6,576 research outputs found

    Art and the science of generative AI: A deeper dive

    Full text link
    A new class of tools, colloquially called generative AI, can produce high-quality artistic media for visual arts, concept art, music, fiction, literature, video, and animation. The generative capabilities of these tools are likely to fundamentally alter the creative processes by which creators formulate ideas and put them into production. As creativity is reimagined, so too may be many sectors of society. Understanding the impact of generative AI - and making policy decisions around it - requires new interdisciplinary scientific inquiry into culture, economics, law, algorithms, and the interaction of technology and creativity. We argue that generative AI is not the harbinger of art's demise, but rather is a new medium with its own distinct affordances. In this vein, we consider the impacts of this new medium on creators across four themes: aesthetics and culture, legal questions of ownership and credit, the future of creative work, and impacts on the contemporary media ecosystem. Across these themes, we highlight key research questions and directions to inform policy and beneficial uses of the technology.Comment: This white paper is an expanded version of Epstein et al 2023 published in Science Perspectives on July 16, 2023 which you can find at the following DOI: 10.1126/science.adh445

    Grain & Noise - Artists in Synthetic Biology Labs: Constructive Disturbances of Art in Science

    Get PDF
    The collaboration between scientists and artists in the form of Artist-in-Lab residencies may not only cause a productive disturbance for a day's work in the laboratory, but also reveal new ways of understanding. Research and science communication company Biofaction has brought together artists and synthetic biologists throughout Europe in a residence program that spans four truly cross-disciplinary collaborations. The contributors to this volume share their reflections of the dynamic frictions that occurred when their artistic and scientific worlds met. These stories, where chemistry labs, tobacco plants, genetically edited bacteria, and new-to-nature enzymes collide with music, photography, film, and visual arts, infuse the ongoing dialogue between art and sciences with grain, noise, and synergies

    Virtual Reality Games for Motor Rehabilitation

    Get PDF
    This paper presents a fuzzy logic based method to track user satisfaction without the need for devices to monitor users physiological conditions. User satisfaction is the key to any product’s acceptance; computer applications and video games provide a unique opportunity to provide a tailored environment for each user to better suit their needs. We have implemented a non-adaptive fuzzy logic model of emotion, based on the emotional component of the Fuzzy Logic Adaptive Model of Emotion (FLAME) proposed by El-Nasr, to estimate player emotion in UnrealTournament 2004. In this paper we describe the implementation of this system and present the results of one of several play tests. Our research contradicts the current literature that suggests physiological measurements are needed. We show that it is possible to use a software only method to estimate user emotion

    Association of Architecture Schools in Australasia

    Get PDF
    "Techniques and Technologies: Transfer and Transformation", proceedings of the 2007 AASA Conference held September 27-29, 2007, at the School of Architecture, UTS

    Data-Driven Shape Analysis and Processing

    Full text link
    Data-driven methods play an increasingly important role in discovering geometric, structural, and semantic relationships between 3D shapes in collections, and applying this analysis to support intelligent modeling, editing, and visualization of geometric data. In contrast to traditional approaches, a key feature of data-driven approaches is that they aggregate information from a collection of shapes to improve the analysis and processing of individual shapes. In addition, they are able to learn models that reason about properties and relationships of shapes without relying on hard-coded rules or explicitly programmed instructions. We provide an overview of the main concepts and components of these techniques, and discuss their application to shape classification, segmentation, matching, reconstruction, modeling and exploration, as well as scene analysis and synthesis, through reviewing the literature and relating the existing works with both qualitative and numerical comparisons. We conclude our report with ideas that can inspire future research in data-driven shape analysis and processing.Comment: 10 pages, 19 figure

    Visualization in spatial modeling

    Get PDF
    This chapter deals with issues arising from a central theme in contemporary computer modeling - visualization. We first tie visualization to varieties of modeling along the continuum from iconic to symbolic and then focus on the notion that our models are so intrinsically complex that there are many different types of visualization that might be developed in their understanding and implementation. This focuses the debate on the very way of 'doing science' in that patterns and processes of any complexity can be better understood through visualizing the data, the simulations, and the outcomes that such models generate. As we have grown more sensitive to the problem of complexity in all systems, we are more aware that the twin goals of parsimony and verifiability which have dominated scientific theory since the 'Enlightenment' are up for grabs: good theories and models must 'look right' despite what our statistics and causal logics tell us. Visualization is the cutting edge of this new way of thinking about science but its styles vary enormously with context. Here we define three varieties: visualization of complicated systems to make things simple or at least explicable, which is the role of pedagogy; visualization to explore unanticipated outcomes and to refine processes that interact in unanticipated ways; and visualization to enable end users with no prior understanding of the science but a deep understanding of the problem to engage in using models for prediction, prescription, and control. We illustrate these themes with a model of an agricultural market which is the basis of modern urban economics - the von Thünen model of land rent and density; a model of urban development based on interacting spatial and temporal processes of land development - the DUEM model; and a pedestrian model of human movement at the fine scale where control of such movements to meet standards of public safety is intrinsically part of the model about which the controllers know intimately. © Springer-Verlag Berlin Heidelberg 2006
    • …
    corecore