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Abstract 
 
This paper deals with issues arising from a central theme in contemporary computer 
modeling – visualization. We first tie visualization to varieties of modeling along the 
continuum from iconic to symbolic and then focus on the notion that our models are 
so intrinsically complex that there are many different types of visualization that might 
be developed in their understanding and implementation. This focuses the debate on 
the very way of ‘doing science’ in that patterns and processes of any complexity can 
be better understood through visualizing the data, the simulations, and the outcomes 
that such models generate. As we have grown more sensitive to the problem of 
complexity in all systems, we are more aware that the twin goals of parsimony and 
verifiability which have dominated scientific theory since the ‘Enlightenment’ are up 
for grabs: good theories and models must ‘look right’ despite what our statistics and 
causal logics tell us.  
 
Visualization is the cutting edge of this new way of thinking about science but its 
styles vary enormously with context. Here we define three varieties: visualization of 
complicated systems to make things simple or at least explicable which is the role of 
pedagogy; visualization to explore unanticipated outcomes and to refine processes 
that interact in unanticipated ways; and visualization to enable end users with no prior 
understanding of the science but a deep understating of the problem to engage in 
using models for prediction, prescription, and control. We illustrate these themes with 
a model of an agricultural market which is the basis of modern urban economics – the 
von Thunen model of land rent and density; a model of urban development based on 
interacting spatial and temporal processes of land development – the DUEM model; 
and a pedestrian model of human movement at the fine scale where control of such 
movements to meet standards of public safety is intrinsically part of the model about 
which the controllers know intimately. 
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1 Defining Visualization 
 

Visualization is a term that gained widespread currency in the mid-1980s when for the 

first time, computer graphics was linked to supercomputer processing, particularly in 

scientific contexts such as astrophysics where it was essential for the results of such 

processes to be absorbed and understood visually (Kaufmann and Smarr, 1993). This 

was explicit recognition that many large data sets, whether produced for input to 

computer models or as outputs or simply as raw data captured by digital instruments, 

needed to be understood holistically using the synthetic properties of the mind and 

eye in unaided form. In parallel, our interaction with computers was becoming more 

visual and although this began prior to the micro-revolution, it was spurred on by the 

immediacy of interaction which the PC enabled. The ultimate outcome is that we now 

interact with computers almost exclusively using graphical user interfaces (GUIs) and 

this, in itself, has broadened the concept of visualization to most aspects of human-

computer interaction. 

 

Visualization is so broad a term that to define its role in spatial modeling, we first 

need to stand back a little and examine the kinds of models that the visualizations that 

we present here pertain to. Classifications of models go back to the 1950s and 1960s 

when the term became popular and it is instructive to note, for example in papers such 

as Ira Lowry’s (1965) “A Short Course in Model Design”, that the starting point was 

defined as continuum of models from iconic to symbolic embracing analog along the 

way. Iconic models are physical versions of the real thing, usually scaled down to toy-

like proportions such as architects’ block models, while analog represent the system 

of interest using another but different system which may be either physical or digital. 

Good examples represent the movement of pedestrians in streets using analogies with 

hydrodynamic flow theory. Symbolic models are those which replace the physical or 

material system by some logical-mathematical structure, usually algebraic, with 

computer, hence digital, representation and manipulation a central feature of such 

simulation. Models in all these senses are of course simplifications where key features 

of their system relevant to their users are emphasized, often to the exclusion of many 

other features. 
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These issues are being rapidly influenced by a sea change which is occurring in how 

we view models in science and social science. Fifty years ago, modeling was parallel 

to classical science in that it was based on implementing good theory in models in the 

most parsimonious way possible. Good theories and models were those that could 

explain the data in the simplest, most efficient way, notwithstanding the fact that there 

were often critical issues which most would agree form part of the system being 

modeled, left out. This is now changing in every discipline and domain. The cutting 

edge of theory and modeling in the spatial-geographical domain, particularly where 

this involves human systems, is embracing ever more diverse and richer model 

structures. These structures are never likely to be validated in their entirety against 

data, they are too rich, and the data required for their testing too poor for any 

complete assessment. Many of the models that we introduce here follow this tradition 

in that there may only be a few points at which their data and processes touch the real 

world in terms of the data available. Science is now much more comfortable with this 

notion of a theory or model which is only partly testable than it has been hitherto. 

There is increasing recognition that our systems of interest are intrinsically complex 

and must be handled rather differently from those on which classical science has been 

founded. 

 

A further twist to the visualization paradigm involves the way the model is 

represented. As digital computation has become all pervasive, symbolic models no 

longer represent the sole focus. Iconic and analog models are also increasingly digital 

with the key issue being the mix of symbolism, analogy and iconic representation that 

can be employed for a single system where the simulation involves passing between 

any of these styles of modeling. The best examples involve relatively real renditions 

of spatial systems based on digital modeling of the physical appearance of the objects 

of interest. In this case, the appearance may only be used as the visual container in 

which analysis takes place. Such is the case in 3-d GIS (geographic information 

systems) where the 3-d container is a digital version of the physical fabric. 

Increasingly 3-d is being used is display patterns which can then be projected back 

onto the digital iconic model, or even onto a physical model of the system itself as in 

the Tangible Media projects at MIT (http://tangible.media.mit.edu/). Moreover once a 

digital iconic model is developed, it can be aggregated into various forms, put into 

other digital contexts in semi-recursive fashion, and even used to manufacture actual 
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physical models as hard copy print versions in traditional wood or plastic. An early 

version of such a mix of media is embodied in the hypothesis that Vermeer used a 

primitive camera to generate ‘some’ of his paintings (see Steadman’s (2001) book 

Vermeer’s Camera at http://www.vermeerscamera.co.uk/). Animating such a mix and 

using this digitally as part of the story line is what Tufte (1997) calls a ‘visual 

confection’.  

 

In this paper, we will concentrate on what has come to be called ‘scientific 

visualization’ whose main focus is on the inputs, processes, and outputs associated 

with symbolic or mathematical models, in this case urban and spatial systems focused 

on the human-built environment. In the next section, we will introduce a generic 

modeling process and show how this can be linked to planning, management and 

action. It is this nexus of explanation, simulation, forecasting, design and control 

which provides the wider context for visualization and we will thus identify the key 

types that map onto this spectrum of possibility. We will then develop a generic form 

for visualization in the spatial modeling field, which tie these various possibilities 

together in what we call the ‘space of visualization’. This sets the scene for three 

distinct demonstrations: the first is pedagogic and focuses on an explanation of a well-

known theory of land use due to von Thunen, the second enables a model of dynamic 

(temporal) urban development to be explored, and the third shows how important it is 

to develop models with strong visual content which enable designers and decision-

makers to use models to generate effective designs and policies. 

 

 

2 Defining Spatial Modeling 
 

Computer models are structured in many different ways but the standard sequence 

follows digital processing which involves manipulating a series of inputs which drive 

the model to a series of outputs, thus reflecting the various functions that tie the 

elements of the model together. This sequence reflects the logic chain that any model 

is built around, with inputs defining the exogenous or independent variables that 

dictate how endogenous or dependent variables are conditioned. Many models 

involve elaborate causal chains which may be activated many times, recursively 
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through different kinds of time which in turn enable the model’s outputs to become 

stable. This model processing is usually nested within a wider process of model 

fitting, estimation, or calibration which enables parameters of the model – macro 

variables that usually have global significance – to be tuned to values that connect the 

inputs to the outputs in the most satisfactory way. This kind of prediction is enabled 

so that confidence in the way the model reproduces a known situation as reflected in 

the input data and the independently corroborated data associated with the models 

outputs or predictions, is assured. The third process is model use, in conditional 

prediction which often mirrors calibration, but is part of a wider phase in which the 

model can be used in design, management, and control. 

 

Each of these processes can be represented using different forms of visualization. 

Indeed every aspect of model operation and use can be visualized as the ultimate 

structure of the model is digital whose location in computer memory can be mapped 

in some way to the 2-dimensional screen. As all our models are spatial, hence some of 

their inputs and outputs are mappable, then associations between inputs and outputs 

with respect to map pattern provide an obvious form. There are many ways in which 

such inputs and outputs can be linked - offline or online in terms of showing how 

inputs are converted into outputs and a classic strategy of visual comparison is to 

array these maps as separate and comparable layers, as ‘small multiples’ in the 

manner suggested by Tufte (1990). 3-dimensional forms can be widely exploited too 

as in the standard manner where such representations are portrayed using the three 

Euclidean dimensions. But at the level of abstraction used in this style of modeling, 

the third dimension is more likely to be employed for scientific visualization of the 

phase space of model solution rather than for more literal, or iconic visualizations 

associated with built form or rural landscapes. 

 

These visualizations almost assume that what is being modeled is static in structure 

where outputs occur at a single point in time but many spatial models are dynamic 

and thus sequences of inputs and outputs need to be visualized. This is the space-time 

process and although small multiples are useful, animation in 2-d or 3-d is often 

employed. We will return to this when we deal with calibration below but animation 

also constitutes a way of linking inputs to outputs, thus revealing model functions or 

processes. There are also different dynamics from the routine where the focus is on 
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showing how objects move in space to longer-term migrations where the focus is in 

comparing map patterns at different points in time. Movement is most simply 

conceived of in terms of animation but there are a variety of ways in which such 

animations can be linked to more abstract properties of the map patterns and the 

space-time movement of related objects.  

 

A time-honored strategy for spatial visualization is to use multiple windows with 

different phenomena in each, some spatial in 2-d or 3-d but some aspatial or non-

spatial and to hot-link these windows so that change in each can be related. The 

process of linking inputs to outputs involves the functioning of the causal chains 

which form the core of the model. If the model is dynamic, visualization may be built 

around space-time in the literal sense but if the process is recursive for the model to 

converge on stable outputs, this too might be visualized in much the same way. In 

cases where the model is both temporally dynamic and recursive in terms of its path 

to solution, then a combination of both is possible.  

 

Spatial models are often built around aspatial or non-spatial processes which although 

touching the spatial system at some point, can be represented using visual traditions 

very different from the 2-d map or 3-d surface. For example, the spatial economic 

model that we first introduce below is conceived in terms of demand and supply 

curves and only then mapped onto a simplified spatial landscape. In fact, one of the 

great powers of scientific visualization is to make such links between non-spatial, 

aspatial and spatial representations, as much for pedagogic purposes as for use in 

more practical contexts. However such mapping from one visual media to another in 

terms of representation always needs to be determined before visualization takes 

place. All this means, is that visualization is a creative process. It is only as good as 

our imagining of how different elements of a model relate to one another and to the 

wider context in which they sit. 

 

The second environment in which spatial models are formed involves the process of 

model fitting. This connects up directly to searching for pattern in data but in 

particular for pattern in the input data which is exploited by tuning the model’s 

processes and functions to explain as much of this pattern as possible. This is usually 

accomplished using a process of trial and error fitting with successive improvement to 
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the best fit. To state the long standing analogy, the process might be visualized as 

climbing a hill where the surface terrain represents the different performance of the 

model with respect to different input parameters. The process of model fitting is then 

the process of climbing this hill and reaching some global optima, ensuring that the 

process does not get stuck in some local optima, some hillock in the landscape of 

hills. In many traditional models which are parsimonious in the extreme such as those 

embodying spatial interaction (Batty, 1976), the structure is such that a unimodal 

performance surface can be ensured if the model is formulated with mathematical 

correctness. Standard procedures can then be used to reach the global optima. In fact, 

visualizations of this process showing the climb across the terrain have been used 

quite widely since the 1960s. 

 

Most of our models are much more complex in that the phase space which embodies 

this terrain can no longer be mapped due to the very large number of parameters that 

contemporary spatial models contain. This is especially true of simulation models 

incorporating new notions of cells and agents. There the process is often much more 

partial in that the calibration might be visualized using exploratory procedures which 

do not aim to find any global optima. In such cases, there still needs to be structure to 

the process. In fact, the calibration phase of spatial modeling is pushed one stage back 

in these more exploratory models due to the fact that the very formulation of the 

model itself comes under scrutiny as soon as spatial data begins to be explored. 

Exploratory spatial data analysis (ESDA) which became popular after the first wave 

of scientific visualization had been established in the early 1990s, threw up the notion 

that the model should emerge naturally from an exploration of pattern in data. 

Although there have been many demonstrations, the focus has been more on inductive 

generalization than on the development of explicitly deductive models which arise 

from such analysis. Pattern and error in the data is a key consequence of such ESDA 

but there have been very few examples where such analysis has then proceeded to 

build models round these patterns, other than those which are based on inductive 

statistics. Although visualization may help generate new models, this is likely to be 

over a much longer time span than the modeling process itself and although the notion 

that the model emerges naturally from such exploration is an attractive one, almost 

Eureka-like in its impact, this is unlikely to be the case in most modeling efforts. 

Usually the model is proposed in advance and all the focus is on tuning it to a real 
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situation, understanding that situation, and using the model predictively and 

prescriptively to solve some problem or implement some new design. 

 

The third environment in which spatial models sit involve their practical use in 

prediction and policy. In the simplest sense, similar visualizations might be built 

around prediction and prescription as around data exploration and model calibration. 

Early software embodying GIS functionality in standard cross-sectional urban models 

illustrates this principle where standard sets of visualization functions apply to any of 

the four model stages – data assembly and checking, analysis, prediction, prescription 

(Batty, 1992). However this process raises the question of purpose and engagement in 

terms of what the model for, who is it for, and how is it to be used? In short, models 

are rarely for the indulgence of the model-builder or scientist, more likely for the 

persons who commissioned it in the first place for practical use. In our examples 

below, we present three models; the first is for educating ourselves, while although 

the second is for exploration of urban development processes, it is conceived as being 

applicable to practical problems and policies involving urban sprawl. The third is 

quite definitely for the stakeholders involved in solving problems in the local 

environment. 

 

In these applied and policy contexts, visualization is likely to be a little different from 

the kinds of scientific visualization we have been implying so far. In fact it is likely to 

reflect a much looser interpretation of model inputs, processes and outputs and may 

be linked to media that do not form part of the model in the first place. This is no less 

rigorous but it does change the kind of engagement that modelers and stakeholders 

have in the process. Visualization thus becomes an essential part of communicating 

complex ideas to a non-expert clientele, and in this sense, it probably involves 

developing procedures for involving this clientele at different stages of the modeling 

process. The notion that the model is delivered, scientists explore and tune it using 

visualization, and its outputs are then pictured in conventional scientific form, is not 

necessarily the most appropriate procedure in situations where stakeholders are 

involved in using models directly. We will present such applications as part of our 

third example below. 
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3 The Space of Visualization 

 
Visualization as a style and set of activities is almost impossible to classify for every 

aspect of computer modeling and its application can be subject to representation using 

digital pictures. Nevertheless it is useful to begin to organize the field with respect to 

the models we will illustrate here, if only to show how the kinds of visualization 

employed depend intimately on purpose, the system of interest, and the environment 

in which the application exists. We will define a generic space which is organized on 

two levels: first with respect to the purposes for which the model, thence its 

visualization is designed, and second, in terms of the key techniques used to 

implement its visualization. We could have developed a third level based on different 

media but in all the cases we conceive of here, the media are conventional pencil and 

paper and their digital equivalents. The panoply of VR and tangible media have not 

yet been invoked in any of the models that we present here although this is an 

important direction in which these more abstract models should be developed. 

 

We define four distinct purposes: education, exploration, explanation, and 

engagement. These purposes are not mutually exclusive of each other, nor are they 

arrayed orthogonally; more likely a model and its visualization tend to stress these 

four purposes in different ways, often with one purpose dominating. For example, 

visualization for education can be both narrow and wide although in the sense used 

here, we will be taking a narrower view. Of course all model building and 

applications involve education of ourselves and of our clients but in this context, we 

are specifically thinking of visualization for the prime purpose of getting the message 

over of how a model actually works. In this sense then, we see visualization as 

enabling an understanding which would not be possible without pictorial help. This 

kind of visualization makes the operation and meaning of the model much clearer 

than any other form of communication.  

 

Exploration is more geared to investigating how model structures translate inputs into 

outputs. This is an essential quest in learning about how the model works. The more 

complicated the simulation, the more likely that exploration is required to test the 

limits of the model, and to enable researchers to be sensitized to the impacts of their 
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scientific decisions. All modeling involves some exploration but in the development 

of models separate from immediate practice, then exploration is of the essence, 

especially where causal structures cannot be analyzed using mathematical formalisms. 

Exploration might simply be trial and error based on trying to find out how the model 

behaves, or it may be more systematic as, for example, in the process of calibration.  

 

In contrast, explanation involves using visualization to confirm or falsify some theory 

which is embodied within the model, and the usual processes of comparing pattern in 

the input and output data is central to this. A tricky issue however is to visualize how 

the various processes linking inputs to outputs match what we know about the 

operation of such processes in real life. Often visualization as explanation is rather 

partial, being based solely on a comparison of outputs from the model with those that 

observed in the real world. Every model which is built afresh, requires some sense of 

how well it explains the reality to which it is being applied, although this is more 

likely to be to the fore in applications which are removed from practice.  

 

The last purposive activity we define is engagement. Rather than define purposes 

which involve forecasting for policy-making, forecasting to test design impacts, 

management or control, we prefer to simply note that models which are developed for 

purposes other than science per se, involve the engagement of non-modeling experts. 

In fact, as models are often built by large teams whose expertise differs markedly 

between team members, then it might be supposed that visualization might be used to 

engage the team in assembling the best model. This is indeed the case but here the 

contrast is greater between scientists and non-scientist stakeholders who need to be 

involved in the process in rather different ways. Essentially engaging stakeholders and 

non-scientific experts involves different kinds of visualization and dissemination 

which probably requires more non-scientific information to be assembled and related 

to the model and its application. Furthermore, the process of using visualization tools 

becomes significant when diverse groups are involved in this kind of communication. 

 

The second level of visualization we define is based on a limited number of 

techniques. Much ingenious visualization is one-off and cannot be classified 

generically. This is because visualization tends to involve some insight which is 

produced idiosyncratically and then pictured in some meaningful way. There are no 
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formulas for creating such graphics although there are some simple and obvious 

methods for taking spatial media and representing it visually. We define the 2-d map 

and the 3-d icon – surface, iconic physical shape, and so on – as being key elements 

of the way we visualize map pattern. Spatial process is harder to fashion but the 

notion of a process occurring in space and time can be illustrated using small 

multiples (of pictures) which provide a sense of change in space and time; animation 

is often simply arranging these multiples as frames in sequence. We also invoke the 

parameter space as being a vehicle which controls the operation of the model 

specifically through calibration. These five features can be arrayed against one 

another and combined in diverse ways to give real substance to the idea of modeling 

as visual confection. The use of hot-linking through multiple windows is simply one 

of the ways in which such visualizations can be animated and linked. 

 

 
Figure 1: Elements of Visualization: Purpose and Technique 

 

These two levels of visualization by purpose and technique lead to a tree of 

possibilities that we have arrayed in Figure 1. This provides a simple means of 

classifying the types of visualization in any spatial model application and we will use 

it to illustrate the relative differences between the three applications which follow. In 

any full scale application, many branches of this tree will be invoked: models are 

defined to educate, explore and explain with these activities often taking place, even 

though the main purpose is to engage those stakeholders who control the policy and 
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design process. Our first example below clearly illustrates this point although the 

three applications we have chosen are very different from one another. 

 

 

4 Visualizing Theoretical Explanations: The von Thunen Model of 
Market Land Rent and Transport 

 

Count Johann Heinrich von Thunen is accredited with devising the first land use 

model in 1826 which explained the spatial distribution of crop cultivation (and/or 

animal husbandry), using evidence from his farm in East Prussia (Hall, 1996). His 

model essentially examines the trade-off between the productivity of agricultural land 

with respect to the yield and price associated with selling the crop at the market and 

the transportation cost necessary to move it there. In essence, this tradeoff fixes the 

level of rent that the farmer is able to pay and the use of the land is thus determined 

by the crop that generates the highest rent. The model involves comparing several 

crops and determining, with respect to one market center, the actual crop cultivation 

on each land parcel at different distances from the market. If there is more than one 

market center, the allocation depends on a comparison of possibilities but the solution 

is still stable for the selection of the land use simply depends on the maximum rent 

payable from whatever market. 

 

For a single market with uniform transport costs which imply location on a 

homogeneous plain, land uses arrange themselves concentrically around the center. 

This can be easily extended to several centers. If physical distortions due to the 

transport network are introduced, then the pattern of location is affected, with fast 

transport routes having higher accessibility than the areas between them. This model 

is simple in form but the spatial outcomes from its generalization to many centers and 

to many different transport routes are often difficult to anticipate, hence the need for 

some simple demonstration. Moreover, when the price of the good or its composite 

yield, and the relative transport costs are changed, the pattern of land uses shifts. This 

is the essence of the model for which we have produced a very simple but effective 

visualization. Of course, the importance of the model does not lie in its application to 

an agricultural or rural system but in its generalization to the urban realm where it 
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forms the basic equilibrium model of the urban land market, underpinning 

contemporary urban economics (Alonso, 1964). 

 

To illustrate how tricky the model is to non-mathematicians, we first define a location 

with respect to a single market center as j , the distance from the center to j  as jd , 

and the cost of transport for the commodity in question, k , as kβ . The quantity 

produced per unit of land or yield is assumed to be uniform – on a homogeneous 

plain, and is defined as kQ  with its price at the market as kρ . We will also assume a 

fixed cost of production for each commodity called kc . The rent which a farmer 

cultivating a crop k  at j  is called k
jR  and is calculated as 

 

j
kkkkk

j dcQR βρ −−= ][   .    (1) 

 

This is a linear equation, sometimes called a bid rent curve, in that it shows what a 

farmer cultivating crop k  can bid for renting the land at different distances j  from 

the market center. In the model, we have built, we assume that one element of the 

yield, price and fixed cost in equation (1) can be varied and thus this equation can be 

written as 

 

j
kkk

j dR βα −=   .     (2) 

 

For a single market center, the use of each parcel of land j  is computed as the 

maximum rent payable over all crops, that is k
jk

l
j RR max= . For any pair of land 

uses/crops, it is also easy to compute points in the landscape where the rent payable is 

the same, that is the breakpoints between crops with respect to their distance from the 

market. This occurs where l
j

k
j RR =  and this equation can be solved for any k  and l  

to yield the break point ):( lkd j  as 

 

 lk

lk

j lkd
ββ
αα

−
−

=):(  .      (3) 
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Finally where there are two or more market centers called i , the land rents need to be 

computed using a modified form of the bid rent equations which are now indexed 

with respect to each center as 

 

 

ij
kkkkk

ij dcQR βρ −−= ][   .    (4) 

 

 

We choose the land use for each location j  which maximizes the rent as 
k
ijki

l
j RR max= .  

 

The visualization necessary in this model is largely so that the user can understand 

how the land use equilibrium occurs. The software essentially enables the user to 

show how the bid rent curves for three land uses – milk, grain and livestock 

production – can vary in price and transport cost, thus changing the intercepts and 

slopes of the linear bid rent function, kα  and kβ . The guts of the visualization are a 

blank canvas – the map – onto which one can draw transport routes and locate market 

centers. It is also possible to define constraints as unproductive land. The canvas is 

initially an homogeneous plain but background maps can be attached to it so that the 

user can draw on features that pertain to some real situation. The second type of 

canvas but within the same GUI, reflects the bid rent curves, one canvas for changing 

the slope of these, the other for the intercept. When these are changed, the distribution 

of land uses appears immediately and thus there is a direct association from the 

parameter space to the real space, with the parameter space in fact being constituted 

as a cross section through the hypothetical real space. The final feature of the 

visualization is the same canvas but with the distribution of land uses portrayed in 3-d 

as a wire frame or rendered image. There are two sliders to change the orientation of 

the x-y and z dimensions associated with this visualization. 

 

This visualization is to educate the user through explanation. It was devised as part of 

the Open University First Level Course on Technology and Cities and the software 

was distributed free to students registered on this course (Roberts, 1999). It also 
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contains elements of exploration but it is strictly designed to explain and educate. In 

terms of our characterization in Figure 1, we show this form of visualization in Figure 

2(a) (where we also compare this with the two other examples reproduced here) and 

this shows immediately that we are using minimal but effective visualization 

techniques. The essence of this is a small portable piece of software which embodies a 

kind of sketch explanation or sketch modeling. Only one window is used and there is 

no hot-linking but the control over the model is so quick and direct that this is an 

example of extremely parsimonious visualization which is pretty effective. 

 

 

a) Example 1: Explanation 
 

b) Example 2: Exploration 
 

c) Example 3: Engagement 
 

   
 

Figure 2: Structure of Visualization in the Three Example Models 
 

 

We show two examples of the use of this software in Figures 3 and 4. In Figure 3, we 

show the single market center with no distortions associated transport routes. This is 

the homogenous plain example which appears everywhere in the location theory 

literature. The concentric symmetric ring structure around the market is clearly 

shown. In Figure 4, we have taken a map of Chicago and its railroads in 1861 from 

Cronon’s (1991) magnificent book and use this to impress the fact that land use 

around Chicago is influenced by these routes. Note that we define Lake Michigan as 

‘unproductive land’. The resulting land use pattern shows the classic distortion posed 

by differential transport routes. The 3-d surface also shows the limits to the degree of 

distortion in that the picture is a little too confused. Nevertheless this does show how 

a model can be moved from theory to practice, from hypothesis to reality, albeit that 

the realities we choose are more caricatures of the real thing than the sorts of model 
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reality we present below. There are other bells and whistles that are invoked in this 

software – fuzzy boundaries and precise distances, scaling of bid rent curves to reflect 

actual distances, and so on – but the essence of the visualization is shown in Figures 3 

and 4 which provide a complete picture of this approach to explaining location theory 

and its relationship to the micro-economy in a spatial setting. 

 

 

The Canvas: The Homogeneous Plain The Price-Transport Cost Tradeoff 

  
The Concentric Land Use Ring 

Solution 3-D Visualization of the Rings 

  
 

Figure 3:  von Thunen’s Model 
 

Simple software demonstrates how the tradeoff between product yield and transport cost gives rise to 
land use competition and stable spatial organization. 

 
You can download the software for this application from http://www.casa.ucl.ac.uk/vonthunen/ 
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The Canvas: Chicago 1861 
(from Cronon, 1991) Railroads and Lake 

  
Land Use Solution: Distorted Rings 3-D Visualization 

  
 

Figure 4: Nature’s Metropolis: How Railroad Structure Distorts the Concentric 
Pattern in 19thC Chicago 

 

 

5 Visualizing Model Exploration and Calibration: Urban 
Development Using Cellular Automata 

 

Our second and third visualizations involve models whose outputs can be examined as 

they are executed. In a sense, this is true of the von Thunen model but as this is a 

comparative static structure, its operation is immediate. Models which can be 

examined as they run are usually temporally dynamic with the time simulation 

synchronized with simulation in computer time, notwithstanding any additional 

processing involving trial and error calibration during the simulation time itself. In the 

case of our first model of this genre – a dynamic model of urban land development 

using cellular automata principles – as the land area becomes more developed, more 
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and more functions are invoked to examine distance relationships and comparative 

links relating different spatially specific land uses to one another. Thus the computer 

time taken slows in linear proportion to this additional processing. This is not a 

problem in visualizing the structure and dynamics of the model but it gives the wrong 

impression in terms of real time. Thus movies must be made of the structure based on 

different frames at specific times if an accurate impression through simulation time is 

to be presented. 

 

The model was developed by Xie (1996). It is called DUEM (Dynamic Urban 

Evolutionary Model) and is based on classic CA principles in which land is developed 

as a function of what other land uses exist within the neighborhood of each site being 

considered. All we can do here is sketch its rudiments for it is complicated, being part 

of a wider project which is aimed at putting the model into a web-based context and 

disaggregating the cellular spaces to enable agents to be specifically represented (Xie 

and Batty, 2004). The model contains five land uses – housing, industry, and 

services/commercial, as well as two kinds of street – junctions and segments. 

Junctions are needed to connect segments, and housing, industry and commerce 

cannot develop without there being streets nearby, within some neighborhood. Streets 

are a function of what gets developed in terms of these first three land uses.  

 

Each land use is considered as being in three states, reflecting its aging: new, mature, 

and declining with new land uses being the seeds that motivate further growth. When 

land uses pass through their cycle to declining, they disappear and the land vacated 

becomes available for new development. Three scales of neighborhood are defined: 

first the small strict cellular neighborhood which is mainly used to ensure streets and 

land uses are connected, second a wider district neighborhood in which the distance 

from the cell in question at its center is considered with respect to other uses in the 

district, determining what use the central cell changes to, and third a regional 

neighborhood in which constraints on development are imposed. The model is thus 

richly constituted with respect to its life cycling and the representation of spatial scale. 

 

We have designed the interface in an entirely visual way based on two kinds of 

windows: the map canvas and four related windows which show the trajectories of 

growth and decline for housing, industry and commerce, and all three of these. The 
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user can switch elements on or off in each of these windows. The key reason for 

arranging the visualization of urban dynamics in this way is to present two features: 

the capacitated growth of the spatial system which is reached when the map canvas 

fills up, thus illustrating logistic growth and oscillations around the equilibrium, with 

even the possibility, yet to be seen, of simulating chaotic growth; and the wave effects 

seen when land uses age through their cycle. Waves of change cycle across the map, 

eventually dissipating as the system gets older. Because these kinds of model are 

highly diverse and contain many parameters, visualizations must be highly tuned to 

particular purposes. In this case, we have not produced any visualization of the 

parameter space for our focus is more on showing how different morphologies of 

development can result from very different initial and boundary conditions. Again one 

of our quests is to show how scale makes a difference.  

 

Initial Conditions: Random Seeds with 
Equal Proportions of All Land Uses 

Growth to Time = 30: Early Exponential 
Growth 

  
Growth the Time = 60: 

Exponential Growth 
Growth to Time = 120: Capacitated 

Growth and Logistic Oscillations 

  
 

Figure 5: Small Multiples of Urban Growth Processes 
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Oscillating Growth at Time = 240 
 

 
 

Exploring the Steady State to Time = 1500: Industry Takes Over Indicating 
that the Default Rules are Badly Specified 

 

 
 

Figure 6: Exploring Trajectories to the Steady State 
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Behind these windows, access to the phase space within which the parameters are set 

is accessible using various dialogues, also called up as windows. Essentially by 

doubling clicking on each land use, we are able to bring up a series of dialogues with 

respect to how neighborhoods are configured, how distance influences the operation 

of state changes in each neighborhood, and how long different land uses remain in 

their different life cycle stages. We have not provided any means for visualizing how 

these changes in parameters might impact on the different morphologies produced. 

Offline, we can use any of the usual strategies to explore the parameter space using 

small multiples of maps and linking the parameter values in its phase space to these 

spatial differences. In fact, it is easy enough to make animations from the simulations 

which can be linked to different values in the parameter space but our focus here is 

more exploratory. The framework is so diverse in terms of scale that an obvious 

approach is to see how different kinds of initial conditions can be simulated. 

Comparisons from these thus become important, and again techniques such as small 

multiples and layering are clear ways to visualize these differences. Finally these 

kinds of models can be explored on-the-fly. As the model is running, we are able to 

explore changes to the morphology either directly or by stopping the model and 

changing parameters. 

 

To show the power of this visualization which is charted in Figure 2(b), we present a 

typical run of the model in Figure 5. This shows the various windows and the 

development of a system of cities to the capacity of the map canvas as illustrated 

through the model’s trajectories. The effect of different waves of growth in the 

residential sector can also be seen as distinct gaps in the development by the time the 

simulation reaches 120=t  but these traveling waves are much clearer in the 

animation. In Figure 6, we show what happens in the steady state, how the land use 

totals oscillate but also how industry gradually encroaches on the other land uses, thus 

indicating that the default rules, no matter however plausible, are badly specified. 

This is the classic finding of our exploration: that models although plausible can be 

quite unrealistic when pushed to their limit. This, of course, is an essential diagnostic 

in developing a more realistic model with visualization being essential to this process. 

 

There are many elaborations on this system that we might make, especially as the 

visualization occurs in computer time and the location of activity can be changed on-
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the-fly. Within the package is a drawing capability, a little like that contained in the  

von Thunen model, and this enables the user to interact with the model in direct 

fashion. In fact, in all three packages we have used, there is drawing capability that 

lets the user interact with the model physically, notwithstanding that the data that 

drives these models is by and large numerical. 

 

 

6 Visualizing Model Operation with Stakeholder Involvement:  
Pedestrian Movement and Public Safety 

 

Our last example builds on the cellular dynamics approach of the last section but 

develops a model at a much finer spatial scale with a real problem driving the 

application. We are working with several varieties of active walker model which 

combine agent-based with cellular modeling using the cells to represent the landscape 

on which the agents – the pedestrians – move. The generic model essentially 

combines movement in the default direction of forward with some random 

perturbation and with obstacle avoidance, the direction being fixed according to a 

walker attraction surface which is formed from a synthesis of the multiple forces 

determining why people wish to walk and for what purpose (Batty, Desyllas, and 

Duxbury, 2003). In a shopping mall, for example, this surface would reflect the kinds 

of goods and their locations in shops that walkers wish to purchase.  

 

We have applied this model to a situation of crowding which is associated with a 

major street festival, the Notting Hill Carnival, which is held once a year for 2 days in 

west central London. There are major problems of public safety associated with this 

event and the model has been built to show how people enter the area, flock to the 

attractions, namely the street bands and parade, visiting a series of events which are 

located in a small area of around 3 square kilometers. The model essentially walks 

visitors through the street system to the carnival attractions according to the existing 

controls on the event managed by the police and other services. The problem of 

crowding is severe in that there is a serious conflict between the parade and the street 

bands, the bands being inside the parade route which is circular and continuous. 

Visitors crossing into the area where the bands are located are in conflict with the 

parade and there are more general problems of crowding at different points within the 
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area where streets are narrowest. Problems of crime have grown as the carnival has 

gained in popularity and reducing crowd densities is seen as a way of making the 

event safer. 

 

The critical focus of this model is that it is designed to help in alleviating crowding by 

showing how streets might be closed, barriers erected, sound (band) systems moved 

and the route of the parade changed. All these elements can be controlled within the 

model and posed as ‘what if’ questions. Most models can be put into a ‘what if’ 

context but in the case of this particular model, the situation is so highly controlled 

already that it is impossible to think of the model as simulating some relatively 

uncontrolled situation and then adding controls to meet some objectives. This kind of 

problem is quite unlike the problem of optimal city design where it is assumed that 

most cities develop organically from the bottom up and that planning control is 

imposed to direct growth rather specifically in situations where such direction is 

lacking or ineffective. This is not the case in something like the Notting Hill Carnival 

as throughout the history of the event, there has been strong control and management. 

 

This suggests that those involved in managing the event and who know it best be 

intimately involved not only in the use of the model but in its design. Moreover, in a 

situation where there is high control, it is useful to think of model calibration as 

reflecting various degrees of control, for example, by beginning with a relatively 

uncontrolled situation and then adding controls one by one. To do this effectively, 

stakeholders who know what controls are effective should be involved so that the 

process of model calibration and use in problem-solving and plan-making is simply a 

natural extension of the model fitting process. In the case of the Notting Hill model, 

this process can be extended even further back with the data needed to operate the 

model being in itself simulated in cases where it is difficult to observe. 

 

To illustrate these various stages, visual interfaces are necessary with the software 

being user friendly and interactive as in all the programs so far in this paper. However 

it is debatable as to whether stakeholders and non-experts should be involved in the 

software per se as the simulations can be captured as animations and pictured using 

small multiples. This may be enough to engage in debate although this is uncharted 

territory in so far as communicating the model to a wider set of non-scientific experts 
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is concerned. The actual model developed begins with data which is observed where 

people enter the carnival and are finally destined for. This is site specific and the first 

thing that is done is to model the tracks that pedestrians make from their entry points 

 

a) 
 

 

c) 
 

 
 

e) 
 

 

b) 
 

 

d) 
 

 

f) 
 

 

Figure 7: Exploration of the Street System in Notting Hill 

a, The street geometry b, The parade route (red), the static sound systems (yellow) and the tube stations 
(blue) c, Accessibility from parade and sound systems without streets  d, Shortest routes to tubes 

without streets e, Accessibility in streets  f, Shortest routes in streets. 
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a) 
 

 

c) 
 

 

e) 
 

 
 

b) 
 

 

 
d) 
 

 

 
f) 
 

 

Figure 8: The Full Modeling Sequence and Identification of Vulnerable Locations 

a, The 2001 parade route (red and blue) with the proposed 2002 route in red, the static sound systems 
(yellow) and the entry points (blue) b, The composite accessibility surface from stage 1 c, Traffic 

density from stage 2 d, Areas closed by the police used in stage 3 e, Location of walkers in the stage 3 
steady state f, Vulnerable locations predicted from stage 3. 

 

to the destinations at the carnival itself. These tracks can be found as shortest routes 

from entry points to attractions through the street system and a swarm algorithm is 

used to find these (Bonabeau, Dorigo, and Theraulaz, 1999). This is a rather technical 

stage of the model design but once completed, an attraction surface is formed from 

these shortest routes and the second stage invoked. This surface is used to direct 
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walkers from entry points to the carnival attractions and it is at this point that 

crowding is assessed. We start with a situation of no control and then gradually 

introduce controls until safety levels are reached. This involves running the model 

through many stages. Ideally it is during this process that those who best know the 

carnival should be involved. In this stage, it is entirely possible that the current 

situation is replicated but in fact it is likely that the current situation will be found 

wanting in some way, as we know it is, hence the rationale for this style of modeling. 

 

In short, this kind of modeling involves using a model in such a way that the expertise 

of those who know the problem best is gradually added into the simulation. This is 

why we do not define this as a planning model or even a forecasting model but a 

model which engages those who know the situation best. The model can thus be seen 

as the product of many decisions from those who know the event and this naturally 

leads to a rather different style of ‘what if’ analysis and a rather different kind of 

policy making process. We illustrate two of the stages of the model using small 

multiples – in Figures 7 and 8. In Figure 7, we show how the walkers swarm out of 

the carnival area in search of destination points which is part of the early stage of 

generating an appropriate and realistic data set for the model. In Figure 8, we show 

the second stage where the walkers climb the surface of attraction, generating crowds 

and leading to an analysis of key problems of safety which need to be resolved. 

Animations of these processes are essential in visualizing how crowds move and thus 

how they might be controlled and in this sense, the model has a usage in almost real 

time.  

 

 

7 Next Steps: A Paradigm for Visual Modeling 
 

We are very conscious that we have not mapped out here a comprehensive framework 

for visualization in spatial modeling. This is largely because so much visualization is 

characterized by ingenious solutions which involve putting unlike pictures together, 

by large scale simulations that depend on very sophisticated software in the search for 

pattern, and by the very nature of the models themselves and how they are formulated. 

All this is influenced by the imagination we bring to bear on the pictorial world. 
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Equally well there are many insights to be made using other intellectual media – 

verbal discourse and numerical reasoning. In getting a complete picture of how our 

models can be understood and best applied, all these strategies are required. In fact we 

have shown here that rather than visualization per se, what is evolving are visual 

models: models that cannot be designed in any other way than using the visual 

medium. In our last example, this was even more pointed in that to involve non-

scientists in developing such models, the visual medium is essential. 

 

What we have not addressed here but is something that needs to be pursued is the 

physical media for spatial modeling. As our models are digital, they can be 

manipulated in countless ways. For example, GIS is often used not for spatial analysis 

but for paper map-making with the physical product and its perfection being the 

rational for digital representation of the reality in the first place. In the same way, 

models of the built environment can be printed in 3-d using the new generation of 

hard copy printers, thus simply aiding the manufacture of iconic models in their 

traditional physical form. The notion of building ‘models of models’ – simulacra as 

Baudrillard (1994) refers to them – is also a useful way forward and in the examples 

illustrated here, some elements of this recursion do permeate the model building 

process. In short, scientific visualization is increasingly being informed by physical 

visualization but with the digital representation being central and stable to this entire 

media. These are exciting developments and there is an urgent need to engage a 

debate about such possibilities in spatial modeling and analysis. 
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