effective friction angle and cohesion was observed in TS1 (Table 5.19).       

 

Considering all values presented in Table 5.19, effective cohesion was 

incredibly variable and ranged from very low to high ~ 4 to  ~ 35 kPa. All friction 

angles were high (> 25°); these values fell into the range of effective friction 

angles presented for halloysites (25  35°), allophanes (30  40°) and sands (28 

46°) by Wesley (1973) and Selby (1993).  

 

Tables 5.20 and 5.21 present triaxial data obtained from previous studies 

in the Tauranga region and will be used to make comparison with data obtained in 

this study. Values presented in Table 5.20 are results for specific geological units 

and materials, while those in Table 5.21 are for materials only. Effective strength 

values presented in Table 5.20 indicated that both friction angle and cohesion 

were spread across a range of values between and within geological units, 

especially the Pahoia Tephras. Friction angles in Tauranga material appeared 

typically high (> 21°) and material tested was dominantly silty (Tables 5.20 and 

5.21). Both Tables 5.20 and 5.21 indicated that samples can have both high 

cohesion and friction angle.  

 

When peak deviator stress was used as a failure criterion, Tauriko samples 

had effective cohesion values which were higher and friction angles which were 

lower than the Te Ranga ignimbrite (Table 5.20). The Pahoia tephras displayed a 

range of effective strength parameters, c' = 4  45 kPa and ' = 22 to 38° (Table 

5.20). Mohr-Coulomb values from Otumoetai and Tauriko (Table 5.19), with the 

exception of TS3, were similar to those presented for Pahoia tephras (Table 5.20). 

This was not surprising considering that both the Pahoia tephras and the majority 

of samples in this study are dominated by silt. Interestingly, OS3 had similar 

effective strength parameters as the Hamilton Ash and its associated paleosol, 

although friction angle was slightly higher for OS3. This was not unexpected as 

both the Hamilton Ash and OS3 have high clay contents. 
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Table 5.20: Peak effective cohesion and friction angle values for known geological units derived 
from previous studies in the Tauranga region. 

Unit
1 c' (kPa) ' (º) Material Reference 

Post Rotoehu Ash 
0 

1 

42 

40 

Sandy SILT 

Sandy SILT 

Oliver (1997)2 

 

     

Rotoehu Ash 0 37  42 SAND Oliver (1997)2 

     

Hamilton Ash Paleosol 6 31 SILT3 Oliver (1997)2 

     

Hamilton Ash 
6 

9 

33 

32 

Silty CLAY 

Silty CLAY 

Oliver (1997)2 

 

     

Pahoia Tephra 

6 

36 

32 

4 

12  45 

37 

22 

23 

38 

26 

SILT 

SILT 

SILT 

Silty SAND 

SILT 

TCC (2005) 

 

 

OPUS (1998) 

OPUS (2006) 

     

Matua Subgroup 

17.5 

3 

0 

0 

30 

37 

36 - 43 

34 

Silty SAND 

Silty SAND 

Silty SAND 

SILT 

Oliver (1997)2 

 

 

Connell Wagner (2007) 

     

Ignimbrite (Te Ranga) 
0 

3 

38 

45 

Sandy SILT/SANDS 

Sandy SILT/SANDS 

Connell Wagner (2000)4 

 

Notes: 

1) Units were either directly described with test data or correlated with borehole logs. 

2) Effective cohesion and friction angle values from Oliver (1997) were obtained with a shear box not a triaxial 

3) In Oliver (1997) particle size indicated a high amount of sand (58%) due to aggregation of material. His field 

logs indicated SILT. However in this study the Hamilton ash paleosol was typically logged as CLAY or silty 

CLAY 

4) Results presented for the Te Ranga Ignimbrite by Connell Wagner (2000) were collected from other sources but 

represent accepted values.  

 

 
Table 5.21: Effective cohesion and friction angle values for silty CLAY material from Waikite 
Road (Welcome Bay) and Omokoroa, which are both in the Tauranga region. 

Material Depth (m) c' (kPa) ' (º) Reference 

Silty CLAY 

 

2.5 

4.5 

5.8 

23.5 

6.8 

15.5 

23.8 

26.5 

20.8 

Meyer et al. (2005) 

Clayey SILT 22.2 0 29.5 Tonkin & Taylor (1980) 
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Using maximum principal effective stress ratio as the failure criteria TS1 

had a c' value (~ 5 kPa) similar to the Te Ranga ignimbrite (~ 3 kPa) (Tables 5.19 

and 5.20). However, ' was much lower, at ~ 37° and ~ 45° for TS1 and Te 

Ranga ignimbrite respectively. Typically, effective Mohr  Coulomb parameters 

for samples in this study, with the exception of TS3, were broadly similar to 

values presented for the Pahoia tephras (Table 5 ' 

OS3 had lower cohesion and a much higher friction angle than those presented for 

the Hamilton Ash (Tables 5.19 and 5.20).  

 

For the remainder of this study c' and ' derived from deviator stress at 

failure will be used. This is because OS3 was the only sample which displayed a 

1  3), at all confining pressures. 

However peak deviator stress will be used for OS3 because it fits the values 

presented in Table 5.20 for the high clay Hamilton Ash, which appears to be a 

similar material.   

 

5.9.5.2 Total Mohr - Coulomb parameters  

Peak deviator stress was used as the failure criterion for total stress 

parameters derived from CU testing. Because PWP was not measured the 

difficulties encountered for effective stress failure parameter selection no longer 

exist. Total cohesion (c) and friction angle ( ) for samples from Tauriko and 

Otumoetai are presented in Table 5.22.  

 

Table 5.22: Mohr-Coulomb parameters of total cohesion c (kPa) and friction angle  (º) derived 

from peak deviator stress for samples from Tauriko and Otumoetai. The table also includes r2 

values derived from s and t plots. All source data and raw calculations are presented in Appendix 

5.6.  

 Peak Deviator Stress  

Sample c (kPa)  (º) R
2 

TS1 18.5 11.3 0.99 

TS3 60.4 11.4 0.99 

OS1 46.4 9.5 0.75 

OS2 44.2 6.8 0.95 

OS3 44.9 23.1 0.80 

OS4 19.5 13.8 0.99 
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Correlation coefficients (r2) indicate an excellent fit of data for all samples 

except OS1 and OS3, however the lower r2 values are still acceptable. Apparent 

cohesion was highest in sample TS3 (~ 60 kPa) and lowest in TS1 (~ 19 kPa). 

Friction angle was greatest for OS3 (~ 23 °) and lowest in OS2 (~ 7 °). TS1 and 

OS4 displayed similar results.  

 

Pahoia tephra was the only material for which total strength parameters 

could be found for material from the Tauranga region; these values are presented 

 

values to those presented in Table 5.23.   

 

Table 5.23: Total cohesion and friction angle values for the Pahoia tephras derived from previous 
studies in the Tauranga region.  

Unit c (kPa)  (º) Material Reference  

Pahoia Tephra  2 

51 

48 

5 

15  

56 

19 

10 

10 

22 

15 

15 

SILT 

SILT 

SILT 

Silty SAND 

SILT 

SILT 

TCC (2005) 

 

 

OPUS (1998) 

OPUS (2006) 

 

 

Because limited data were available to compare results from this study 

with those of the Tauranga region, Table 5.24 presents total stress parameters 

from other studies examining tephra derived soils. The friction angles from this 

study presented in Table 5.22, ~ 7 to ~ 23°, were typically higher than those 

presented for halloysite soils (Table 5.24).  Cohesion values for halloysite clays 

were similar to samples TS3, OS1, OS2 and OS3. Allophanic soils in Table 5.24 

covered a wide range of c and  with values between 10 to 150 kPa and 5 to 48° 

for cohesion and friction angle respectively. Because of this wide range, all values 

in Table 5.22 are represented.  
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Table 5.24: Total cohesion and friction angle values derived from previous studies on 
volcaniclastic materials in the Waikato and Taranaki regions.  

Dominant clay 

mineral 

c (kPa)  (º) Material Reference 

Halloysite  

 

 

Allophane 

55 

50 

60 

150 

150 

65 

90 

33  35 

10  213 

2.6 

2 

9 

11 

5 

15 

10 

29  32 

35  483 

Silty CLAY 

Clayey SILT 

Clayey SILT 

Clayey/sandy SILT1 

Silty/clayey SAND2 

Clayey/sandy SILT1 

Clayey/sandy SILT1 

Clayey/sandy SILT1 

Clayey/sandy SILT1 

Jacquet (1990) 

 

 

 

 

 

 

Frederickson (1988) 

 

Notes: 

1) Presented in source reference as a silt loam 

2) Presented in source reference as a sandy loam  

3) Results were from tests on samples of 100mm diameter.  

 

5.9.6 Triaxial summary 

Summarising triaxial results, OS3 was clearly different from all other 

samples. OS3 displayed peak deviator stress at higher strains (13.2  20.1 %) than 

other samples, indicating more plastic type failures (based on strain at failure). 

Values of peak deviator stress demonstrated that OS3 had the greatest strength. 

PWP activity during compression indicated that OS3 dilated at all confining 

pressures having the apparent property of over-consolidated clay. This tendency 

to dilate was so strong that PWP may have become negative.  

 

All other samples, which had extremely high adapted sensitivities (19 to 76), 

typically displayed brittle failure (based on strain at failure) especially as 

confining pressure increased. These samples displayed sharp stress strain 

relationships and displayed peak deviator stress at < 5 % strain. However, OS2 at 

confining pressures of less than 50 kPa displayed peak deviator stress at high 

strains (11.7  13.7 %). Strain at failure for TS3 (5.1  7.2 %) across all confining 

pressures was slightly more plastic than TS1, OS1, and OS4 (1.7  4.9 %). Strain 

softening following failure was typically minimal. Examining PWP 

characteristics, all highly sensitive samples dilate during compression at low 

confining pressure, having the characteristics of over-consolidated clay. As 

confining pressure increased, the tendency to dilate decreased, and specimens 

displayed characteristics of compaction during compression. The degree of 

compaction at failure for TS1, OS2 and OS4, at confining pressures of 150 kPa 
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and above, was so great their Af value indicated properties of highly sensitive 

clays. Of the highly sensitive clays, TS3 stood out failing at higher strains across 

all confining pressures. TS3 showed the lowest Af and highest deviator stress 

values compared to all other highly sensitive samples. These characteristics 

indicated TS3 was structurally different to TS1, OS1, OS2 and OS4.  

 

Using deviator stress as a failure criterion, effective cohesion and friction 

angles for OS3 were similar to the clayey Hamilton Ash. The remainder of 

samples, with the exception of TS3, were similar to the Pahoia tephras.   

 

5.10 Ring shear 
This section presents ring shear results for samples collected from Tauriko 

and Otumoetai, a summary of values is presented in Table 5.25. Raw results, 

including Mohr-Coloumb plots, are presented in Appendix 5.7.  

 

Table 5.25: Ring shear ranges of normal load used ( n), range of peak strength (kPa), residual 

cohesion (cr) and residual friction ( r) angle for samples collected from Otumoetai and Tauriko. 

All shear stress versus linear displacement graphs, and Mohr  Coulomb plots are presented in 

Appendix 5.7.  

Sample Range of  n  (kPa) Range of peak f  (kPa) cr  (kPa) r r
2 

TS1 14  149 10  90 3.06 30.40 0.99 

TS3 52  296 31  194 0.01 33.181 0.99 

OS1 19  150 13  90 0.75 30.99 0.99 

OS2 19  149 11  87 0.39 30.05 0.99 

OS3 19  149 11  57 4.87 19.34 0.99 

OS4 8 - 174 6  89 2.87 26.56 0.99 

Notes: 

1) Cohesion forced through 0 actual measured result was cr = -3.41 (kPa) and r = 33.82º.  

 

Residual cohesion (cr) values range from 0 to 4.87 (kPa). Low cohesion 

was expected as Craig (1997) stated that cr is very low and can often be taken as 0. 

The highest Cr value was 4.87 (kPa) for sample OS3; considering this sample had 

the highest clay content this was not unexpected. TS3 originally had a negative cr 

value, which was not realistic, but a negative cohesion had been previously 

reported by Keam (2008) for volcanic silts in Omokoroa, Tauranga (Table 5.26). 

Residual friction angles ( r) range from 19.34º to 33.18º; Craig (1997) stated that 

r decreased with increasing clay content. OS3 had the highest clay content and 

friction angle was lowest for this soil. However, when examining volcanic ash 
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soils across a range of size class (Table 5.26), increasing clay content seemed to 

have little effect on r angle. High silt samples (TS1, TS3, OS1, OS2 and OS4) 

all fell within the range of r presented in Table 5.26. OS3, which is 

predominantly clay, was much lower than those values recorded for volcanic 

clays. 

 
Effective friction angle results for triaxial samples TS1, TS3, OS1 were all 

less than residual friction angles. Furthermore, total peak friction angles for the 

shear box were greater than all residual friction angles.  

 

Table 5.26: Previous ring shear values presented by other workers for volcanic ash material. NR 

indicates that no value was recorded.  

Source Volcanic Ash Silt Volcanic Ash 

Clayey Silt 

Volanic Ash 

Silty Clays 

Volcanic ash 

clays 

 cr r cr r cr r cr r 

Ranges 0  15.9 16.6 - 32 NR 18 - 35 NR 31  37 NR 24.5 - 39 

Single values 0.0 291 NR 24.52 NR 352 0 393,4 

 15.9 281 NR 312 NR 372 4 353,4 

 6.8 321 NR 18.12 NR 352 0 393,4 

 -4.4 30.95 NR 282 NR 312 5 24.53,6 

 4.3 16.65 NR 342 NR 372   

   NR 352 NR 362   

Notes: 
1) Values from Cong (1992) 
2) Values from Wesley (1992) 
3) Values from Wesley (1977) 
4) Dominant clay mineral was halloysite 
5) Values from Keam (2008) 
6) Dominant clay mineral was allophane 

 

5.11 Summary of geotechnical properties  
Tables 5.27 and 5.28 summarise all the geotechnical properties measured 

for samples from Tauriko and Otumoetai. All samples with the exception of OS3 

had only a small percentage of clay (< 10 %). Most samples were predominantly 

silt (> 50%), though this was not the case for OS2, which was dominated by sand 

(> 50 %). High moisture contents were typical (> 60 %); TS1, TS2 and OS1 had 

values over 100 %. Porosities for all samples were at the upper limit of what had 

been previously measured, and void ratios were also high. Dry bulk density values 

were within the ranges previously measured; however volcanic soils typically 

have low bulk density (Molloy 1998). TS3 and OS3 had the highest dry densities 

and lowest porosities.  
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Atterberg limits indicated that all samples had similar properties to 

halloysite and to a lesser extent allophane. High adapted sensitivity samples (TS1, 

TS2, TS3, OS1, OS2 and OS4) had moisture contents above their respective 

liquid limits as indicated by the high liquidity index values (> 1). This resulted in 

low remoulded strength, which was confirmed by the results from the calculation 

of Sharma & Bora (2003; 2005) and the inability to form cores for unconfined 

compressive strength testing. Even though samples had low remoulded strength 

the rapidity number indicated that a lot of energy was required to cause complete 

structural disturbance.   

 

During shear box testing samples typically decreased in volume, which 

often resulted in strain hardening at high normal loads. Shear box and effective 

triaxial testing indicated that all samples had high friction angles. However, 

effective residual friction angles for samples TS1, TS3 and OS1 from ring shear 

testing were higher than peak values obtained from triaxial testing. Triaxial results 

indicated OS3 was clearly different than all other samples. OS3 displayed plastic 

type failure whilst all other samples were typically brittle. Furthermore OS3 

dilated during compression having the properties of an over-consolidated clay at 

all confining pressures. In all other samples as confining pressure increased they 

tended toward compaction rather than dilation. At their maximum confining 

pressures TS1, OS2 and OS4 had the properties of highly sensitive clays. During 

triaxial testing TS3 appeared different to all other highly sensitive samples (TS1, 

OS1, OS2 and OS4) displaying elevated peak deviator stress, strains at failure and 

lower Af values.  
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Chapter 6 

Mineralogy  
 

6.1 Introduction 
Mineral assemblages are a primary control on the physical and chemical 

properties of a soil. Therefore a priori knowledge of what minerals are in a soil 

provides an insight into its behaviour (Mitchell & Soga 2005). Because volcanic 

deposits often contain both crystalline and short-range order minerals (Lowe & 

Nelson 1983), and both clay and non-clay minerals were investigated in this 

study, a number of analytical techniques have been adopted to provide a 

qualitative analysis of the minerals present in each sample. Methods used to detect 

short-range order minerals were sodium fluoride and oxalate extractable Fe, Al 

and Si. X-ray diffraction (XRD) and scanning electron microscopy (SEM) were 

employed for the identification of both clay and non-clay minerals. All samples 

from Tauriko (TS1, TS2, and TS3) and Otumoetai (OS1, OS2, OS3, and OS4) 

were analysed for mineral assemblages. 

 

It should be noted that bulk soil refers to samples which include all sand, 

silt, and clay. The clay-size fraction refers to all material < 2 µm. Material with a 

crystalline clay mineral structure is normally < 2 µm; however, clay minerals can 

also occupy larger size ranges. Material which appears characteristically clay-like 

under SEM investigation, but not necessarily < 2 µm, will be termed a clay 

mineral.   

 

6.2 Sodium fluoride (NaF) 
The use of sodium fluoride (NaF) determines the presence of reactive 

hydroxyl-aluminium in short-range order minerals such as allophane and 

ferrihydrite (Fields & Perrot 1966). However, in the field this analysis is 

classically used only to determine the presence of allophane. The results for bulk 

soil samples from Tauriko and Otumoetai are presented in Table 6.1. For each 

sample, Table 6.1 is divided into three categories. The first is the colour change 

observed as a result of the NaF reaction, the second is the pedological 
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classification from Milne et al. (1995), and the third is an estimate of allophane 

content based on NZS 4402 (1986). 

 

Table 6.1 Allophane identification in samples from Tauriko (TS1, TS2 and TS3) and Otumoetai 

(OS1, OS2, OS3 and OS4), as indicated by application of sodium fluoride. Visual classification 

indicates the observed colour changes, the pedological and NZS 4402 classifications follow those 

of Milne et al. (1995) and NZS 4402 (1986).  

Sample Visual Pedological allophane 

reaction 

NZS 4402 allophane 

content (%) 

TS1 Moderately pink Very weak 5 to 7 

TS2 Moderately pink Very weak 5 to 7 

TS3 Moderately pink Weak 5 to 7 

OS1 Moderately pink Weak 5 to 7 

OS2 Moderately  dark pink Moderate > 7 

OS3A Very light pink Very weak < 5 

OS4B Very light pink Very weak < 5 

 

The NaF field test indicated that all samples had at least a minor amount of 

free aluminium (hydroxyl  aluminium in short-range order), indicating the 

possible presence of some allophane. OS2 from Otumoetai had the strongest 

reaction and hence the highest estimated allophane content (Table 6.1). Table 6.1 

indicates that TS3 has the same visual characteristics as TS1 and TS2, but its final 

pedological result is higher. The higher result occurred because TS3 reached its 

 

 

6.3 Extractible Fe, Al and Si  
Allophane and ferrihydrite contents have been quantitatively estimated 

from acid-oxalate extractable Fe, Al and Si combined with pyrophosphate 

extractable Fe and Al. It should be noted that imogolite also dissolves in acid-

oxalate, but this is only a very minor constituent in New Zealand soils (Lowe & 

Percival 1993), so will not be discussed here. All samples from Tauriko (TS1, 

TS2 and TS3) and Otumoetai (OS1, OS2, OS3 and OS4) have been analysed and 

the results are presented in Table 6.2. Raw test values can be found in Appendix 

6.1. Included in Table 6.2 is the Al:Si ratio measured from extractable Si and Al 

results. The Al:Si ratio determines the multiplier, found in Parfitt (1990), used to 

quantify allophane content. This value is then multiplied by acid-oxalate 

extractable Si to obtain a quantitative determination of allophane (Parfitt 1990; 
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Lowe & Percival 1993) (see Chapter 3). Ferrihydrite is determined by multiplying 

acid-oxalate extractable Fe by 1.7 (Parfitt & Childs 1988). 

 

Table 6.2: Oxalate-extractable ferrihydrite (%) and allophane (%) contents for samples collected 

from Tauriko and Otumoetai. Results presented include the Al:Si ratio, the multiplier and the acid-

oxalate extractible Si (Sio).* Also included is acid-oxalate extractible Fe (Feo). 

Sample 
Al:Si 

ratio 
Multiplier Sio (%) Allophane % Feo (%) 

Ferrihydrite 

% 

TS1 7.7 - 0.03 - 0.01 0.01 

TS2 5.6 - 0.04 - < 0.01 < 0.01 

TS3 5.7 - 0.04 - < 0.01 < 0.01 

OS1 2.1 7 0.19 1.3 0.29 0.5 

OS2 2.3 10 0.16 1.6 0.25 0.4 

OS3 2.3 10 0.08 0.8 0.28 0.5 

OS4 3.8 - 0.04 - 0.16 0.3 

* TS1, TS2, TS3 and OS4 allophane results cannot be determined because the Al:Si ratio was 
higher than that published for any other allophane.  

 

All Al:Si ratios were greater than 2:1 indicating that allophane present in 

samples of this study were Al-rich or imogolite-like allophane (Parfitt 1990; Lowe 

& Percival 1993). Al-rich allophane is the dominant form in New Zealand soils 

(Lowe & Percival 1993) and is likely to be present when the Si in soil solution is 

low (Parfitt & Kimble 1989). Interestingly, the Al:Si ratios of Tauriko samples 

were unusually high, between 5.6 and 7.7, and may be aberrant because they were 

much higher than the range of 0.4 to 4.0 recorded by Parfitt & Kimble (1989) for 

512 allophanic samples from New Zealand.  

 

Allophane as determined by acid-oxalate analysis was only a minor 

component in samples from OS1, OS2 and OS3 from Otumoetai with values 

ranging between 0.8 and 1.6 % (Table 6.2). These low allophane results can be 

accepted as reasonably accurate because Parfitt (1990) stated that the extractable 

Al and Si method can detect as little as 0.5 % during routine analysis. 

Furthermore, the Al:Si ratios (3.8  7.7) presented for samples from Tauriko and 

OS4 (Table 6.2) were higher than the maximum of 3.5 presented by Parfitt (1990), 

and therefore no multiplier is available. The Sio values (0.03  0.04) were so low 

that allophane content was insignificant (Table 6.2).  

 

Ferrihydrite co

value is at the lower end and less than the measured range of 0.5 to 8.0 % for 
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ferrihydrite content of New Zealand tephras (Lowe & Percival 1993). Otumoetai 

samples had higher ferrihydrite contents than those from Tauriko, with mean 

values of ~ 0.4 % and < 0.01 % respectively. Ferrihydrite is a common component 

of tephra-derived soils (Lowe & Percival 1993). 

 

Allophane values derived from extractible Al and Si give a quantitative 

and much more reliable estimate than the field-based NaF analyses. The NaF field 

test does not reflect the results all that well, but do give relative amounts. 

Therefore, extractible Al and Si allophane results will be used in the remainder of 

this study.      

 

6.4 X-ray diffraction (XRD)  
XRD was used to examine both the clay-size fraction (< 2 µm) and bulk 

soil for all samples from Tauriko and Otumoetai. The clay-size fraction was 

analysed as orientated pastes, with the hope of enhancing 00l reflections, and the 

bulk sample was scanned as a randomly orientated powder.  

 

6.4.1 Tauriko  

XRD results from Tauriko are summarised in Table 6.3. All 

diffractograms can be found in Appendix 6.2.  

 

Table 6.3: Minerals observed in both the clay-size fraction (< 2 µm) and bulk soil material for 

samples from Tauriko, as determined by XRD.   

Sample Bulk sample (sand, silt, clay) minerals  
Clay-size fraction 

minerals (< 2 µm) 

TS1 Dehydrated halloysite, low temperature tridymite, 

Na-Ca feldspar (plagioclase), low temperature 

quartz 

 Hydrated halloysite 

TS2 Dehydrated halloysite, low temperature tridymite, 

Na-Ca feldspar (plagioclase), low temperature 

quartz 

 Hydrated halloysite 

TS3 Dehydrated halloysite, Na-Ca feldspar 

(plagioclase), low temperature tridymite, low 

temperature quartz 

 Hydrated halloysite 

 

6.4.1.1 Bulk sample  

The bulk sample traces for TS1, TS2 and TS3 are shown in Figures 6.1 to 

6.3. These all show strong broad 001 peaks between 7.34 Å and 7.48 Å which 
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indicate the presence of dehydrated halloysite. In all samples the shoulder of the 

dehydrated halloysite peak extends over the kaolinite position of 7.15 Å, but no 

peaks are observed. If halloysite is completely dehydrated one would expect a 

peak at ~7.2 Å which is similar to that of kaolinite. The larger spacing suggests 

some retained interlayer water. The retention of interlayer water further confirms 

the presence of dehydrated halloysite rather than kaolinite. If kaolinite is present, 

but only in very small amounts, it is possible that the 7.15 Å peak may be masked 

by the dehydrated halloysite peak.    

 

In each sample an asymmetrical peak at ~4.48 Å extends down towards 

~3.3 Å (Figures 6.1, 6.2 and 6.3). While Brindley & Brown (1980) stated that the 

4.48 Å position represents disordered kaolinite, the shape of the peak is 

characteristic of the ~ 4.4 Å 02, 11 band of halloysite (Jock Churchman, pers. 

com. 2008). However, it should also be noted that all layer silicates typically show 

a peak at ~ 4.4 Å.  In each sample the intensity of the 4.4 Å 02,11 band is stronger 

than the 001 dehydrated halloysite peak. The stronger 02,11 band suggests the 

presence of halloysite rather than kaolinite (Brindley & Brown 1980). In all 

samples the 001 and 02, 11 halloysite peaks dominate the XRD trace, indicating 

its abundance.  

 

Peaks near 3.6 Å were observed in TS1 and TS2. These represent the 002 

position for halloysite (Figures 6.1 and 6.2). The 003 halloysite position of 2.4 Å 

is closely approximated by peaks at 2.37 Å and 2.4 Å in TS1 and TS2, 

respectively (Figures 6.1 and 6.2). All samples have indistinct low broad peaks 

around 2.34 Å which represent kaolinite (Figures 6.1, 6.2 and 6.3). These peaks 

may indicate the presence of a small amount of kaolinite in these samples. 

However, these peaks are difficult to define and the absence of a 001 (7.15 Å) 

reflection does not clearly support the presence of kaolinite.  

 

Plagioclase feldspar and low temperature quartz are present in all samples. 

Both TS2 and TS3 have strong peaks for plagioclase between 3.19 Å and 3.22 Å 

(Figures 6.2 and 6.3). A similarly positioned, but less intense, plagioclase peak 

was observed for TS1 (Figure 6.1). Alternatively, TS1 displays the strongest low 

temperature quartz peak at ~ 3.34 Å (Figure 6.1).   
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Figure 6.1: XRD diffractograms for the bulk samples from TS1 (Tauriko). All peaks are labelled 

with the associated mineral. Å values presented first represent those measured by the trace and Å 

values in parentheses represent the ideal value for the selected mineral.     

 

 

 

Figure 6.2: XRD diffractograms for the bulk samples from TS2 (Tauriko). All peaks are labelled 

with the associated mineral. Å values presented first represent those measured by the trace and Å 

values in parentheses represent the ideal value for the selected mineral.     
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Figure 6.3: XRD diffractograms for the bulk samples from TS3 (Tauriko). All peaks are labelled 

with the associated mineral. Å values presented first represent those measured by the trace and Å 

values in parentheses represent the ideal value for the selected mineral.     
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mineral comprises very thin sheets then the peak at ~ 10 Å may be absent. Micas 

characteristically sparkle in hand specimens as light reflects from the flakes 

(Fanning et al. 1989), but this feature was not observed in any of the Tauriko 

samples, so it seems unlikely that biotite is present. The peak at 2.66 Å may 

represent goethite as it is close to the position of 2.67  2.69 Å identified by 

Brindley & Brown (1980). Associated goethite peaks at 2.43 to 2.45 Å and 2.23 to 

2.25 Å (Brindley & Brown 1980) are difficult to identify because of the high 

background surrounding this section of the XRD diffractograms (Figures 6.1 and 

6.3). It is possible that goethite is present because it has been recorded by 

Shepherd (1994) in beds of the Hamilton Ash Formation (1  8 %) (0.08  0.34 

Ma; Lowe et al. 2001) and the Kauroa Ash Formation (2  15 %) (0.78  2.24 Ma; 

Lowe et al. 2001). 

      

6.4.1.2 Clay-size fraction (< 2 µm)   

Figure 6.4 presents a clay fraction XRD trace of TS1 from Tauriko. The 

sample has been scanned fully hydrated on a porous ceramic tile and then scanned 

again after heating at 110 °C for 1 hour. Only TS1 is presented from Tauriko 

because all samples displayed almost identical diffraction tracings (Appendix 

6.2). When scanned fully hydrated, all samples are dominated by sharp 001 

hydrated halloysite peaks between ~9.82 Å and ~9.92 Å. This d spacing is close to 

the classical ~10.1 Å peak of hydrated halloysite. The slight difference may be the 

result of interlayer water loss during testing. Peak positions slightly increase to 

between 9.94 Å and 10.06 Å after the application of formamide (Appendix 6.2). 

Furthermore, the sharpness of the peaks indicates the high degree of crystallinity 

of the halloysite minerals (Lowe & Nelson 1983).  

 

Figure 6.4 further confirms halloysite because the 001 peak collapsed to 

between ~7.3 Å and ~7.2 Å heating to 110 ºC. This collapse is characteristic of 

halloysite and represents a loss of interlayer water as the clay mineral transforms 

from its hydrated to dehydrated state (Brindley & Brown 1980). This collapse 

occurred in all Tauriko clay fraction samples (Appendix 6.2).  
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Figure 6.4: XRD diffractograms for the clay-size fraction from TS1 (Tauriko). The black line 

represents the trace when the sample is fully hydrated and the red line is after heating for 1 hour at 

110 °C.   

 

Further confirmation of halloysite is provided by the asymmetrical peak at 

~ 4.4 Å which represents the 02, 11 band (Figure 6.4). Interestingly, in the fully 

hydrated state, 003 peaks for hydrated halloysite were observed between 3.32 and 

3.35 Å. When air dried or after being heated to 110 ºC this peak shifted to ~ 3.6 Å 

indicating this peak represents halloysite rather than quartz (3.34 Å).    
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(~ 550 °C) peak collapse. When heated to 550 ºC, all peaks collapsed indicating 

that mica, smectites and chlorites were not present. Typically peaks will persist at 

10 Å or 14 Å after heating if these minerals are present (Brindley & Brown 1980). 

Serpentines can also be excluded because they will display a low broad reflection 

in the 10 to 14 Å region after high temperature heating (Brindley & Brown 1980).  
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Figure 6.5: XRD diffractograms for the clay size fraction from TS1 (Tauriko) after heating for 1 

hour at 550 °C.   

 

The determination of 10.1 Å halloysite by scanning samples fully hydrated 

on ceramic tiles is likely to represent the natural field state of the mineral. Thus 

halloysite observed in the air-dried bulk sample is likely to be hydrated in situ, 

rather than dehydrated, halloysite in its natural field condition. The dehydrated 

state is simply a product of interlayer water loss during sample preparation (Lowe 

& Nelson 1983).  

 

Peaks in the position of low temperature cristobalite (~ 4.05 Å) and 

tridymite (~ 4.09 Å) were present in TS1 and TS2 clay fractions, respectively. 

However, these peaks were only observed in samples scanned on ceramic tiles. 

Ceramic tile blank sample traces indicated these peaks may represent the tile 

rather than the sample; the blank tile trace is presented in Appendix 6.2.   

 

6.4.2 Otumoetai  

Samples OS1, OS2, OS3 and OS4 were analysed from Otumoetai and the 

results are summarised in Table 6.4. All XRD traces can be found in Appendix 

6.2. 
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Table 6.4: Minerals observed in both the clay-size fraction (< 2 µm) and bulk soil material for 

samples from Otumoetai, as determined by XRD.   

Sample Bulk sample (sand, silt, clay) minerals Clay-size fraction 

minerals (< 2 µm) 

OS1 Dehydrated halloysite, low temperature quartz, 

low temperature cristobalite 

Hydrated halloysite, low 

temperature tridymite, low 

temperature quartz 

 

OS2 Dehydrate halloysite, low temperature quartz, 

Pyroxene 

 

Hydrated halloysite 

OS3 Dehydrated halloysite, low temperature quartz, 

low temperature cristobalite 

 

Hydrated halloysite, kaolinite, 

low temperature cristobalite, 

low temperature quartz 

 

OS4 Dehydrated halloysite, low temperature quartz, 

low temperature tridymite 

Hydrated halloysite, kaolinite 

 

6.4.2.1 Bulk sample 

The bulk sample traces for OS1, OS2, OS3 and OS4 are presented in 

Figures 6.6, 6.7, 6.8 and 6.9. All Otumoetai bulk samples displayed broad 

dehydrated halloysite peaks between 7.33 Å and 7.45 Å and had a shoulder which 

fell over the kaolinite position of 7.15 Å. The dehydrated halloysite peak intensity 

is lowest in OS3. As at Tauriko, all samples displayed a number of secondary 

peaks for halloysite. The 02, 11 band at ~ 4.4 Å was present in all samples. Its 

intensity was greater than that of the 001 halloysite peak in all samples except 

OS4. A peak at ~ 3.6 Å was present in all samples which indicated halloysite. 

Following the same rationale as Tauriko, it can be concluded that the dominant 

clay material in the bulk sample from Otumoetai was halloysite, which was most 

in situ.  

 

Of the non-clay minerals low temperature quartz dominated OS3, OS1 and 

OS4, which are listed in order of peak intensity and hence quartz abundance. OS2 

was dominated by pyroxene with very sharp and intense peaks at 2.94 Å and 2.54 

Å. Quartz was also present in OS2, with a peak intensity greater than that 

observed in OS4 but less than that observed in OS1. Low temperature cristobolite 

was observed in OS1 and OS3 with peaks at ~ 4.06 Å. Low temperature tridymite 

was observed in OS4 with a peak at 4.11 Å (Figures 6.6, 6.7, 6.8 and 6.9).     
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Figure 6.6: XRD diffractogram for the bulk samples from OS1 (Otumoetai). All peaks are labelled 

with the associated mineral. Å values presented first represent those measured by the trace and Å 

values in parentheses represent the ideal value for the selected mineral.     

 

 

 

Figure 6.7: XRD diffractogram for the bulk samples from OS2 (Otumoetai). All peaks are labelled 

with the associated mineral. Å values presented first represent those measured by the trace and Å 

values in parentheses represent the ideal value for the selected mineral.     

 

0

50

100

150

200

250

0 5 10 15 20 25 30 35 40 45

C
o

u
n

t

Position [ 2 Theta]

D
eh

y
d

ra
te

d
H

al
lo

ys
it

e 
7

.3
7

 Å
 

H
al

lo
y

si
te

 4
.4

5 
Å

 (
4

.4
4 

Å
)

H
al

lo
y

si
te

 3
.6

3 
Å

 (
3

.6
 Å

)

L
o

 C
ri

st
o

b
ol

it
e 

4
.0

6 
Å

 (
4

.4
4 

Å
)

lo
 Q

u
ar

tz
 4

.2
6Å

 

L
o

 Q
u

ar
tz

 3
.3

5 
Å

 (
3

.3
4 

Å
) 

H
al

lo
y

si
te

 2
.5

7 
Å

lo
 Q

u
ar

tz
 2

.4
6 

Å
 

0

50

100

150

200

250

300

350

0 5 10 15 20 25 30 35 40 45

C
o

u
n

t

Position [ 2 Theta]

D
eh

y
d

ra
te

d
H

al
lo

ys
it

e 
7

.3
9

 Å
  

H
al

lo
y

si
te

 3
.6

4 
Å

 (
3

.6
 Å

) 

L
o

 Q
u

ar
tz

 3
.3

4 
Å

 

P
y

ro
x

en
e 

2
.9

4
 Å

 

P
y

ro
x

en
e 

2
.5

4
Å

 

H
al

lo
y

si
te

 4
.4

5 
Å

 (
4

.4
4 

Å
)



Chapter 6: Mineralogy 

145 

 

Figure 6.8: XRD diffractogram for the bulk samples from OS3 (Otumoetai). All peaks are labelled 

with the associated mineral. Å values presented first represent those measured by the trace and Å 

values in parentheses represent the ideal value for the selected mineral.     

 

 

 

Figure 6.9: XRD diffractogram for the bulk samples from OS4 (Otumoetai). All peaks are labelled 

with the associated mineral. Å values presented first represent those measured by the trace and Å 

values in parentheses represent the ideal value for the selected mineral.     
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6.4.2.2 Clay fraction  

The clay fraction results for samples from Otumoetai were similar to those 

presented for Tauriko, with all samples being dominated by hydrated halloysite. 

When scanned fully hydrated on ceramic tiles, sharp 001 hydrated halloysite 

peaks occurred between 9.85 Å and 10.02 Å. These peaks were complemented by 

the 02, 11 band at ~ 4.4 Å. The 001 peaks expanded to between 10.02 Å to 10.14 

Å with the application of formamide (Appendix 6.2). Halloysite was further 

confirmed by the collapse of the ~10 Å to ~ 7.2 Å on heating at 110 ºC for 1 hour. 

In all samples, clay peaks disappear after heating for 1 hour at 550 ºC (Appendix 

6.2), ruling out any possible micas, chlorites or smectites.  

 

When scanned fully hydrated, OS3 displayed small peaks at ~7.15 Å 

indicating the presence of kaolinite. After the application of formamide, this peak 

decreased in size but could still be identified (Figure 6.10). 

 

 

 

Figure 6.10: XRD diffractogram for clay size fraction for untreated and formamide treated 

samples from OS3 (Otumoetai). All peaks are labelled with the associated mineral. Å values 

presented first represent those measured by the trace and Å values in parentheses represent the 

ideal value for the selected mineral.     
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a small quartz peak was observed at ~ 3.34 Å even after the 003 hydrated 

halloysite peak had shifted to 3.6 Å following heating at 110 ºC for 1 hour 

(Appendix 6.2).    

 

6.5 Scanning electron microscope 
Methods such as XRD provide basic identification of any crystalline 

mineral. The scanning electron microscope (SEM) can add to XRD findings by 

providing a morphological image of minerals observed. This ability is especially 

important for clay when a single mineral can occur as a number of morphologies, 

a prime example of this polymorphism being halloysite (Joussein et al. 2005). 

 

The SEM was employed to investigate both clay and non-clay minerals in 

samples from Tauriko (TS1, TS2 and TS3) and Otumoetai (OS1, OS2, OS3 and 

OS4). The SEM coupled with energy dispersive X-ray (EDX) was also used to 

obtain elemental compositions of certain clay morphologies.    

 

6.5.1 Clay minerals  

Because the dominant clay mineralogy was halloysite (section 6.4), SEM 

was employed to determine its morphology.  

 

6.5.1.1 Tubes 

Hollow tubes (Figure 6.11) were found in all samples from both sites but 

their abundance was greatest in samples from Otumoetai. Tube lengths in 

Otumoetai samples range from approximately 0.05 µm up to 2 µm (Figures 6.11 

and 6.12). In a number of samples the longer tubes appeared to taper at one end 

(Figure 6.13). Short tubes, between 0.05 µm and 0.4 µm in length, were the 

dominant morphology in OS3 (Figure 6.12). Longer tubes, up to 2 µm, were the 

principle tube morphology in OS4 (Figure 6.11). In both OS1 and OS2 observed 

tubes were normally less than 1 µm in length, but some up to 2 µm long were 

evident. 

 

When examined under high magnification tubes from OS1, OS3 and OS4 

displayed varying degrees of fracturing. Such fracturing was most evident in OS3 

(Figure 6.13). Fracturing in Figure 6.13 appeared hexagonal in nature, covered the 

entire tube and showed no orientation. Ece & Schroder (2007) attributed 
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hexagonal cracking in clay tubes to volume expansion as a result of cryogenic 

SEM. The tubes observed in Figure 6.13 have not been subject to cryogenic 

freezing. However, cracking could also occur as a result of heating under high 

vacuum (Jock Churchman pers. com. 2008).  

 

Hollow tubes were observed in all Tauriko samples, although most 

abundantly in TS1. Tube sizes ranged between 0.3 µm (Figure 6.14) and 1 µm 

(Figure 6.15).  Unfortunately it was often difficult to distinguish tubes from other 

matrix material, which may be attributed to their scarcity or small size, or both.  

 

The tubes observed represent the classical morphology of halloysite 

(White & Dixon 2002; Joussein et al. 2005). Generally, tubes are derived from 

synthesis following the weathering of volcanic glass, pumice, feldspar and mica 

(Joussein et al. 2005). Tube lengths can range from 0.2 µm to >30 µm (Joussein et 

al. 2005). The presence of halloysite tubes in local volcanic material has been 

confirmed by Salter (1979) who recorded halloysite tubes as a dominant 

morphology in multiple units in the Kauroa Ash bed sequence. Kirkman (1981) 

observed tubes in both the Hamilton Ash and Kauroa Ash beds. Tubes in rhyolitic 

tephra from a number of locations in New Zealand including Te Puke were 

recorded by Churchman & Theng (1984), whereas Keam (2008) observed tubes in 

reworked rhyolitic material from Omokoroa, Tauranga.  

 

Other clay minerals have tube-like morphologies. One example is 

serpentine. However, serpentine tubes are much smaller and have a greater aspect 

ratio than halloysite (White & Dixon 2002). Imogolite is also observed as packed 

bunches of hollow fibres. However, these fibres are normally several micrometres 

in length (White & Dixon 2002), and imogolite is rare in New Zealand soils 

(Lowe & Percival 1993) but, imogolite has been reported in sensitive soils of the 

Taranaki region (Jacquet 1990).   

 

In some instances halloysite tubes, up to 0.3 µm, from Tauriko are 

growing from the edges of plates in books (books are described below in section 

6.5.1.4) and stacked much like individual plates (Figure 6.16). These growths may 

represent a secondary phase of clay formation. Robertson & Eggleton (1991) 

reported halloysite tubes forming from kaolinite plates resulting from a loss of 
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structural rigidity along points of the kaolinite crystal. However, Robertson & 

Eggleton (1991) indicated that the original kaolinite needed freedom of movement 

and this may not be the case here because of the tightly packed layers in the 

books. Salter (1979) described clay books from Kauroa Ash beds which had 

halloysite tubes between and attached to the edges of individual plates. However, 

the books presented by Salter (1979) displayed clear delimitation, were much 

larger (> 200 µm long), and the tubes appeared to be more abundant than in 

Figure 6.16 of this study. Authigenic tube formation was observed in OS3 (Figure 

6.17); interestingly the tubes have maintained the crystalline pattern of the 

primary mineral. Dominant tube formation is occurring parallel to the crystal face 

of the primary mineral. 

 

Some tubes were observed splitting and unrolling (Figure 6.18). These 

features are likely to be the result of desiccation (Mitchell & Soga 2005). 

 

  

 

 
Figure 6.11: SEM image from 
OS4 (Otumoetai) showing loosely 
packed hollow tubes. The hollow 
nature of tubes is identified by the 
open end of tubes as shown at ht. 
The lengths of individual tubes 
range between 0.2 µm and 2 µm, 
longer tubes are clearly dominant. 
Diameters of tubes are up to 0.2 
µm. Intermixed with tubular 
material are irregularly shaped 
plates or blocky spheres . The 
irregular material is < 0.2 µm, and 
appears to have formed a micro 
aggregate in the bottom left corner 
of the image (pa). Unfortunately 
the small size of the non-tubular 
material makes it difficult to 
accurately define a shape.    
 
 
 
 
 

Figure 6.12: Tightly packed tubes 
and plates observed with scanning 
electron microscopy for OS3. 
Tubes are hollow as denoted by h. 

The lengths of individual tubes 
range between 0.05 µm and ~0.4 
µm and have diameters up to 0.1 
µm. The surface of all material in 
the image displays a large amount 
of un-orientated hexagonal 
fracturing.   
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Figure 6.13: Hollow tubes from 
OS3 (Otumoetai) up to 1.0 µm 
long displaying un-orientated 
hexagonal fracturing which 
extends the entire length of each 
tube. Non-tubular material also 
displays fracturing, as indicated by 
nt. The tube located at t1 appears 
to taper towards the top of the 
image, as does the tube at t2.      

 
 
 
 
 
 
 
 
 
 
 

 

 

Figure 6.14: SEM image from 
TS1 (Tauriko) showing tubes up to 
0.3 µm long. Also evident are 
blocky and plate-like materials 
having a similar range of sizes as 
the tubes. 
 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.15: Thin hollow tubes, 
indicated by t, from TS1 (Tauriko) 
up to 1 µm in length and 
approximately 0.15 µm in diameter 
radiating from an aggregate of 
platy material.   
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Figure 6.16: A clay book from 
TS2 (Tauriko) with at least 24 
individual plates. The book is 
orientated diagonally across the 
image, as indicated by arrow. 
Interestingly, individual tubes up 
to 0.3 µm are growing from the 
edge of individual plates. In the 
top right hand corner, indicated by 
st, tubes are stacked much like 
individual plates would be.   

 

 

 

 

 

 

 

 
Figure 6.17: Authigenic tube 
formation in OS3 (Otumoetai), as 
shown by tf, occurring on an 
unidentified primary mineral. 
Evidence of plate formation may 
also be seen in the top left corner 
of the SEM image (pf). Clay 
formation appears to be occurring 
parallel to the surface of the 
primary mineral. Authigenically 
formed tubes and plates appear to 
maintain the crystalline pattern of 
the parent material.   
 
 
 
 
 
 
 
 
 

 

 
Figure 6.18: SEM images 
displaying a tube from TS3 
splitting and unrolling (in circle).  
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6.5.1.2 Spheres  

Small (less than ~ 0.7 µm) irregularly shaped almost blocky polygonal 

type spheres (Figure 6.19) were present in the clay fraction at both Tauriko and 

Otumoetai. In most samples it was difficult to determine whether the material was 

spherical rather than platy. OS2 from Otumoetai was the only sample where 

morphologies were clearly spherical (Figure 6.20).  

 

Polygonal type spheres from Tauriko have diameters ranging from 0.1 µm 

up to ~ 0.7 µm (Figures 6.19 and 6.21). Shapes are typically blocky and never 

appeared perfectly round. For example, Figure 6.19 shows the flattened polygonal 

surfaces typically observed. Some larger spheres had surface ridges which appear 

much like the tubes described earlier (Figure 6.19).  

 

Spheres in samples from Otumoetai appeared to have slightly different 

morphologies than those in Tauriko samples. For example, polygonal spheres in 

OS4 were small (0.1 µm across) and irregular with some appearing ovoid (Figure 

6.22). Spheres in OS1 had a globular (cauliflower) type morphology with the 

appearance of a number of small (~ 0.05 µm) spheres combining to become one 

(Figure 6.23). The spheres in OS2 had a smooth, regular surface and the overall 

shape was easy to define (Figure 6.20). OS2 had the highest number of easily 

defined spheres.  

 

These spherical type shapes represent another common morphology of 

halloysite. Joussein et al. (2005) stated that halloysite spheres are commonly 

formed in weathered volcanic ashes and pumice. It is accepted that morphology 

may not be perfect and some particles are more pseudo spherical (Joussein et al. 

2005). For example, Kirkman (1977) observed multifaceted squat cylinders rather 

than perfect spheres in the weathered Pahoia tuffs (0.35  2.18 Ma: Briggs et al. 

1996) near Opotiki. Bailey (1990) suggested that flattened morphologies may be 

the result of drying during sample preparation. However, OS2, which was dried 

during sample preparation, contained regularly shaped spheres (Figure 6.20). 

Interestingly, the shapes observed in the samples of this study may be linked to 

weathering, as Ogura et al. (2008) found that where weathering was more 

advanced the spherical shape of halloysite was more easily defined.  
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Small sphere sizes, as observed in the samples of this study, are not 

unusual. For example, spheres with diameters of < 0.1 µm have been reported in 

altered volcanic tuffs (Ece & Schroder 2007) and Holocene-aged volcanic ash 

(Ogura et al. 2008). More specifically, Salter (1979) identified spherical 

halloysite, with a mean diameter of 0.2 µm, as the dominant clay mineral in three 

beds from the Kauroa Ash formation. Smalley et al. (1980) described spheres with 

a mean diameter of 0.2 µm from highly sensitive volcaniclastic soils, similar to 

those under study in this project, at Omokoroa, Tauranga. Comparatively, the 

squat halloysite cylinders observed in the Pahoia tuffs by Kirkman (1977) were up 

to 1 µm in diameter.  

 

Al-rich allophane also has a spherical morphology comprised of an 

imogolite-like structure. The fragments of this structure link to create discrete 

hollow porous spheres approximately 4 nm (40 Å / 0.004 µm) in diameter. 

Individual allophane spheres are often found clumped together in aggregates 

(Parfitt 1990; Lowe & Percival 1993). Because the allophane content measured by 

extractible Al and Si was very low and because allophane spheres are very small, 

it is unlikely that any of the spheres observed are allophane.  

 

 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 6.19: SEM image 
displaying polygonal spheres (s) 
from Tauriko ranging in size from 
0.3 to 0.65 in diameter. The sphere 
at sr has surface ridges which 
appear like tubes. Surrounding the 
spheres is a slightly delaminated 
book (db) and a number of 
irregularly shaped and aggregated 
plates. Some plates may also 
represent blocky spheres.    
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Figure 6.20: Easily defined 
spheres (s) up to 0.5 µm in 
diameter from OS2 (Otumoetai). 
The image appears to be 
dominated by spheres of varying 
size yet some tubes (t) < 1.0 µm in 
length are also present.      
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.21: SEM image of 
material from TS3 (Tauriko) 
displaying at least 3 books (b) with 
the longest being ~ 3 µm in length. 
Plate thickness differs between the 
books and also within them. 
Material surrounding the books 
includes blocky spheres and plates 
(p). Because the SEM images lack 
depth and the image is cluttered 
with material, it is often difficult to 
specifically define shapes. Blocky 
spheres range in size from 0.1 to 
0.4 µm. In most instances spheres 
appear very irregular, almost 
blocky and have polyhedral 
flattened faces. Individual plates, 
not those included in books, are 
normally irregularly shaped and 
have diameters up to ~0.5 µm. 
 
 

 

 

 

 

 

 

 

 
Figure 6.22: SEM image of 
material from OS4 (Otumoetai) 
showing very small ~0.1µm 
irregularly shaped spheres. Many 
spheres appear to be either blocky 
or show an ovoid shape. 
Intermixed with the spheres is 
platy material of similar size. 
Tubes are present in the centre of 
the image and appear at least 0.8 
µm long.  
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Figure 6.23: SEM image from 
OS1 (Otumoetai) showing a 
number of small spheres less than 
0.1 µm in diameter forming 
clusters to form larger spheres (gs) 
up to 0.3 µm in diameter with a 
globular type appearance. Also 
observed in this image are narrow 
< 0.2 µm flat broken plates (bp).  

 
 
 
 

6.5.1.3 Plates  

Plate morphologies were present in all samples from Tauriko and in OS1, 

OS3 and OS4 from Otumoetai. Plates in samples from Tauriko were small (less 

than 0.5 µm in diameter) ranging from irregularly shaped to hexagonal and often 

display fracturing (Figure 6.24). Because of the lack of depth in SEM images it 

was difficult to distinguish between flat plates and potentially blocky spheres.    

 

Samples OS3 and OS4 had small, 0.2 to 0.5 µm, highly-fractured 

irregularly shaped plates (Figure 6.25). All plates in OS3 had rounded edges, but 

the overall geometry was varied, with plates appearing either hexagonal, irregular, 

or half oval (Figures 6.25 and 6.26). Plates in OS1 were less frequent but larger 

than those which occurred in OS3 and OS4 with diameters up to 2 µm (Figure 

6.27).  

 

Plates, especially those which are hexagonal, are normally associated with 

kaolinite (Dixon 1989). However, halloysite plates have been previously 

associated with volcanic ash soils, tuff beds, weathered pyroclastics and lateric 

profiles, but are less common than spheres and tubes (Joussien et al. 2005). Small 

size is not uncommon as Noro (1986) reported flat plates of halloysite, from an 

altered tuff bed, having diameters of ~ 0.3 µm. In New Zealand, blocky halloysite 

has been reported in hydrothermally altered dacite derived soils at Kauri and 

rhyolitic/andesitic soils from Te Puke (Churchman & Theng 1984). 

 

The plates from OS3 cannot be confidently identified as halloysite because 

of the small kaolinite peak which remained after addition of formamide during 

gs 

bp 
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XRD analysis (Figure 6.10). Thus it could be suggested that these plates are 

kaolinite. This would be logical as the plates are only a very minor fraction in 

both samples and the kaolinite observed in the clay size fraction XRD trace was 

only very small, thus indicating that kaolinite will not be very abundant if present. 

This is not the case for plates observed in the clay fraction of Tauriko samples 

because kaolinite is not identified in any of the XRD traces.   

 

 
 

 
 

 

 

 
 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.24: SEM image from 
TS3 (Tauriko) showing highly 
irregular spheres (s) and plates (p). 
Spheres appear almost blocky with 
flattened polyhedral faces and 
diameters up to 0.3 µm. The plates 
intermixed with the irregular 
spheres have diameters up to 0.6 
µm and shapes are either 
elongated, irregular or disk like. 
Tubes (t) are only sparsely present. 
Within the background of spheres, 
plates and tubes are books (b1). 
Plates which make up the books 
are ~1 µm in diameter and appear 
to be pseudo hexagonal. Another 
smaller book is located at (b2) the 
plates in which appear slightly 
delaminated. The large irregular 
plate at (p1) is possibly the top of 
another book.  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.25: Flat plates (p) up to 
0.5 µm in width from OS3 
(Otumoetai) surrounded by short 
tubes up to 0.3 µm in length. 
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Figure 6.26: Fractured tubes and 
plates in OS3 (Otumoetai). Tubes 
are up to 0.7 µm in length. Whilst 
the edges of individual plates (p) 
are difficult to define they appear 
to be irregularly shaped and up to 
0.5 µm in diameter. One plate 
appears to be showing an oval type 
shape (op).    

 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.27: SEM image 
displaying a plate (p) from OS1 
(Otumoetai) approximately 2 µm 
in diameter. 

 
 
 
 
 

 

6.5.1.4 Books  

Whilst individual plates were characteristically small (< 0.5 µm), other 

larger plates were present but they appeared to be stacked in vermiforms (books) 

(Figure 6.28). Books are only present in Tauriko samples and abundance was 

greatest in TS3 and least in TS2.  

 

A variety of plate shapes occurred for each individual book. Shapes were 

irregular (Figure 6.28), pseudo-hexagonal (Figure 6.24) and elongated (Figure 

6.29). Individual plate widths in each of the books ranged from ~ 1 µm (Figure 

6.28) to ~ 20 µm (Figure 6.29). The contact between each plate was normally 

tight, but some books displayed minor delamination at either the edges or centre 

of individual plates (Figure 6.30). Some books were completely delaminated, with 
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infilling material (Figure 6.31). Poor clarity during SEM imaging means the 

material between delaminating plates was difficult to define, but this material 

would logically be best described as the other smaller morphologies of halloysite, 

i.e. tubes, spheres or small plates.  

 

Book lengths ranged from ~ 1.5 µm long (Figure 6.32) to ~ 50 µm long. 

Books were generally curved, with bends and undulations of the parallel sides 

(Figure 6.30). Some appeared nearly U shaped (Figure 6.33) whilst others were 

worm shaped or weakly helical (Figure 6.34).       

 

Clay books are a common kaolinite morphology (Dixon 1989; White & 

Dixon 2002), yet Bailey (1990) stated that kaolinite and halloysite cannot be 

distinguished by morphology alone. XRD traces of the clay-size fractions and 

bulk samples from Tauriko indicated strongly that the books were halloysite. 

Whilst halloysite can occur in a range of morphologies it has never previously 

been observed as books (see detailed review by Joussien et al. 2005). 

Furthermore, the infrequent yet positive identification of halloysite as plates in 

other soils (Churchman & Theng 1984; Noro 1986; Joussien et al. 2005) lends 

some confidence to the identification here of halloysite, uniquely, with a book 

morphology.  

 

XRD traces present indisputable evidence that the book material observed 

in the clay-size fraction of all Tauriko samples can only be halloysite and not 

kaolinite. This was because peaks only occurred at ~ 10 Å, representing hydrated 

halloysite and not at 7.15 Å which would indicate kaolinite. To further confirm 

identification as halloysite alone, clay-sized fraction specimens analysed by XRD 

from TS3 were examined with the SEM. From this, books were observed 

comprising at least 10% of the sample. This was less frequent than that observed 

in the bulk sample (up to 30%), but if the books were kaolinite one would expect 

at least a minor peak at 7.15 Å. This conclusion is based on the reasoning that 

kaolinite gives a stronger reflection than halloysite for the same amount of 

material (Jock Churchman, pers. com. 2008).  For example, Churchman et al. 

(1984) showed XRD patterns for a mixture of 60% halloysite and 40% kaolinite. 

After treatment with formamide the ~ 10 Å halloysite peak was lower in height 

than the ~ 7 Å peak for kaolinite.   
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Discussion in section 6.4.1.1 indicates that the 7.33 Å and 7.41 Å peaks in 

the bulk fraction were more likely to be dehydrated halloysite rather than kaolinite 

(Figures 6.1, 6.2 and 6.3). In conclusion, the books that were observed in the clay 

fraction were certainly halloysite and it was almost certain that those observed in 

the bulk sample were also halloysite.  

 

 

 
 

 
 
 
 

 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 6.28: SEM image from 
OS3 displaying at least 3 books 
(b1  b3). The plates in books b1 
and b2 appear to be irregularly 
shaped. The material surrounding 
the plates is dominated by small 
flat plates up to 0.5 µm in 
diameter. Some of this material 
also appears blocky, and less plate-
like.   

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.29: Large number of clay 
books from TS3 (Tauriko) 
supported by smaller non-book-
like material. Of most interest are 
the books at eb. These books 
appear to be made up of highly 
elongated plates ~ 20 µm across.   
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Figure 6.30: Curved book from 
TS1 (Tauriko) (cb). The book is ~ 
18 µm long and ~ 6 µm wide; 
plates which make up the book 
appear hexagonal. The book at cb 
displays minor delamination of 
plates both in the centre of the 
book and along the edges.  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 6.31: Book from TS1 
(Tauriko) with plates ~ 10 µm 
across showing complete 
delamination. Materials infilling 
between the plates are possibly 
tubes, spheres and smaller plates. 
Unfortunately poor image clarity 
makes infill material hard to 
define.     
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.32: Small book ~ 1.5 µm 
in length. Plates are different 
widths and each appears highly 
fractured.  
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Figure 6.33: SEM image of a 
curved book from TS1 (Tauriko). 
The book is ~ 15 µm long with 
plates ~ 3 µm in diameter. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.34: SEM image of a 
worm-shaped (helical) book from 
TS1 (Tauriko) ~ 10 µm long. Each 
plate appears to be ~ 1.5 µm in 
diameter.   
 

 

 

 

 

 

 

 

 

 

 

6.5.1.5 Elemental analysis of clay minerals   

EDX analysis was undertaken on books from Tauriko and tubes from 

Otumoetai in order to determine their elemental compositions. All raw EDX 

analysis values are presented in Appendix 6.3. Previous workers have established 

that structural Fe content is an important determinant of halloysite morphology 

especially in the case of plates and tubes (Joussien et al. 2005). Plates are 

considered to have high iron contents whilst tubes have less (Bailey 1990). By 

analogy one would expect books to have high structural Fe contents because they 

comprise many plates. Spheroidal halloysite is not included because Fe content is 

thought to have little influence on spheroidal morphology: Fe content can range 

from zero to values which are comparable with those of plates (Churchman & 

Theng 1984; Noro 1986; Johnson et al. 1990).  
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Seven books in total were investigated. Analysis focused on the top plate, or 

sample to ensure that the books examined were halloysite. An example of a book 

which was analysed is presented in Figure 6.35. A direct comparison between 

books and tubes in Tauriko material was not possible because tubes were too 

narrow for individual analysis. Furthermore, tubes were typically observed 

intermixed with spheriodal and platy material so could not be analysed as clusters.    

 

 

 

 

 

 

 

 

 
Figure 6.35: SEM image from 
TS3 displaying the top plate of a 
book which was analysed for 
elemental properties using EDX. 
Note that the area analysed 
included only the surface of the 
book. The image quality is reduced 
because of the high accelerating 
voltage (20 kV). 

 

 

 

 

Because samples from Otumoetai contained a large amount of halloysite tubes 

it was possible to analyse these in clusters. Twelve clusters of tubes were 

investigated from OS4 Otumoetai and an example is presented in Figure 6.36. It is 

important to point out that this method does incorporate the risk of scanning some 

non-tubular material. Also, the accuracy of results is somewhat diminished 

because a flat surface was not examined. A cluster of tubes recorded an Fe content 

of 2.6 ± 0.32% and on replication the result was 3.8 ± 0.71%. Nevertheless a 

Student t-test of these two results showed the assays to be insignificantly different 

(95% probability). Nevertheless, the following results should be examined with 

some caution. It should be noted that samples have not been deferrated so are not 

free of possible Fe impurities. However, the method used here does focus on 

individual particles rather than a bulk analysis, probably eliminating this potential 

problem. 
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Figure 6.36: SEM image of a 
cluster of tubes which were 
investigated with EDX analysis. 
The analysis focused on a much 
closer section in the centre of the 
image, as indicated by the circle. 
Note the image quality is reduced 
because of the high accelerating 
voltage (20 kV). 

 

 

 

Table 6.5 presents Al2O3, SiO2, and Fe2O3 values for books from Tauriko and 

tubes from Otumoetai. The values presented in Table 6.5 have been 

stoichiometrically converted to oxides from Al, Si and Fe using multipliers of 

1.889, 2.139 and 1.430, respectively, which are found in Berkman (2004). EDX 

analysis also recorded C and Pt. These elements were excluded from calculation 

because they are from sample mounting and coating material, respectively (see 

blank analysis in Appendix 6.3). Some samples recorded elements such as Mg, Ge 

and Cl, with the highest value being 1.15%. These elements may represent 

contaminants or material on exchange sites.  

 

Table 6.5: Percentages of Al2O3, SiO2 and Fe2O3 for books from Tauriko and tubes from 

Otumoetai. 

Compound Books Tubes 

Al2O3 34.1 ± 0.5 34.2 ± 1.3 

SiO2 47.7 ± 1.1 50.7 ± 2.1 

Fe2O3*
 5.2 ± 0.2 3.17 ± 0.3 

  *All Fe expressed as Fe2O3 

 

Results presented in Table 6.5 indicate that when errors are included the 

mean Al2O3 and SiO2 values are the same. Student t-tests indicated that there was 

no significant difference between the Al2O3 and SiO2 values presented for tubes 

and books, with p values of 0.94 and 0.20, respectively. The SiO2 values in Table 

6.5 were higher than those of the Hamilton Ash (40.7 and 45.6%) (Shepherd 

1984, as cited in Lowe & Percival 1993). The Al2O3 values (Table 6.5) were 

within the range of those for the Hamilton Ash (32.4 to 42.4 %). The Fe value for 
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books was higher (~ 5.2 %) than that presented for tubes (~ 3.2 %) (Table 6.5). A 

students t-test indicated that the difference in Fe2O3 between the books and tubes 

was significant (p = 4.1 x 10-5). Consequently it is likely that the Fe content (as 

Fe2O3) is higher in books than in tubes. 

 

When the Fe2O3 data for books and tubes (Table 6.5) were presented as 

box and whisker plots (Figure 6.37), the upper range for tubes extended into the 

book values, and the total range of values was greater. This indicated the 

variability in tube results. However the majority of the Fe2O3 data, which occurred 

between the first and third quartile, were higher for books than tubes. 

 

Figure 6.37: Box and whisker plot of Fe2O3 for two morphologies: books from Tauriko and tubes 

from Otumoetai. The black square represents the mean value.  

 

The mean Fe2O3 content of books (~ 5.2 %) was higher than values of  

3.33 % and 3.07 % (as Fe2O3) for untreated and deferrated halloysite plates 

examined by Soma et al. (1992), for samples from Te Puke. Tube Fe2O3 values (~ 

3.2 %) in this study were within the values presented for untreated (0.24 %     

8.14 %) and deferrated (0.26  3.55 %) tubes by Soma et al. (1992), when his Fe 

values were converted to Fe2O3. However, their analysis examined the bulk soil 

fraction with XRF and the platy samples included a minor amount of tubes and 

spheres. Tube Fe2O3 content (~ 3.2 %) was higher than that presented 

tubes (2.4 % to 2.6 s (0.2 to 0.8%) by Noro (1986). However, 

no size range was presented for his/her tube samples.  

 

Books are within the typical range of Fe2O3 (~ 2 to ~ 6%) found in plates. 

Tubes in this study were at the upper limit of typical values for long tubes (0 to ~ 
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3.5 %) and were greater than the typical values for short tubes (~ 0.2 to ~ 2.8) 

(Figure 6.38)     

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.38: Main halloysite morphologies versus Fe content (as Fe2O3) from data in the literature 

compiled by Joussein et al. (2005). Included in this graph are dashed lines which represent the Fe 

contents measured in this study for books and tubes.  

 

6.5.2 Non-clay material   

 
6.5.2.1 Tauriko  

Non-clay mineral grains ranged in size from 18 µm (Figure 6.39) to  

420 µm (Figure 6.40) and the distribution of sizes was similar for all samples.    

Volcanic glass (Figure 6.41) was the most abundant non-clay mineral observed in 

all samples from Tauriko, using SEM analysis. Glass fragments ranged in size 

from 30 µm (Figure 6.41) to 330 µm (Figure 6.42), although most material was < 

120 µm with the median size being ~ 75 µm. Shapes were typically angular 

(Figure 6.41), but flat triangular plates, long thin shards  and irregular shapes were 

also observed (Figures 6.43, 6.44 and 6.45). Most glass fragments were dominated 

by conchoidal shaped depressions. These depressions represented either fracturing 

or the edges of vesicle walls (Figure 6.46). Internal vesicles were only observed in 

three glass minerals, ranging in size from 2 µm (Figure 6.41) to 180 µm (Figure 

6.42). EDX analysis on three of the glass textures showed high levels of SiO2 and 

also the presence of Al2O3, K2O, FeO, Na2O and CaO, which are typical of 
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rhyolitic glass (e.g. Lowe et al. 2008b) (see Appendix 6.3 for EDX values of glass 

from this study).      

 

Feldspar, probably plagioclase, was present in TS1 and TS3 and crystals 

ranged in size from 70 µm (Figure 6.47) to 420 µm (Figure 6.40). The 

identification of plagioclase is based on cleavage, which was observed along two 

axes at ~ 90º. Typically the feldspar was blocky with sub-angular edges (Figures 

6.40 and 6.47).  

 

Other mineral shapes in each sample were both angular and blocky (Figure 

6.48), which may represent quartz.  

 

 

 
 
 
 
 
 

 
 

 
 
 

 

 

 

 

 

 
Figure 6.39: Small angular grain 
(possibly quartz) observed at TS1 
which is ~18 µm along its longest 
dimension.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 
Figure 6.40: Large blocky 
feldspar mineral from TS3  ~ 420 
µm long.    
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Figure 6.41: Angular glass 
fragment ~ 30 µm in length. Small 
hole (~ 2 µm) marked by d 
indicates either dissolution as a 
result of weathering or a small 
vesicle. 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 6.42: Glass fragment 330 
µm in length, with a large 180 µm 
long elongated central vesicle 
displaying minor infilling.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6.43: Flat triangular plate, 
probably volcanic glass ~ 60 µm in 
length. 
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Figure 6.44: Long slender glass 
shard (gs) ~ 80 µm long. 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.45: Irregularly shaped 
glass shard ~ 70 µm long showing 
conchoidal fracturing and cuspate 
depressions and abundant adhering 
surface material. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6.46: Volcanic glass 
fragment from Tauriko, the 
conchoidal fracturing represents 
bubble walls.    
 
 

gs 
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Figure 6.47: Blocky feldspar (f) 
crystal from TS3 up to 70 µm long 
displaying cleavage in two 
directions at 90º.  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.48: SEM image from 
TS1 Tauriko showing a blocky 
quartz (q) grain with sub angular 
edges which is ~ 190 µm across. 
Surrounding the quartz mineral are 
irregularly shaped materials which 
are likely volcanic glass fragments. 
Note the conchoidal depression at 
con.  
 

 
 

 
6.5.2.2 Otumoetai  

Across all samples, mineral sizes ranged from 3 µm to 750 µm (0.750 

mm). Grains were typically smaller in OS3 when compared to other samples, with 

a maximum size of 60 µm (Figure 6.49). Infrequent large grains up to 750 µm and 

850 µm (Figures 6.50 and 6.51) in length were observed in OS4 and OS2, 

respectively. The largest grain observed in OS1 was 160 µm. Shapes from all 

Otumoetai samples were blocky (Figure 6.52), platy (Figure 6.53) and angular 

(Figure 6.54). In OS1, OS2 and OS4, the edges of grains ranged between angular 

and sub-rounded. Alteration was not observed in OS1 and OS4, but was evident in 

OS2 (Figure 6.55). Grains in OS3 appeared more rounded than those in other 

samples and some alteration was present (Figure 6.17).   

 

f 
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Biotite, with its distinctive hexagonal shape (Figure 6.49) and basal 

cleavage (Figure 6.50), was present in OS1, OS3 and OS4. Sizes observed ranged 

between 4 µm (Figure 6.56) and 750 µm (Figure 6.50). In OS1, OS2 and OS4 

quartz was present and displayed conchiodal fracturing and had anhedral crystal 

faces (Figure 6.57). Volcanic glass was not positively identified using SEM in any 

of the samples from Otumoetai. 

 

 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

Figure 6.49: Biotite (b) mineral 
from OS3 which is at least 60 µm 
in diameter. A section of the 
typical hexagonal shape can be 
observed. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

Figure 6.50: Exfoliating biotite 
(b) grain from OS4 750 micron in 
length. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

b 
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Figure 6.51: Large partly 
weathered crystal (850 µm in 
length) from OS2. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.52: Blocky mineral from 
OS2. Possibly pyroxene with its 
columnar shape and obvious 
cleavage. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 6.53: Trapezoidal platy 
grain from OS4. The grain appears 
to have a micaceous or layer-like 
structure.   
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Figure 6.54: SEM image from 
OS4 displaying an angular non-
clay (anc) grain and a blocky non-
clay grain (bnc) with rounded 
edges.   
 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 6.55: SEM image from 
OS2 displaying what appears to be 
the alteration of a blocky primary 
mineral to halloysite spheres. The 
mineral is possibly feldspar, as 
perpendicular sides may represent 
cleavage at 90º. 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.56: Highly weathered 
biotite from 0S3, ~ 4 µm in 
diameter (b). Note the hexagonal 
shape.   
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Figure 6.57: SEM image from 
OS1 displaying quartz (q) with 
conchoidal fracturing (fr) and an 
anhedral crystal habit.   
 
 

6.6 Grain mounts  
The following section presents results from grain-mount analysis, using the 

fine sand fraction of samples from Tauriko and Otumoetai. An estimate of mineral 

type and abundance in each sample is presented in Table 6. 6.  

 

Table 6.6: Estimates of relative abundance from grain mount analysis of the fine sand fraction of 

samples from Tauriko (TS1, TS2, TS3) and Otumoetai (OS1, OS2, OS3 and OS4)*.  

 TS1 TS2 TS3 OS1 OS2 OS3 OS4 

Clay aggregates P A P A A P A 

Volcanic glass A A A T T T T 

Quartz A A A A P A A 

Plagioclase A A A P P P P 

Hornblende P P P P C T P 

Hypersthenes P P P P - T P 

Biotite - - - P P P P 

Titanomagnetite P P P - C A T 

Limonite  - T T P P - P 

Zircon - - - - - T - 

Rock fragment P P - - - P P 

* Categories are divided into trace (T) < 1%, present (P) 1  10%, abundant (A) 10  
25% and concentrated (C) > 25%. Note these quantities are estimates and based on visual 

 

 

6.6.1 Tauriko  

 All samples from Tauriko had very similar mineralogical characteristics 

and were dominated by volcanic glass, quartz and plagioclase (Table 6.6). The 

volcanic glass was often angular, displaying curved and cuspate shapes. Some 

glasses show signs of devitrification, which is indicated by a brown colouration. 

q 

fr 
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Quartz has the typical characteristics of low relief and an absence of cleavage. 

Plagioclase displays distinctive twinning characteristics optically and is identified 

as the only feldspar mineral. The presence of volcanic glass, quartz and 

plagioclase show the volcanic origin of the deposits (Assoc. Prof. Roger Briggs 

pers. com. 2008). The identification of volcanic glass, feldspar and quartz is 

consistent with XRD and SEM observations. 

 

Hornblende, hypersthenes and titanomagnetite were present in moderate 

quantities in all of the Tauriko samples. Because titanomagentite is opaque and 

grain mounts were not ground or polished it was identified by its distinctive 

square or hexagonal shape. Weathered Fe oxides occurred only sparsely in TS2 

and TS3. No biotite was observed in the Tauriko samples (c.f. Otumoetai). 

 

Clay aggregates were present in all samples but was most abundant in TS1 

and TS3. Clay aggregates display high interference colours under polarising light, 

and appear as husky brown fragments or elongated worm-like features. Because 

material was sieved to include only the fine sand fraction (60  200 µm), any clay 

observed must be present as aggregates.  

 

6.6.2 Otumoetai   

The materials observed in grain mounts of Otumoetai samples were 

similar to those in Tauriko samples. However, the difference lies in the 

proportions of material present. Most Otumoetai samples were dominated by 

quartz, with the exception of OS2 which had a high concentration of the heavy 

minerals hornblende and titanomagnetite. The concentration of heavy minerals in 

OS2 may be a result of reworking and sediment transport, indicating that it is a 

secondary deposit.  

 

In keeping with SEM, glass was only sparsely observed in Otumoetai 

samples, in stark contrast to its abundance in Tauriko samples. However, 

combined with the presence of quartz and pyroxene, it still can be concluded that 

Otumoetai than Tauriko samples which may indicate a greater degree of 

weathering. Zircons were present in OS3 but only as a very minor component. 
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The ability to identify zircons in OS3 provides testimony to its highly weathered 

state, because zircons are very resilient.  

 

The micaceous mineral biotite was present in all of the samples from 

Otumoetai (but not Tauriko) and was identified by its unique pseudo hexagonal 

shape and brown colour and perfect basal cleavage. This was consistent with field 

findings as a micaceous mineral was thought to be present because all samples 

displayed individual minerals which sparkled as light reflected from its surface. 

The mineral is likely to be an intergrade between biotite and kandic alteration 

products (as reported by T.G Shepherd in Lowe & Percival 1993, in Hamilton 

Ash beds).  

 

The minerals identified in both Tauriko and Otumoetai are not uncommon 

in volcanic and pyroclastic materials. Salter (1979) identified hornblende and 

titanomagnetite in beds of the Kauroa Ash Formation. Bird (1981) observed 

quartz and feldspar in pre-Hamilton Ash material from Maungatapu Peninsula. 

The identification of volcanic glass, plagioclase, hornblende and quartz in Tauriko 

samples are consistent with the minerals found in the Te Ranga Ignimbrite (Briggs 

et al. 1996).  

 

6.7 Summary  
Table 6.7 summarises the components of each sample in both the clay 

fractions (< 2 µm) and the bulk soil samples. The most abundant clay mineral was 

hydrated (10 Å) halloysite. This mineral dominated the clay fraction and typically 

formed a strong well defined peak in the bulk sample XRD diffractograms. 

Halloysite was observed as tubes, irregular spheres and plates in all samples. In 

Tauriko, samples of halloysite occurred as books, which have never been 

previously observed. The halloysite books had high Fe content (~ 5.2 % as 

Fe2O3), in the typical range of halloysite plates. Allophane and ferrihydrite were 

insignificant in Tauriko samples but were present in very small quantities at 

Otumoetai. Kaolinite was present in very small quantities only in OS3.  

 

In the bulk soil fraction, highly angular volcanic glass and plagioclase 

were abundant in samples from Tauriko yet make up only a minor component in 

bulk samples from Otumoetai. In contrast, biotite was observed in all samples 
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from Otumoetai, yet not in those from Tauriko. Weathered Fe oxides were more 

abundant in samples from Otumoetai. All samples from Tauriko appeared to have 

very similar compositions, yet those from Otumoetai displayed some variation. 

OS2 had an abundance of pyroxene in the bulk soil sample and a concentration of 

the heavy minerals titanomagentite and hornblende. Interestingly, OS3 appeared 

to have the least amount of large sand- and silt-sized grains and those which were 

observed appeared highly rounded and weathered. OS3 was the only sample in 

which zircons were observed. The Otumoetai samples are thus more weathered 

than those from Tauriko. Finally, the appearance of volcanic glass, quartz and 

plagioclase in all samples confirms that all materials are of volcanic origin. 
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Chapter 7 

Microfabric 

and structure 
 

7.1 Introduction 
Fabric, the arrangement of grains in sediment or soil, is influenced by 

grain distribution, openness of fissures, and orientation and packing of individual 

grains (Selby 1993). Microfabric has long been recognised as an important factor 

in the strength characteristics of clay-rich sedimentary soils and soft rocks 

(Huppert 1986, 1988; Beattie 1990; Selby 1993). More specifically, microfabric 

has been related to geomechanical properties of undisturbed and reworked 

pyroclastic material (Moon 1989, 1993; Cong 1992; Keam 2008). As a corollary 

to this, it is expected that microfabric will be an important factor in determining 

the geomechanical properties and hence sensitivity of weathered pyroclastic 

material from the Tauranga region.    

 

This chapter qualitatively describes the dominant microfabric 

characteristics of each sample. Samples examined in the geomechanical chapter 

have been viewed in both undisturbed and remoulded states using a scanning 

electron microscope (SEM). This chapter gives a background to the terminology 

employed by previous studies and then describes what will be used in this study. 

The microfabric characteristics of the samples from Tauriko and Otumoetai are 

then individually described. 

 

7.2 Terminology 
 

7.2.1 Previously used terminology systems 

Microfabric description has a long history which predates SEM use; this 

has been extensively reviewed by a number of workers (for example, Collins & 

McGown 1974; Grabowska-Olszewska et al. 1984; Huppert 1986; Selby 1993). 

Combined with their own investigations these workers outline a chronological 

sequence of development. Initially microstructure terminology focused on 
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individual particle interaction. However as time and technology progressed, other 

factors became important, such as electrochemical environments at time of 

deposition, mineralogy, and depth of burial. Later, investigations which examined 

different microfabric types described individual particle arrangements and realised 

the importance of hierarchical descriptions (Collins & McGown 1974). Whole 

soil microfabric arrangements were then placed into geometric classifications 

(Sergeyev et al. 1980; Grabowska-Olszewska et al. 1984; Huppert 1986).  

 

These previous classification systems were largely based on sedimentary 

soils. Previous investigations examining pyroclastic material found it difficult, if 

not impossible, to describe microfabric using this terminology. For example, 

Moon (1989, 1993) investigated the microfabric of ignimbrites and ignored 

sedimentary terminology, building instead on terminology used by Carr (1981). 

of crystals and pumice clasts, and evidence for post depositional alteration 

that her 

terminology was not completely compatible with observations in this study. Both 

Heiken (1972) and Heiken & Wohletz (1985) described volcanic ash material in 

the interpretation of eruption conditions using SEM observations. The terms may 

be relevant for individual clasts but they do not provide description for contacts or 

clay material.   

 

Other workers have applied the terminology of sedimentary soils to 

volcanic material. These workers include Cong (1992) examining rhyolitic silts 

from Waitemata, and Keam (2008) who investigated reworked pyroclastics from 

the Omokoroa region. Keam (2008) stated that neither previous volcanic or 

sedimentary classifications were ideal for his investigation and employed a multi-

faceted approach.  

 

In this study, terms derived from both previous volcanic and sedimentary 

microfabric investigations have been employed. However, where necessary, these 

systems and terms have been modified to accommodate the unique material 

considered in this study.     
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7.2.2 Terminology employed in this study  

 The terminology employed in this study is based on a hierarchical system 

which is outlined below.  

 

7.2.2.1 Primary Structural Elements  

Primary structural elements are those particles which form the basic 

building blocks of the soil being examined (Beattie 1990). Previously, other 

workers divided this section into clay platelets and microaggregates, silt and sand 

grains, and authigenic phases (Huppert 1986; Beattie 1990). However, the 

approach in this study was much simpler and primary structural elements were 

classified as either clay minerals or grains.   

 

Clay minerals represent individual units of crystalline clay, which are 

often observed as irregular polygonal spheres, tubes and plates and are seldom 

larger than 2 µm. Grains are simply all other materials which can be identified as 

single units, examples being volcanic glass, plagioclase and quartz. The term 

grain is used rather than rather than sand or silt, as in Huppert (1986) & Beattie 

(1990), to remove the distinction of size. It should be noted that the bulk of 

primary structural element description has been presented in Chapter 6 and this 

chapter only serves to refresh and add to this information.  

 

7.2.2.2 Elementary Particle Arrangements  

 Elementary particle arrangements describe the interaction of primary 

structural elements discussed in section 7.2.2.1. This section is loosely based on 

the framework outlined by Collins & McGown (1974) and Collins (1985). The 

major difference is that Collins & McGown (1974) and Collins (1985) only 

consider the interaction of single clay morphologies, which is not the case in this 

study (see Chapter 6). Figure 7.1 identifies the face and edge for each clay 

morphology observed in this study, and presents the different types of contact 

between these minerals.  
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Figure 7.1: Schematic diagram (not to scale) of the three different clay morphologies observed 

during scanning electron microscopy. Each morphology is displayed with identification of their 

respective face and edges and the arrangement of contacts each is observed in. 

 

Building on Figure 7.1, Figure 7.2 displays the typical interactions 

between different clay morphologies observed this study. When tubes occur in 

predominantly face-to-face or face-to-edge contacts at right angles, they form an 

open network arrangement (Figure 7.2 (A)). This arrangement appears much like 

the flocculated structure of Lambe (1958). When the framework of tubes in Figure 

7.2 (A) is intermixed with polygonal spheres it become less open as the spheres 

coat and fill in the gaps between tubes (Figure 7.2 (B)). Tubes are also observed 

in a more subdued or regular structure which is dominated by parallel face-to-face 

contacts (Figure 7.2 (C)). The arrangement in Figure 7.2 (C) is much like the 

dispersed structure of Lambe (1958).  Plates may also be intermixed with tubes 
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(Figure 7.2 (D)).  The tight packing of tubes and tubes and plates (Figures 7.2 (C) 

and (D)) are very similar to the et al. 1980. 

 

 

Figure 7.2: Schematic diagram (not to scale) of the contacts between individual clay minerals, 

which are described in the text.  
 

When polygonal spheres interact individually (Figure 7.2 (E)) or with 

plates and tubes (Figure 7.2 (F)) they form a structure similar to but slightly less 

open than the honeycomb  arrangement of Terzaghi (1925). Geometrically, the 

structures in Figure 7.2 (E) a  structure of 

Sergeyev et al. 1980. As previously described in Chapter 6, plates stack to form 

books (Figure 7.2 (G)) and these books interact through a range of contacts 

(Figure 7.2 (H)).   

  

The arrangements displayed in Figure 7.2 form both microaggregates and 
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than the sedimentary term . With the exception of books, the boundaries 

of microaggregates are difficult to define. In this study micro aggregates represent 

the association of clay minerals, of any morphology, in a physiochemical 

arrangement forming small structures (Huppert 1986) and range in size between 

1.5 µm  and 50 µm. The classification of microaggregates includes individual 

halloysite books. Groundmass refers to combinations of clay minerals which 

cannot be defined as microaggregates.   

 

7.2.2.3 Overall particle associations    
Particle associations represent the interaction between the grains described 

in section 7.2.2.1 and the particle arrangements in section 7.2.2.2. This section is 

loosely based on particle assemblages used by Colins & McGown (1974) and also 

draws terms from Moon (1989) and Beattie (1990). Terms used are presented and 

described in Table 7.1.  

 

Table 7.1: Descriptions of the interaction between grains and the surrounding background material 
of clay minerals.  
Connectors  Clusters of clay size material which forms bridges between clay 

microaggregates and non clay material (Collins & McGown 1974) 
  
Embedded Grains are completely surrounded by groundmass material 
  
Grain Coatings Material coats the surface of a grain along the fracture surface 
  
Pluck mark Grains are removed by specimen preparation techniques, leaving a 

distinctive hollow depression (Moon 1989) 
  
Loose Material Grains are observed in the groundmass but are loose with a physical 

separation between the two (Moon 1989) 
  
Lapping Groundmass material laps against the surface of the grain to form a direct 

contact (Moon 1989) 

 

 This section also differentiates between continuous and discontinuous 

microfabrics, which are terms used by Beattie (1990) in his study of Waikato coal 

measures. A continuous groundmass does not have clearly definable boundaries 

between structural units and individual grains are immersed within the 

groundmass. In contrast a discontinuous groundmass is one which the particle 

associations have definable boundaries or occur within discrete domains (Beattie 

1990).          
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7.2.2.4 Porosity  

In this study pores are classified by size, with their boundary elements and 

shape being considered of less importance. Pore size classification, presented in 

Table 7.2, is based on that of Huppert (1986). Pore sizes affect the retention of 

water, for example smaller pores will hold water more tightly than larger ones. 

Huppert (1986) stated that in sedimentary rocks, ultra-pores were filled with 

adsorbed and firmly bonded water, and micro- and meso-pores were associated 

with capillary rise. Beattie (1990) stated that macro pores were directly related to 

the degree of saturation.   

 

Table 7.2: Pore size classes adapted from Huppert (1986). 

Class  

Ultra-pore < 0.1 

Micro-pore 0.1 to 5 

Meso-pore 5 to 30 

Macro-pore > 30 

 

In terms of boundary elements a number of studies use complex systems 

(e.g. Collins & McGown 1974; Grabowska-Olszewska 1984 and Huppert 1986). 

However in this study pores will be described as either between individual clay 

minerals or grains, between microaggregates or simply within the groundmass. 

 

7.3 Tauriko Summary  
 The following describes primary structural elements, elementary particle 

arrangements, overall particle associations, and pore characterises for material 

from Tauriko (TS1, TS2, and TS3).  

 

7.3.1 Primary Structural Elements  

 
7.3.1.1 Clay Minerals  

All clay minerals were positively identified as halloysite and their 

morphologies were comprehensively described in Chapter 6. Individual clay 

spheres, tubes and plates which had no structural orientation (Figures 6.19, 6.21 

and 6.24). The remainder of this section will refer to this material as clay 

minerals. 
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Large plates were typically stacked in tight face-to-face contacts forming 

microaggregates of books (Chapter 6, section 6.5.1.4), which are further described 

in section 7.3.2. Tubes were more abundant than polygonal spheres and small 

plates in TS1 and TS2 (Figure 7.3). In TS3, polygonal spheres and small plates 

were in greater abundance than tubes (Figure 7.4). Books were most abundant in 

TS3. In all Tauriko samples, SEM imaging indicated that small clay minerals 

dominated the microstructure.  

 

 
 

 

 

 

 

 

 

 

 

 

 

Figure 7.3:  SEM image from TS1 
showing a high proportion of tubes 
(t) which are intermixed with 
plates (p) and irregular spheres (s) 
to form a microaggregate. Few 
pores are larger than 0.4 µm, and 
typically result from the interaction 
of irregularly shaped clay 
minerals.    
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.4: Groundmass material 
from TS3 showing that polygonal 
spheres (s) and irregular plates (p) 
are more abundant than tubes (t). 
Contacts between clay minerals are 
typically spheres in face-to-face 
(ff) contacts. However face-to-
edge contacts between spheres and 
plates (fe) are also present. 
Porosity is typically dictated by the 
interaction between irregularly 
shaped clay minerals. Few pores 
are larger than ~ 0.7 µm and many 
are much smaller at ~ 0.2 µm.  

 

 

 

7.3.1.2 Grains  

  Grains were observed in all Tauriko samples. Both sand and silt size 

classes were represented and composition was predominantly quartz, feldspar and 

volcanic glass. Feldspar was typically blocky and glass appeared angular. Chapter 
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6 described in detail the abundance, size and shape of all non-clay material. The 

remainder of this section will refer to this material as grains   

 

Grains did not display any dominant orientation (Figure 7.5) and typically 

did not come in contact with each other (Figure 7.6). When grains were close, 

small clay minerals filled the area between them (Figure 7.7). Because particle 

size analysis suggested there was a large amount of silt in Tauriko samples, it was 

possible that the small, clay sized material was clothing larger grains. 

Consequently, these unseen grains may be playing a more important role in the 

microstructure than presently observed.  

 

 
 

 
 
 
 
 

 

 

 

 

 

 

 

Figure 7.5: Volcanic glass from 
TS3 orientated in a number of 
different directions (as indicated 
by arrows) and supported in a 
groundmass of smaller clay sized 
material  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 7.6: Elongated fragment of  
volcanic glass (g) ~ 200 µm long, 
from TS3, occurring individually 
and in direct contact with 
surrounding microfabric of clay 
minerals. Also present are meso-
pores (mep) 
diameter.    

 
 
 

g 
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Figure 7.7: SEM image from TS1 
displaying two large grains (g1 

and g2) supported in a highly 
disorganised groundmass of clay 
minerals. Small clay sized material 
separates the two grains. The 
material surrounding the piece of 
volcanic glass (g1) is pulling away 
(sp) from the surface of the grain. 
Along the fracture surface the face 
of the volcanic glass (g1) is clean, 
however, the sand grain (g2) 
appears to have a heavy layer of 
grain coatings (gc) along one face.  
In the top right hand and bottom 
left hand corner pores of ~ 30 µm 
diameter are observed.  

 
 

 

7.3.2 Elementary particle arrangements  

 

7.3.2.1 Groundmass 

In all Tauriko samples material which formed the groundmass appeared 

loosely packed, forming an open structure (Figure 7.8). In TS1 and TS2 the 

arrangement of groundmass material involved the interaction of irregular 

polygonal spheres, tubes and plates (Figure 7.8). Because of the diverse range of 

morphologies present, and their irregular shape, it was difficult to define clear 

particle contacts. However, tubes occurred in parallel face-to-face (FF) and face-

to-edge (FE) contacts, and spheres formed FF contacts with each other (Figure 

7.8). It was likely that other contacts were present but were not easily discernable.  

 

 

 

 

 

Figure 7.8: SEM image of ground 
mass material from TS1 which is 
loosely packed and includes tubes 
(t) spheres (s) and plates (p). 

Spheres are observed forming 
face-to-face contacts (ff) other 
contacts are difficult to define. 
Pores are abundant and up to  
0.  
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 In TS3 irregular polygonal spheres dominated the groundmass material, 

plates were present and tubes were seldom observed (Figure 7.4). Spheres in FF 

contacts formed the dominant particle arrangement (Figure 7.4). Plates and 

spheres were also observed forming edge (plate) to face (sphere) contacts (Figure 

7.4). 

 

7.3.2.2 Microaggregates  

Within Tauriko samples microaggregates comprised three different 

structures, including clusters of clay minerals with poorly defined boundaries 

(Figure 7.9), a streaky and wavy arrangement of clay minerals (Figure 7.10), and 

halloysite books (Figure 7.9).   

 

Clusters of clay minerals, which represent individual microaggregates, 

were difficult to indentify because they had irregular boundaries and were 

comprised of the same material as the groundmass. However, when defined, the 

irregularly shaped microaggregates were typically less than ~ 10 µm in diameter, 

and were observed in all Tauriko samples (Figures 7.9, 7.11 and 7.12). 

Microaggregates in TS1 and TS2 were mostly comprised of un-orientated tubes, 

with spheres and plates being of lesser abundance (Figure 7.3). Microaggregates 

observed in TS3 appeared to have a lesser amount of tubes and a greater 

abundance of polygonal spheres and irregular plates (Figure 7.12). 

Microaggregates were most abundant in TS1. 

 

Streaky and wavy material (Figure 7.10) which appeared thin walled and 

hollow (Figure 7.13) was abundant in TS1 (Figures 7.10 and 7.13) and TS2 

(Figure 7.14), but less so in TS3. This material was up to 70 µm long and often 

contained a number of curved layers, either overlaying (Figure 7.10) or alongside 

each other (Figure 7.13). The shape of individual layers ranged from broad rolls 

(Figures 7.13 and 7.14) to tight curves (Figure 7.14). Layers in close proximity 

were orientated in the same direction (Figures 7.10 and 7.13), however in some 

instances adjacent material was orientated at almost right angles (Figure 7.14). 

The delicacy and hollow nature of this streaky and wavy material was emphasised 

by the wall collapse observed in Figure 7.13. Under high magnification  

(25 000 x) this material was dominated by tubes with a lesser amount of small 

plates and polygonal spheres (Figures 7.15 and 7.16). Contacts between individual 
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tubes occurred as parallel FF, face-to-edge (FE) and edge-to-edge (EE) (Figure 

7.16). Plates formed FF contacts with the other clay minerals (Figure 7.15). All 

structural components formed a flat surface and each component was un-

orientated across this surface (Figure 7.16).    

 

The elongated hollow streaks and waves (Figure 7.10) may represent pipe 

vesicles, a feature of pumice (Heiken 1985). It was hypothesised that the original 

pumice texture has authigenically weathered to tubes, small plates and polygonal 

spheres. The pumice may have acted as a template for the structural configuration 

of the clay minerals which are currently present. The presence of relict pumice 

would suggest that the parent material is most likely rhyolitic. On examination of 

Kauroa Ash beds, Salter (1979) identified relict pumice textures in the fine to 

coarse sand fraction. These appeared partially limonitised, indicating weathering, 

but the textures had not completely altered to clay. The pumice like material 

observed in this study will herein be referred to as relict textures.  

 

The ends of hollow tubes were observed in a number of SEM images 

(Figures 7.17, 7.18 and 7.19). The tubes were comprised of the same material that 

was found in the relict textures (Figure 7.18). Diameters of the tubes were up to ~ 

8 µm and the walls were less than 1 µm (Figure 7.19). It is possible that the tubes 

were a cross section of a relict texture and represent pipe vesicles. However, the 

tubes may also represent the effects of biological activity (worms or roots) or an 

interesting electrostatic arrangement of clay particles.   

 

Plates with diameters between 1 to 20 µm were observed in tight FF 

contacts and appeared as books (Figure 6.21). These books ranged in length from 

~ 1.5 to ~ 50 µm long (Figure 6.32), were identified as halloysite and their 

morphology was comprehensively described in Chapter 6. The tight EE contacts 

of individual plates mean the books would typically behave as a large single 

grained clay mineral. However, as described in Chapter 6 the books displayed 

differing degrees of delamination (Figures 6.30 and 6.31) so were weaker than an 

individual grain. 

 

Typically books in TS1 and TS2 were un-orientated, observed individually 

and supported in a groundmass of tubes, spheres and smaller plates (Figure 7.20). 
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Books in TS3 were supported in similar material but were frequently observed 

forming contacts with each other (Figure 7.12). In all samples, contacts between 

books included EE contacts, with the books orientated either parallel (Figures 

7.12 and 7.21) or at right angles (Figure 7.22) to each other. In TS3, parallel EE 

contacts were observed most often. Figure 7.21 presents an example of at least 4 

books in parallel FF contacts forming a larger microaggregate. Because of the 

irregular shape of the plates in each book the EE contacts at right angles form at a 

point with very little surface interaction (Figure 7.22), making them weaker than 

parallel contacts. Contacts were also observed as FE interactions (Figure 7.23) but 

these occurred less often than EE contacts.  

 

 
 
 
 

 
 
 
 

 

 

 

 

 

Figure 7.9: A large book (b) from 
TS1 with the lower section 
supported in, and the upper section 
radiating from, a background of 
clay minerals. To the left of the 
clay book appear a number of 
irregular and poorly defined 
microaggregates (ma), which are 
linked by connectors of clay 
minerals. Porosity between the 
microaggregates is up to 5 µm.  
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.10: SEM image from 
TS1 displaying streaky and wavy 
material up to 70 µm long (rt). 
The streaky and wavy material 
comprises a number of tightly 
curved layers all orientated in the 
same direction overlying each 
other.  
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Figure 7.11: SEM image of 
irregularly shaped, poorly defined 
microaggregates (ma) from TS1 
with porosities up to 5 µm 
occurring between them. A 
number of clay books (cb) are 
supported within and on the 
surface of the background 
material.    
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.12: SEM image from 
TS3 showing clay books supported 
in small clay-sized material and 
also forming parallel contacts (pc) 
with each other. Aside from the 
books small microaggregates of 
clay material can be defined and 
these are circled. Porosity is 
dominated by interacting grains 
with sizes no more than 0.4 µm in 
diameter. Other larger pores occur 
but these are between clay books 
and aggregation of smaller clay-
sized material.    
 
 
 
 
 
 
 
 
 
 

 
Figure 7.13: SEM image from 
TS1 of thin walled streaky and 
wavy material, with each broad 
roll aligned in the same direction 
(rt). The hollow nature and 
weakness of the streaky and wavy 
material is emphasised by the 
collapsed wall sections at cw. The 
streaky wavy material appears to 
grade into the groundmass material 
(gm) at the right of the image. A 
pluck mark appears in the 
groundmass which may indicate 
the location of a former mineral 
which was lost during sample 
preparation (pm).     
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Figure 7.14:  Streaky and wavy 
material from in TS2 with both 
broad (brt) and tight (trt) rolls 
orientated at almost right angles to 
each other. The streaky and wavy 
material appears to grade into the 
groundmass (gm) at the bottom of 
the image.   
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.15: SEM image from 
TS1 showing the surface of streaky 
and wavy material, indicating it is 
comprised of predominantly of 
tubes (t) and to a lesser extent 
irregular plates (p). Tubes are 
observed forming parallel face-to-
face (pc) contacts and plates form 
a face-to-face (ff) contacts with 
other material. All material forms a 
flat surface; however, it is un-
orientated across this surface. Very 
small (~ 0.1 µm) ultra-pores (up) 
occur between clay mineral 
particles.    

 
 
 
 
 
 
 
 
 
Figure 7.16: Surface of a relict 
texture from TS1, displaying 
parallel face-to-face (pc), edge-to-
edge (ee) and face-to-edge (fe) 
contacts between tubes. Porosity is 
a result of the interaction between 
irregularly shaped clay minerals 
and forms inter granular ultra-
pores (up). A larger micro-pore 
(mp) occurs at the top of the 
image; this is most likely a small 
collapsed wall section.  
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Figure 7.17: Long hollow tube 
from TS1 which is comprised of 
very small clay sized material. The 
tube has a diameter of ~ 7 µm and 
walls which are 0.5 µm thick.   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 7.18: SEM image of a 
hollow tube from TS1. The 
opening of the tube is ~ 4 µm in 
diameter. The collapsed wall 
section at cw indicates the tubes 
delicacy.   
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 7.19: SEM image of at 
least one hollow tube from TS1, 
which is comprised of individual 
clay minerals (ht). The diameter of 
ht is 8 µm with walls 1 µm thick. 
The smeared faced of all other 
material is the result of sample 
preparation. The general structure 
appears very open with other tubes 
possibly present (ht1 and ht2).  
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Figure 7.20: Single book (cb) 

from TS1, with very light grain 
coatings (gc), individually 
supported in a groundmass of 
plates, tubes and spheres. 
Connectors (c) are present between 
the groundmass material and the 
clay book.   
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 7.21: Books from TS1 in 
parallel contacts (pc) forming a 
much larger microaggregate. The 
microaggregate is supported within 
the microfabric by a series of 
connectors (c).  

 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.22: SEM images from 
TS3 showing books forming edge-
to-edge right angle contacts (rc).  
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Figure 7.23: Books from TS3 
fully immersed in groundmass 
material. The groundmass material 
laps against both the edges and 
faces of the books. Two books are 
observed meeting as face-to-edge 
contacts (fe). 

 
 

 

 

7.3.3 Overall particle associations     

Individual grains were typically embedded in the surrounding 

microstructure and clay sized material was observed lapping against the surface of 

the grain (Figures 7.6 and 7.7). Groundmass material was occasionally observed 

separating away from the face of the grain forming a loose contact (Figure 7.7). 

The separation may represent stress release upon overburden removal during 

sampling or the result of desiccation or fracture during sample preparation 

(Beattie 1990). However, the separation may also indicate weak contacts between 

the grain and background material. The contact between sand- and silt-sized 

grains and clay minerals were weak, indicated by the observation of pluck marks 

(Figure 7.13). Along the fracture surface, where the sample was split prior to 

investigation, mineral grains had moderate to minor coatings and volcanic glass 

was typically clean (Figures 7.7 and 7.24). 

 

 
 
 
 
 
Figure 7.24: A feldspar grain (f) 
and a piece of volcanic glass (g) 
are in direct contact with the 
groundmass material of TS3. The 
feldspar grain appears to have a 
minor amount of grain coatings 
(gc) along the fracture surface.   
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Books were typically observed embedded in a background of smaller clay 

minerals (Figure 7.23). The smaller clay-sized material lapped both the face and 

edges of the book. However, books were also observed radiating from (Figure 

7.9) and sitting on top of background material (Figure 7.11). Unlike grains, 

material was not typically observed separating away from the edge or face of 

individual books. Books typically had at least a small amount of grain coatings 

(Figures 7.9 and 7.20). 

 

The paucity of large grains, poorly defined microaggregates, and the 

typical embedding of grains into a background of clay minerals meant connector 

assemblages were sparse and only observed in TS1 and TS2. Those present were 

comprised of clay sized tubular, spherical and platy material and formed 

structures up to 15 µm in length. Connectors were observed joining glass 

fragments (Figure 7.25), a book to groundmass material (Figure 7.20), and a 

microaggregate to a book and another microaggregate (Figure 7.21).     

 

 

 

 

 

 

 

Figure 7.25: Connectors (c) 
comprised of small clay sized 
material from TS2 linking volcanic 
glass. 

Poorly defined microaggregates, groundmass material and relict textures 

which were comprised of tubes, irregular polygonal spheres and small plates 

dominated the microstructure of TS1 and TS2 (Figures 7.7, 7.11 and 7.13). Whilst 

one could distinguish between the groundmass material and relict textures, a clear 

contact could not be defined. The relict textures appeared to simply grade into the 

groundmass material (Figures 7.13 and 7.14). Therefore particle arrangements of 

the observed clay minerals had no definable boundaries, formed a background and 

overall binder to the microstructure, and immersed larger grains and books. The 
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us 

groundmass. TS3 also had a continuous groundmass, with the smaller clay sized 

material acting as a binder. However, the predominance of relict textures observed 

in TS1 and TS2 was replaced by books in TS3 (Figures 7.12 and 7.23). 

 

7.3.4 Pore sizes and shape    

All samples from Tauriko were highly porous, with porosity values 

between ~ 62 and ~ 74% (Chapter 5). This was confirmed by SEM images, which 

showed an extremely open fabric.  

 

In all samples the irregular shape of individual clay minerals, and their 

loose packing, resulted in a large amount of small pores between individual 

grains. These pores were typically ultra- and micro-pores up to 1 µm, with few 

larger than 0.7 µm (Figures 7.3, 7.4, 7.8 and 7.12). Pores between 

microaggregates are up to micro-pore size (5 µm in diameter) (Figures 7.9 and 

7.11). Pores within the groundmass occurred up to macro-pore size (30 µm) 

(Figure 7.7), but were typically less than 15 µm (Figure 7.6).  

 

Porosity associated with relict textures, which mostly affected TS1 and 

TS2, arose as a result of interaction between irregularly shaped clay minerals 

(Figures 7.15 and 7.16), collapsed wall sections (Figures 7.13 and 7.18), and 

within long hollow tubes (Figures 7.17, 7.18 and 7.19). Porosity between clay 

minerals was of similar size and shape to that described previously, but less 

frequent. Porosity in the collapsed wall sections was dominated by the size and 

shape of collapsed material and was observed up to meso-pore size, but pores 

were often only up to ~ 7 µm (Figure 7.13). Within the hollow tubes, meso-pores 

were typical but diameters never exceed 8 µm (Figures 7.17 and 7.19).   

 

Porosity was observed between the individual plates of delaminating 

books (Figures 7.12 and 7.21) and also in the centre of small halloysite tubes.  

 

The extent of connectivity between pores is largely unknown. However 

tubes in relict textures may extend to some depth into the sample, as do the void 

spaces around these tubes (Figure 7.19). Furthermore, the loose packing and 
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irregular shape of grains will increase the likelihood that the small pores between 

clay minerals are interconnected.  

 

7.3.5 Remoulding  

After remoulding, all Tauriko samples were completely altered from their 

undisturbed state. The structure was completely continuous and no micro-

aggregates were observed. With the exception of a few remnants (Figure 7.26) 

relict textures were destroyed. Porosity was still abundant and dominated by that 

which occurred between irregular grains and within the groundmass. No macro-

pores or fissure pores existed. The largest pore observed was a meso-pore 

(Figures 7.27 and 7.28).   

 

Books typically remained intact following remoulding (Figure 7.29). Some 

delamination did occur (Figure 7.30) but this was only between two sheets and did 

not involve the whole book. Individual grains were observed individually and 

supported entirely by the groundmass (Figure 7.28). Individual books and grains 

remained embedded in the microstructure.  

 

 
 

 

 

 

 

 

 

 

 

 

 

Figure 7.26:  Remoulded sample 
from TS2 displaying a continuous 
structure with remnants of relict 
textures annotated as a broken 
sheets (bs) and hollow tubes (ht).  
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Figure 7.27: Remoulded material 
from TS2 displaying two meso-
pores (mep) and the remainder of 
the groundmass dominated by 
micro-pores.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 7.28: SEM image from 
TS3 showing grains (g) supported 
in a groundmass of clay minerals. 
A meso-pore is present at mep. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 7.29: Halloysite books (b) 
from TS3 supported by a 
groundmass of clay minerals. 
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Figure 7.30: Remoulded material 
showing a halloysite book 
beginning to delaminate with sub-
rounded spherical and ellipsoidal 
material between the platelets. 

 
 
 
 

 

7.4 Otumoetai summary  
 The following describes microfabric components, particle arrangements, 

and pore size for samples from Otumoetai (OS1, OS2, OS3 and OS4). 

 

7.4.1 Primary structural elements  

 

7.4.1.1 Clay minerals  

Halloysite was identified as the dominant clay mineral in samples from 

Otumoetai, although kaolinite was also present in OS3 (Chapter 6). The 

morphologies of individual clay minerals were comprehensively described in 

Chapter 6.  

 

Halloysite tubes dominated all samples, long tubes were abundant in OS4 

(up to 2µm) and shorter tubes in OS3 (mostly between 0.05 and 0.5 µm). OS1 and 

OS2 had a range of medium-sized tubes (few above 1 µm) (Figures 6.11, 6.12 and 

6.13). Halloysite spheres occurred in all samples and OS2 had the highest 

abundance (Figure 6.20). Plates were observed in OS1, OS3 and OS4 (Figures 

6.25, 6.26 and 6.27), but no books were observed. 

 

7.4.1.2 Grains 

Grains (non-clay material) were observed in both sand and silt size 

fractions for all samples, the abundance of which was least in OS3 and greatest in 

OS4. Plagioclase, quartz, and volcanic glass were observed, however their 

abundance was different to that recorded in Tauriko samples. Chapter 6 described 

the abundance, size and shape of all grains in detail. However, it should be noted 



Chapter 7: Microfabric and structure 

202 

that both blocky and thin laminar type grains were observed in silt and sand size 

fractions. Furthermore, grains were least abundant in OS3.    

 

Grains were typically observed individually and seldom came in contact 

with each other (Figure 7.31). When grains were close, they were separated by 

small clay-sized minerals (Figures 7.32 and 7.33). Grains typically did not display 

any dominant orientation (Figure 7.34). Small clay minerals were observed 

clothing larger sand- and silt-sized grains. For example, Figure 7.35 shows the 

outline of a biotite grain which is coated in clay.       

 

 

 

 

  

 
 
 
 

 

 

 

 

 

 

 

Figure 7.31: SEM image from 
OS4 displaying sand grains (sg) 
supported individually in a 
groundmass of clay size material. 
The sand grains appear embedded 
in the surrounding material with 
the groundmass lapping against the 
edges of the grains.  

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.32: Clay minerals (cm), 
from OS2, forming a bridge 
between two large sand grains (sg).    
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Figure 7.33: SEM image from 
OS4 showing clay sized material 
infilling the area between two sand 
grains (in oval), one is biotite (bsg) 
and the other is possibly quartz 
(qsg). The quartz grain has only 
minor grain coatings along the 
fracture surface. Groundmass (gm) 
material is observed separating 
(sp) away from the face of the 
sand grain forming a loose contact. 
A pluck mark (pm) is present in 
the top right hand corner of the 
image.    
 
 
 
 
 
 
 
 
 

 
 
 
Figure 7.34: SEM image from 
OS4 showing large sand sized 
grains (sg) in a groundmass of 
smaller clay sized material. The 
grains are embedded in, and form a 
direct contact with, the 
groundmass material. The two 
sand grains (sg1 & sg2) in the 
centre of the image are orientated 
in the same direction; however 
those at sg3 and sg4 have faces 
which are at right angles to sg1 
and sg2.       
 

 

 

 
 
 
 
 
 
 
 
 
 
 
Figure 7.35: SEM image from 
OS1 showing sand (sg) and silt 
(sig) grains surrounding a biotite 
(b) grain clothed with clay sized 
material. The hexagonal edges of 
the biotite are indicated with a 
dashed line.      
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7.4.2 Elementary particle arrangements 

 

7.4.2.1 Groundmass 

In OS1, OS2, and OS4 halloysite tubes, which dominated the samples, 

were typically un-orientated over three dimensions forming a chaotic arrangement 

(Figure 7.36). The tubes were loosely packed and formed face-to-face (FF) 

contacts, which were either parallel or at right angles to each other (Figure 7.36). 

Face-to-edge (FE) contacts were also observed (Figures 7.36 and 7.37). FE or 

non-parallel FF contacts between tubes encouraged an open network type 

structure (Figures 7.36 and 7.37), which had a flocculated type appearance. The 

openness of this structure means there is a large proportion of void space 

surrounding the tubes.  

 

In OS1, tubes were occasionally observed radiating from the fracture 

surface (Figure 7.38). It was unclear whether these tubes were radiating from 

aggregates or the surface of larger minerals.         

 

In OS3, tubes were typically smaller and packed tighter than in OS1, OS2 

and OS4 (Figures 7.39 and 7.40). The type of contacts between tubes described 

for OS1, OS2 and OS4 were present in OS3, but parallel FF contacts dominated 

(Figure 7.40). The orientation of tubes in OS3, whilst still random, was more 

subdued and had a flattened appearance when compared to other samples. 

 

Small, irregular, polygonal shaped halloysite spheres were observed 

intermixed with tubes in OS1, OS2 and OS4 (Figure 7.41). Spheres were also 

observed individually in OS2 and OS4 (Figures 7.42 and 7.43). Because of their 

irregular and spherical shape, contacts were un-orientated.  

 

In OS1, OS2 and OS4 observations indicated that tubes and spheres were 

typically observed together. This combination formed a very open delicate 

structure (Figures 7.44 and 7.45). In these samples, an increase in the abundance 

of irregular polygonal spheres relative to tubes caused a decrease in the openness 

of the structure (Figure 7.41), because the polygonal spheres were able to fill the 

gaps between tubes and pack more efficiently. The abundance of polygonal 

spheres was greatest in OS2, which resulted in large areas being devoid of tubes 

(Figure 7.43). Furthermore, structures formed by a combination of spheres and 
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tubes in OS2 (Figure 7.46) appeared less open than what was observed in OS1 

and OS4. In OS1, a fine-grained gel-like material was infrequently observed 

coating arrangements of tubes and spheres (Figure 7.47). This coating will 

possibly act as a binding material. 

  

In OS3, rather than and abundance of polygonal spheres intermixing with 

tubular material, plates were observed (Figure 7.40 and 7.48). However, the plates 

had little impact on the appearance of the structure because it was already tightly 

packed. Contacts between plates and tubes in OS3 were typically FF. Plates were 

also observed in FF contacts with each other (Figure 7.48). In OS3, large areas of 

sheet-like material were observed (Figure 7.48); whilst not well defined, contacts 

between plates within the sheets were EE.  

 
 
 

 
 
 
 
 
 

 

 

 

 

 

 

Figure 7.36: SEM image from 
OS4 showing un-orientated tubes 
with face-to-face contacts ranging 
between parallel (ffp) and right 
angles (ffr). Also observed are 
face-to-edge contacts (fe). Also 
present are abundant ultra (up) and 
micro (mp) pores. The largest pore 
is 0.5 µm in diameter.     

 
 
 
 
 
 

 

 

 

 

 

 

 
 

Figure 7.37: Tubes from OS2 
arranged in an open structure. A 
range of tube contacts can be 
observed including; face-to-face 
contacts ranging between parallel 
(ffp) and right angles (ffr). Also 
observed are face-to-edge contacts 
(fe). Micro- (mp) and ultra-pores 
(up) are present.   
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Figure 7.38: Halloysite tubes from 
OS1 radiating from the fracture 
surface created during sample 
preparation.  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.39: SEM image from 
OS3 showing tubes which are 
tightly packed.   
 
 
 
 
 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.40: Tubes from OS3 
tightly packed displaying face-to-
face contacts ranging between 
parallel (ffp) and right angles (ffr). 
Also observed are face-to-edge 
contacts (fe). Included amongst the 
tubes are individual plates (p). The 
mostly parallel contacts between 
tubes means only a small number 
of inter-particle ultra-pores are 
observed. 
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Figure 7.41: SEM image from 
OS4 displaying a large number of 
small polygonal spheres which 
appear to be overlying and 
interacting with tubes. 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.42: SEM image from 
OS4 displaying tubes and irregular 
spheres. The irregular spheres are 
observed clustering together to 
form small micro aggregates, ~ 2 
µm in length (ma). In this image 
inter particle ultra (up) and micro 
pores (mp) are observed between 
the small irregular polygonal 
spheres and around the tubes.        
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 7.43: SEM from OS2 
displaying a groundmass 
dominated by irregular polygonal 
spheres and a lesser amount of 
tubes (t).   
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Figure 7.44: SEM image from 
OS1 displaying a combination of 
spheres and tubes forming a 
delicate open structure. Individual 
microaggregates are difficult to 
define, however, connectors (c) 

link clusters of tubes and spheres. 
Porosity is observed between 
individual clay minerals and within 
the groundmass, the maximum size 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 7.45: SEM image from 
OS4 displaying a combination of 
spheres and tubes which form a 
delicate, open structure. Poorly 
defined irregularly shaped micro 
aggregates (ma) up to 20 µm in 
length and associated connectors 
are present (c). Note the fracture 
(fr) in the top left hand corner. 
Pores between individual clay 
minerals and microaggregates are 
observed (mp); the maximum size 
is ~ 4 µm.    
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7.46: General structural 
image from OS2 displaying 
reduced porosity compared to OS1 
and OS4. 
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Figure 7.47: Tubes and spheres 
combining to form the typical 
structure observed in OS1. 
Covering this arrangement is a gel-
like fine grained material which 
coats the tubes and spheres (gl).  

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.48: SEM image from 
OS3, showing plates in face-to-
face contacts (ff). To the left of the 
image a large flat section is 
observed; whilst not well defined, 
individual plates which make up 
this section are in edge-to-edge 
(ee) contacts. Also observed in this 
image are ultra pores no larger 
than 0.1 µm.     

 

 

 
7.4.2.2 Microaggregates  

 The clustering of spheres and tubes in differing amounts formed 

irregularly shaped microaggregates in OS1, OS2 and OS4 (Figures 7.45 and 7.49). 

However, similar to Tauriko samples, microaggregate boundaries were difficult to 

define and were possibly part of a much larger groundmass material. When 

definable, microaggregates were up to 20 µm in diameter (Figure 7.45). Larger, 

up to 80 µm, aggregates were sparsely observed, however, these may represent 

grains clothed in clay minerals.  
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Figure 7.49: SEM image from 
OS1 showing poorly defined 
microaggregates (ma) up to  
3.5 µm in diameter. Connectors (c) 
appear to link the poorly defined 
microaggregates. Porosity occurs 
between clay minerals and the 
microaggregates. Pores are 
typically micro-pores (mp) up to ~ 

hand corner has a diameter of ~ 3 
µm.   

 

 

 

 In OS4, dense microaggregates ~ 2 µm in diameter comprised of 

polygonal spheres (Figure 7.42) were observed. These were typically supported 

by tubular material. Whilst spheres appeared abundant in OS2, definable 

aggregate boundaries were not observed (Figure 7.43). 

 

 The tightly packed nature of OS3 meant that microaggregates were seldom 

observed.     

 

7.4.3 Overall particle associations    

The following describes the interaction between the general groundmass 

material, poorly defined aggregates and larger grains.  

 

Grains were typically embedded in the surrounding groundmass (Figures 

7.31 and 7.33) and groundmass material lapped against the surface of the grain 

(Figures 7.31 and 7.34). Along the fracture surface minor to abundant grain 

coatings (Figures 7.33 and 7.35) were observed, although some grains appeared 

clean (Figure 7.50). However, the linkage between groundmass and grains was 

weak because pluck marks were observed in OS2 and OS4 (Figure 7.33) and 

contacts were typically loose (Figures 7.33 and 7.51). OS3 was the only sample 

where grains were observed tightly bound into a background of clay minerals 

(Figure 6.49).    

 

In OS1 and OS4 connectors were observed between microaggregates 

(Figures 7.44, 7.45) and joining large grains (Figure 7.32). All connectors were 
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comprised of the same clay minerals. However, the connectors were believed to 

be weak because fracturing was observed at contact points with microaggregates 

(Figure 7.45).   

 

At Otumoetai, the groundmass and microaggregates were dominated by 

halloysite tubes, often with a lesser amount of spheres and plates. When 

combined, these particle arrangements appeared very similar and formed a 

background to the microstructure immersing large and often sparse grains. The 

overall structure in all samples had the appearance of a continuous groundmass; 

this was especially so in OS3.       

 

 
 

 
 
 

 

 

 

 

 

 

 

 

 

Figure 7.50: Sand-sized grain (sg), 
possibly quartz, from OS2 
surrounded by a groundmass of 
clay-sized material. The sand grain 
is completely clean and does not 
have any grain coatings.       
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7.51: SEM image of 
groundmass material (gm) 
separating away from a sand grain 
(sg) forming a loose contact.  

 
 

 

gm 

gm 

sg 

sg 



Chapter 7: Microfabric and structure 

212 

7.4.4 Porosity  

Porosity in all samples was high, ranging between ~ 65 and ~ 75 %. As a 

result of the packing of particles, it was generally observed that OS3 was the least 

porous sample, OS1 and OS4 the most, and OS2 had intermediate porosity.    

 

 In all samples, pores (Figures 7.36, 7.37, 7.40 and 7.44) occurred as a 

result of the interaction between tubes, spheres and plates. These were observed 

within the poorly defined aggregates or groundmass material and were either 

ultra- or micro-pore size. In OS1, OS2 and OS4 these small pores were seldom 

larger than 0.5 µm (Figures 7.36 and 7.37) and in OS3, pore sizes were typically 

no larger than 0.1 µm, and were less abundant (Figures 7.40 and 7.48). Ultra-

pores were dominant when irregular spheres interacted in OS1, OS2 and OS4 

(Figure 7.42). This occurred most often in OS2 because spheres were frequently 

observed. 

 

Pores which were not specifically a result of the interaction between clay 

minerals occurred in all samples. These pores occurred between microaggregates 

and within the groundmass, and were least abundant in OS3. Micro-pores were 

typical with a maximum size of ~ 4 µm (Figures 7.44 and 7.45). However, at low 

magnifications a number of meso-pores were observed (Figure 7.52), these were 

seldom larger than 20 µm. Macro-pores, whilst present, were rare in all samples, 

especially OS3.  

 

 

 
 
 
 
 
 
Figure 7.52: SEM image from 
OS3 showing a number of meso-
pore (examples are circled) and a 
larger macro-pore (map).  
 
 
 

 

 

map 
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Porosity within grains occurred within large sand and silt grains, for 

example Figure 7.33 gives an example of fissure like pores between delaminating 

sheets in a biotite mineral.  

 

Like Tauriko the connectivity of pores in the Otumoetai samples was 

difficult to define, but the predominance of loosely packed tubes in OS1 and OS4 

forming a network arrangement with a large amount of voids would promote 

interconnection of pores. However the large number of spheres in OS2 and the 

tight packing of tubes in OS3 not only reduced the openness of the structure but 

will also reduce the connectivity of pores.  

 

7.4.5 Remoulded structure  

Because of the practicalities of time, only remoulded material from OS3 

and OS4 were viewed using the SEM. 

 

No obvious change in microstructure was observed after remoulding of 

OS3. At high magnification the general microstructure was still observed as 

tightly packed and porosity was dominated by ultra-pores between individual clay 

particles (Figure 7.53). At low magnification there appeared to be a decrease in 

porosity (Figure 7.54), with most of the meso-pores observed in Figure 7.52 being 

completely destroyed.  

 

OS4 retained a high proportion of inter-particle porosity after remoulding 

(Figures 7.55 and 7.56). Tubes were still observed intermixed with spheres 

(Figure 7.55). However, the delicate framework observed in undisturbed samples 

appeared less open (Figure 7.56) and the microaggregation of clay minerals had 

occurred (Figure 7.57).  The microaggregates formed were at least 4 µm in 

diameter, represented a different structural arrangement and had reduced porosity 

compared to the undisturbed fabric of tubes and spheres.       
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Figure 7.53: Remoulded material 
from OS3 tightly packed 
displaying porosity between clay 
minerals.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 7.54: SEM image of 
remoulded material from OS3 
displaying less porosity than what 
is observed in Figure 7.52. One 
pore is present with a diameter of 
~ 22 µm.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 7.55: SEM image of a 
remoulded sample from OS4 
showing inter-particle porosity.   
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Figure 7.56: Remoulded SEM 
image from OS4 showing 
reduction of the previously 
observed open framework 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.57: Remoulded SEM 
image from OS4 displaying 
microaggregates (ma) at least 
4 µm in diameter  
 

 

 

 

 

 

 

 

 

 

7.5 Overview of microfabric 
Typically, sedimentary studies categorize observed microfabrics into 

geometric classifications often dictated by loading history and grain size 

distribution (Huppert 1986; 1988). Popular models to classify sedimentary 

deposits are that of Sergeyev (1980) and Grabowska-Olszewska et al. (1984). 

These classification systems divide microfabric into five groups, namely 

honeycomb, skeletal, matrix, turbulent and laminar microstructures.   

 

Workers investigating volcanic soils have classified rhyolitc silts as 

honeycomb, mixed honeycomb skeletal, skeletal and mixed skeletal- matrix 

microstructures (Cong 1992; Keam 2008). Volcanic clay soils have been 

classified as matrix or mixed matrix  turbostratic (Keam 2008).    
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In this study, classification of microfabric type according to Sergeyev et 

al. (1980) and Grabowska-Olszewska et al. (1984) was difficult, if not impossible 

to apply. The classification systems of Sergeyev et al. (1980) and Grabowska-

Olszewska et al. (1984) were based heavily on sedimentary deposits and included 

idealised microfabrics for deposits which may have experienced differing degrees 

of consolidation. The samples under examination in this study were normally 

consolidated pyroclastics, and the clays present occurred as a result of authigenic 

processes. The sedimentary classifications were also correlated with specific 

geomechanical data (see for example Sergeyev et al. 1980), which may not apply 

to volcanic deposits with similar microstructure. Attempting to force a 

sedimentary classification system, along with its associated properties, onto tephra 

derived deposits is unproductive and potentially misleading. The following will 

summarise the microstructural characteristics of samples observed in this study, 

and hence provide a summary to this chapter.    

 

7.5.1 Tauriko  

All Tauriko samples had a combination of polygonal spheres, tubes and 

individual plates which dominated the microfabric and formed irregular 

microaggregates, delicate relict textures and groundmass material. Halloysite 

books and larger grains were embedded within the background of clay minerals in 

all samples (Figure 7.58). Connector assemblages were few and the microfabric 

appeared continuous (Figure 7.58). As shown in Figure 7.58, the microfabric of 

TS1 and TS2 is slightly different to that of TS3. TS1 and TS2 were dominated by 

halloysite tubes; contrastingly, TS3 contained an abundance of irregular plates 

and polygonal spheres. Relict textures were most common in TS1 and TS2, yet 

books were more abundant in TS3. The abundant books were often observed 

forming parallel contacts and gave the microfabric in TS3 a less open appearance 

than in TS1 and TS2 (Figure 7.58).     

 

In all samples, pores were dominantly ultra- and micro-pores, which 

occurred between clay minerals, microaggregates or within the groundmass. The 

hollow tubes of relict textures encouraged a large amount of porosity. Pores were 

typically meso-pores and only up 8 µm in diameter.  
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Figure 7.58: General microstructure for TS1 and TS2 (top) and TS3 (bottom) from Tauriko. 

Included in both images are small clay minerals which form the background to the microfabric, 

books, volcanic glass and larger grains.    

 

The loose packing of tubes, spheres and individual plates in Tauriko 

samples resulted in an open microfabric where the clay minerals had few contacts 

compared to a more compact structure. Geometrically Figure 7.58 represents a 

 (Sergeyev et al.  type structure (Terzaghi 1925). 

Keam (2008) observed a similar structure in sensitive silts at Otumoetai however, 

he suggested the small irregular halloysite spheres and plates were crystalline 

quartz (Chapter 2).   
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7.5.2 Otumoetai  

Most samples from Otumoetai were dominated by halloysite tubes, 

combined with a lesser amount of plates and spheres. OS2 being the exception 

with a large number of spheres. These minerals dominated the microfabric and 

combined to form groundmass material and microaggregates. The microfabric of 

all samples was continuous and grains were imbedded in background material 

(Figure 7.59).  

 

Figure 7.59 indicates, whilst the components may be similar for all 

Otumoetai samples, their microfabric is different. OS1 and OS4 were similar, with 

a large amount of tubes in an open network appearance forming typically 

tangential contacts between each other. This openness was reduced with the 

inclusion of spheres. OS1 differed slightly from OS4 in the fact that tubes were 

typically slightly smaller and a fine grained coating was observed. While the 

fabric in OS2 included tubes and spheres in an open arrangement like that of OS1 

and OS4, it had large areas of spheres in a dense arrangement giving it a slightly 

less open structure. OS3 contrasts with all other Otumoetai samples because small 

tubes were typically observed in tight parallel face-to-face contacts (Figure 7.59) 

and it contained the least amount of large grains.  

 

Ultra or micro-pores dominated all samples, these occurred between clay 

minerals, microaggregates or within the groundmass. The tight packing of OS3 

meant it had reduced porosity. Porosity in OS2 was reduced doe to its abundance 

of halloysite spheres. Larger pores were more common in OS1 and OS4, but least 

common in OS3. All samples had pores up to meso-pore size but macro-pores 

were seldom observed.   

 

The open arrangement of tubes in OS1, OS2 and OS4 appeared much like 

 structure presented by Lambe (1958). Tubes in a regular subdued 

Lambe 

et al. 1980.    
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Figure 7.59: General microstructure for OS1 and OS4 (top), OS2 (middle) and OS3 (bottom) from 

Otumoetai. Included in both images are small clay minerals which form the background to the 

microfabric and larger grains.    
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Chapter 8  

Discussion 
 

8.1 Introduction  
This chapter presents a discussion and synthesis of results from field, 

geomechanical, mineralogical, and microfabric investigations. It will discuss the 

origin of deposits sampled and their states of weathering and provide an 

explanation for halloysite formation and the unique morphology of halloysite 

books. The chapter will also make correlations between measured geomechanical 

properties and discuss interrelationships with microfabric. It will discuss the 

possible pathways which have contributed to the development of sensitivity.  

 

8.2 Development of materials  
 

8.2.1 History  

All samples investigated in this study were ultimately volcanic (pyroclastic) 

in origin. Each sample contained volcanic glass, quartz and plagioclase, which are 

common in pyroclastic flow deposits, tephra deposits and in reworked ignimbrite 

material (Winter 2001; Roger Briggs pers. comm. 2008). Samples from both 

Tauriko and Otumoetai are likely to be rhyolitic in composition. Energy dispersive 

x-ray (EDX) analysis of material from Tauriko indicated that glass fragments had 

similar compositions to those of rhyolitic origin, and relict textures of pumice were 

also observed. At Otumoetai, the predominance of rhyolitic material in the 

Tauranga Basin (Chapter 2) would suggest that parent materials of this type are 

most likely. Furthermore, the dominance of hydrated halloysite in each sample may 

suggest a highly siliceous parent material, such as rhyolitic pyroclastic deposits. 

The following sections discuss the mode of deposition of the units at Tauriko and 

Otumoetai that were sampled.        

 

8.2.1.1 Tauriko  

Observations indicated that the mode of deposition for each site was 

different. All samples from Tauriko were primary tephra fall deposits. Glass shards 

observed during scanning electron microscopy were often thin, sharp and showed 

no obvious signs of abrasion or rounding (Chapter 6). Considering the delicacy of 



Chapter 8: Discussion  

222 

the shards observed, one would expect them to be easily damaged if transported. 

These characteristics are indicative of primary deposition with limited or no 

reworking (Oborn 1988). Furthermore, during field investigation the clayey silt 

units from which TS1, TS2 and TS3 were sampled appeared massive and thick (0.5 

 1 m.), having no obvious fluvial bed forms (Chapter 4). An origin of primary 

tephra fallout was reflected in the void ratios of Tauriko samples, especially TS1 

and TS2 and to a lesser extent TS3, with values of 2.86, 3.40 and 1.63, respectively. 

Light fallout deposition is enhanced by the irregular shape of pyroclastic material 

which would pack inefficiently and further support an open structure. This 

interpretation is supported by Rogers (1995), who stated that as the angularity of 

bladed loess increases so too will void ratio. By analogy sharp and irregularly 

shaped glass shards may have the same effect, an example being those presented in 

Figures 6.41 and 6.45. Pumice, a component typical of tephra or pyroclastic 

deposits, also adds to void ratio because of its vesicular nature. As the pumice 

weathers it may dissolve, becoming thin-walled and delicate and thus increasing 

void ratio. An example of this process is reflected by the relict textures observed in 

Figures 7.10, 7.13 and 7.14. The presence of relict textures lends support to 

Torrance`s (1992) hypothesis that void ratio may increase with diagenesis and 

weathering. 

 

Given that the sensitive units from Tauriko were primary fall deposits, they 

could possibly represent pyroclastic units associated with the Te Ranga Ignimbrite 

(0.27 Ma; Briggs et al. 2005). The sensitive material may represent early fall 

deposits associated with the eruption of Te Ranga Ignimbrite because the minerals 

and textures observed were similar to those found in the Te Ranga Ignimbrite. 

Petrographical investigation indicated that glass textures in samples from Tauriko 

had curved and cuspate shapes exhibiting only moderate devitrification. Crystals 

(minerals) in the samples included plagioclase, hypersthenes, quartz and 

hornblende. All the above features have been previously described in the Te Ranga 

Ignimbrite (Briggs et al. 1996; 2005). However, the sensitive units may also 

represent material from an earlier eruptive event unrelated to the eruption of the Te 

Ranga Ignimbrite.   
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8.2.1.2 Otumoetai  

Otumoetai samples did not have the same depositional history as material 

from Tauriko. Units at Tauriko were associated with the Te Ranga Ignimbrite (0.27 

Ma) and therefore younger than those from Otumoetai, which lay below the 

Rangitawa tephra (0.34 Ma; Lowe et al. 2001). Furthermore, the paleosol (OS3) 

between OS2 and OS4 indicated that a long period of environmental stability, and 

hence time, occurred between depositional events at Otumoetai. The biotite 

observed in Otumoetai samples indicates an eruptive source which was rich in this 

mineral.  

 

OS1 and OS4 were likely to be of fall origin, either as loess or tephra, 

because like Tauriko samples they have high void ratios of 3.02 and 2.62 

respectively. The void ratio of OS3 may have been similar to ratios of OS1 and 

OS4. However, the void ratio has been overprinted in OS3 by pedogenic 

weathering whilst at the land surface. Considering that Rolo et al. (2004) reported 

void ratio values from Tierra Blanca pyroclastic deposits in El Salvador between 

0.86 and 1.24. the lower void ratios values in TS3 (1.63) and OS3 (1.90) were still 

acceptable for materials of fall origin. If OS1, OS3 and OS4 are tephric then they 

represent members of the loosely defined Pahoia tuffs (0.35  2.18 Ma; Briggs et 

al. 1996), which in effect are part of the Matua subgroup (0.6 ka  2.09 Ma; Briggs 

et al. 2006).  

 

Petrological investigations suggested that the origin of OS2 was different 

from all other samples. Grain mount and x-ray diffraction (XRD) investigations 

(Chapter 6) indicated a concentration of heavy minerals in OS2, these being 

hornblende, titinomagnetite and pyroxene. Because of their high specific gravity 

(3.0  5.2) the relative abundance of these minerals indicated fluvial sorting. OS2 

had a void ratio which was lower than those of TS1, TS2, OS1 and OS4. Such a 

low void ratio may indicate better sorting and packing in a wet fluvial environment 

as opposed to dry fallout deposition. In conclusion, OS2, was reworked and a 

member of the fluviatile Matua Subgroup (0.6 ka  2.09 Ma).   

 

Another major reason for the retention of high void ratios is that none of the 

samples had experienced extremely high rates of true geological consolidation. As a 

comparison, Beattie (1990) reported void ratios for fireclay in South Waikato 
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Tertiary coal measures between 0.29 and 0.65, and Chapman (1998) recorded void 

ratios between 0.1 and 0.56 in soil derived weathered from Tertiary Waitemata 

Group flysch deposits. Both of these materials have been consolidated.          

  

8.2.2 Weathering environment  

Samples from Otumoetai displayed evidence of greater weathering than 

those from Tauriko. Otumoetai samples were older than materials from Tauriko 

(section 8.2.1), potentially resulting in more time for weathering and argillisation 

processes to occur. Volcanic glass, which dissolves rapidly, and plagioclase were 

more abundant in samples from Tauriko. XRD analysis, through peak height (Table 

6.7), indicated that highly resilient quartz was more abundant at Otumoetai than 

Tauriko. Furthermore, ferrihydrite and the broad Fe oxides, which are associated 

with weathering, had a greater presence at Otumoetai. These Fe minerals impart the 

light and dark brown colours observed in units from Otumoetai (McLaren & 

Cameron 1996), compared with the pale grey colour of material from Tauriko. If 

the samples from Tauriko were associated with the Te Ranga Ignimbrite then the 

sensitive units would have been rapidly covered by thick deposits of pyroclastic 

material, allowing little time for surface weathering.  

 

At Otumoetai, OS3 showed evidence of a different and possibly stronger 

weathering environment. OS3 had high clay content (SEM observations), high 

liquidity and plasticity indexes, the largest XRD peak (bulk sample) for highly 

resilient quartz, and a high ratio of zircons, compared with other primary minerals. 

These features are typical of a highly weathered tephra deposit displaying strong 

soil formation (Shepherd 1984; Bakker et al. 1996). Being a paleosol, the advanced 

stages of weathering observed in OS3 were most likely a result of its past position 

c activity would have enhanced chemical 

weathering, an example being changes in pH which affects hydrolysis (McLaren & 

Cameron 1996). Biotic activity would have also encouraged soil mixing, creating a 

more developed soil structure than in other samples. Roots may have played an 

important role by compressing aggregates and causing differential dehydration 

(Hillel 2004). The darker colour of OS3 may indicate a slightly higher organic 

content than other units (Shepherd 1984). During particle size analysis, OS3 

displayed the strongest reaction when H2O2 was added to remove organic matter.  
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High clay content in OS3 may have encouraged clay migration (illuviation) 

thus increasing the fine clay fraction in the lower portion of the unit (Bakker et al. 

1996). Increasing the fine clay fraction would have impeded drainage, hence 

reducing the loss of Si in soil solution which encourages further halloysite 

formation, resulting in greater bulk densities (Parfitt et al. 1983; see also section 

8.9). The dry bulk density in OS3 was high (920 kg m-3) relative to all other 

samples (Table 5.2). Scanning electron microscope images of OS3 (Chapter 7) 

confirmed that the fabric in OS3 was different from that of all other samples, 

having short tightly packed halloysite tubes typically in a subdued parallel 

alignment.  

 

8.2.3 Clay minerals 

 
8.2.3.1 Formation  

Clay mineral assemblages at both sampling sites were dominated by 

hydrated halloysite. Al-rich allophane was only a minor component in samples 

OS1, OS2 and OS3 (< 1.6 %) and was absent from OS4 and from Tauriko samples. 

The presence of both minerals was not unexpected considering the volcanogenic 

parent materials and likely drainage conditions (Chapter 2). As outlined in Chapter 

2, it is likely that halloysite in this study has formed directly from primary minerals 

rather than neoformation from dissolved allophane.     

 

 The highly siliceous nature of the rhyolitic parent materials at both Tauriko 

and Otumoetai would have enhanced halloysite formation (Chapter 2). Further 

contributing to this are geological and climatic conditions. The vertical variability 

of geological units in the study area includes layers of low permeability, and OS3 

may be one such example. These layers of low permeability create perched water 

tables and impede leaching conditions. Consequently, Si in soil solution remains 

high promoting halloysite formation (Chapter 2). These drainage conditions are 

supported by Bakker et al. (1996) who reported the formation of halloysite in soils 

with impeded drainage.  Evidence of sustained saturation, either recently or in a 

past climate, is displayed by the presence of manganese concretions (pyrolusite) in 

all samples. Thus the soil has been saturated long enough for Mn reduction to  
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occur; subsequent drying, and hence oxidation, has resulted in the formation of 

MnO2 (Vepraskas 1994).  

 

Past climatic conditions may have also played a role in halloysite formation. 

For example, soils are sufficiently old (samples at Tauriko are > 0.27 Ma and those 

at Otumoetai are > 0.35 Ma) to have experienced cold and dry glacial climates 

(marine oxygen isotope stages 2, 6 and 8), which represent periods with reduced 

rainfall and likely reduced leaching (see references in Chapter 2).  

 

Under current conditions, it is expected that halloysite formation is still 

occurring. Evidence of likely recent halloysite tube formation was observed during 

scanning electron microscopy in TS2 and OS3 (Figures 6.16 and 6.17). The thick 

overburden of material at each site, which is predominantly rhyolitic, will support a 

Si-rich environment, as silica in solution migrates down from upper horizons 

(Wada 1989; Lowe & Percival 1993). Combined with impeded drainage conditions, 

the fabric created by the formation of halloysite clays will encourage further 

halloysite formation by slowing the loss of silicon in solution. Scanning electron 

microscopy (Chapter 7) indicated that pore sizes were typically small (< 10 µm) in 

all samples, and few macro-pores (> 30 µm), which control water movement 

(McLaren & Cameron 1996), exist. This means that little water movement will 

occur, ensuring that Si in soil solution will remain high.   

 

The small amounts (< 1.6 %) of Al-rich allophane in OS1, OS2 and OS3 

mean that silica in solution has been high for prolonged periods to support the 

formation of halloysite (Chapter 2). However, for the small amount of allophane to 

form, the units which contain allophane would have had to experience periods with 

reduced Si concentration. This may have occurred during seasonal wetting, 

encouraging leaching which would lead to low Si concentrations in soil solution 

(Harsh et al. 2002).  However, any influence of a wetting pattern is very weak 

because halloysite is by far the dominant clay mineral.   

 

The small amount of kaolinite in OS3 may have derived by weathering 

(neoformation) from halloysite (McLaren & Cameron 1996). For example, Papoulis 

et al. (2004) suggested that as weathering advances, tubular halloysite converts to 

platy halloysite which then converts to kaolinite. Both tubes and plates were 
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observed in OS3. Churchman & Gilkes (1989) suggested that halloysite tubes could 

be altered to kaolinite as a result of prolonged desiccation. Prolonged desiccation 

may have occurred in a past drier climate or when OS3 was near the land surface. 

However, one would expect more of OS3 to have transformed to halloysite in this 

situation because the whole profile would have been affected. In contrast, Bailey 

(1990) stated that the structural difference between halloysite and kaolinite (i.e. 

tetrahedral rotations in kaolinite, Chapter 2) would require complete re-

crystallisation for one to transform to the other. Churchman & Gilkes (1989) also 

indicated that halloysite tubes and kaolinite plates can form via separate pathways. 

For example, kaolinite can be formed from the intense weathering of biotite 

(Thompson & Ukrainczyk 2002). Biotite was observed in OS3. It was difficult to 

conclude which pathway was followed for kaolinite formation in OS3. However, 

the greater age and different weathering environments experienced by OS3 during 

glacial and interglacial conditions has resulted in a slightly more diverse range of 

clay minerals compared with those of other samples.   

 

8.2.3.2 Halloysite 

Within the samples examined, typical halloysite morphologies of tubes and 

spheres were observed, as was the lesser known plate-like morphology. All these 

morphologies had been previously observed in weathered volcanic material 

(Joussien et al. 2005). At Tauriko, especially TS3, halloysite in the form of books 

was observed (Figures 6.28 to 6.34). Book morphologies, which are traditionally 

associated with kaolinite (Dixon 1989; White & Dixon 2002), have never been 

previously reported for halloysite.  

 

Energy dispersive x-

rphologies, which make up each book, were influenced by high Fe 

content, because a high Fe content had prevented layer rolling from occurring 

within the plate of each book. Layer rolling takes place in hydrated halloysite in an 

attempt to correct the size misfit between the larger Si4+ tetrahedral sheet and the 

smaller Al3+ octahedral sheet (Chapter 2). Layer rolling has not occurred in the 

plate-like minerals because Fe3+ has isomorphically substituted Al3+ within the 

octahedral sheet, possibly during clay formation. Because the ionic radius of Fe3+ is 

larger than that of Al3+, the length of the octahedral sheet will increase when 

substitution occurs. Therefore, the misfit in size between the tetrahedral and 
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octahedral sheets is corrected and flat plates occur within each book. Previous 

workers have suggested this phenomenon for individual plates (Churchman & 

Theng 1984; Noro 1986; Bailey 1990; Joussien et al. 2005). For example, Bailey 

(1990) stated that platy halloysite displays a negative relationship between layer 

curvature and Fe content. Thus platy halloysite has the most Fe content and less 

curvature than tubes. Furthermore, the Fe2O3 content of books (~ 5.2 %) measured 

here appeared to correlate well with that typically observed for plates (Figure 6.38).  

 

EDX analysis indicated that tubes from Otumoetai had Fe contents (~ 3.2 

%) at the high end of the typical values for large tubes and at the lower end of 

plates (Figure 6.38). On calculation of raw EDX values from Appendix 6.3, tubes 

had low Al:Si ratios with a value of 0.77. Soma et al. (1992) stated that a low Al:Si 

ratio indicates that the isomorphic substitution of Fe3+ for Al3+  in the octahedral 

sheet is non-stoichiometric, and that the loss of Al3+ is disproportionally higher than 

the gain in Fe3+. This loss of Al3+ without replacement will promote layer curvature 

and thus tube formation. For example, Soma et al. (1992) indicated that a very low 

Al:Si ratio (0.67) explained layer curvature in halloysite spheres with high Fe 

content (4.59 %) in material from Opotiki (Bay of Plenty). Books also appear to be 

moderately depleted in Al with an Al:Si ratio of 0.81. However, this depletion is 

overcome by the large enrichment in Fe.   

 

However, one must point out that samples in this study did not have iron 

impurities removed via deferration. Therefore it could be argued that Fe contents 

are slightly exaggerated. For example Soma et al. (1992) observed an ~ 80 % drop 

in Fe content, from 5.69 % to 1.22 %, following deferration of tubes. However, as 

stated in chapter 6, this has potentially been overcome by examining individual clay 

crystals rather than a bulk sample. 

 

8.2.3.3 Genesis of books 

The Fe content explains the plate-like morphology within individual books, 

but does not describe their genesis. Because the books are observed in a primary 

pyroclastic deposit, they have certainly been formed authigenically. A number of 

suggestions exist: 
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a) Individual plates may have electrostatically bonded together, thus 

forming the book-like features. Plates have been observed as an 

alteration product of pumice (Noro 1986) and pyroclastic material 

(Joussien et al. 2005); 

 

b) Like kaolinite, the books may have formed from either a micaceous 

mineral or feldspar (Keller 1977; White & Dixon 2002). The micaceous 

mineral acts as template which subsequently results in the book-like 

structures (White & Dixon 2002). In the case of feldspar, the books are 

formed following destructive dissolution of the feldspar and then 

constructive crystallisation of the kaolinite (Keller 1977); 

 

c) Individual halloysite tubes may have coalesced to form stacks which 

later became books. For example, Jeong (1998) described tubes 

coalescing to become plates and then later vermicular kaolinite. 

However, in this study such stacks must have remained as halloysite 

rather than becoming kaolinite.   

 

It is unlikely that books were formed from the electrostatic attraction of 

plates, because the plates not included (i.e. those within the groundmass) were 

smaller than those in books.  If the books represented individually stacked plates, 

one would expect their edges to be irregular, as the plates were generally of 

different geometries. Tubes coalescing to form plates and then books would 

invalidate the Fe content hypothesis, because Fe content would have been high 

during book formation resulting in plates rather than tubes. Transformation from a 

biotite mineral is possible because XRD analysis of the bulk soil sample indicated 

the possible presence of very thin flaked micaceous material (biotite) (Fanning et 

al. 1989) in TS1 and TS3 (Chapter 6, section 6.4.1.1). Whilst the typical micaceous 

lustre was not observed in hand specimens, it is possible most of the books 

represent halloysite, whilst some may represent mica intergrading into halloysite. 

Feldspar was recorded by XRD in Tauriko samples so transformation of this 

primary mineral into books is also possible. Why halloysite rather than kaolinite 

has formed may be linked to a poorly drained saturated environment.  

 



Chapter 8: Discussion  

230 

8.3 Field variability 
During field investigations at Otumoetai, large variability was observed 

both within and between stratigraphic units (Chapter 4). For example, peak vane 

strength in OS2 ranged from 78 to 172 kPa and remoulded strength was measured 

between 3 and 8 kPa using the adapted method, which in turn had an effect on 

sensitivity. Furthermore, sensitivities between units ranged from > 8 (OS3) to 52 

(OS4) within a few metres, displaying very coherent (36 kPa) and almost liquid-

like (2 kPa) remoulded strength, respectively. This was not unexpected, considering 

variability in engineering properties both between and within units has been 

reported on many occasions (see for example: Bird 1981; Briggs et al. 1996; Oliver 

1997; Wesley 2007; Keam 2008).  Variability arises because of the wide range of 

depositional environments (e.g. fallout pyroclastics, aeolian loess, fluvial 

reworking), weathering environments (e.g. climate, drainage) and a number of 

buried paleo-topographies. These features result in lateral changes in strength and 

abrupt vertical changes in grain size, soil type and a wide variety of water contents 

(Prebble 2001). For example, the high clay sample OS3 was less permeable than 

the overlying sample, OS2. In this instance, excess water will pond above OS3. 

This conclusion can be drawn because the thick layer of manganese oxide coatings 

(pyrolusite) between the two layers (Figure 4.11) indicated an extreme wetting and 

drying environment. This type of perched aquifer is not uncommon in the Tauranga 

region and may form basal slip planes (e.g. Gibb 1979; Bird 1981).   

 

8.4 Geomechanical properties  
The following section will discuss geomechanical properties for each 

sample, whilst taking into consideration observations during field testing, 

mineralogical investigations and scanning electron microscopy. Relationships 

between geomechanical properties will also be discussed.    

 

8.4.1 Particle size 

 
8.4.1.1 Measurement  

Particle size analysis indicated that most samples had < 10 % clay content 

with the exception of OS3, which had ~ 35 %. Conversely, scanning electron 

microscopy (SEM) observations showed that the dominant microstructural material 

for all samples was clay. For example, OS3 was dominated by halloysite clay with 

very few primary grains observed. Therefore, based on SEM observations clay 
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content in OS3 could have possibly been more than 75 %, with all other samples 

having at least 20 % clay content. Thus, it was believed that the clay content in all 

samples has been underestimated by particle size analysis. Several other lines of 

evidence also suggest that clay content was underestimated as discussed below.  

   

Halloysite tubes, spheres, plates and books were observed in great 

abundance during SEM observations, thus it was expected their activity would 

dominate samples. However, activity values for samples with low clay content were 

high, between 1.59 and 18.26, which suggests the presence of allophane (> 3) or 

montmorillonites (1.5  13), rather than halloysite (< 0.5) (Selby 1993). 

Montmorrillonites can be excluded because they were not observed during any 

analysis. Allophane was not generating the high activities because activities were 

still high in those soils with insignificant amounts of allophane (e.g. TS1, TS2, TS3 

and OS4). 

 

Grain mount investigation identified a high proportion of clay aggregates  

(~ 10 to ~ 25 %) in the fine sand fraction of all samples. This aggregation suggested 

that clays were not effectively dispersed during particle size investigations, because 

the dispersion methods for both analyses were similar (using H2O2, Calgon, and 

ultrasonication).  

 

The relationship between liquid limit, plasticity index and clay content 

suggested that samples had not dispersed equally. Literature suggested that liquid 

limit and plasticity index are related to clay content (McLaren & Cameron 1996), as 

a result of increasing surface area. Therefore, a numerical relationship between clay 

content and these parameters was expected. However, this was not the case with 

correlation coefficients (r2) of < 0.15. Poor correlations have been previously 

reported for soils which are dominated by allophane (Allbrook 1983) but not 

halloysite. One would still expect a relationship if the effect of non-dispersion was 

similar in each sample.  

 

In volcanic-ash derived soils, problems with particle size results have been 

reported for allophanic soils following the preparation of samples by air drying 

(Wesley 1973; Allbrook 1983; Jacquet 1990). Quite the opposite affect has been 

recorded in soils with high halloysite content, where drying made aggregates less 
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stable (Churchman & Taite 1986).  However, Shepherd (1984), who examined the 

Hamilton Ash formation, which are typically halloysite dominated, observed 

aggregated clay in the sand fraction during particle size analysis. He suggested that 

a number of processes, for example cementing and bonding of clay minerals with 

free sesquioxides, may cause aggregation.   

 

The problems observed during particle size analysis arose because of 

inadequate dispersion (as seen by grain mount analysis observations). It was also 

possible that the calibration of the particle size analyser and the issues experienced 

concerning obscuration were also having an effect (Chapter 2). The calibration 

issues were a result of the wide range of materials, and hence differing optical 

properties, of each sample.  

  

8.4.1.2 Strength and sensitivity  

A weak positive relationship between silt content and adapted sensitivity is 

observed (r2 = 0.46, Figure 8.1). However, no visual relationships existed for other 

sediment size classes, standard sensitivity, remoulded strength or peak strength. 

The correlation coefficient between particle size and the parameters mentioned 

above was typically low (r2 < 0.4). Unfortunately, relationships may be over-

shadowed by the problems with particle size measurements.   

 

 Figure 8.1: Relationship between silt content and sensitivity measured with the adapted method (r2 

= 0.46).  
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Further investigation indicated a weak relationship between adapted 

sensitivity and both liquid limit and plasticity index (Figure 8.2). The relationship 

suggests that as liquid limit and plastic index increase, sensitivity decreases. 

Considering liquid limit and plasticity index may represent clay content, then it 

could be suggested that as clay content increases, sensitivity decreases. This is 

logical considering the relationship with silt content.  

 

 

Figure 8.2: Relationship between liquid limit and sensitivity measured with the adapted method (r2 

= 0.31), and plasticity index and sensitivity measured with the adapted method (r2 = 0.54).  
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low, and are still represented in current values. However, what is observed now has 

been influenced by the way primary minerals have weathered to clay. Thus the 

following section will describe how current materials create the void ratios 

observed.  

 

At Tauriko, void ratios follow the sequence TS2 (3.40) > TS1 (2.86) > TS3 

(1.63). Scanning electron microscopy supported this observation. TS3 had the 

largest portion of dense books with plates in tight face-to-face contacts and TS1 had 

the least. Furthermore, TS1 and TS2 had a large proportion of hollow relict 

textures. TS3 had fewer relict textures and tubes, and instead had a larger amount of 

irregular spheres and few tubes. The irregular spheres are more likely to pack 

efficiently than relict textures. At Otumoetai, void ratio was highest in OS1 (3.02) 

and OS4 (2.62), yet lowest in OS2 (1.98) and OS3 (1.90). The higher void ratios in 

OS1 and OS4 were a result of halloysite tubes intermixed with small irregular 

spheres being arranged in an open network structure. The gaps between irregularly 

shaped aggregates of tubes and spheres also add to void ratio values. In OS2, a 

similar network of tubes and spheres occurred, but this was typically less open than 

in OS1 and OS4. Furthermore, sections of OS2 were dominated by regular spheres 

which, as in TS3, pack more efficiently than a combination of tubes and spheres. A 

low void ratio occurred in OS3 because the short halloysite tubes packed better 

those which were longer, as in OS1 and OS4. The tighter packing in OS3 has been 

explained by its prior position near the land surface (section 8.2.2).  

 

 In all samples, a large number of very small (< 1 µm) pores resulted from 

the interaction between irregularly shaped clay particles. In most samples, larger 

pores seldom had diameters > 20 µm. Considering that storage pores are less than 

30 µm in diameter, and water is held more tightly as pore sizes decrease because of 

capillarity (McLaren & Cameron 1996), one can assume that water will be strongly 

held in all samples. Thus the high saturation states (83 to 102 %) observed in all 

samples, even at the end of summer, were a result of extremely small pore sizes. 

Because all soils are close to saturation an increase in void ratio results in an 

increase in moisture content (r2 = 0.87) (Figure 8.3).     
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Figure 8.3: Relationship between void ratio and natural moisture content (%) (r2 = 0.87).   
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Figure 8.4: Relationship between void ratio and peak vane strength (kPa).  
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TS3 had the second highest strength (151 kPa), a result of the large number 

of books within the sample. The tight face-to-face contacts of plates within each 

book will form stronger bonds than other curved halloysite morphologies. 

However, one anticipates that this contact will be weaker than those in kaolinite 

books, because the interlayer water may lubricate each clay crystal, promoting 

slippage, as opposed to the tight hydrogen bonding within kaolinite. The tight face 

to face contacts between plates within books may account for the high effective 

cohesion of 24 kPa observed in TS3. TS3 had the least number of relict textures. 

The relict textures appeared hollow, delicate and weak; it is anticipated that they 

will easily crush when shearing forces are applied. Their delicacy was emphasised 

by the collapsed wall sections observed during SEM investigation and the lack of 

relict textures in remoulded specimens. This delicacy resulted in TS1 and TS2 

having the lowest peak strengths at 57 and 45 kPa, respectively.  

 

The small amount of ferrihydrite (< 0.5 %) in Otumoetai samples may 

explain why they have higher strength than TS1 and TS2; Jacquet (1990) stated that 

the presence of Fe oxides, especially ferrihydrite, will contribute to the strength 

properties of volcanic soils.      

 

Even though the relationship between void ratio and friction angle was not 

particularly clear, samples OS3, OS2 and TS3 all had void ratios of < 2, and 

effective friction angles above 30º. In contrast, samples TS1, OS1 and OS4 had 

void ratios > 2.5 and friction angles of less than 30º. The relationship between void 

ratio and friction angle manifests through similar mechanisms as those presented 

for peak vane strength, especially grain interlocking as a consequence of tight 

packing causing high friction angle.  

 

Because peak vane strength and moisture content are related to void ratio, it 

comes as no surprise that strength is correlated with moisture content (r2 = 0.65) 

(Figure 8.5). 
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Figure 8.5: Relationship between natural moisture content (%) and peak vane strength (kPa) (r2 = 

0.65). 

 

 

8.4.2.3 Liquid limit  

Excluding OS3, a positive relationship exists between void ratio and liquid 

limit (r2 = 0.67) (Figure 8.6).  

 

 
Figure 8.6: Relationship between liquid limit and void ratio (r2 = 0.67). OS3 has been omitted from 

the correlation coefficient calculation (see text for explanation).   

 

The typical relationship observed in Figure 8.6 was not reflected in OS3 

because of its different weathering history compared with all other samples (section 
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8.2.2). This weathering history has promoted clay formation, increasing liquid 

limit, yet also resulted in a void ratio (1.90) at the lower end of the scale.  

 

The relationship observed between other samples (excluding OS3) could 

indicate that as clay content increases so does void ratio. If this is the case it may 

indicate that an increase in void ratio is a result of diagenesis and weathering. This 

possibility was discussed by Torrance (1992) as a post-depositional factor which 

may affect sensitive volcanic soils. However, the correlation in Figure 8.6 may also 

be influenced by either clay type or morphology. For example, the surface area of 

kaolinite is typically less than that of halloysite, with values between 10 to 20 m2 g 

and 35 to 70 m2 g respectively (Selby 1993; Mitchell & Soga 2005). Because liquid 

limits are strongly correlated to surface area (Selby 1993) then a lesser liquid limit 

may be expected in kaolinite than halloysite. It is possible that because halloysite 

books represent one of the common kaolinite morphologies their surface properties 

may be similar. Thus, the high number of dense halloysite books in TS3 may result 

in low liquid limit and void ratio. At the other end of the scale, the small amount of 

allophane in OS1 (1.3 %) may foster a slightly higher liquid limit. 

 

8.4.2.4 Sensitivity  

A relationship exists between void ratio and standard remoulded strength  

(r2 = 0.71) and senstivity (r2 = 0.52). The relationships for remoulded strength and 

sensitivity are negative and positive, repsectively (Figure 8.7 A and B). This same 

correlation does not exist for adapted remoulded strength (r2 = 0.19) nor adapted 

senstivity (r2 = 0.008).  However, a relationship exists between standard remoulded 

strength and peak strength (r2 = 0.88) (Figure 8.8 A). A similar correlation is not 

observed for remoulded strength derived from the adapted method of sensitivity. 

The relationship observed in Figure 8.8 (A) possibly indicates that remoulding by 

rotating the vane 5 times does not completely destroy the structure of the specimen. 

Thus, the correlation between peak strength and void ratio (Figure 8.4) is 

overprinted onto remoulded strength, which has an affect on sensitivity. Because a 

relationship exists between void ratio and standard remoulded strength it comes as 

no surprise that a correlation is also observed between natural moisture content and 

standard remoulded strength (r2 = 0.63) (Figure 8.8 B).  
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Figure 8.7: Relationships between:  A) Void ratio and the standard method of sensitivity 

measurement remoulded strength (kPa) (r2 = 0.71). B) Void ratio and the standard method of 

sensitivity measurement (r2 = 0.52).  

 

 

Figure 8.8: Relationship between: A) Peak vane shear strength (kPa) and the standard sensitivity 

method remoulded vane shear strength (kPa) (r2 = 0.88). B) Natural moisture content (%) and the 

standard sensitivity method remoulded vane shear strength (kPa) (r2 = 0.63). 

 

8.4.3 Liquidity index  

Most samples, except OS3, had natural moisture contents which exceeded 

their respective liquid limits, having liquidity index values between 1.33 and 2.39 

(Table 8.1). High liquidity index values (> 1) have been previously reported in 

sensitive volcaniclastic deposits of the Tauranga region (Smalley et al. 1980; 

Hatrick 1982; Wesley 2007; Keam 2008). Soils which have moisture contents 

above the liquid limit are capable of liquefying when disturbed; these deposits may 

not only be highly sensitive but also extremely compressible (Hatrick 1982). Selby 

(1993) stated that soils with natural moisture contents at their liquid limit (liquidity 
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index = 1) will have remoulded shear strengths between 1 and 3 kPa. Therefore, 

soils with a liquidity index > 1 will potentially have even lower remoulded 

strengths than those suggested by Selby (1993).   

 

Table 8.1: Liquidity index, void ratio, liquid limit, natural moisture content, and degree of 

saturation for all samples examined in this study.   

Sample Liquidity 

index 

Void ratio Liquid 

limit (%) 

Natural moisture 

content (%) 

Degree of 

saturation (%) 

TS1 2.39 2.86 81.25 115 102.2 

TS2 2.41 3.4 72.67 109 83.5 

TS3 1.88 1.63 51.97 64 99.3 

OS1 1.33 3.02 90.02 104 91.1 

OS2 1.46 1.98 57.4 69 93.0 

OS3 0.27 1.9 96.4 66 92.4 

OS4 1.35 2.62 72.96 86 87.8 

 

For liquidity index to be > 1, void ratio must be sufficiently high to allow 

natural moisture content to exceed liquid limit. For example TS1, TS2, OS1 and 

OS4 all had exceptionally high void ratios. Contrastingly, TS3 and OS2 had void 

ratios similar to OS3, yet they still have liquidity indexes which are > 1 (Table 8.1). 

The high liquidity indexes in TS3 and OS2 were a consequence of low liquid limits 

(Table 8.1). The low liquid limit in TS3 is possibly a result of halloysite books 

(Section 8.4.2.3) and in OS2 it may be a consequence of the abundance of heavy 

minerals (Table 6.7) and high sand content (Table 5.1). Other factors such as water 

availability and micro-structural characteristics (e.g. small pore sizes permitting 

strong water retention) are also important to ensure high liquidity indexes.  

 

The liquidity index of OS3 contrasts to all other samples with a value of 

0.27. This results from the combination of a high liquid limit and low void ratio 

(Table 8.1). Even if OS3 became fully saturated it would only be able to support a 

moisture content of ~ 71 %; this value is still below its liquid limit of 96.4 % (Table 

8.1). The inability to exceed its liquid limit suggests that OS3 is unlikely to have 

extremely low remoulded strength on any occasion.    

 

The benefit of liquidity index is that it normalises natural moisture content 

in regard to the liquid limit. This allows the comparison of natural moisture content 

of samples with other parameters, without the influence of clay content or type.  
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A positive relationship exists between adapted sensitivity and liquidity 

index for samples of this study (r2 = 0.54). Furthermore, this correlation remains 

when other studies which report sensitivity in volcaniclastic materials are added  

(r2 = 0.60). This relationship is presented in Figure 8.9 and the line-of-best-fit 

represents all points in the graph. Previous workers have reported this relationship 

for sensitive glaciomarine clays (Skempton & Northey 1952; Bjerrum 1954; 

Mitchell & Houston 1969, as cited in Lefebvre 1996). Mitchell and Houston (1969) 

suggested that retrogressive failure will develop in glaciomarine sediments when 

sensitivity is higher than 40 and liquidity index exceeds 1.5.  

 

 

Figure 8.9: Relationship between liquidity index and sensitivity (r2 = 0.60) for data from Tonkin & 

Taylor (1980), Jacquet (1990), Wesley (2007) and this study. The sensitivity values presented in the 

graph for this study are those derived from the adapted method.   

 

When liquidity index and remoulded strength values from the same studies 

used to compile figure 8.9 are compared a power relationship exists (r2 = 0.69) 

(Figure 8.10). This power relationship is presented as the solid line in Figure 8.10 

and indicates an overall trend of decreasing remoulded strength as liquidity index 

increases (Figure 8.10). Furthermore, the largest change in remoulded strength 

occurs at liquidity indexes of < 0.5 (Figure 8.10).  
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Figure 8.10: Relationship between liquidity index and remoulded shear strength (kPa) for data from 

Tonkin & Taylor (1980), Jacquet (1990), Wesley (2007) and this study (r2 = 0.69). The solid line 

represents all data points presented on the graph and the dashed line represents the relationship of 

Mitchell & Soga (2005) which is presented in the text as equation 8.1. The remoulded shear strength 

values presented in the graph which represent this study are from the adapted method of sensitivity 

measurement. Most of the remould

because they were derived from the equation of Sharma & Bora (2003; 2005) (Laurie Wesley pers. 

comm. 2008). Values from Jacquet (1990) were derived from analysis undertaken on a uniaxial 

compression apparatus so had to be converted to shear strength using equation 3.13 in chapter 3 

before plotting on this graph.   

 

The correlation presented in Figure 8.10 is not uncommon. For example, the 

remoulded strength calculation of Sharma & Bora (2003; 2005) is based on natural 

moisture content and its relationship between liquid and plastic limits (Chapter 3, 

equation 3.14). Furthermore, Mitchell & Soga (2005) presented an equation which 

links undrained shear strength of a remoulded clay and liquidity index. The 

relationship is derived from different clay types displaying a range of sensitivities 

and is presented as: 

 

=  
1

( 0.21)2
            (8.1) 

 

where: 

Su = undrained shear strength of remoulded clay;  

LI = liquidity index.   
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Equation 8.1 is represented as a dashed line in Figure 8.10. The data from 

the relationship derived for volcanic deposits appears to track that of equation 8.1 

reasonably well. However, the sharp increase in remoulded strength appears to 

occur at lower liquidity index values for soils of this study and those of other 

studies on volcanic soils (Tonkin & Taylor 1980; Jacquet 1990; Wesley 2007), than 

for the line from equation 8.1. 

 

A relationship such as that presented in equation 8.1, and the power 

equation in Figure 8.10, may allow estimates of remoulded strength to be made 

when only Atterberg limit and natural moisture content data are available. 

Importantly, Figures 8.9 and 8.10 indicate that soils with high sensitivity and low 

remoulded strength are dictated by the extent to which natural moisture content 

exceeds liquid limit, which appears to be common in sensitive volcanic deposits of 

the Tauranga region (see chapter 2).  The relationship between liquidity index and 

remoulded strength is a function of clay content, clay type, void ratio and saturation 

state.  

 

Table 8.1 indicates that most soils with a liquidity index (< 1) were not quite 

saturated (< 100%). Therefore, during a precipitation event they are able to retain 

more water which would increase liquidity index causing a decrease in remoulded 

strength (Figure 8.10), enhancing sensitivity (Figure 8.9). However, it should be 

noted that samples in the field may never reach full saturation because pockets of 

air may remain in occluded pore spaces (Hillel 2004).         

 

8.4.4 Peak, residual and remoulded strengths  

 
8.4.4.1 Triaxial 

Triaxial testing, especially pore water pressure (PWP) characteristics, 

indicated that OS3 was structurally different from all other samples. OS3 failed at 

very high strains and displayed dilation across all confining pressures. These 

characteristics arose from high clay content and dense packing of OS3 (section 

8.4.2.1). The high strain at failure implies that OS3 was of a highly plastic nature 

where the halloysite tubes strongly interacted during shear. All other samples 

typically displayed characteristics of compaction rather than dilation during triaxial 

compression, which is a result of their open structure. Compaction during 

compression was observed as elevated values of the pore water pressure coefficient 
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A at failure (Af), with values up to 1.09 reported in samples of this study. Af values 

exceeding 0.75 can indicate high soil sensitivity (Head 1998). However, highly 

sensitive glaciomarine clays have been reported with Af values of 2, indicating that 

PWP is twice the value of deviator stress (Mitchell & Soga 2005). All other 

samples typically failed at lower strains than OS3, which implies a more brittle 

failure. Brittle failure arises because the loose contacts between curved halloysite 

particles are minimal and large grains are only weakly bound into the groundmass. 

Therefore, this structural arrangement will have low ductility and hence contacts 

between grains will break suddenly and at lower strains (and potentially lower 

deviator stress) than those contacts observed in OS3. Failing at low strains in a 

brittle fashion is considered to be typical of highly sensitive clays (Mitchell & Soga 

2005).  

 

8.4.4.2 Ring Shear  

Residual friction angle in most samples, except OS3, ranged between 26.56 

and 33.13 °. These high friction angles are a result of irregularly shaped and bulky 

clay minerals (e.g. tubes and spheres) and large grains. Typically when platy 

particles dominate the sample (e.g. sedimentary deposits) they undergo 

reorientation during extended post-peak shearing forming, a smooth sliding plane 

which results in a large reduction in friction angle (Wesley 1992; Mitchell & Soga 

2005). Because individual plates did not completely dominate any sample of this 

study, shear is more turbulent with particles preferring to roll. This rolling causes 

high residual friction angle (Mitchell & Soga 2005). Furthermore, remoulded 

material in OS4 formed rounded microaggregates, which may behave like large 

sand and silt grains during shear. In OS3 residual friction angle was the lowest at 

19.34 °. The subdued arrangement and dominance of parallel face-to-face contacts 

between halloysite tubes following remoulding formed a flattened surface. This 

flattened surface, combined with the paucity of large grains observed in OS3, 

allows a closer representation of sliding shear, as previously described for plates.  

 

Effective residual friction angles for samples TS1, TS3 and OS1 were 

higher than peak effective friction angles measured in the triaxial. This finding was 

thought to occur because, when remoulded, the open structure of most samples was 

destroyed and irregular clay minerals and grains were able to move closer together 

and hence interact more during ring shear testing than in triaxial testing.   
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8.4.4.3 Remoulded strength  

 An important feature of soils in this study is their remoulded strength 

because it determines whether material will flow on disturbance. Section 8.4.3 

indicates a relationship between liquidity index and remoulded strength. However, 

the relationship does not explain structural changes during disturbance, which are 

considered to be important (Jacquet 1990). Table 8.2 presents each soil categorised 

on the basis of adapted remoulded strength. The following text then discusses 

possible relationships between these categories, other laboratory data and scanning 

electron microscopy observations.   

 

Table 8.2: Remoulded strength (kPa) and sensitivity values for samples from Tauriko and 

Otumoetai. Samples are divided on the basis of remoulded strength. Both sensitivity and remoulded 

strength values are derived from the adapted method. Sensitivity values for each sample are 

presented in parenthesis.   

Dilatent on remoulding  

Low remoulded strength Moderate remoulded strength High remoulded strength 

TS1 - 1 kPa (59) 

TS2 - 1 kPa (50) 

TS3 - 2 kPa (76) 

OS4 - 2 kPa (52) 

OS1 - 7 kPa (23) 

OS2 - 7 kPa (19) 
OS3 - 36 kPa (8) 

 

All samples from Tauriko and OS4 were very liquid-like following 

remoulding (Figure 8.11) thus displaying extreme dilatancy and very low 

remoulded strength (Table 8.2). Scanning electron microscopy (SEM) indicated 

that remoulding and hence destroying the typically open structure of material from 

Tauriko caused overall porosity to decrease. Remoulding also destroyed relict 

textures and microaggregates. Remoulding the open structured material from OS4 

reduced porosity and caused small dense microaggregates to form. At both sites, 

weak contacts between grains and the background of clay minerals were also 

destroyed. Such changes in fabric can only occur through complete structural 

alteration and particle disassociation. The loose packing (encouraging an elevated 

void ratio) and typically curved shape of halloysite clay minerals encourages 

minimal contacts between grains making particle disassociation easier than if the 

material was tightly packed (see section 8.4.4.2). This conclusion can be drawn 

because peak strength was typically low in those samples with low remoulded 

strength. TS3 seems to be an exception, with comparatively high peak strength yet 

low remoulded strength. This may be explained by the abundance of books in TS3 
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both increasing peak strength and possibly reducing liquid limit. A reduced liquid 

limit makes it easier for liquidity index to be > 1.  

 

Figure 8.11: Sample TS1 before remoulding (left) and after (right). Peak and remoulded strengths 
are 57 kPa and 1 kPa respectively.  

 

The structural disturbance which occurred in these samples (TS1, TS2, TS3 

and OS4) caused an abundant amount of tightly held water to be released (because 

liquidity index exceeds 1) from many small pores. The abundance of water 

suspends broken fragments of the destroyed microfabric (i.e. groundmass material 

and grains) and dilutes the plasticity of low activity binding clays (halloysite), 

causing a large reduction in strength and hence promoting high sensitivity (Table 

8.2). Loss of plasticity was confirmed by the dilatent nature and minimal plasticity 

of samples during field investigations even though most samples have reasonably 

high liquid limits (typical value for hydrated halloysite is 50  70: Selby 1993; 

Mitchell & Soga 2005). These findings support those of Smalley et al. (1980) for 

soils at Omokoroa (Section 2.7.2).    

 

OS1 and OS2 had slightly higher remoulded strength and hence lower 

sensitivity (Table 8.2) because of high liquid limit and low void ratio, respectively 

(Table 8.1). These factors resulted in a lower liquidity index than in TS1, TS2 and 

TS3 (Table 8.1). Thus, in OS1 and OS2, less water was available to support 

particles once fabric was destroyed, because the water was either tightly held to the 

surface of clays or simply not available.  

 

OS3 contrasted with all other samples because it was plastic following 

remoulding (Figure 8.12) thus having high remoulded strength (Table 8.2). SEM 
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images indicated that the tightly packed structure of OS3 was little altered 

following disturbance. However, all the larger pores were destroyed so some 

structural alteration had occurred. Therefore, the strength reduction observed as a 

result of remoulding is a consequence of a minor loss of bonds and hence strength 

due to structural alteration (Jacquet 1990) and the release of a small amount of 

water from disturbed pores (Torrance 1992). However, the highly plastic nature 

following remoulding is a consequence of continued tight packing and hence 

electrostatic and physical interaction between clay minerals. Furthermore, the low 

liquidity index (< 1) means OS3 incapable of flowing on disturbance (Jacquet 

1990) because water within the sample is either not present or bound to the surface 

of clay minerals. 

 
Figure 8.12: OS3 following remoulding. Remoulded strength is 36 kPa. 

 

8.5 Sensitivity classification 
Chapter Two indicated that sensitivity in volcanic ash material was believed 

to manifest in high undisturbed strength (Jacquet 1990; Torrance 1992). In my 

study, this was certainly the case for OS3 (Table 8.2). However other samples 

especially TS1, TS2, TS3 and OS4 had sensitivity which manifested in low 

remoulded strength (Table 8.2). These samples were extremely dilatent and often 

liquid-like on remoulding (Figure 8.11). However, the highly dilatent samples 

remoulded vane strength values did not fall below the upper limit of remoulded 

strength which is ~ 0.5 kPa (Chapter 2, section 2.2.2). The inability to record such 

low values may be a consequence of the shear vane used in this study being unable 

to measure strengths below 1 kPa. When remoulded strength was estimated using 

the equation of Sharma and Bora (2003; 2005) remoulded strength for most 



Chapter 8: Discussion 

249 

samples except OS3 was between 0.6 kPa and < 0.3 kPa. Such values suggest that 

samples of this study may indeed have extremely low remoulded strength and be 

capable of flowing.  

 

No

rapidity numbers were between 2 or 3, with TS2 recording a 4. Considering that a 

value of 10 indicates the soil has transformed into a liquid mass, it can be 

concluded that a lot of energy is required to transform samples into their dilatant 

remoulded state. This was confirmed by field observation, as it often took a lot of 

time and effort for a soil to become properly remoulded.  

 

8.6 Geomorphology 
In an undisturbed state even the most sensitive volcanic deposits were able 

to maintain coastal cliffs and cuttings some tens of metres high (Chapter 4). 

However, it is within these steep slopes where failures typically occur. For 

example, this study observed failures in steep hill slopes of ~ 30 º (Welcome Bay) 

and a relict coastal cliff section (Otumoetai). The ability to support such large 

cuttings is assisted by intervening high-strength layers, such as OS3. These 

intervening layers of high strength are one of the reasons why slips do not occur 

over the full height of slopes (Chapter 2). For example, OS2 was 100 kPa weaker 

than the underlying unit OS3.  

 

Soils of this study were observed retaining a coherent structure in situ even 

when they were at or near full saturation and had a liquidity index > 1. Maintaining 

a coherent structure whilst saturated may indicate that these soils derive most of 

their strength from electrostatic attraction of halloysite clays rather than the forces 

of suction and capillarity. For example, Jacquet (1990) stated that capillarity has an 

effect on strength between saturation values of 73 and 87 % but not between values 

of 92 and 95 %. Only TS2 and OS4 were within the lower range of values (Table 

8.1). Suction is an important control in soils which are moist but not saturated. In 

moist soils, an apparent cohesion is developed because PWPs are negative. 

However, when saturation occurs PWP becomes zero and suction or apparent 

cohesion is lost (Selby 1993). This would suggest that in the case of soils in this 

study, a significant triggering event (greater than simple soil saturation) would be 
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required to promote failure for example, a large increase in PWP (causing it to 

become positive) due to heavy or prolonged rainfall.  

  

High sensitivity and low remoulded strength becomes important once the 

landslide has been triggered. The energy created during the mass wasting event will 

cause the fabric of the normally coherent sensitive soils to be destroyed. In those 

soils with a high liquidity index (> 1), an abundance of water will be released from 

small pores and the flow-like nature of the mass wasting event will be promoted by 

those processes outlined in section 8.4.4.3. These processes include the dilution of 

plasticity and suspension of disturbed material. Furthermore, Keam (2008) added 

that both water held within pumice vesicules and halloysite tubes is released on 

disturbance. However, the water directly associated with halloysite, either within 

the tubes or on its surface will be tightly held and not easily released and therefore 

probably does not contribute to the flow like nature of mass wasting events.  

 

This study indicates that the ability of deposits to flow on remoulding will 

be dictated by the volume of material which has a liquidity index that exceeds 1, 

and the degree to which this value is exceeded.   

 

 
 

8.7.1 Geomorphology 

Whilst failures in volcaniclastic deposits of the Tauranga region certainly 

flow following disturbance and show signs of retrogression (Chapter 2), 

geomorphic evidence suggests that they are different from the classical sensitive 

glaciomarine clays of Norway and Canada.  

 

A classic example of failures in sensitive glaciomarine sediment was that at 

Rissa, Norway. The total slide, triggered by site loading, retrograded some 450 m 

inland from Lake Botnen and displaced 33 hectares of material from a slope of ~ 6 º 

(slope of 1:10) (Gregersen 1981). The failure did not occur as a single event but as 

a number of retrogressive and flake-type (large blocks raft out forming a new head 

scarp) episodes lasting less than an hour. Following the initial trigger, basal 

sediment collapsed and material flowed out into Lake Botnen under the weight of 

overlying sediment (Geertsema et al. 2006a). A more recent event is that at Mink 
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Creek, Canada, which was triggered by stream bank erosion. The Mink Creek event 

was also retrogressive and 23 hectares of material flowed from flat to rolling, 

gullied, terrain for a total distance of 1 km (Geertsema & Torrance 2005; 

Geertsema et al. 2006a; b).   

 

The events of Rissa and Mink Creek indicate that the geomorphic 

appearance of mass wasting events in sensitive glaciomarine sediments clearly 

differs from those in sensitive volcaniclastic materials. For example, flow-like 

failures in sensitive volcaniclastic material typically occur as a single event in steep 

slopes and display minimal retrogression, and hence the size of the scarp is smaller 

and run-out distances are less than failures in sensitive glaciomarine sediments.  

 

8.7.2 Geomechanics  

The differences in geomorphic appearances between sensitive volcaniclastic 

and glaciomarine clays is a consequence of differences in geomechanical 

properties, most notably peak shear strength.  Material at both Rissa and Mink 

Creek had low peak shear strength. Profiles from Rissa indicate that peak strength 

is typically less than 20 kPa down to a depth of 20 metres (Gregersen 1981). Mink 

Creek peak strength values ranged from 15 to 67 kPa over ~ 37 m with the majority 

of values less than 40 kPa. The main rupture surface at Mink Creek occurred in   

4.5 m-thick sediment with peak strengths of 15 to 25 kPa and remoulded strength as 

little as 0.22 kPa (Geertsema & Torrance 2005; Geertsema et al. 2006b). 

Greertsema et al. (2006b) suggested that the material from Mink Creek could be of 

high rapidity. Data from my study indicates that highly sensitive volcanic deposits 

are typically stronger, are less rapid and have remoulded strength which may not be 

as low as sensitive glaciomarine sediments. The high peak strength means volcanic 

soil materials do not collapse under their own weight after support is removed 

during failure. 

 

Adding to the differences in peak strength values between glacial marine 

clays and volcaniclastic deposits are other geomechanical properties. Table 8.3 

indicates that volcaniclastic sediments of this study have higher moisture contents 

and higher liquid and plastic limits than those from glacial marine sensitive clay.  
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The lower moisture content of glacial clays is likely to arise from lower 

void ratios. For example, the material at Mink Creek was completely saturated, 

even at a moisture content of ~ 32 % (Marten Geertsema pers. comm. 2009), 

indicating a much lower void ratio (and hence possibly less open structure) than the 

volcaniclastic deposits of this study. Other differences result from clay mineral and 

grain size characteristics because these will affect Atterberg limits. For example, 

material at Mink Creek contains in order of abundance in the clay-size fraction (~ 

43 %) chlorite > illite > kaolinite > feldspar > quartz; the silt (~ 57 %) fraction is 

dominated by quartz and feldspar (Geertsema & Torrance 2005). Similar material 

was observed in soils from Vancouver, Gloucestor Valley, and Outardes (Gillot 

1979; Yong et al. 1979). Similarities do occur between sensitive volcaniclastic 

material and glaciomarine clay. These include high liquidity indexes, presence of 

low activity materials (halloysite in this study) (Table 8.3), characteristics of 

compaction during triaxial testing, and low strain at failure (section 8.4.4.1).    

 

8.8 Are the soils in this study collapsible? 
Collapsible soils are typically associated with loess deposits in arid 

environments (Selby 1993; Housten et al. 

has also been applied to volcaniclastic sediments (Clemence & Finbar 1981; Rogers 

1995). More specifically, volcanic soils of the Tauranga region have been described 

as having collapsible characteristics (Prebble 1986; Keam 2008). Collapsible soils 

typically comprise silt and sand grains cemented together by either clay or chemical 

precipitates (Selby 1993; Housten et al. 2002). Thus, the fabric is highly porous 

(open) and consists of bulky irregular grains (Dudley 1970; Collins & McGown 

1974). Wetting increases moisture content from a partially to a fully saturated state 

and collapse occurs as capillary strength is lost and cemented bonds soften 

(Housten et al. 2002). Furthermore, the collapsed soil will behave as a low strength 

suspension if void ratios are high enough to allow moisture content to exceed liquid 

limit (Selby 1993). Selby (1993) stated that collapsible soils typically have low clay 

content (2 to 20 %), low liquid limit (< 45 %), and low to high dry bulk densities 

(900 to 1500 kg m -3).  

 

The soils of this study certainly have an open structure, with the obvious 

exception of OS3. The open structure allows particles to lose volume and become  
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more closely packed on disturbance (Clemence & Finbar 1981; Rogers 1995). 

Scanning electron microscopy indicated that in samples from Tauriko and 

Otumoetai, large pores had been lost and material appeared more compact after 

remoulding. However, samples in this study did not collapse on wetting, as 

indicated by the capability to retain high amounts of water and have high saturation 

values (see section 8.6). Liquid limits in the soils of this study (Table 8.1) were 

much higher than those for typical collapsible soils. Some authors have argued for 

the inclusion of highly sensitive material under the umbrella of collapsible soils 

(e.g. Rogers 1995). However, such a term does not seem appropriate for the soils of 

my study. Whilst they may show characteristics of collapsible soils, the Tauranga 

soil materials certainly do not exhibit collapsible behaviour, in particular 

subsidence on wetting.      

 

8.9 Development of sensitivity  
Sensitivity in samples of this study was dominated by liquidity index, which 

is a function of void ratio, liquid limit and current moisture content. In this study, 

all the highly sensitive soils with low remoulded strength had liquidity indexes > 1. 

Typically as liquidity index increased so did sensitivity, and remoulded strength 

decreased.  

    

Void ratio is important because a high value will allow a large amount of 

water to be retained, meaning low remoulded strength is more likely. Initial tephra 

fall deposition is a pathway for high void ratio and lack of geological consolidation 

ensures that this void ratio remains high with time. Weathering processes following 

fall deposition are also important. Material deposited during a period of rapid 

activity, either volcanic (tephra) or aeolian (tephric loess), will become buried 

within a short space of time. As activity continues the overburden becomes thicker 

and this subsequently leads to the land surface moving a greater distance above the 

deposited material. As this overburden increases pedogenesis will become 

increasingly weaker. Thus the deposits will become out of reach of biological 

cycles, experience reduced wetting and drying cycles, clay formation may be 

slowed and little illuviation will occur. The slowing of clay formation will also help 

keep liquid limit low. When burial occurs quickly enough, neoformation of clays 

may be dominated by a process of diagenesis rather than pedogenesis. The 

consequence is that material is able to maintain a high void ratio as it weathers to 
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clay. Hence the high void ratio increases the likelihood that liquid limit will be 

exceeded by natural moisture content.    

 

Material which is deposited during a period of quiescence and remains at 

the surface for a long period of time will be subject to strong pedogenesis, 

involving high biological activity, desiccation, illuviation and advanced weathering. 

If these near-surface soil horizons are being formed during warm climates, then the 

higher temperatures will enhance biological and chemical activity (McLaren & 

Cameron 1996). The combination of these factors will result in a reduced void 

ratio, hence tighter packing. Furthermore, advanced weathering will promote clay 

formation and have a positive impact on both peak strength and liquid limit. An 

increase in liquid limit reduces the ability of the void ratio to maintain a liquidity 

index of > 1. Whilst the sample may be sensitive as a result of increased peak 

strength, it will have high remoulded strength and therefore will not flow on 

disturbance.             

 

This same idea may also be true for a single thick deposit. Material deeper 

in the profile will experience less near-surface weathering than material near the 

land surface. This weathering gradient will result in material that is less sensitive or 

has higher remoulded strength near the top of the profile, yet more sensitive and 

dilatent material near the bottom. In this study, OS3 and OS4 may represent an 

example of the effects of this depth gradient.  

 

The ideas presented above may explain why the Hamilton Ash beds in the 

Tauranga region are often associated with better engineering properties (e.g. 

elevated strength, higher dry bulk density and lower sensitivity) than the dilatent 

and highly sensitive material in this study (Hatrick 1982; Wesley 2007). One recent 

hypothesis for these better properties is that the Hamilton Ash beds were andesitic 

(e.g. NZ Soil Bureau 1968) whereas most of the other sub-surface material in the 

region was rhyolitic (Wesley 2007). However, Shepherd (1984; 1994) determined 

that the Hamilton Ash beds were largely rhyolitic in origin (Chapter 2). Therefore, 

the better engineering properties must be derived from other means. It is likely that 

the beds within the Hamilton Ash have experienced similar weathering patterns as 

explained for OS3 and have been subject to an extremely slow rate of up-building 

and hence strong (ongoing) pedogenesis. For example, the top member is a paleosol 
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(Chapter 4) and according to Briggs et al. (1996), the typical sequence in the 

Tauranga region is only ~ 1 m thick. Therefore the whole formation (apart from 

basal Rangitawa Tephra where present) effectively represents a deep soil with 

properties attained during upbuilding pedogenesis spanning up to ~ 300 ka and a 

number of glacial-interglacial cycles.  

 

Based on micromorphological studies of the Naike and Patumahoe soils 

developed in Hamilton Ash beds, Bakker et al. (1996) showed that the soils, both 

dominated by halloysite, become more weathered with depth, quite likely a result of 

the accumulatory character of deposition of tephra materials combined with 

effectively continuous soil formation on them, i.e., upbuilding pedogenesis has 

dominated (Lowe 2000; 2008a). Large quantities of microlaminated, anisotropic 

clay coatings (probably halloysite) are present in Bt horizons of the Naike soil near 

Hamilton and are the result of clay illuviation, the migration of fine clay through 

the profile in suspension (fine clay: total clay ratios of 0.7 to 0.8 support this 

inference) (Bakker et al. 1996). The clay coatings have been responsible for 

impeding drainage and thus further reducing loss of Si and favouring more 

halloysite production, which thus imparts greater bulk densities (Parfitt et al. 1983) 

which exceed 1000 kg m-3 in Bt horizons (Lowe 2008a). Large amounts of Fe oxide 

coatings observed in both Patumahoe and Naike soils provide the reddish brown to 

strong brown colours in the Bt horizons of the Hamilton Ash-derived soils and are 

likely to be of similar levels in the Tauranga area. 

 

The formation of halloysite is one feature common to materials of both high 

and low sensitivity. Otumoetai and Tauriko samples indicate that under the right 

weathering conditions, halloysite tubes, spheres and plates form an open 

microfabric with a large number of small pores. These arrangements have high 

sensitivity and typically low remoulded strength. However, under different 

weathering and clay neoformation conditions, these same materials become tightly 

packed with reduced porosity (OS3 is an example) and hence lower sensitivity and 

higher remoulded strength results. These findings indicate that the development of 

halloysite, in its own right, will not result in extremely high sensitivity which 

manifests as low remoulded strength. This conclusion is consistent with that of 

Jacquet (1990) who stated that the presence or abundance of either halloysite or 

allophane does not explain the level of sensitivity encountered. 
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The question remains that if another clay mineral, in this case allophane, 

were dominant would the sensitivity still be high, and in the case of TS1, TS2, TS3 

and OS4, would remoulded strength be low (< 2 kPa)? Based on general 

statements, one could conclude that it is possible. For example, Prebble (1983; 

1986) stated that soil fabrics dominated by halloysite and allophane clays are 

open, have few bonding points and contain much interstitial water. When disturbed, 

fabric is destroyed and a fluid material is produced. Furthermore, Frederickson 

(1988) concluded that if the soils in his study were saturated then their liquidity 

index would exceed 1, and sensitivity would be high. A more detailed study by 

Jacquet (1990) suggested that sensitivity in allophanic material can be up to 55 and 

remoulded shear strength can be as little as 3 to 4 kPa, but in his samples liquidity 

index was low at 0.6 to 0.76. The sample at 4 kPa was not fully saturated (85 %) 

(1990) samples only had between 14 and 28 % allophane and up to 7 % halloysite. 

In other samples with higher allophane contents (35 and 37 %), remoulded shear 

strength increased (8.5 and 9.5 kPa) and sensitivity decreased (8 and 13). The 

samples with higher allophane contents also had a higher liquid limit (127 to      

133 %) than those samples with less allophane (63 to 86 %). The findings of 

Jacquet (1990) suggested that an increase in allophane may reduce sensitivity and 

increase remoulded strength.  

 

Therefore, when allophane is the dominant clay mineral, sensitivity can be 

high but remoulded strength may not be extremely low, as observed in TS1, TS2, 

TS3 and OS4 (Figure 8.14). This is because the factors which control remoulded 

strength in halloysite (liquidity index, void ratio, saturation) are also important for 

allophane. However, the difference is that allophane can have extremely high liquid 

limits, compared to halloysite. For example, in allophanic soils liquid limits up to 

250 % are possible and values > 100 % are not uncommon (Albrook 1983; Selby 

1993; Mitchell & Soga 2005). Whilst allophane promotes an open structure, and 

often has high moisture contents, one expects that void ratio would have to be 

exceptionally high to allow natural moisture content to exceed liquid limit and 

hence cause remoulded strength to be low. This may be confirmed by Allbrook 

(1983) who examined the physical properties of 19 allophanic soils, of which none 

had liquidity indexes > 1.  Consequently, soils dominated by allophane instead of 

halloysite may be sensitive but are unlikely to have extremely low liquid-like 
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remoulded strength because of the inability of moisture contents to easily exceed 

liquid limits.     

 

In conclusion, the requirements for high sensitivity with low remoulded strength 

are: 

 A void ratio which is sufficiently high to ensure liquid limit is 

capable of being exceeded by moisture content (liquidity index > 1). 

Tephra fall origin and deep weathering seem to ensure this occurs. 

 

 The presence of halloysite, which will develop peak strength 

through electrostatic attraction and allow soils to remain in a 

coherent state even when saturated. Halloysite clays also mean that 

liquid limit can remain sufficiently low (unlike allophane) so it can 

be easily exceeded by natural moisture content. Deep burial may 

also sufficiently slow clay formation to help liquid limit remain low. 

 

 An environment which encourages soils to be constantly saturated, 

ensuring high water contents. The typical stagnant or poorly drained 

conditions that promotes halloysite formation is conducive to this 

environment, as is the structure dominated by a large number of 

small pores following halloysite formation.   

 

8.10 Summary 
All soils in this study are ultimately volcanic in origin (pyroclastic) and 

have been deposited by either primary fall deposition or reworking. Samples at 

Otumoetai showed more advanced weathering than those at Tauriko. Compared to 

all samples collected, OS3 displays the greatest signs of weathering attributable to 

long periods of time spent near the land surface after deposition. This was reflected 

in it s tight packing, high undisturbed strength and dilatant characteristics during 

triaxial testing. Silica-rich rhyolitic parent material and impeded drainage 

conditions have meant halloysite was by far the dominant clay mineral in all 

samples. Consequently, a number of halloysite morphologies have been observed, 

including books. Such halloysite books have never been previously observed. Their 

structure may be a consequence of Fe substitution, allowing the normally curved 

halloysite morphologies (i.e. tubes) to lie flat.  
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All materials in this study were at least sensitive; field investigations 

indicated that this was a common property of soil material in the Tauranga region. 

However, sensitivity can be manifested as either low (< 2 kPa), moderate (7 kPa) or 

high remoulded strength (36 kPa). A common feature of those soils with low or 

moderate remoulded strength is that they have a liquidity index > 1. Those samples 

with low remoulded strength (TS1, TS2, TS3 and OS4) typically have an open 

structure, low peak strength and high void ratio. Samples with moderate remoulded 

strength (OS1, OS2) contained one factor (e.g high liquid limit or low void ratio) 

which negatively impacted on the rate which moisture content exceeds liquid limit. 

The only high remoulded strength sample, OS3, was tightly packed, had high clay 

content and moisture content which did not exceed liquid limit. Therefore, both 

peak and remoulded strength were high in the OS3 sample.  

 

The consequence of those samples with high liquidity indexes (> 1) is that 

on disturbance in a mass wasting event, they will release excess water from small 

pores which was previously tightly held. This release of water dilutes the plasticity 

of low activity binding clays, supports grains and broken fragments of the clay 

materials, and allows material to flow.   

 

Observations indicated that the depth of burial and time spent near the 

surface of a soil profile had an effect on the development of sensitivity, through 

different degrees of weathering. Those remaining near the land surface typically 

developed high peak strength and high remoulded strength (e.g OS3). Whilst the 

samples were still sensitive, they typically manifested sensitivity as high remoulded 

strength. Contrastingly material which was quickly buried were typically able to 

maintain higher void ratios hold greater amounts of water, thus increasing the 

likelihood of liquid limit being exceeded. If void ratio was low in these deeper 

samples, liquid limit was also low, this still allowed liquidity index to be > 1. If 

liquid limits are exceeded by natural moisture content, low remoulded strength and 

high sensitivity may result. Halloysite is an important contributor to sensitivity 

because it ensures that liquid limits remain low.  
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Chapter 9 

Summary and 

conclusions 

 

9.1 Summary of research findings  
Field investigations indicated that sensitive soils are widespread through the 

Tauranga region. Sections at two sites with highly sensitive soils, Tauriko and 

Otumoetai, were investigated in detail using a combination of geomechanical, 

mineralogical and microstructural analysis. Using the information collected from 

investigations at the two sites, the following is a summary of research findings with 

special reference to the stated aim and objectives in Chapter 1.  

 

9.1.1 Geomechanical properties of selected sensitive soils  

Peak vane strength in samples from both sites ranged between 45 and  

227 kPa. Using the adapted method of sensitivity, all samples were at least 

samples had either high 

strength. However, both peak and remoulded vane strengths were highly variable 

within samples, indicating heterogeneity not only between but also within 

geological units. Samples with moderate and low remoulded strength were dilatent 

when disturbed, with material becoming more liquid-like as remoulded strength 

decreased.  

 

Low rapidity numbers (< 4), poor dispersion of clay during particle size 

analysis, and the considerable time and effort needed to liquefy samples whilst 

remoulding, indicated that a lot of energy is required to destroy the structure of 

each sample.  

 

Moisture contents were typically high (> 60 %) with some samples having 

values exceeding 100 %. Because each sample was at or near full saturation in situ 

void ratio (r2 = 0.87).   
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The combination of low dry bulk density (656 kg m-3 to 966 kg m-3) and 

relatively high particle densities (2532 kg m3 to 2686 kg m3) resulted in high values 

of porosity and void ratios compared with other weathered volcanic deposits. 

Porosity and void ratio values ranged between ~ 62 % and ~ 77 %, and 1.63 and 

3.40, respectively. The observed void ratios and porosities can be explained by 

origin (pyroclastic fallout for most samples, or by fluvial reworking), morphology 

of clay minerals (spheres, tubes and books) and weathering histories (near surface 

or deep) of each unit sampled.  

 

Peak vane strength was negatively correlated with void ratio (r2 = 0.64). 

Microfabric observations suggested that the more porous structures were delicate 

and open resulting in reduced contacts between grains.   

 

 Liquid limits ranged between ~ 52 % and ~ 96 %, and plasticity indexes 

ranged from 13 % to 43 %.  All samples plotted below the A line, in the typical 

range for halloysite clays. A positive correlation between liquidity index and 

sensitivity was observed (r2 = 0.54). The relationship improved slightly when other 

studies on volcaniclastic deposits from New Zealand were included (r2 = 0.60). A 

power relationship existed between remoulded strength and liquidity index (r2 = 

0.69). As liquidity index increased remoulded strength decreased. In those samples 

with low or moderate remoulded strength, natural moisture content exceeded the 

liquid limit, thus liquidity index was > 1.  

 
Peak effective friction angles ranged between 25.7 º and 38.5 º. Friction 

angle was influenced by the irregular shape of particles (including clay, silt and 

sand) and void ratio. Low void ratios and hence tight packing relative to other 

samples resulted in greater grain interlocking, causing high friction angle, than in 

samples with high void ratio. Effective cohesion ranged between 4.7 kPa and 34.5 

kPa. Halloysite books and cementing (observed as a coating of fine clay-like 

material) may have contributed to high the cohesion observed in some samples.  

 

Pore water pressure conditions during triaxial testing indicated the structure 

of samples were different: two distinct groups could be defined. Samples with low 

to moderate remoulded strength failed at low strain (often < 5 %) and typically 
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displayed compaction during shear. Samples with high remoulded strength failed at 

high strains (> 13 %) and displayed dilation during shear.   

 
 Residual friction angles were between 19.34 º and 33.18 º. High residual 

friction angles were a result of irregular particle shapes and aggregates of clay 

particles rolling during shear. The lowest friction angle at 19.34 º was a 

consequence of halloysite tubes occurring in regular, parallel, face-to-face contacts 

with few large grains. This arrangement of particles formed a smooth sliding-type 

shear plane and hence lower residual friction angle.  

 

Sensitive weathered volcanic deposits from the Tauranga region had peak 

strength, liquid limits, void ratios, and moisture contents which were higher than 

those of sensitive glacial marine clays in the Northern Hemisphere. Remoulded 

strength may also be higher in volcanic deposits. Higher peak strengths in 

weathered volcanic deposits mean that following initial failure, they do not collapse 

under their own weight, so large hectare-scale retrogressive mass wasting events 

like those observed in sensitive glacial marine clays, are not triggered in these 

materials.       

 

9.1.2 Mineralogical properties of selected sensitive soils  

All samples in this study were from weathered deposits of pyroclastic origin 

and rhyolitic composition. This origin was confirmed by the presence of glass, 

highly weathered pumice, plagioclase, and quartz. Other primary volcanogenic 

minerals in samples included hornblende, hypersthenes, and titanomagnetite. A 

dominance of rhyolitic materials in the Tauranga region had been demonstrated by 

previous stratigraphic work.  

 

Delicate angular glass shards indicated that materials from Tauriko were 

primary fall deposits. One sample from Otumoetai had a concentration of heavy 

minerals (hornblende, titanomagnetite and pyroxene), which indicated fluvial 

reworking. This indicated that sensitivity can manifest in a range of depositional 

environments.  

 
Clay contents in all samples exceeded 20 % with upper values of at least  

75 % (based on SEM analyses). The clay mineralogy was completely dominated by 

hydrated halloysite and only a very small, insignificant amount of Al-rich allophane 
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was recorded. The dominance of halloysite was a consequence of the nature of the 

parent material (rhyolitic pyroclastics), slow to impeded drainage conditions 

(resulting in part from heterogeneity of underlying sediments), past climates that 

included prolonged periods of cold, dry glacial climates (and hence low rates of 

desilication), the microfabric formed by halloysite (i.e. many small pores), and a 

thick over-burden. The combination of these conditions ensured that silica in soil 

solution remained high, thereby encouraging the direct formation of halloysite 

rather than Al-rich allophane.   

 

Halloysite morphologies were typically spheres, plates and tubes. However, 

a new and unique morphology of hydrated halloysite, in the form of clay books 

(vermiforms), was observed in samples from Tauriko. These books comprised 

halloysite with X-ray diffraction analyses of samples using various treatments. The 

morphology of the halloysite books was explained by high structural Fe content 

Si4+ tetrahedral sheet and the smaller Al3+ octahedral sheet.    

 

Books contributed positively to peak vane strength and effective cohesion. 

The books may have assisted in low remoulded strength by suppressing the liquid 

limits of samples in which they were abundant.  

 

9.1.3 Microfabric properties of selected sensitive soils   

Hydrated halloysite in its various morphologies (e.g. tubes, spheres, books 

and plates) formed a background to the microfabric in all samples, acting as an 

overall binder. The microfabric of each sample was typically continuous, having 

poorly defined microaggregates and few connectors. Large grains of silt and sand 

sized material were supported within the background matrix of clay material.  

 

Whilst individual components of the microfabric were similar in all 

samples, the overall structure of each sample was different. The microfabric of high 

remoulded strength samples was noticeably different to all other samples   

 

Material which had high remoulded strength was dominated by short 

halloysite tubes which were closely packed, typically in parallel, face-to-face 
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contacts. The close packing meant porosity was low and dry density was high 

relative to other samples. The microfabric was dominated by ultra-pores, with a 

lesser number of micro- and meso-pores. Large grains were few and were tightly 

bound within the fabric. This structure changed little on remoulding, had high peak 

strength (> 227 kPa), liquidity limit (90.02 %) and clay content. High liquid limit 

and relatively low void ratio meant this structural type was unable to hold water 

above its liquid limit. The relatively dense microfabric resulted from an extended 

period of time at the land surface following deposition. Exposure to surface 

processes in the soil-forming environment has resulted in advanced pedogeneisis 

(e.g. high biological and chemical activity, and possibly clay illuviation). The good 

engineering properties (e.g. high bulk density) observed in the Hamilton Ash 

Formation in the Tauranga region seem to manifest from this structural type.    

 

Typically the structures of low to moderate remoulded strength samples 

were more open than that of the high remoulded strength material. However this 

open structure was observed in different ways between sites. Material at Tauriko 

was dominated by loosely packed clay minerals (tubes spheres and plates) in a 

-type arrangement intermixed with delicate hollow 

textures (poossibly relict pumice). The delicate hollow textures added to structural 

openness. When the halloysite books increased in abundance at Tauriko, structural 

openness decreased. At Otumoetai structural openness was typically a consequence 

of halloysite tubes meeting at ta -type 

appearance. However, when the abundance of small irregular spheres increased at 

Otumoetai structural openness decreased. At both sites the loose packing meant a 

large number of ultra and micro-pores occurred between individual clay grains. 

Pores of all size classes were more abundant in these structural types than that with 

low remoulded strength. Grains were often only loosely bound into the microfabric.  

 

These typically open structures which supported low to moderated 

remoulded strengths had a range of peak strengths (45 kPa to 151 kPa), liquid limits 

(51.97 % to 90.02 %) and void ratios (1.63 to 3.40). In all samples void ratio was 

sufficiently high to allow liquid limit to be exceeded by natural moisture content 

thus, liquidity index was > 1. Low to moderate remoulded strength samples with 

low void ratios had reduced liquid limits. The open structure was probably a result 

of quick burial of the deposits (by subsequent pyroclastic beds) and hence 
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weathering and synthesis of clays occurred as a result of subsurface diagenesis 

rather than via strong, near-surface pedogenic processes, as evident in the more 

compact, high remoulded strength structure.     

 

The dominance of small pores in all samples was a consequence of clay 

formation. However, these small pores allowed the fabric to retain water tightly, 

near or at saturation, whilst maintaining a coherent structure. Water which was not 

bound to the surface of clay particles was available to be released on remoulding.   

 

9.1.4 Key controls on sensitivity. 

The dominant control on sensitivity was liquidity index, which is a function 

of void ratio, liquid limit and existing moisture content. All samples with high 

sensitivity and low remoulded strength had liquidity indexes > 1, yet material with 

higher remoulded strength and lower sensitivity had liquidity indexes < 1. The 

following section is an outline of the aspects of mineralogy, microstructure and 

geomechanics which cause this high sensitivity yet low remoulded strength to exist.    

 

Void ratio must be high enough to ensure that liquid limit can be exceeded 

by natural moisture content. The fallout origin of material results in an initially 

open microfabric, and deep weathering (clay formation via mainly diagenesis rather 

than pedogenesis) without any geological consolidation preserves the open 

structure following deposition. This process ensures that void ratio typically 

remains high.     

 

The formation of halloysite is important, because it promotes strength 

through electrostatic attraction enabling clays to remain coherent whilst saturated.  

Unlike allophane, halloysite clays typically have liquid limits which are able to be 

exceeded by natural moisture contents, without the sample requiring an excessively 

high void ratio.   

 

Sensitive soils must remain in an environment where natural moisture 

conditions which promote halloysite formation, and the structure (dominated by 

small pores) which is subsequently formed, promotes a slow draining environment. 

This structure is able to tightly hold onto water which can be released on 
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remoulding. It will also reduce desilication encouraging further halloysite 

formation.    

 

When these individual factors are combined, natural moisture content will 

exceed liquid limits. Therefore, within an energetic landslide, the microfabric of 

samples will be destroyed. The tightly held water within their small pores, which is 

not retained by the surface of clays or within their structure, will be released. This 

excess water will dilute the plasticity of inactive halloysite clays, and suspend 

aggregates of clay material and larger loosely held grains. 

 

The combination of these factors (e.g. high void ratio, wet environment, 

presence of halloysite) will enable material to have dilatent properties and hence be 

more likely to flow on disturbance. The volume of material in which natural 

moisture content exceeds liquid limit, and the rate at which the liquid limit is 

exceeded, will determine the volume of material which is capable of flowing on 

failure.   

 

9.2 Suggestions for future work 
 The following presents possible avenues of research into sensitive volcanic 
soils.  
 

 Investigate the remoulded strength of samples which become liquid-like on 

disturbance with a Swedish drop cone or very sensitive shear vane, to get an 

accurate measure of strength. 

 

 Examine the relationship between liquidity index of volcanic deposits and 

remoulded strength. Possibly by investigating a mathematical relationship 

between the two and possibly develop a predictor for remoulded strength 

from liquidity index. The relationship between sensitivity and liquidity 

index may also be investigated in a similar manner. 

  

 Further investigate the origin and morphology of halloysite books, paying 

special attention to their Fe content.   
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 Investigate the contribution of sensitive soils to slope stability. One aspect 

may be to determine the possible contribution of increasing pore water to 

structural break down in sensitive soils.  

 
 Further investigate the relationship between weathering processes and 

sensitivity. Such as, the nature of sensitivity in a chronosequence of 

volcanic soils.  
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Appendix 3.1  
Soil description flow chart  

Sand Gravels Cobbles Boulders 

6. Strength 
5. Colour

10. Geological information, example MT COOK GLACIAL OUTWASH

Minor discolouration of some parts of the original soil, 
no loss of strength

6. Particle strength hardness, example; easily broken by hand  or can be broken by hammer 

7. Relative density ~ loosley packed ; can be removed by hand 

9. Allophane content (see back)

Mostly altered and weakened, little traces of original 
fabric

Completely discoloured and altered no sign of original 
fabric

Moderatly weathered

Unweathered

Slightly Weathered
10. Weathering (see coarse grained soils\)

11. Allophane content (see back)

12. Geological information, example HAMILTON ASH

4. Plasticity ~ highly plastic  one that can be moulded and deformed over a range of moisture 

5. Sensitivity (see back)

8. Moisture Content

                     ~ low plasticity  soils will show signs of dilatent or plastic behaviour.
4. Shape 

3. Grading - well graded to poorly graded, uniformly graded and gap graded.

2. Presence of course material - trace if less than 5%, subordinate if between 20 and 50%

                               ~ tightly packed ; requires a pick for removal

6. Structure, example; bedded, homogenous, fissured (see back) 

7. If bedded, inclination and thickness (see back)

Completely weathered

2. Maximum Particle size - in (mm)

1. Dominent Grain Size

Include subordinate and minor fractions, example;     sandy fine to coarse GRAVEL with minor silt and clay     or    clayey SILT with trace peat   

Coarse Grained Soils Fine Grained Soils 

Organic Materials 
Organic Soils 

Fine Grained 
Silt - quick dilatent behaviourClay - plastic behaviour

Coarse Grained - fine, coarse, medium

3. Colour (see coarse grained soils) 

Highly weathered

8. Weathering

Large discoloured portions of original soil seperated 
by more altered material, significantly weakend 

Original soil with no discolouration, loss of strength or 
other affects due to weathering

 

Bedding

Allophane
0
1
2
3
4
5

Organic soil discriptors

Soil Structure

Grain size

Sorting

Sensitivity

Red or weak red within 1 minute
Dusky red or dark red after 10 seconds
Dusky red or dark red within seconds

Very weak
Weak

Moderate
Strong

Very strong

Pale red or light red within 1 minute

Sub - vertical 81 - 90

thinly laminated

Moderatly thick
Moderatly thin
thin
very thin
Laminated

Moderatly inclined
Steeply inclined

Term
Very thick
Thick

200mm - 600mm
60mm - 200mm
20mm - 60mm
6mm - 20mm
2mm - 6mm

61 - 80

>2m
Bed Thickness

600mm - 2m

<2mm

Non reactive No colour change within 2 minutes

Very steeply inclined

16 - 30
31 - 60

Pale red or light red, just decernable within 2 mins

Sub - horizontal 0 - 5
6 - 15

Term Inclination (degrees from 

Gently inclined

 



Appendix 3.2 

The following presents information on material used for comparison testing. An 

image of the material sampled and the layout of the grid system used for 

comparison testing is presented in figure 1. Also presented are the raw 

undisturbed and remoulded strength values from comparison testing (table 1) and 

the sensitivity ratio derived from the data in table 1 (table 2).  

Location: Tauriko (NZMS U14: 875 863) 

Soil Description:  Light whitish grey, silty CLAY, with black specs, no coarse 

material, moist, stiff, slightly plastic, homogenous.    

 

 

Figure 1: Grid overlaying area sampled for comparison testing using the standard (S) and adapted 

(A) methods of sensitivity testing.   

 

Table 1: Undisturbed and remoulded shear 

data (kPa) from comparison testing using the 

standard (S) and adapted (A) methods of 

sensitivity testing.   

Undisturbed / Remoulded strength (kPa) 

S A S A 

122/11 123/19 120/13 104/16 

A S A S 

146/16 68/6 79/15 83/8 

S A S A 

128/26 146/18 143/13 120/13 

 

 

Table 2: Sensitivity values, derived from 

data in table 1, using the standard (S) and 

adapted (A) methods of sensitivity testing.   

 

Sensitivity (ratio) 

S A S A 

11 7 9 7 

A S A S 

9 11 5 10 

S A S A 

5 8 11 9 



T-test  

The following presents t-test results for comparison peak strengths, remoulded 

strengths and sensitivity between the standard and adapted methods.  

1. Peak strength  

p = 0.58  

Accept the null hypothesis; the two sets of data are from the same population and 

not significantly different   

2. Remoulded strength  

p = 0.29  

Accept the null hypothesis; the two sets of data are from the same population and 

not significantly different   

3. Sensitivity  

p = 0.094  

Accept the null hypothesis at 95 % confidence; the two sets of data are from the 

same population and not significantly different   

 

T-test results indicate that from the data collected the standard and adapted 

methods give statistically the same results. Therefore, the adapted method is 

acceptable as an estimate of sensitivity.     



 

Appendix 3.3 
Geomorphic map symbol (from Gardiner & Dackombe 1983) 

 



 



Appendix 3.4 
 The following presents a basic outline of the methods employed during sample 

collection. After retrieval all samples were stored in the laboratory in a large dark sealed 

drum until analysis.   

  

Loose bulk sample – particle size, moisture, Atterburg limits, particle density, 

mineralogy and ring shear.  

 Material required for loose bulk samples was dug out from the unit under 

investigation, with either a spade or trowel, and placed in doubled plastic bags. In the 

laboratory these samples were stored in a large dark sealed drum until tested. Samples for 

moisture were tested as soon as possible.    

 

Block bulk sample – scanning electron microscopy.   

 Scanning electron microscopy required intact samples to be collected. Typically a 

block of ~ 200 mm by ~ 200 mm was dug out ensure minimal disturbance and wrapped in 

doubled plastic bags.  

  

Bulk density  

 Samples were typically collected in rings 70 mm high and 100 mm wide from the unit 

to be investigated. Unfortunately a hammer and dolly were not available for sample 

collection, as required by NZS4402 (1986). The bulk density rings were carefully inserted 

into the ground using a rubber mallet and wooden block. However care was taken to ensure 

that penetration was always perpendicular to the ground surface as the sampling ring was 

being inserted. Once all rings were inserted they were carefully dug out, and wrapped with 

plastic wrap. Typically 5 bulk density samples were taken from each unit and bulk density 

samples were tested as soon as possible on returning to the laboratory.  

 

Shear box 

 Shear box samples were collected in steel rings 60 mm in diameter by 30 mm high. 

Samples were gently pushed into the unit under investigation and then dug out once all rings 

had been inserted into the ground.   Samples were sealed in plastic film and then placed 

between two boards, wrapped with tap and then sealed in a plastic bag.  

 



Triaxial samples 

Samples were collected by slowly pushing 300 mm long by 50 mm wide lightly oiled 

sample tubes into the area to be investigated. Care was taken to ensure that the unit to be 

investigated was a least 300mm thick, to ensure that only the material in question was 

collected. The oiling of the tube was an attempt to reduce the resistance between the sampling 

tubes and the soil. Care was taken to ensure that the tubes were always perpendicular with the 

ground surface as they were being pushed in. If the surface of sample material within the tube 

was more than a few mm below the surrounding ground surface the sample was discarded 

and collected again. Once all tubes had been pushed into the unit under investigation they 

were carefully removed.  

 

After digging out, samples were sealed in plastic film and placed in plastic bags to 

prevent moisture loss. Samples were wrapped in towels to provide protection during 

transportation. In the laboratory samples were stored in a large dark sealed drum until testing. 

Prior to testing samples were removed from the core using a hydraulic extruder. As the 

material was extruded it was collected in an appropriate sized split mould. Material located at 

either ends of the core was cut away and discarded, as it was thought this may have been 

compacted during sample collection and extraction. Thus samples were taken from a more 

central location in the core. Once extracted the sample was trimmed to 100 mm giving a 

height to diameter ratio of 2. 

 



Appendix 3.5 

The following appendix presents the preparation methods for particle size analysis 

which are based on an in house method at the University of Waikato.  

  

1. A representative sub sample was air dried for at least overnight.  

 

2. Once air dry the sample was passed through a 2mm sieve and a ≈ 5 gram 

sub sample was taken.  

 

3. 10mls of hydrogen peroxide was added, to dissolve organic matter, and the 

sample was left overnight. The Grange Road samples were left longer and 

more hydrogen peroxide was added. More hydrogen peroxide was needed 

because not all organic matter was dissolved during the first treatment; this 

process was repeated for at least a week until the reaction subsided.    

  

4. Over gentle heat a further 5mls of hydrogen peroxide was added, distilled 

water was used to wash any soil adhering to the sides of the beaker.  

 

5. To remove/dilute the hydrogen peroxide the sample was reduced to a 5ml 

slurry and left to cool. 

 

6. 10ml of Calgon was added to disperse clay particles; the sample was then 

left overnight.  

 

7. Dispersion was assisted by placing the sample in an ultrasonic bath for 5 

minutes prior to testing.  

 

8. The samples were then tested in the Malvern lazer particle sizer.  

 

 



Appendix 3.6 

This appendix presents graphs of the median particle size of each sample across a range of 

obscuration values for each sample from Tauriko and Otumoetai.   

These graphs helped determine the obscuration level to test each sample at during particle 

size analysis.   
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Appendices 3.7 
 

Normal force above each sample was calculated using the following equation:  

 

௡ߪ ൌ ݖߛ 

ݏݏܽ݉ ൌ ఙ೙஺
௚

   (1) 

 

Where:  

σn = normal stress (kPa); 

γ = unit weight of soil at field moisture (kPa); 

z = depth to shear plane (m). 

 

Because the triaxial is capable of applying pressure in terms of kPa the calculated 

value can be applied directly however for the shear box and ring shear these 

values need to be converted to a weight in terms of kg.  

 

The shear box equation is as follows: 

 

 (2)    1000 ݔ 

 

Where: 

Mass = weight which equals the calculated over burden (kg); 

A = Area of the sample (m) in the case of the shear box it is 2.827 x 10-3 m2; 

g = gravity (m s-2). 

 

The equation used for the ring shear is similar to the shearbox. But 

because the ring shear has a 10:1 lever arm system the mass calculated in equation 

(2) should have the mass of the lever arm subtracted (1.143 kg) and then be 

divided by 10. Furthermore the area (A) of the ring shear sample is 40.07 x 10-4 

m2. 

 

 

 

 

 



Appendix 4.1 

 
The following appendix presents all soil logs compiled during the course of this study, these 

soil logs have been divided into three folders.  

 

The folder labelled ‘Tauriko and Otumoetai logs’ contains the soil log sheets used to compile 

figures 4.4 and 4.5.  

 

The folder titled ‘soil logs associated with geomorphic maps’ represents soil logs obtained 

from the slips presented as slip 1, slip 2 and main slip in appendices 4.2a and b.  

 

The folder called ‘other general soil logs’ represents other soil logs compiled during the 

course of this study. One large log of note is called ‘Pyes Pa_log’.  
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Log

Depth
(m)

Strat
unit.

Sensitivity
Standard Adapted

P R S SRP
PVSPR

Legend:
PR - Penetrometer (kg)
PVS - Peak vane shear strength (kPa)
P - Peak vane shear strength (kPa)
R - Remoulded vane shear strength (kPa)
S - Sensitivity (ratio = P/R)

Date
day month year

Location:

GPS:

Notes:

Field Log Sheet

1

3

6

7

10

2

4

5

8

9

Tauriko - Industrial area 6

Disturbed by earth works

Clayey SILT, trace fine sand, light brown with MnO
flecks, firm, moist, moderately weathered.
Silty SAND, light brown coarse to fine pumecious sand,
densely packed, moist, non bedded.
SILT, light yellowish brown, very stiff, moist, non plastic,
moderately weathered.
SAND, light yellow, densly packed, moist, well graded,
pumecious
SILT, light pinkish brown, moist, moderately weathered.
CLAY, dark brown with MnO, firm, highly
plastic, homogemous, highly weathered. - palesol
Silty CLAY, light orange brown with MnO flecks, very
stiff, moist, highly plastic.

6.5     91

5.5    115

>10   >227

1          31

  7       141
9        123

S andy SILT, trace clay, dark orange brown with
MnO flecks, very stiff, moist, slighlty plastic, extra
sensitive - quick, moderately weathered.

 >10   >227

>10     UTP

Sandy SILT, dark brownish orange some MnO
flecks, firm, dry, non plastic, extra senstive to - quick,
moderately weathered.

>10    191     191     19       10      224    16       14

>10     77      77        6        13

9.5    133     133      6        22       94     8          12

7.5      87      87        8        11

6         65     65        5       13      65        6         11

6           84       84      5       17

Sandy SILT, trace clay, dark brownish orange with few
MnO flecks, firm, dry - moist, extra sensitive -
quick, moderately weathered.

Clayey SILT, trace sand, dark brownish orange, firm,
dry - moist, slightly plastic, extra sensitive - quick,
moderately weathered.

Clayey SILT, dark brownish orange with black MnO
flecks, soft, moist, slightly plastic, extra sensitive,
moderately weathered.

8       131     131     8       16       99        6       17

8         76       76     8        9

8.5      81      81      5         16      76      6         13

6        49      49        6        8

7.5       71     71        6        12     71         6       12

6.5       81     81        5       16

6         78      78       6        13       81       6         14

Clayey SILT, with trace fine - medium sand, dark brown,
few black MnO flecks, stiff, dry - moist, non
plastic, sensitive - extra senstive.

>10     164    164    31         5

>10    160    160     11      15      128      13       10

9       154     154     18       9

  8        113    113     10       11     149      18        8

8        147      147     15      10     151      16       9

9.5      147     147     16      9

9.5     143     143     13      11

8        136     115     10      12      130      10       13

7.5       115    115    10       12      130     10       13

U
nd

iff
er

en
tia

te
d 

m
at

er
ia

l
R

ot
oe

hu
 A

sh
H

am
ilt

on
 A

sh
fo

rm
at

io
n

Po
st

 R
ot

oe
hu

 A
sh

NZMS 260 U14 875 863

02 08
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Log

Depth
(m)

Strat
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Sensitivity
Standard Adapted

P R S SRP
PVSPR

Legend:
PR - Penetrometer (kg)
PVS - Peak vane shear strength (kPa)
P - Peak vane shear strength (kPa)
R - Remoulded vane shear strength (kPa)
S - Sensitivity (ratio = P/R)

Date
day month year

Location:

GPS:

Notes:

Field Log Sheet

11

13

16

17

20

12

18

19

Tauriko - Industrial area (2)

14

15

Sandy SILT. dark brown with MnO flecks, stiff,
moist, non plastic, extra sensitive, moderately weathered.

117    117      8        15

97        97      13        7

115    115      6        19

128     128      10     13

117    117     8        15

81       81      6         14      97        21        5

94      94       10      9

125    125     10      13

99       99       11      9        110      28      4

104    104      10      10

96      96       8        12

84     84        6        14

Clayey SILT, dark brown with MnO flecks, stiff,
moist, slightly plastic, quick, slightly weathered.

96       96        8        12

86     86        3        29

86      86       6         14

Clayey SILT, trace sand, dark orange brown with
MnO flecks, very stiff, dry, slightly plastic,
sensitive, moderately weathered.

>10     217     217    18      12

>10     191    191    15       13       191      18      11

>10    >227

>10    >227

>227   32        >7

>10    >227  >227     42     <5

>10    >227

Silty CLAY, trace fine sand, dark brown orange with
manganese flecks, stiff, moist, moderaetly plastic,
sensitive - extra sensitive, moderately weathered.

Silty CLAY, dark orange brown, stiff, moist, moderatly
plastic, sensitve - extra sensitive, moderately weathered.

>10     >227  >227   47       <5

>10   201      201     21       10      201   16-49  4 - 13
difficult to remould

>10    194     194     29       7

>10   159     160     19      8       159      19        8

10      165     165     15      11

Silty CLAY, light yellowish brown with MnO flecks,
firm, moist, mod. plastic, sensitive, highly weathered.
Silty CLAY, light brown, firm, moist, moderately plastic
sensitive to extra sensitive.

Silty CLAY, includes trace small to medium gravels
(white grey and purple), light brown with MnO
flecks, stiff, moist, moderately plastic, extra sensitive.

10      100     100    15       7         87      8         11

>10     188   188      23        8

>10     177     177     15      12       186    39         5

>10   160      160   16        10

Silty SAND, subrodinate fine to medium gravel, fine to
coarse grained sand, light yellowish brown, densly packed,
moist, poorly sorted, sand so shear vane irrelevant, a
number of thin black layers at base (manganese).
see over

6.5 104    104    5         20

7.5       112    112     6         19
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Log

Depth
(m)

Strat
unit.

Sensitivity
Standard Adapted

P R S SRP
PVSPR

Legend:
PR - Penetrometer (kg)
PVS - Peak vane shear strength (kPa)
P - Peak vane shear strength (kPa)
R - Remoulded vane shear strength (kPa)
S - Sensitivity (ratio = P/R)

Date
day month year

Location:

GPS:

Notes:

Field Log Sheet

21

23

26

27

30

22

28

29

Tauriko - Industrial area (3)

24

25

Silty SAND,fine to coarse sand, light yellowish brown
with MnO flecks, dense, moist to wet, non plastic,
well sorted poorly graded, sand so shear vane irrelevant

SAND, fine to coarse grained, trace small pumecious
gravels, trace SILT, light pinkish grey, loosely packed,
poorly graded, slightly weathered, large piece of charcol
at base approxiamatly 0.3 m long sorrounded by a pink
halo.

 8.5      115     115      6        19

          100     100       8       13       100     3        33

5

Clayey SILT, trace fine sand, light pink few MnO
flecks, wet, soft, non plastic, quick, dilatent with out the
addition of water, sticky.

Clayey SILT, light brownish yellow overlain by orange
band, firm, wet, non plastic
SILT, trace fine sand, light pinkish grey becoming yellow
with depth with few MnO flecks, firm, wet, non
plastic, moderately sensitive, dilatent without ad. water
SILT, light pink with few MnO flecks, stiff, wet,
non plastic, sensitive, dilatent without the ad of water.
SAND, fine to coarse sub angular grains, light grey,
dense, moist, moderaltly sorted, poorly graded.

34     34       2        17       34        1        34

98       98       26       4         98       2        49

152     152      47      3        152     3         51

160    160     26        6        160     1       160

8

SAND, light grey, loose, sub horizontal very thin bedding,
corse and fine grained beds, coarse sand sub angular to
sub rounded.
SAND, medium to corse grains, loose, massive, poorly
sorted, coarse grains sub angular to sub rounded.

SILT, light pink with few MnO flecks, non plastic,
stiff.
SAND, fine to medium grained, light grey, dense, sub
horizontal laminated bedding, moist, medium sands sub
rounded and pumecious.

SAND, medium to coarse grain, trace fine gravels, light
grey, massive, loosely packed.

End of log at 24. 4 metres.
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DescriptionGraphic
Log

Depth
(m)

Strat
unit.

Sensitivity
Standard Adapted

P R S SRP
PVSPR

Legend:
PR - Penetrometer (kg)
PVS - Peak vane shear strength (kPa)
P - Peak vane shear strength (kPa)
R - Remoulded vane shear strength (kPa)
S - Sensitivity (ratio = P/R)

Date
day month year

Location:

GPS:

Notes:

Field Log Sheet

8

10

13

14

17

9

11

12

15

16

Otumoetai - Grange Road (1) 19 5 08

Covered by grass and topsoil

S ilty CLAY, dark orangish brown with Mn flecks,
no coarse material, soft - firm, moist, moderately plastic,
sensitive, moderately weathered.
CLAY, light greysih brown, homogoneous, stiff - very
stiff, moist, highly plastic, sensitive, highly weathered.
Sandy SILT, light yellowish orange with many white and
black flecks, also incl. golden coloured mica flakes, fine
to coarse sand, stiff, moist, non plastic, extra sensitive,
sand well to very well sorted, moderately weathered.
CLAY, light brown with few Mn flecks, stiff, moist
to wet, moderatly plastic, moderatly weathered, large
gravel sized manganese.
CLAY, dark brown, firm, moist, highly plastic, moderately
weathered .

65       65       11      6        65      24        3

110    110       18     6      110      47         2

81       81       6        14
105     105     10       11      97       10      10

 149   149    10        15

109    109     11      10      109      18        6

96       96     13      7         76      13         6

CLAY, dark orange brown with Mn flecks, very
stiff, moist, moderately plastic, sensitive, highly
weathered. - paleosol
Silty CLAY, dark greyish brown with manganese flecks,
firm, moist, mod. plastic, sensitive, mod weathered.

Silty CLAY, light yellowish brown with Mn flecks,
stiff, moist to wet, moderatly plastic, sensitive,
highly weathered.

>10    164     164      29

>10     107    107       26       4     107       26        4

>10      157    157      31      5       175      23        8

7.5     144    144      23        6       143      6        24

            105    105     10      11       96       5         19

Silty CLAY, light yellowish brown with Mn flecks,
some golden mica flakes, firm, moist to wet, slightly
plastic, extra sensitive, moderately weathered, greasy,
some roots.

Clayey SILT, light yellowish orange, with Mn
flecks, some golden mica flakes, firm, moist to wet,
slightly plastic, extra sensitive, moderately weathered.

5.5     112    112      11     10      120      13         9

6.5     99        99       8        12       83      10        8

7.5     97      97        15       6        130     18       7

6.5      96      96       10        10     104     13       8

 8        123     123      16      8       117      19       6

Clayey SILT, light orangish brown with Mn flecks,
some golden mica flakes, firm - stiff, wet, slightly plastic,
extra sensitive, looses volume on remoulding, moderately
weathered.
CLAY, light pinkish brown, very stiff, highly plastic,
includes large sheets of Mn.

CLAY, dark brown, with Mn flecks, very stiff,
moist, very plastic sensitive to extra senstive, homogenous,
highly weathered - paelosol

as above but becomes light brown

          144     144     13       11     117     10       12

99       99       13      8       73          2      37

144      144    19      8        146     13        11

214     214    32        8       110      23        5

>10    UTP

>10   >227

>10   177      117     10      12      149      36       4

CLAY, light yellowish brown with black Mn
flecks, very stiff, moist, moderately plastic, highly
weathered. >10   >227
Clayey SILT, light yellowish brown with Mn flecks,
some golden mica flakes, stiff, wet, slightly plastic,
quick, dilatent without the addition of water,looses volume
on remoulding.
CLAY, light orange brown with Mn flecks, stiff,
moist, highly plastic, moderately sensitive. - paleosol?

9.5      107     107     5         21    87        3        29

8.5     227     227     76       3       191      68       3

6        84        84     16      5        65        16        4

CLAY, light orange brown with Mn flecks, firm,
wet, highly plastic, sensitivity, highly weathered.

becomes most

5         75      75       13       6       71        16       4

5        126     126     29       4     118       28        4

          123     123     29         4     139      26       5

R
an

gi
ta
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ha

NZMS 260 U14 875 863

Page 1 of Otumoetai field log. Logging was undertaken in
a slip on the lower section of a relict coastal cliff at 198
Grange Road.



DescriptionGraphic
Log

Depth
(m)

Strat
unit.

Sensitivity
Standard Adapted

P R S SRP
PVSPR

Legend:
PR - Penetrometer (kg)
PVS - Peak vane shear strength (kPa)
P - Peak vane shear strength (kPa)
R - Remoulded vane shear strength (kPa)
S - Sensitivity (ratio = P/R)

Date
day month year

Location:

GPS:

Notes:

Field Log Sheet

Otumoetai - Grange Road (2) 19 5 08

18

CLAY, light orange brown with Mn flecks, firm,
wet, highly plastic, sensitivity, highly weathered.

becomes most

5         126     126     29       4       118     28       4

          123     123     29         4     139      26       5

19

becomes very wet
           94        94      13       7      112        3        37

End of log 18.5 m.

NZMS 260 U14 875 863

Page 2 of Otumoetai field log.
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Log

Depth
(m)

Strat
unit.

Sensitivity
Standard Adapted

P R S SRP
PVSPR

Legend:
PR - Penetrometer (kg)
PVS - Peak vane shear strength (kPa)
P - Peak vane shear strength (kPa)
R - Remoulded vane shear strength (kPa)
S - Sensitivity (ratio = P/R)

Date
day month year

Location:

GPS:

Notes:

Field Log Sheet

1

3

6

7

10

2

4

5

8

9

Ranginui Road Slip 21 01 08

      9          UTP

    >10        UTP

    >10        UTP

SILT, light orange brown, very stiff, dry, non-plastic, trace
fine sand, slightly weathered.

Sandy SILT, light brown, very stiff, dry, slightly
weathered, few roots.
SILT, light greyish-white, as above but coarse material
increases with depth.

SILT, light greyish-white with few black specs (MnO),
stiff, extra sensitive non-plastic, slightly weathered.
Silty SAND, light whitish-grey, very loosely packed, fine
to coarse angular grains, well sorted, sensitive - extra
sensitive unweathered.
CLAY, dark brown with some orange flecks, very stiff,
moist, highly plastic, moderately weathered.

    >10         97          97          10          10

     2-3         49           49           6           8

CLAY, light orange-brown, stiff, moist, highly plastic,
sensitive, moderately weathered.

    >10        UTP

Post
Rotoehu Ash

Rotoehu Ash
Hamilton Ash

paleosol

Hamilton Ash

    >10        UTP

CLAY, light orange-brown, moist to wet, subordinate
subangular coarse sand and fine gravels of many
colours - grey, red, apricot etc. moderately sensitive to
sensitive.

    >10         109        109         18          6
     9.5          84          84          15          6

     8.5          87          87          16          5
CLAY, light brown, stiff. moderatly sensitive to
sensitive

CLAY, light yellowish brown, moderately plastic,
moderatly sensitive black, white, grey and purple
subordinate fine gravels.

CLAY, dark greyish-brown with black specs (MnO) and
orangish brown streaks, sticky, very plastic, moderately
sensitive to sensitive

     9.5         100        100         23          4

     7.5         133        133         34          4           143         29           5

CLAY, light pinkish-orange with light orangish-brown
streaks and black specs (MnO), sticky, wet, moderately
sensitive, highly plastic, trace coarse sand, moderately
weathered.

CLAY, light grey-brown, sticky, wet, very plastic,
sensitive to moderatly sensitive.

CLAY, light yellowish-brown, stiff, very sticky, saturated,
highly plastic, extra sensitive highly weathered.  Water
runs from cut face to fill 1mx1m hole to 30cm depth over
few hours.

     9.5         117        117         31          4           128         24           5

     8.5         104        104         31          3           117         23           5

     5.5          50          50           6           8            55           2           28

       5           39          39           3          13          43            2           17

                    36          36           3          12          42            1           42

Sandy SILT, light orange-brown with some small black
fragments, very loose, wet, with tracemedium sand,
Becomes saturated

CLAY, light grey intermixed with orange, stiff, hard
orange grains, sticky, highly plastic, coarse sand, fine
gravels.

Orange material decreased, some white to cream material
appears white and fluffy, possibly pumiceous.
Clayey SILT material, loose
Firm base at 7.0 metres, UTP.

Start of Auger log.

End of log.

This face log and augar log was underaken in the main
slip as shaded in yellow in appendix 4.2a

NZMS 260: U14 927 817
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Depth
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Strat
unit.

Sensitivity
Standard Adapted

P R S SRP
PVSPR

Legend:
PR - Penetrometer (kg)
PVS - Peak vane shear strength (kPa)
P - Peak vane shear strength (kPa)
R - Remoulded vane shear strength (kPa)
S - Sensitivity (ratio = P/R)

Date
day month year

Location:

GPS:

Notes:

Field Log Sheet

3

5

1

4

Welcome Bay Road- slip 1 (head of slip) 30

2

11 07

SILT with trace clay, dark brownish black, stiff to hard,
dry, slightly plastic, sensitive, many roots (> 10 %),
topsoil.

Silty CLAY, light yellowish orange, hard, dry, moderately
plastic, vertical cracking, highly weathered.

Sandy SILT with trace fine sand light brown, stiff to
hard, dry, non plastic, moderately weathered.

Slight break in slope

SILT with trace clay, light yellowish brown, firm - stiff,
moist, slightly plastic, sensitive, moderately weathered.

SAND, light yellowish brown, fine to medium angular
sand, loosely packed, dry, no obvious bedding. slightly
weathered.
SILT with trace fine sand, light yellowish brown, stiff,
moist, non plastic, moderately weathered.

Direct from GPS North: 638 1886 East: 279 3745

6.5       39       39       5        8

> 10    NP

  7        NP

> 10     NP

> 10     NP

   8       110      110     15      7       110      16        7

   8       NP
   3       10
 >10      NP

This log corresponds with slip 1 in appendix 4.2b, and
represents a soil log undertaken at the head of the slip.

End of log

SILT with trace fine sand, dry to moist
non plastic, light brown

Clayey SILT, light greyish brown, firm, moist, slightly
plastic.

Silty CLAY, light yellowish brown, very firm,
moderatly plastic, moist, moderately plastic.

SILT, light yellowish grey, dry to moist, non plastic.

UTP ~ 4.4 m

Also undertook an auger log from break in slope (1.8m)
sequence of units are presented below, and UTP occured
at 4.4m



DescriptionGraphic
Log

Depth
(m)

Strat
unit.

Sensitivity
Standard Adapted

P R S SRP
PVSPR

Legend:
PR - Penetrometer (kg)
PVS - Peak vane shear strength (kPa)
P - Peak vane shear strength (kPa)
R - Remoulded vane shear strength (kPa)
S - Sensitivity (ratio = P/R)

Date
day month year

Location:

GPS:

Notes:

Field Log Sheet

1

Welcome Bay Road slip 1 _ log 2 30

4

11 07

Direct from GPS North: 638 1886 East: 279 3745

2

3

Clayey SILT, dark brown, very stiff, dry, slightly plastic,
horizontal and vertical cracks, highly weathered.

SILT with trace coarse sand and clay, light yellowish
brown, firm, moist to dry, slightly plastic, moderately
sensitive, moderately weathered.

Silty CLAY with trace fine sand, dark brown, stiff,
moist, moderately plastic, sensitive highly weathered.
SAND, light yellowish brown, medium to fine coarse to
sub angular sand, extra sensitive densly packed,
well graded (coarse at top fine at bottom).
SILT, light yellowish brown, stiff, moist, non plastic,
moderately weathered.

SAND, yellowish grey, fine angular sand.

End of log 3.2 m.

6.5       29     29       16       2
6.5      47       47      16       3

5.5      34       34      10       3         34        6       6

9.5    175     175     34        5       131      21      6

5.5    115     115      15       8
5.5      81       81      8        10
9.5     133    133     15        9

>10
   10

4965

Not able to get good penetration when
undertaking shear vane readings.

This log was undertaken on the right hand side of the slip 1
(facing welcome bay road)



DescriptionGraphic
Log

Depth
(m)

Strat
unit.

Sensitivity
Standard Adapted

P R S SRP
PVSPR

Legend:
PR - Penetrometer (kg)
PVS - Peak vane shear strength (kPa)
P - Peak vane shear strength (kPa)
R - Remoulded vane shear strength (kPa)
S - Sensitivity (ratio = P/R)

Date
day month year

Location:

GPS:

Notes:

Field Log Sheet

3

1

Welcome Bay Road drive way; slip 2 11

2

SILT, dark brown, dry non plastic, topsoil.

SILT with trace medium to fine pumecious gravel,
dark orange, firm, moist, non plastic, moderately
sensitive to sensitive, well graded (fine material at top).
slighly weathered.

Clayey SILT, dark brown, firm, moist, moderately
plastic, moderately sensitive, moderately weathered.

SILT with trace fine to coarse sand, light orangish
brown, firm, moist, non plastic, moderately sensitive to
sensitive, moderately weathered.

SAND, dark orange, fine to coarse sub angular to
angular sand, extra sensitive, loose, slighly weathered.
SILT, light yellow with black Mn flecks, soft to firm,
moist, slightly plastic, sensitive.
Clayey SILT with trace fine sand, firm, light brown
moist, slightly plastic, quick.

Clayey SILT with trace fine to coarse sand, light grey,
soft to firm, moist, slightly plastic, extra sensitive.

End of log 2.6m.

9        194     194      62      3

8.5        81     81       19       4

5.5        65     65      16        4

  7         55      55       13       4

  2         45      45      3        15
4         50       50      10       5
 4         62      62      10       6

 4.5     136    138       5        28     138       6       23

           65        65       6       11

From GPS: North: 638 1886 East: 279 3745

12 07

This Log is associated with slip 2 in appendix 4.2b
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Strat
unit.

Sensitivity
Standard Adapted
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PVSPR

Legend:
PR - Penetrometer (kg)
PVS - Peak vane shear strength (kPa)
P - Peak vane shear strength (kPa)
R - Remoulded vane shear strength (kPa)
S - Sensitivity (ratio = P/R)

Date
day month year

Location:

GPS:

Notes:

Field Log Sheet

3

1

Welcome Bay drive way; slip 2 - auger log 11

2

From GPS: North: 638 1886 East: 279 3745

12 07

This Log is associated with slip 2 in appendix 4.2b, however this
log is solely an auger log and was undertaken at the head of the slip
in unfailed ground.

SILT, brownish black, slightly plastic, topsoil.

Clayey SILT, light orangish brown, soft, moist to dry,
slightly plastic.

Silty CLAY, light orangish brown, moist, moderately
plastic.

SILT with trace clay, dark brown, soft, wet, slightly
plastic.

CLAY, light yellowish orange, stiff, moist, highly
plastic.

CLAY, light grey, stiff, moist, moderatly plastic,
includes trace subrounded small gravels which break
up when pressure is applied.

SILT, yellowish brown, dry, non plastic, comes up as
individual grains - augar unable to penetrate this
material, it may represent the top of the ignimbrite
located in a cutting near by.

UTP 2.6m.



DescriptionGraphic
Log

Depth
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Strat
unit.

Sensitivity
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P R S SRP
PVSPR

Legend:
PR - Penetrometer (kg)
PVS - Peak vane shear strength (kPa)
P - Peak vane shear strength (kPa)
R - Remoulded vane shear strength (kPa)
S - Sensitivity (ratio = P/R)

Date
day month year

Location:

GPS:

Notes:

Field Log Sheet

1

3

6

7

10

2

4

5

8

9

Behind shed log - top, bench 1 06/07 02 08

R
ot
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Covered by vegetation, unable to be examined.

SILT, yellowish brown, trace sand, stif, dry, non-
plastic, few roots, unweathered.

SILT, light yellowish brown, stiff, dry, non-plastic,
some roots, unweathered, some orange staining.

SAND, lght yellowish brown, fine-medium grained,
loosely packed, sensitive to extra sensitive, well
sorted, pooly graded, unweathered.
SILT, light yellowish brown, stiff, dry, non-plastic,
unweathered, some orange staining.
SAND, light grey, fine to coarse grained,loosely
packed, well sorted, poorly graded, coarse grains
appear angular, sensitive, unweathered, many fine

               UTP                    UTP

               113      113     10-16      11-7

                 39        39           6           7Rotoehu ash

CLAY, dark brown, black flecks present (MnO), very
stiff, dry, non-plastic, sensitive, homogeneous,
highly weathered.

Hamilton ash
paleosol

              104     104          16          7

CLAY, dark brown, black flecks present (MnO), very
stiff, dry, slightly plastic, homogeneous.

              >227

Clayey SILT, dark brown,  very stiff, dry, non-
plastic, homogeneous, no coarse material.

              UTP

Sandy SILT, light yellowish brown, black flecks
(MnO), very stiff, slightly plastic, sensitive medium
to fine grained sand, trace clay.

              130     130         16          8

Silty SAND, light yellow, densely packed,
nonplastic, sensitive to extra sensitive, well sorted,
poorly graded, black wavy lines in lower section.

              133     133         19          7

              143     143         16          9

              130     130         19          7

              143     143         16          9

              96      96         10          10
Silty SAND, light yellow, loosely packed, dry-moist,
non-plastic, extra sensitive poorly graded, coarse to
fine grains.
Sandy SILT, light yellowish brown, sensitive to extra
sensitive, fine to coarse grained sand, dry.               UTP

              94      94         13           7

              87      87         8            11

              104     104         31          3

CLAY, light brown, black flecks (MnO), moist,
moderately plastic, moderatly sensitive, fractured
vertically and horizontlly, possible paleosol.
SAND, yellow, loosly packed, moderatly sensitive,
well sorted, coarse to fine angular grains.

               47      47         13           4

SAND, dark brown, loosely packed, moderately
sorted fine to coarse grains, moderatly sensitive to
sensitive, well graded coarsening up.
SAND, light yellow, densely packed, sensitive,
coarse to fine grained, few subangular fine gravels,
some grading.

               32      32          5            6

               45      45          5            9
               62      62         10           6

         Very loose non-cohesive sediment

SAND, light orange-brown, densely packed, fine to
coarse grained, crumbles upon extraction.
SAND, dark brown, fine to coarse grained, tracefine
angular gravels, poorly sorted, unweathered.

               45      45           6           8

SAND, light orange-brown, densely packed, fine to
coarse grained, crumbles upon extraction.
SAND, light yellowish-brown, moderately packed,
coarse grained with trace angular gravel, grades to
silty sand, sensitive to extra sensitive.

Silty SAND, dark brown-black, loosely packed.

Silty SAND, brown, densely packed, moist, trace
fine pink-grey-white subangular pumecious gravels,
poorly sorted, poorly graded, unweathered, crumbles
upon extraction, sensitive to extra sensitive.

               87      87          10           9           83          19            4

               73      73          11           7

              139     139        10         14

              143     143        15         10         141          19           7

Silty SAND, light brown, coarse to fine grained,
sensitive

Silty CLAY, light whitish grey, firm, moist,
moderately plastic, homogeneous.

               99     99         19           5          120          12          10

Silty SAND, light orange, black flecks, moist to wet,
gently inclined.

Silty SAND, light yellowish brown, firm, moist,
non-plastic, sensitive, fine to coarse grained, trace
clay with some dense clay lenses, orange staining,
unweathered.

Silty SAND, dark orange, firm, orange staining,
underlain by a layer of whitish grey moist caly.

Silty SAND, light grey, dense, moist, well sorted,
large blob of greyish white clay, some black flecks
(MnO), firm, moist, plastic, sensitive.

             110     110        15           7

             107     107        15           7

This log was undertaken in the approximate area
of Pyes Pa / Tauriko and was in a large cutting behind
a shed which can be seen from state highway 29.

NZMS 260 U14: 846 807

SH29 - Pyes Pa
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Legend:
PR - Penetrometer (kg)
PVS - Peak vane shear strength (kPa)
P - Peak vane shear strength (kPa)
R - Remoulded vane shear strength (kPa)
S - Sensitivity (ratio = P/R)

Date
day month year

Location:

GPS:

Notes:

Field Log Sheet

11

13

16

17

20

12

14

15

18

19

Behind shed log - top, bench 1 06/07 02 08

CLAY, dark orange with black specs, firm, moist,
moderately plastic, homogeneous.

                  123         123        10         12          113         19           6

Silty CLAY, greyish white, few black specs (MnO),
firm, moist, moderately plastic, homogeneous, extra
sensitive

                   75          75          11           7            92           19          5

                   110        110         10          11         91            2            45

                                                                           81           3           27SILT, light grey, very stiff, dry, non-plastic, trace fine
to coarse sand, interbedded with fine sand with fine
gravels, gravels pumecious, some orange staining,
unweathered.

              UTP

              UTP
              UTP

              UTP

SAND, light orange, densely packed, poorly sorted,
poorly graded, trace fine gravels, sub-horizontal
laminated bedding.
Silty SAND, dark orange, gravel sized black flecks
(MnO), dense, dry, fine to coarse grained, sub-
horizontal laminated bedding, unweathered.
Clayey SILT, light grey, black flecks, very stiff, dry,
slightly plastic, moderately weathered, intermixed
with silty sand, densely packed, dry, fine to medium
grained, sub-horizontal bedding, thinly laminated,
extra sensitive
Silty SAND, light yellowish-brown, dense, dry,
moderate sorting, trace fine gravels, slightly
weathered.

SILT, light grey, stiff, dry, non plastic, layered with
fine to coarse yellow brown sand.

                    160        160         18          9

SAND, orange, trace coarse gravels, intermixed with
light grey clayey SILT, very stiff, slightly plastic,
coarse material.

              UTP

Sandy SILT, light yellowish brown, very stiff, moist,
non-plastic, trace fine gravels, slightly weathered,
trace fine gravels.
Silty SAND, light yellowish brown, some black
flecks (MnO), dense, angular fine gravels (grey, red,
purple), slightly weathered.

SAND, light grey with some orange staining, dense,
poorly sorted, medium to fine grained, intermixed
with a clayey SILT, light grey, firm, slightly plastic,
very complex, sensitive to extra sensitive.
SILT, light greyish-white, few MnO flecks, stiff, dry,
moderately plastic, trace clay, some orange staining,
slightly weathered, sensitive to extra sensitive.

              UTP

              UTP

              UTP

       7            149       149        18          8

     8.5         123       123         10           12

     >10         86          86           6           14

     8.5         225       225         28           8
SAND, dark orange, intermixed with silty CLAY at
base, poorly sorted, trace angular to rounded fine
gravels, subordinate black flecks.  Very complex,
extra sensitive.
SILT, light greyish-white with few black flecks
(MnO), stiff, wet, non-plastic, intermixed with
orange SAND.

       8          112        112         15           7

       8          162        162         13          12

       7           55          55           5          11
SILT, light greyish-white with few black flecks
(MnO), soft, very wet, non-plastic, dilatent without
water, feels sensitive, sensitive.

       6           50          50          10          5           44           <1         >44
SILT, light greyish-white with few black flecks
(MnO), soft, wet, sticky, slightly plastic, dilatent
without water, trace clay, homogeneous, similar to
above but not as wet, some orange staining, sensitive
to extra sensitive

     8.5          87          87          19          5SILT, light greyish-white with increasing black
flecks (MnO), soft, moist, sticky, slightly plastic,
dilatent without water, trace clay, extra sensitive,
homogeneous, similar to above but not as wet, some
orange staining tending to pink.

     >10        157        157          16         10         156          3            52

     >10        144        144         13         11         175           8           22SILT, light grey, trace coarse sand in silt matrix, dense,
heavily weathered pumecious material, poorly sorted,
extra sensitive
SILT, light grey, moist, slightly plastic, trace coarse sand.
Sandy SILT, dark orange, firm, moist, non-plastic, trace
coarse sand.

Clayey SILT, light grey grading to pink, stiff but soft on
remoulding, wet, non-plastic,extra sensitive, dilatent
without water, trace fine sand coarsening down, trace fine
to coarse sub-angular gravel.

End of Log

      10         156        156         15         10

     9.5         117        117         16         7            113         <1         >113

       9          190        190         32          6           128           2           64

SH29 - Pyes Pa

sheet 2 of log
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P R S SRP
PVSPR

Legend:
PR - Penetrometer (kg)
PVS - Peak vane shear strength (kPa)
P - Peak vane shear strength (kPa)
R - Remoulded vane shear strength (kPa)
S - Sensitivity (ratio = P/R)

Date
day month year

Location:

GPS:

Notes:

Field Log Sheet

1

McLaren falls, base of cutting 2

0

2 08

At base of cutting
Clayey silt, light yellowish brown with black MnO flecks,
soft, wet, slightly plastic, extra sensitive

2m above the base of the cutting, similar material as
above was observed, however this material was only
moist.

An auger log was undertaken from the base of the
cutting, the following presents the log from this.

Clayey SILT, light yellowish brown, soft, wet, slightly
plastic, some orange staining.

Clayey SILT, greyish white with black MnO flecks, soft,
wet, non plastic, dilatent without the addition of water.

Similar material to above but becomes very wet
(saturated) and recovery in auger is only ~ 20 % of
potential maximum.

Sandy SILT, ligth orange with black flecks, soft,
wet, non plastic.

Auger UTP at ~ 2.3 m.

62      62       5      12       63        2         32

This log represents a sensitive soil observed at the base of a
small cutting. However, the majority of overlying material
was covered in vegetation.

2

NZMS 260 U14: 782 724
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Legend:
PR - Penetrometer (kg)
PVS - Peak vane shear strength (kPa)
P - Peak vane shear strength (kPa)
R - Remoulded vane shear strength (kPa)
S - Sensitivity (ratio = P/R)

Date
day month year

Location:

GPS:

Notes:

Field Log Sheet

1

3

6

7

10

2

4

5

8

9

Omanawa Road Slip 22 11 07

N 6370193  E 2780979

Small slip on Omanawa Road 150m North of
Peers Road intersection, easily rolling hill country.

       4          16           16           6          3

SILT, brownish-black, siff, dry, non-plastic, homogeneous,
strongly allophanic, smooth indistinct boundary.      8.5

SILT, reddish-brown, firm, dry to moist, non-plastic, some
trace clay, strongly allophanic, diffuse boundary.

Clayey SILT, light yellow, very stiff, moist, moderately
plastic, homogeneous, non-sticky, moderately sensitive,
weakly allophanic.

       9          121         121         34         4          121          35          4

Clayey SILT, dull yellow-orange with few white pumice
clasts increasing downward and black flecks with rust
coloured smudge, firm, moderately plastic, moderately
sensitive, moderately allophanic.

       8           89          89          24         4

Clayey SILT, light yellow with black flecks (MnO), very
stiff, moist, moderately plastic, moderately sensitive, grey
‘clasts’ increasing abundace downward.

       7           62          62          16         4

Clayey SILT, light yellow, firm, moist, slightly plastic,
non-sticky, sensitive homogeneous, very weakly
allophanic.

       8           93          93          16         6

SILT, bright yellowish brown with black flecks (MnO),
very stiff, moist, non-plastic, sensitive, few light grey
coarse material softer than matrix, homogeneous, very
weakly allophanic.

    >10         106         106        16          6          106          23          5

End of Log 6.3m
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Legend:
PR - Penetrometer (kg)
PVS - Peak vane shear strength (kPa)
P - Peak vane shear strength (kPa)
R - Remoulded vane shear strength (kPa)
S - Sensitivity (ratio = P/R)

Date
day month year

Location:

GPS:

Notes:

Field Log Sheet

3

Omokoroa  Coastal cliff single unit 24

0.5

12 07

SILT, light grey, soft, wet, slightly plastic, quick,
dilatent without the addition of water, some weak
orange staining.

3.5       28       47       3       16       49       < 1     49

1

Silty CLAY, light yellowish brown, hard, moist, slightly
plastic, sensitive to extra sensitive.

8.5      110    183     23        8      227      16      14

A unit investigated early in the study to get an idea of how a
typical sensitive soil in the Tauranga region my behave and what
its appearance may be like.

NZMS 260 U14: 794 927



Oropi Road Roundabout 16 11 07
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DescriptionGraphic
Log

Depth
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Strat
unit.

Sensitivity
Standard Adapted
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Legend:
PR - Penetrometer (kg)
PVS - Peak vane shear strength (kPa)
P - Peak vane shear strength (kPa)
R - Remoulded vane shear strength (kPa)
S - Sensitivity (ratio = P/R)

Date
day month year

Location:

GPS:

Notes:

Field Log Sheet

1

3

6

7

10

2

4

5

8

9

       6          94           94           5         19           84           <1          >84

SILT, black, very stiff, non-plastic, slightly allophanic.      8.5
Homogeneous reworked/disturbed material, very stiff,
some vertical cracks.

Thin, very stiff black layer.

Light brown and black, hard, dry, plastic, small pumice
clasts.  Like a hardpan.

Sandy SILT, greyish yellow, loosely packed, dry to moist,
low plasticity, trace sand, lenses of clayey SILT.

Yellowish brown, hard, dry, slightly plastic, homogenous.

    >10
    >10
    >10

    >10

    >10

      9

      10

SILT, light grey, firm, wet, non-plastic, trace sand,
remoulds to paste without addition of water, extra
sensitive to quick.

SILT, light grey, stiff, wet, non-plastic, homogeneous,
some fine roots, remoulds to a paste without the addition
of water, extra sensitive to quick.

                   55           55           5           11         84            3           28

SILT, light grey, stiff, wet, slightly plastic, slightly sticky,
some roots, extra sensitive.

       6         143        143           5          29          73           <1          >73
                   71           71           5          14

       6          36           36           3          12          36           <1          >36

Silty SAND, light grey, dry, sub-angular fine to medium
and some coarse sand, possibly reworked material.
Sandy SILT, light grey, firm, non-plastic, some coarse
material.

SILT, orange, moist, non-plastic.

Unseen - covered with debris

SILT, grey, firm, moist, homogeneous, trace clay and fine
sand, extra sensitive.
Sandy SILT, orange with grey material in lower 100mm,
moist, non-plastic, extra sensitive, some coarse material.

      8
      9
    >10

     10          85           85          10          9

     10
      8          164         164         13         12

Unseen - covered with debris

SILT, light yellow, very stiff, moist, moderately plastic,
trace clay.     >10

Unseen covered with debris

This log was undertaken on the corner of
Oropi Road and SH29, in a bowl shaped slip
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Legend:
PR - Penetrometer (kg)
PVS - Peak vane shear strength (kPa)
P - Peak vane shear strength (kPa)
R - Remoulded vane shear strength (kPa)
S - Sensitivity (ratio = P/R)

Date
day month year

Location:

GPS:

Notes:

Field Log Sheet

11

13

16

17

20

12

14

15

18

19

Oropi Road Roundabout 16 11 07

N 6379948  E 2786928

End of Log.

SILT, light yellow, very stiff, moist, moderately plastic,
trace clay, sensitive to extra sensitive.

Unseen -covered with debris

                   169        169         29          6          169          29           6
                   156        156         23          7          120           8           15
                    78          78           8          10



DescriptionGraphic
Log

Depth
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Strat
unit.

Sensitivity
Standard Adapted

P R S SRP
PVSPR

Legend:
PR - Penetrometer (kg)
PVS - Peak vane shear strength (kPa)
P - Peak vane shear strength (kPa)
R - Remoulded vane shear strength (kPa)
S - Sensitivity (ratio = P/R)

Date
day month year

Location:

GPS:

Notes:

Field Log Sheet

3

1

Pyes Pa Road 24

2

Silty Clay, light brown, stiff, moist, moderately plastic,
sensitive.

Clayey SILT with trace fine sand, dark pin with
MnO flecks, very stiff, moist to wet, slightly plastic,
sensitive .
Clayey SILT, brownish orange, few black MnO flecks
firm, moist, slightly plastic, sensitive.
Clayey SILT, yellowish brown some black MnO flecks,
very stiff, moist, slightly plastic, sensitive.
Clayey SILT with trace fine sand, light orangish yellow,
very stiff, moist, slightly plastic, sensitive,
subhorizontal bedding �
Clayey SILT wih trace fine sand, light orange with some
black MnO flecks, stiff, moist, slightly plastic, sensitive.

Silty CLAY with trace fine sand, dark orange with some
black MnO flecks, stiff, moist to wet, moderately plastic,
sensitive to extra sensitive, also included appears to be
some large gravel charcoal pieces.
Silty CLAY, firm, wet, moderately - highly plastic, extra
sensitive, appears to be charcoal pieces as above.

End of log at 2.2m

12 07

  126     126     23     5

   81      81      16     5
   105   105      23     5       113       8      6

   68       68     19       4       68      3       23

   110    110    15       7         84     3       28

   66       66     10      7        63      2       32

   81      81      10      8        81      3       27

    45       45     3       15     52       1        52

   28      28      3        9

This log is from an earth works site off Pyes Pa road,
(approxiamatly 1 km south of Kennedy Road) where
the new road linking state highway 29 and Pyes Pa
Road was being constructed.

NZMS 260: U14: 846 774
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Legend:
PR - Penetrometer (kg)
PVS - Peak vane shear strength (kPa)
P - Peak vane shear strength (kPa)
R - Remoulded vane shear strength (kPa)
S - Sensitivity (ratio = P/R)

Date
day month year

Location:

GPS:

Notes:

Field Log Sheet

3

 State highway 2, north of Pahoia and Omokoroa 26 11 07

1

From GPS: North 639 0408      East 277 2200

This site is a cutting on SH2 approxiamatly 200 m north of the
intersection with Turner Road. Note there is a section of ~ 3m above
this log, however it was heavily vegetated, but appears to contain both
the Hamilton and Rotoehu Ashes.

2

CLAY, light brownish orange, very stiff,  dry,
highly plastic, homogenous, highly weathered many,
horizontal and vertical cracks.

CLAY, light grey with white and orange staining, very
stiff,  dry to moist, moderately plastic, moderately
sensitive, highly weathered.

CLAY with trace medium sand, light grey with orange
flecks, very stiff, moist, highly plastic, sensitive, highly
weathered.

Sandy SILT, light brownish yellow, very stiff, dry, non
plastic, moderately weathered.

Sandy SILT with trace fine sand, dark orange, very
stiff, dry, non plastic.

Sandy SILT, light yellowish orange, very stiff, moist,
non plastic, extra sensitive, this unit includes coarse
sand to small pebble size black flecks (possibly Mn).

Similar to above but lenses of softer material was
observed.

   >10     NP

     9       194    194      73      3       194      95        4

   >10    194    194      36       5

   >10    178    178      42       4       178      36        5

    7       110    110       23      5        110      19       6

   >10     NP

   >10     NP

  >10     162    162      19      9       162      16       10

    7       136     136     19       7

    9       162     162     16      10

End of log



Appendix 4.2  

This appendix presents the geomorphic maps which are found in the back pocket of this 

thesis and are labelled appendices 4.2a (Ranginui Road) and 4.2b (Welcome Bay Road). The 

soil logs for the slips presented in each of these maps can be found in appendix 4.1.  

 



Appendix 4.3 

The following appendix presents peak vane shear strength, remoulded strength, and 

sensitivity values derived using the standard and adapted methods of sensitivity measurement 

for all samples collected from Tauriko and Otumoetai.   
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Appendix 6.1 
The following presents acid oxalate and pyrophosphate-extractable Fe, Al, and Si 
used for the determination of allophane and ferrihydrite.  

 

Soil Analysis Results 
Environmental Chemistry Laboratory

Client:     Justin Wyatt, University of Waikat Date In:    6th October 08
Job No.:     LJ08068 Date Out:  31st October 08

Client Sample
ID No. Fe Al Si Fe Al

OS1 M8/2295 0.29 0.48 0.19 0.05 0.08
OS2 M8/2296 0.25 0.43 0.16 0.04 0.07
OS3 M8/2297 0.28 0.19 0.08 <0.01 0.01
OS4 M8/2298 0.16 0.17 0.04 0.02 0.01
TS1 / 5 M8/2299 0.01 0.25 0.03 <0.01 0.02
TS2 / 6 M8/2300 < 0.01 0.27 0.04 0.01 0.03
TS3 / 7 M8/2301 < 0.01 0.22 0.04 0.01 0.02

rophosphate-Extractab

(method 166)

(%)(%)

Acid Oxalate-Extractable

(method 164)



Appendix 6.2 
The following presents all the x-ray diffraction traces measured during the course of this 
study for samples from Tauriko and Otumoetai.   
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Appendix 6.3 
The following presents raw and corrected EDX values from SEM analysis.  

Raw tubes and books  

 

Books
Analy 19 analy 20 Analy 21 analy 22 analy 23 analy 28 analy 25 mean  error std dev

O k 58.51 53.47 57.52 57.72 56.20 51.65 54.08 55.59 1.05 2.57
Al k 17.37 18.61 17.64 17.08 17.97 18.67 18.82 18.02 0.28 0.69
Si k 20.63 23.41 21.52 21.16 22.42 23.84 23.10 22.30 0.50 1.22
Ti l 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Ti k 0.00 0.00 0.00 0.00 0.00 0.74 0.00 0.11 0.11 0.28
Fe k 3.49 4.19 3.32 3.18 3.41 4.34 3.47 3.63 0.18 0.45
Fe L 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Ge K 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Zn k 0.00 0.33 0.00 0.46 0.00 0.00 0.00 0.11 0.08 0.20
Mg k 0.00 0.00 0.00 0.00 0.00 0.76 0.53 0.18 0.13 0.32
Cl 0.00 0.00 0.00 0.40 0.00 0.00 0.00 0.06 0.06 0.15

tubes 
tube 1 tube 2 tube 3 tube 4 tube 7 tube 8 tube 9 tube 10 tube 11 tube 12 tube 7(2) tube 9(3) tube 9(2) 13 mean  error std dev

O k 61.92 59.36 56.30 48.06 48.16 60.40 61.85235 57.31 46.43 63.01 49.31 60.26 57.00 58.98 56.31 1.68 5.81
Al k 14.62 17.95 18.61 21.14 21.06 16.55 15.87582 18.05 22.59 15.49 19.97 15.88 16.79 16.35 17.92 0.70 2.44
Si k 20.16 20.73 22.91 27.99 28.17 21.21 19.88371 23.05 29.63 19.95 26.90 21.61 23.93 21.63 23.41 0.98 3.38
Fe k 1.50 1.96 2.18 2.81 2.62 1.84 2.388122 1.60 1.35 1.55 3.82 2.25 2.27 3.05 2.23 0.20 0.69



Corrected tubes and books, and blank values  

books

Analy 19 analy 20 Analy 21 analy 22 analy 23 analy 28 analy 25 mean  Std dev Error

Al203 32.81 35.16 33.33 32.26 33.95 35.26 35.56 34.05 1.31 0.53

SiO2 44.14 50.07 46.03 45.26 47.95 51.00 49.41 47.69 2.61 1.07

Fe2O3 4.99 5.98 4.75 4.55 4.88 6.21 4.96 5.19 0.64 0.26

tubes 

tube 1 tube 2 tube 3 tube 4 tube 7 tube 8 tube 10 tube 11 tube 12 tube 7(2) tube 9(3) tube 9(2) 13.00 mean  Std dev Error

Al203 27.62 33.91 35.15 39.93 39.78 31.26 34.10 42.67 29.26 37.72 30.00 31.72 30.89 34.15 4.66 1.34

SiO2 43.12 44.34 49.00 59.87 60.26 45.37 49.30 63.38 42.67 57.54 46.22 51.19 46.27 50.66 7.18 2.07

Fe2O3 2.15 2.80 3.12 4.02 3.75 2.63 2.29 1.93 2.22 5.46 3.22 3.25 4.36 3.17 1.02 0.29

blank stub with carbon tape 

C K 67.03

O k 21.08

Pt L 11.89  

 



EDX values for volcanic glass found in Tauriko samples. Multipliers are from Berkman (2001).  

 

multiplier 

O 40.91  

Na  2.06 x 1.348 = Na2O 2.78 

Al  7.24 x 1.889 = Al2O3 13.67 

Si  40.44 x 2.139 = SiO2 86.49 
Cl  0.00  

K  5.02 x 1.205 = K2O 6.05 
Ca  0.92 x 1.399 = CaO 1.29 
Fe  3.42 x 1.286 = FeO 4.39 

 

 


